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Abstract : This study was conducted to understand the seasonal patterns and variation of the copepod com-
munity in the Anma Islands of Yeonggwang, Yellow Sea, with a focus on seasonal surveys to assess the factors
affecting their occurrence. Throughout the survey period, Acartia hongi, Paracalanus parvus s. 1., and
Ditrichocorycaeus affinis were dominant species, while Acartia ohtsukai, Acartia pacifica, Bestiolina coreana,
Centropages abdominalis, Labidocera rotunda, Paracalanus sp., Tortanus derjugini, Tortanus forcipatus
occurred differently by season and station. As a results of cluster analysis, the copepod communities were
distinguished into three distinct groups: spring-winter, summer, and autumn. The results of this study showed
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that the occurrence patterns of copepod species can vary depending on environmental conditions (topographic,
distance from the inshore, etc.), and their spatial occurrence patterns between seasons were controlled by water
temperature and prey conditions. One of the physical mechanisms that can affect the distribution of
zooplankton in the Yellow Sea is the behavior of the Yellow Sea Bottom Cold Water (YSBCW), which shows
remarkable seasonal fluctuations. More detailed further studies are needed for clear grounds for mainly why
to many Calanus sinicus in the central region of the Yellow Sea are seasonally moving to the inshore, what
strategies to seasonally maintain the population, and support the possibilities of complex factors.
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Fig. 1. Sampling station map
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Fig. 2. Seasonal variation of environmental factors. “H” and “L” indicated relatively higher and lower for each season
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Table 1. Seasonal occurrence list of copepods in the Anma Islands of Yeonggwang

Species Spring Summer Fall Winter Species Spring Summer Fall Winter
Acartia hongi ] ] ] ] Paracalanus parvus s. 1. ] ] ] ]
Acartia ohtsukai ] Paraclanus sp. ] ] ]
Acartia pacifica ® Parvocalanus crassirostris (] (] ®
Calanus sinicus ° ° ° ° Pseudodiaptomus marinus ° °
Centropages abdominalis ° ° Tortanus forcipatus °
Centropages dorsispinatus (] (] Tortanus derjugini (]
Centropages tenuiremis (] (] Tortanus spinicaudatus (] ()
Labidocera euchaeta ° ° ) ° Ditrichocorycaeus affinis ] ° ) )
Labidocera rotunda ] ] Oithona spp. ] ] ] ]
Bestiolina coreana ° °
(a)
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Fig. 4. (a) Dendrogram showing clustered groups by the Bray-Curtis index based on copepod abundance, (B) non—metric
multidimensional scaling (nMDS) ordination plot for four seasons
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Fig. 5. Ordination plot of the canonical correspondence
analysis (CCA) showing the major copepods and
seasonal occurred copepods in relation to the phy-
sicochemical and biological factors. Abbreviations:
AH: Acartia hongi, AO: A. ohtsukai, AP: A. pa-
cifica, CS: Calanus sinicus, CeA: Centropages ab-
dominalis, CeD: C. dorsispinatus, CeT: C. tenui-
remis, PPs: Paracalanus parvus s. 1., Ps: Paraca-
lanus sp., DA: Ditrichocorycaeus affinis

F8 Wi 2% 9 B Chla HE7}
A ohtsukazil- C. teuiremis 2} oF2] AAAAS el 9l
tHp < 0.05, Table 2). Group C (7F2)+= H Chla 55,
ot =7} A pacifica, C. dorsispinatus, Paracalanus sp.
o} oFo] AMAE LERHQITHp < 0.05, Table 2). A )
Hol| B &35l 2 SH-SH= P parvus s. 1.2 B4t
o By} oFsl -S-o] AlkaA|(correlation coefficient: -0.2499)
5, D. affinis= Bt Gt ot oFe] AltA|(correlation
coefficient: 0.1284)7} UEltHTable 2), T3, A7+l
oAl AFO R EFHSN= A hongi®t P. parvus s. 1.2 A2
gt U A] F=2 Holof tisf =A ¥Rk ERlskit
(p < 0.05, Table 2).

Group B (9]&

ol Gt G Aol E2Hsh= 247 AEAY +
Fde et 734 AHAE B Rkl o5
Ak A sfdollA A A
= ZHSt 22 Jcartia hongi, Calanus sinicus, Ditr-
ichocorycaeus affinis, Labidocera euchaeta, Paracalanus
parvus s. L., Oithona spp. §31, ABX o2 &§3 £
Acartia ohtsukai, A. pacifica, Bestiolina coreana, Centro-
pages abdominalis, L. rotunda, Paracalanus sp., Tortanus
derjugini, T. forcipatus©]|JCHTable 1). 05 = =of Z|A|
Hzo] IEE= £ A hongi®} P. parvus s. 1.0t (Fig.
3b). A. hongi®] %FZQ] WO Ho] 985548 inds. m™ =
7P W Hle(37.2%)& AHASHAL, TR 7FEA 9

90 inds. m>2 = Z 07 7}A3Att AL 256-2,984

Table 2. Results of Spearman's correlation analysis between dominant or seasonal copepods and environmental factors.
Asterisks indicate that correlation is statistically significant (*p < 0.05, **p < 0.01, ***p < 0.001)

Environmental factors

Species Averaged Averaged Averaged Chl-a Averaged Averaged
Temperature Salinity concentration Turbidity DO
§9) (psu) (pg/L) (FTU) (mg/L)
Acartia hongi 0.1162 0.0527* 0.0856 -0.0662 0.0867
A. ohtsukai 0.3832%** -0.1136 0.1669* 0.2834* -0.3597%%*
A. pacifica 0.1363 -0.2349* 0.3573* 0.3943** -0.2916*
Calanus sinicus -0.6748 -0.2843 -0.2387* -0.0733 0.6666
Centropages abdominalis -0.7203 -0.0394 -0.1105* -0.3088* 0.7184%**
C. dorsispinatus 0.3937* -0.2314 0.393%** 0.5601*** -0.5242%%*
C. tenuiremis 0.3482** -0.2432 0.2983%** 0.4235%* -0.4048
Paracalanus parvus s. 1. -0.0249 -0.2499* 0.0375 0.2802 -0.0322
Paracalanus sp. -0.022 -0.4361 %> 0.236* 0.5679** -0.2146
Ditrichocorycaeus affinis 0.0656 0.1284 -0.3297** -0.2914 0.1423
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Fig. 7. Horizontal distribution of sea surface of temperature and salinity in the Yellow Sea, June and August 2020. Data
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Table 3. A regional list of topographical conditions and wind-induced coastal upwelling phenomena associated with Island
Mass Effect (IME)

Countries Regions Observation range Periods Observed Phenomena References
Nearshore to Offshore
(the Oceanographic A relatively colder and saltier
Bohai and Research Vessel Summer water core exists from the
China Yellow seas Sharing Plan of the 2019 ’  Dbottom to the surface along the Wang et al. (2021)
National Natural northeastern flank of Subei
Science Foundation of Bank
China)
Zhoushan Islands in Januar
north of Zhejiang, February’
. Zhejiang and Dongtou Archipelago in Ys Wind-Gradual bathymetric .
China . .. July, . . Jing et al. (2007)
Fujian Coast  south of Zhejiang, October slope-driven coastal upwelling
Mazu Archipelago in 2000_206 4
the middle of Fujian
. Southeastern ~ Southeastern Arabian . High Chlorophyll a
India Arabian Sea  Sea (SEAS) region 19982016 concentration Shafeeque et al. (2021)
16, 17,
around the and 20 High nutrient supply and Takahashi and Kishi
Japan Izu Islands around the Izu Islands September productivity (1984)
1980
Korea Eastern part Nearshore to Offshore June 26— Re:]?tlgeh}gsig;ze;enggerisre,
L of Yellow (NIFS Serial Oceano-  July 3, S veen Lee et al. (2012)
Republic of . . concentration, and low turbidity
Sea graphic observation) 2009

in the surface layer
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