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Simple Summary: In this study, we implemented a multifaceted approach, coupling phylogenetic,
phylogeographical and demographic analyses together with a morphological characterization to
depict the genetic patterns of Heleobia atacamensis, an endangered species scattered in isolated and
semi-isolated but dynamic habitats of the Atacama Saltpan. We focused on snails obtained from Peine
and Tilomonte, two peripherical localities, which were compared with topotypes specimens. The
range extension of the species also allowed us to reassess its conservation status. Molecular analyses
showed that snails from Peine and Tilomonte belong to Heleobia atacamensis. We also discovered
genetic structure in the saltpan, represented by six genetic clusters, besides morphological differences
between populations. Since the observed pattern is common for other freshwater species restricted
to desert aquifers worldwide, our results represent findings applicable to analogous systems. The
species, listed as Critically Endangered at regional level in 2014, was reassessed as Endangered. For
an eventual management plan, we suggest incorporating the genetic information obtained here.

Abstract: Evaporitic ecosystems of the Atacama Desert contain a rich endemic fauna, including
mollusk species. A recent study performed in the freshwater snail Heleobia atacamensis, endemic to
the Atacama Saltpan, revealed a strong interdependence of genetic patterns with climatic fluctuations
and landscape physiography. The species is currently listed as Critically Endangered at regional
scale and as Data Deficient on the International Union for Conservation of Nature (IUCN) Red
List. Here, we studied genetic diversity and demographic history of several populations of the
species occurring on a connectivity gradient, including snails from new peripherical localities (Peine
and Tilomonte), which were compared with topotype specimens. In addition, we reassessed the
conservation status using the IUCN Red List categories and criteria considering species-specific
idiosyncrasy. Phylogenetic and phylogeographical analyses indicated that snails from Peine and
Tilomonte belong to H. atacamensis. We discovered significant differentiation in shell morphology,
which was generally greater in geographically isolated populations. We also inferred six genetic
clusters and a demographic expansion congruent with the wet periods that occurred at the end of
the Pleistocene. Considering the highest risk category obtained, H. atacamensis was reassessed as
Endangered at regional scale. Future conservation plans should consider the genetic assemblages as
conservation units.

Keywords: Atacama Desert; Chile; endangered species; freshwater gastropods; genetic clusters;
isolated populations; spring snails
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1. Introduction

Species extinction is a recurring event throughout the history of life on Earth, and a
variety of extinction-causing factors have been documented and hypothesized, some due
to natural processes, others attributed to human activities [1–3]. Currently, it is widely ac-
cepted, although with some variations, that there are five main causes of species extinction:
habitat loss, overexploitation, invasive species, disease, and climate change [4–6].

The diversity of mollusks is quite high; they are the second most diverse group
after the arthropods [7]. Estimates of the number of described species of mollusks vary
between authors, for example, 70,000–76,000 [8], 85,000 [7] or 120,000 [9]. Of 150,300 species
assessed on the International Union for Conservation of Nature (IUCN) Red List, 28% are
threatened with extinction [10]. Based on MolluscaBase [11], the IUCN Red List reports
83,125 mollusk species, of which 8934 have been assessed, and 2340 declared as threatened
with extinction (11%).

Freshwater snails are an important component of aquatic ecosystems worldwide, but
also a group prone to extinction because such systems tend to be ephemeral, in addition
to being affected by a series of threats produced by human activities that have increased
in the last decades [12–14]. In northern Chile, saline lakes are fragile ecosystems with
a particular endemism and snail diversity [15–19]. According to the regulations for the
classification of the wild species of the Ministry of the Environment of Chile (Ministerio
del Medio Ambiente de Chile), which is based on the categories implemented by the
IUCN Red List, three mollusk species are listed as Critically Endangered (CR) in northern
Chile: Biomphalaria costata (Biese), Heleobia atacamensis (Philippi) and Heleobia transitoria
(Biese) [20–22].

Heleobia atacamensis is a freshwater snail endemic to Tilopozo, a small water well
located at the southern end of the Atacama Saltpan in northern Chile [15]. The species
is listed as Data Deficient (DD) by the IUCN Red List due to the lack of knowledge with
respect to population parameters, habitat and threats [23]. However, shortly after, the
species was categorized as Critically Endangered (CR) at regional level by the Chilean
state based on its restricted range, the high incidences of droughts and decline in habitat
quality by extraction of water for mining activities (RCE DS52/2014, Ministry of the
Environment) [21]. The threat is worrying because the Atacama Saltpan contains most of
Chile’s lithium reserves and all the country’s production originates from this system [24],
where the mining companies occupy approximately 80 km2 in their operations [25]. Recent
studies indicate that significant environmental degradation related to mining activity has
occurred in the saltpan over the last 20 years [25,26]. In addition, spatio-temporal analyses
suggest that, although the core of the saltpan is the most affected zone, the marginal
zone of the system (which corresponds to the habitat H. atacamensis populations) would
also be affected by the brine pumping [27]. Although the conservation categories of H.
atacamensis were based on different antecedents of the species, they were mainly established
considering the single population of Tilopozo. However, a greater population of this snail
has been discovered in the last decades. In a phylogenetic analysis using mitochondrial
12S and 16S ribosomal RNA gene sequences of two snails of the genus Heleobia from
the Atacama Saltpan, Collado et al. [28] tentatively assigned a specimen from Peine to
H. atacamensis while another from Tilomonte was considered as the sister group of this
species. In a subsequent phylogenetic analysis using the cytochrome c oxidase subunit 1
mitochondrial gene (COI), Collado et al. [18] also recovered Heleobia sp. from Tilomonte
as the sister group of H. atacamensis, although specimens from Peine were not included.
More recently, Valladares et al. [29] used a multilocus approach (mitochondrial and nuclear
sequences) to analyze samples of H. atacamensis from Tilopozo and other seven undescribed
Heleobia populations located inside the Atacama Saltpan, recovering the eight populations
in a monophyletic group as part of a larger clade also containing other congeneric species
from the Chilean Altiplano and the Atacama Desert. In addition, based on microsatellite
markers, they detected a marked genetic structure and a high level of fragmentation among
populations of the species. However, despite the fact that Valladares et al. [29] significantly
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extended the range of H. atacamensis within the Atacama Saltpan, the snails from the
peripherical towns of Peine and Tilomonte were not included.

Currently, knowing the distribution, genetic structure, and morphological variation
of a species is a fundamental aspect in conservation biology, especially in vulnerable
species, in addition to the identification of evolutionary independent lineages within the
focus taxa [30–35]. Considering these guidelines, which will serve as baselines for other
studies regarding species at high risk of extinction, the aims of the present study are to
(1) examine phylogenetic relationships of H. atacamensis using mitochondrial markers con-
sidering congeneric species present in the South American Altiplano and Atacama Desert,
(2) investigate the genetic variation and historical demography of the species including all
known populations, (3) evaluate the variability of shell morphology among populations
including a comparison between snails from Peine and Tilomonte with topotype speci-
mens of the species, and (4) reassess the conservation status of the species considering the
identification of Evolutionary Significant Units (ESUs).

2. Materials and Methods

Live snails were collected in 2015 from Peine (23.6833◦ S, 68.0586◦ W) and Tilomonte
(23.7901◦ S, 68.1095◦ W), Northern Chile (Figure 1). In each locality, 30 individuals were
sampled using a sieve of 0.5 mm mesh width and stored in 70% ethanol. The shell was pho-
tographed using a Motic SMZ-168 stereomicroscope equipped with a Moticam 2000 digital
camera. The soft body was isolated from the shell. The dissected opercula and radulae
were put in a diluted hypochlorite solution for 3–5 min to remove organic material attached
and then observed using a scanning electron microscope (SEM) Hitachi SU3500. A similar
method was used for the protoconch, but in this case it was immersed for 30 min in the
hypochlorite solution.
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Map showing the boundary of the saltpan and general view of the system. New localities are 
Figure 1. Sampling sites of Heleobia atacamensis in the Atacama Saltpan and adjacent localities.
(A) Map showing the boundary of the saltpan and general view of the system. New localities are
indicated in blue and previous study sites are shown in gray. (B,C) Peine and Tilomonte, respectively,
showing the position and principal watercourse in each locality. The map was made using QGIS
Geographic Information System v3.4.9 with ESRI world imagery (ESRI, DigitalGlobe, GeoEye, Earth-
star Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community)
(http://www.qgis.org, accessed on 10 January 2023). (Map: M.A. Valladares).

http://www.qgis.org
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DNA extraction, PCR amplification conditions and sequencing of the COI gene of
snails from Peine and Tilomonte were obtained following Valladares et al. [29]. Both strands
of the amplified products were sequenced by Macrogen Inc. (Seoul, Korea). The sequences
were edited and then aligned using the algorithm of MAFFT v7.505 [36] in the online server
by Katoh and Standley [37]. In all analyses, we included sequences of different populations
of H. atacamensis from the Atacama Saltpan [29]. This dataset considered eight sites inside
the Atacama Saltpan, including Tilopozo, type locality of the species, and two outside the
coast (Peine and Tilomonte) (Figure 1).

Phylogenetic relationships were examined using the maximum likelihood (ML) and
Bayesian inference (BI) algorithms. In both cases, the best sequence evolution model was
previously selected using PartitionFinder v2.1.1 [38]. Reconstruction by ML was performed
in the program RAxML v8.0 [39], and node support was obtained by performing a bootstrap
analysis of 1000 pseudoreplicates. Bayesian estimation was performed in the program
MrBayes v3.2.7 [40]. The BI analysis was run three times for 50 million generations each time
and the consensus tree obtained considered a burn-in of 25%. The reconstructions of ML and
BI were performed in the CIPRES cluster of the San Diego Supercomputer Center [41]. In
the phylogenetic reconstructions, the sequences were concatenated, and posterior analyses
were implemented using a partitioned dataset. The sequences of individuals from Peine
and Tilomonte were included in a comprehensive dataset depicting main lineages of
Heleobia [18,19,28,29,42] from the South American Altiplano and Atacama Desert. Three
species of Semisalsa Radoman were used as sister group and Heleobops carrikeri Davis and
McKee was used as outgroup (Table S1).

For the phylogeographical and demographic analyses, the matrix generated included
123 COI sequences, 7 of snails from Peine, 2 from Tilomonte and 114 individuals of Heleobia
atacamensis from eight localities inside the Atacama Saltpan [29]. This dataset included
19 sequences from individuals collected in the type locality of the species (Tilopozo).
Haplotype relationships were visualized by constructing a haplotype network through the
median-joining algorithm [43] using PopART v1.7 [44]. The Geneland v4.0.7 package [45]
was used to determine the number of genetic groups and the spatial population structure
within the species distribution. The most likely number of populations (K) was identified
by performing ten independent MCMC analyses of 108 iterations and thinning every
10,000 iterations. The range was limited between K = 1 and K = 10, and a burn-in of 25%.

Historical demography was studied by comparing the observed mismatch distribu-
tions [46] implemented in DnaSP v5.10.1 [47]. Harpending’s Raggedness index (rH) was
calculated in Arlequin v3.0 [48] to test the unimodality of observed data. To estimate the
tendency of population growth through time, we constructed a Bayesian skyline plot (BSP)
in BEAST v2.5.2 [49]. This Bayesian approach incorporates uncertainty in genealogy by
using MCMC integration under a coalescent model, providing information about effective
population size (Ne) through time [50]. The running conditions considered 107 iteration
sampling parameters every 1000 steps and discarding the first 25% of steps. The analysis
was implemented under a strict molecular clock and assuming an evolutionary rate of
1.7% substitutions per million years for invertebrates [51].

For morphological comparison, 20 individuals from Peine and Tilomonte were ana-
lyzed. In addition, 10 individuals from each of the eight sampling sites located inside the
saltpan were included. In each case, individuals from the upper third of the size distribution
of each locality were chosen. From each photograph, five shell variables were measured:
shell length (SL), shell width (SW), aperture length (AL), aperture width (AW), and body
whorl length (BWL). A principal component analysis (PCA) was performed to visualize
the morphological variation of different populations. Since some variables violated the
assumptions of normality, we analyzed the data grouping individuals by localities using
the non-parametric Kruskal–Wallis (K-W) test. Subsequently, a non-parametric MANOVA
test (PERMANOVA) was conducted using 10,000 permutations to compare individuals
using the multivariate data and under the same grouping scheme. All statistical analyses
were conducted in R v3.6.1 software [52].
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Conservation status assessment of H. atacamensis was performed using the IUCN Red
List [53] categories and criteria. For this, we used Criterion B of geographic distribution
in the form of either extent of occurrence (EOO) (sub-criterion B1) and area of occupancy
(AOO) (sub-criterion B2), considering (1) all localities where the species is found, (2) species
“subpopulations” in the sense of IUCN Red List [53] and that (3) “The term ‘location’
defines a geographically or ecologically distinct area in which a single threatening event
can rapidly affect all individuals of the taxon present” [53]. This statement is equivalent to
saying that “If two or more subpopulations occur within an area that may be threatened
by one such event, they must be counted as a single location” [53]. For the evaluation
(3), the threats were recorded through field observations and the literature data. In this
last case, we consider species-specific idiosyncrasy since H. atacamensis is a gill-breathing
snail with direct development and therefore low vagility [54]. Geographic coordinates
of all localities of the species were obtained using GPS (Global Positioning System). The
evaluation was conducted loading the georeferenced localities in the software program
GeoCAT (Geospatial Conservation Assessment Tool) version ß [55], which provides a
preliminary conservation category based on the EOO and another on the AOO, for which
a cell grid of 2 km2 was used. The possible categories are Critically Endangered (CR),
Endangered (EN), Vulnerable (VU), Near Threatened (NT) and Least Concern (LC).

Voucher specimens were deposited in the Museo de Ciencias Naturales y Arqueología
Profesor Pedro Ramírez Fuentes (MCNPPRF–CC 148–10 to MCNPPRF 148–24), Chillán,
Chile and Museo de Zoología de la Universidad de Concepción (MZUC-UCCC 44212–
44214), Concepción, Chile. Additional specimens are housed at Laboratorio de Malacología
y Sistemática Molecular, Universidad del Bío-Bío (UBB), Chillán, Chile. COI sequences
from Peine and Tilomonte were deposited in GenBank (OP630467-OP630474).

3. Results
3.1. Molecular Analysis

The amplification of the mitochondrial fragments (12S, 16S and COI) used in the
concatenated phylogenetic estimations produced an alignment of 1506 nucleotides in length,
generating a matrix of 49 individuals. The best-fitting model of nucleotide substitution
was the HKY + I + G for 12S and 16S genes; and GTR + I, HKY + I and GTR + G for
the first, second and third codon positions of COI, respectively. The phylogenetic trees
estimated using ML and BI were congruent, and in both analyses, samples from Peine and
Tilomonte were recovered in the same clade with populations of H. atacamensis from inside
the Atacama Saltpan (Figure 2). The H. atacamensis lineage presented a high node support
and was differentiated from other species of Heleobia.

The amplification of the COI gene used in the phylogeographical analyses pro-
duced a fragment of 673 nucleotides in 123 specimens examined. Sequence alignment
showed a total of 55 polymorphic and 31 parsimony informative sites (nucleotide diversity,
π = 0.011), defining 47 haplotypes (haplotype diversity, H = 0.928). The haplotype network
(Figure 3) showed that sequences from the peripherical localities Peine and Tilomonte were
recovered nested within the haplogroups of the populations from the Atacama Saltpan.
The two samples from Tilomonte were recovered in two haplotypes that were not shared
with any other locality. On the other hand, the individuals from Peine were associated with
Tebenquiche, located in the northern section of the saltpan. The analysis of the number
of genetic groups and the spatial population structure obtained with Geneland indicated
the existence of six genetic clusters (posterior probability = 0.85) (Figure 4). The value of
posterior probabilities associated with the definition of populations was on average 0.8. The
first cluster comprised individuals from Tebenquiche and Peine. The second population
contained the individuals collected in Puilar and Chaxa. The third group recovered only
individuals from Quelana. The fourth cluster comprised the individuals from Salada and
Tilomonte. The fifth group contained individuals from La Punta and La Brava. Finally, the
sixth cluster contained only the individuals from Tilopozo.
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Figure 4. Spatial genetic structure suggested by Geneland for Heleobia atacamensis populations from
Atacama Saltpan and new localities. Black points represent the sampling sites considered in the study.
Lighter shading indicates higher probabilities of population membership.

Demographic analyses revealed a consistent signature of recent population expansion
in H. atacamensis. Although the mismatch distribution did not clearly show a typical
unimodal and smooth distribution (Figure 5), the Harpending’s raggedness index was
not significant (rH = 0.0072, p > 0.05). Likewise, the analysis revealed a non-significant
SSD value (SSD = 0.0083, p > 0.05) that did not refute the demographic model of spatial
expansion for the species. The historical trends in effective population size of H. atacamensis
obtained through the Bayesian skyline plot (BSP) suggest a sudden demographic expansion
that occurred in the Late Pleistocene (c. 25 kya) until the Early Holocene (c. 10 kya); after
this, the effective population size remained constant (Figure 5).
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Figure 5. Bayesian skyline plot and mismatch distributions (inset graph) depicting the demographic
history for Heleobia atacamensis. For the skyline plot, the black line represents mean estimates, whereas
the gray area represents the 95% highest posterior density interval (HPD). For mismatch distribution,
dotted line represents the observed distribution of pairwise differences and the solid black line
represents the theoretical expected distribution under a population expansion model.

3.2. Morphological Analyses

Together, the first two principal components explained 98.8% of the variance in shell
morphology (Figure 6). While all variables had a similar contribution to the first principal
component (PC1), shell length was the variable with the highest contribution to the second
principal component (PC2). The PCA showed overlapping of snails of different populations
across both components. However, several populations also formed clusters that differed
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from others mainly in the first component. In this sense, the scatter plot showed that the
morphologies of the populations from Peine and Tilomonte were tightly clustered along
with individuals from Tebenquiche. The results of the multivariate analyses also showed
significant differences between localities (PERMANOVA pseudo-F = 67.113; p < 0.001).
The five shell variables analyzed showed significant differences among localities in all
comparisons: shell length (χ2 = 99.37, p < 0.01); shell width (χ2 = 101.99, p < 0.01); aperture
length (χ2 = 99.68, p < 0.01); aperture width (χ2 = 98.81, p < 0001); and body whorl length
(χ2 = 101.31, p < 0.01).
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Figure 6. Plot of the scores on Principal Component 1 and Principal Component 2 showing mor-
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3.3. Conservation Status

GeoCAT calculated EOO values of 1016 km2 and AOO values of 40 km2, assigning
Endangered (EN) as a preliminary threat category in both cases. Moreover, considering
criterion B1 < 20,000 km2 (estimated 1016 km2) and criterion B2 < 2000 km2 (estimated
40 km2), more to the condition (a) regarding number of locations (equal to 10), and condition
(b) of continuing decline inferred in habitat quality (iii) [51], H. atacamensis is categorized as
Vulnerable (VU) B1ab(iii) + B2ab(iii). On the other hand, considering the six genetic clusters
of the species as six subpopulations “between which there is little demographic or genetic
exchange” [53], under Criterion B1 and B2 and conditions (a) and b(iii) as before, the species
is reassessed as Vulnerable (VU) B1ab(iii) + B2ab(iii). However, if we consider the eight
locations circumscribed only to the saltpan as one location threatened by mining activities,
while Peine and Tilomonte a second location threatened by droughts (and urbanization,
habitat loss), the species is classified as Endangered (EN) B1ab(iii) + B2ab(iii). As the IUCN
Red List suggests that the most severe category of extinction risk must be chosen between
different evaluations [53], the final Red List assessment for H. atacamensis is Endangered
(EN) B1ab(iii) + B2ab(iii).

4. Systematic

Superfamily Truncatelloidea Gray, 1840;
Family Cochliopidae Tryon, 1866;
Genus Heleobia Stimpson, 1865.
Heleobia atacamensis (Philippi, 1860)
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Figure 7. Heleobia atacamensis from Tilopozo, Peine and Tilomonte, Salar de Atacama. (A,B) Shell
of topotype 41-UBB/MCNPPRF–CC 148–11 observed with SEM (A) and stereomicroscope (B).
(C–E) Shells from Peine. (C) Shell of specimen 38-UBB/MCNPPRF–CC 148–23 observed with
SEM. (D,E) Shells of specimens 38-UBB and 40-UBB, respectively, observed with stereomicroscope.
(F) Shell of specimen 20-UBB from Tilomonte observed with stereomicroscope. (G,H) Proto-
conchs of topotype 40-UBB/MCNPPRF–CC 148–10 and 42-UBB/MCNPPRF–CC 148–12, respectively.
(I–K) Opercula. (I) Operculum of specimen 45-UBB/MCNPPRF–CC 148–15 (inner surface) from
Tilopozo. (J) Operculum of specimen 21-UBB (outer surface) from Tilopozo. (K) Operculum of
specimen 2-UBB (outer surface) from Peine. (L–N). Penises. (L) Penis of specimen 6-UBB from
Tilopozo. (M) Penis of specimen 31-UBB from Tilopozo. (N) Penis of specimen 26-UBB from Peine.
(O–Q) Heads. (O) Head of specimen 8-UBB from Tilopozo. (P) Head of specimen 37-UBB from
Peine. (Q) Head of specimen 11-UBB from Tilomonte. (R–U) Radulae. (R) Radula of specimen
22-UBB from Tilopozo. (S) Radula of specimen 30-UBB from Peine. (T) Central tooth of specimen
22-UBB augmented. (U) Central tooth of specimen 30-UBB augmented. Scale bars = (A–F): 1 mm,
(G,H): 300 µm, (I–N): 500 µm, (O–Q): 1 mm (R,S): 20 µm, (T,U): 10 µm.
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Paludina atacamensis Philippi, 1860: Philippi [15]: 166, Plate VII, Figure 15.
Hydrobia atacamensis (Philippi, 1860): Frauenfeld [56]: 575, 665.
Littoridina atacamensis (Philippi, 1860): Biese [57]: 172, 173, 175, Plate I, Figure a;

Biese [58]: 64; Stuardo [59]: 15; Valdovinos Zarges [60]: 128; Sielfeld [61]: 3; Valdovinos
Zarges [62]: 70.

Heleobia atacamensis (Philippi, 1860): Hershler and Thompson [63]: 50; Collado et al. [64]:
52, Figure 1; Collado et al. [28]: 6–11, Figure 2; Collado et al. [18]: 3, 6, 7; Collado et al. [19]:
278; Collado et al. [42]: 711; Collado et al. [54]: Figures 1–5.

4.1. Description

The morphological analysis did not provide qualitative differences between Tilopozo,
Peine and Tilomonte snails; therefore, a general description is provided for the three locations.

Shell small, conic-elongated (Figure 7A–F), thin, light brown-transparent, with closed
umbilicus, smooth sculpture, deep suture. Spire high, with five convex whorls; last whorl
more developed. Aperture oval, outer lip thin, frequently with a light brown line. Proto-
conch has less than one whorl (Figure 7G,H), 332.3 ± 11.2 µm long (n = 4), rough from the
beginning to approximately the middle section and then slightly smooth, differentiated
from teleoconch. Operculum paucispiral (Figure 7I–K), oval, thin, light brown in the central
circular area and almost diaphanous on the outside. Penis elongated, wider at the base
and anterior portion, with three to four apocrine glands on the convex side, and a small
lobe near the anterior end of the concave side. The tip of the penis has a conical glans with
terminal papilla (Figure 7L–N). The apocrine glands are in the proximal medial part of
the organ or sometimes near the base. Color of the penis is black at the base and in the
middle and convex part seen from above; the rest is gray. Foot greyish-black. Head black
(Figure 7O–Q), lips white, tentacles gray at the tip and underside, black at the basal portion,
separated from the head by a gray band. Radula taenioglossan (Figure 7R–U); central tooth
with five–seven cusps that decrease in size from both sides of the central cusp, which is
conical and much more developed.

4.2. Material Examined

Tilopozo (2313 m altitude), Atacama Saltpan, Northern Chile type locality.
New distributional record: Peine (2440 m altitude), Salar de Atacama basin, oasis

located approximately 21 km northeast of Tilopozo; Tilomonte (2380 m altitude), Salar de
Atacama basin, oasis located approximately 13 km east of Tilopozo. These two ecosystems
correspond to small streams that normally do not flow into the water mirror of the saltpan,
drying before reaching the coast.

4.3. Habitat

Heleobia atacamensis was collected in soft substratum or macrophytes.

4.4. Distribution

Tebenquiche, Chaxa, Puilar, Quelana, Salada, Peine, La Punta, La Brava, Tilopozo,
Tilomonte, Atacama Saltpan basin, northern Chile.

5. Discussion

The phylogenetic estimations confirm the presence of Heleobia atacamensis in Peine and
Tilomonte, previously hypothesized using rDNA sequences, although the last population
was considered a candidate species of Heleobia [28]. These two localities correspond to
records of the species outside the coast of the Atacama Saltpan. In our COI phylogenetic
analysis, H. atacamensis integrated a clade together with sequences of Heleobia ascotanensis
(Courty), Heleobia chimbaensis (Biese), Heleobia deserticola Collado, Heleobia peralensis Collado,
Fuentealba, Cazzaniga and Valladares and Heleobia transitoria, all of them from northern
Chile. Our results are also consistent with those of Valladares et al. [29] regarding the
monophyly of H. atacamensis in the southern Altiplano. Several freshwater species within
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different taxa such as snails of the genus Biomphalaria Preston, fishes of the genus Orestias
Valenciennes and frogs of the genus Telmatobius Wiegmann, co-distributed in the area, have
also been recovered as a monophyletic group [65–67]. This reflects the biogeographical
influence on the speciation processes of different taxa occurring at regional scale in a
particular landscape.

The genetic divergence within H. atacamensis is consistent with studies performed in
other desert spring systems, where poorly dispersing species such as snails and crustaceans
show highly geographically structured populations and lineages [68–71]. We discovered
that most H. atacamensis populations were highly genetically structured, with little evidence
for migration between isolated localities as Tilopozo, Tilomonte and, to a lesser extent,
Quelana. On the other hand, geographically close populations (e.g., Chaxa-Puilar, La
Punta-La Brava) showed strong evidence of connectivity. The pattern detected in La Punta
is also interesting since in this population, we recovered highly divergent haplotypes.
This suggests that this population had some degree of gene flow with La Brava and
Salada populations. This evidence was also reported in H. atacamensis using microsatellite
markers [29], which is consistent with results obtained in other gastropods distributed
in semi-isolated spring systems located in saltpans of the region [70,71]. Furthermore,
both the haplotype network and the Geneland analysis showed that the populations of
Tebenquiche and Peine conform a common gene pool. This finding was surprising because
both localities are separated by 72.3 km. As direct migration of propagules between both
localities is unlikely because the species has direct development and adults have limited
vagility [64], we hypothesize the existence of passive dispersal of snails by waterfowl, a
phenomenon that occurs in Heleobia (pers. obs.). A second explanation for this genetic
similarity is a historical connection between the populations.

The inclusion of two new populations of H. atacamensis in the phylogeographic an-
alyzes generated two main results. Firstly, we obtained evidence that the evolutionary
history of the species would be circumscribed not only to the events that occurred within
the limits of the Atacama Saltpan. Therefore, to understand the evolutionary processes
and evaluate possible threats to the conservation of the species, it is necessary to carry out
studies that consider all the populations of the saltpan, including Peine and Tilomonte.
Secondly, the population of Tilopozo (type locality of the species) would correspond to a
population differentiated from the rest, which partially differs from the results obtained by
Valladares et al. [29] since the Tilopozo individuals were recovered as a genetic population
with Tebenquiche, accounting for gene flow between populations.

Population demographic parameters indicate that H. atacamensis would have experi-
enced a population expansion at the end of the Pleistocene, agreeing with the data indicating
that wettest perennial lake interval (26.7–16.5 ky) and climatic fluctuations occurred in
the Atacama Desert in that period [72–74]. These results reinforce the close relationship
between climatic influence and demographic history in species with low vagility. In this
sense, considering that the species of the genus Heleobia are strictly aquatic, the impact of
water availability on the resilience of species that inhabit desert systems is of particular
concern. This is even more important in H. atacamensis considering that in the saltpan, in
addition to brine pumping, freshwater is extracted for mining [75], which has generated a
decline in the total water storage [26].

No conspicuous qualitative differences were observed in shell morphology when
comparing snails from Peine and Tilomonte with topotypes of H. atacamensis. However,
morphometric analysis of the shell showed significant differences among populations,
although many of them overlapped in the multivariate space. On the other hand, some
populations including snails from Peine, Tilomonte and Tebenquiche formed cohesive
clusters in bounded sectors of the morphospace. This result is noteworthy since these
populations are geographically isolated and, in the case of Tilomonte, present exclusive
haplotypes (although only two individuals were sequenced). Tilopozo samples also formed
a morphological assemblage with Chaxa and Quelana, although less evident than in the
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previous examples. In this case, the genetic differentiation of the first population was also
evident in all the analyzes performed, consistent with previous studies [29].

Heleobia atacamensis can be easily distinguished through the penis morphology of
H. ascotanensis, H. chimbaensis, H. deserticola, and H. transitoria, but it is rather similar to
that of Heleobia loaensis (Biese), H. opachensis (Biese) and H. carcotensis Collado, Valladares
and Méndez, maybe reflecting evolutionary stasis since they are closely related species.
However, the organ has been widely used to describe and recognize species of Heleobia,
being of taxonomic usefulness in most cases [19,28,42,63,64,76–83]. Penis morphological
differences detected previously between H. atacamensis and snails from Tilomonte that led
to suggest the presence of a candidate species of the genus supported by a sister group
relationship [28] would be the product of the low number of individuals analyzed and cor-
respond to interspecific differences. Parasitism in Heleobia can also generate morphological
differences in the shape of the penis [84].

In this paper, we reassessed the conservation status of H. atacamensis as Endangered
(EN), corresponding to a higher category than Data Deficient (DD) previously listed for
the species according to the IUCN Red List [23], but lower with respect to the regional
classification as Critically Endangered (CR) established in Chile in 2014 [21]. However, this
latter evaluation is mainly related to the number of occurrences of the species since in that
year, there was only one record available. The final evaluation carried out in the present
study was based on two locations and the major threats affecting the saltpan basin, mining
and droughts, although other threats such as urbanization, recreation (swimming pools in
Peine), agriculture, livestock, water extraction, and roads, among others, are present. As
the threats and the category of high risk of extinction of H. atacamensis are of concern, it is
necessary to implement a conservation program for the species. At present, there are envi-
ronmental interpretive trails in some localities of the saltpan, with restricted access, which
are under the care of the native population of the place. Apart from this, we suggest moni-
toring the different occurrence localities periodically, in addition to creating micro-reserves,
which have been successful in other taxonomic groups [85]. Captive breeding programs
can also be implemented, as in other mollusks [86,87]. Heleobia species, which are small,
can be kept in small containers without major complications. However, a comprehensive
management should consider the genetic structure of the snail, especially regarding the six
genetic populations identified in the saltpan, in addition to prioritize areas for conservation
based on the genetic diversity, gene flow and connectivity between systems.

For poorly investigated and endangered species, it is essential to know the number
of populations and range extent they present. The new records reported in the present
study are a significant finding for H. atacamensis, although more surveys inside and outside
of the saltpan basin that could lead to the discovery of new populations of the species
are required.

6. Conclusions

In this study, two new populations and six genetic clusters of H. atacamensis were
identified in the Atacama Saltpan basin, constituting a baseline for an eventual manage-
ment plan of this snail. We also detected morphological variation and genetic structure
within the new range of the species, with signs of relatively large-scale internal migra-
tion. Further studies are needed to determine whether there are other populations of H.
atacamensis within the basin and in other basins of the Atacama Desert and southwestern
Altiplano. Heleobia atacamensis meets the IUCN criteria to be listed as Endangered (EN) at
regional scale.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biology12060791/s1; Table S1: Details and GenBank accession
numbers of the additional sequences used in the phylogenetic estimations.
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