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Abstract
To successfully implement environmental DNA-based (eDNA) diversity monitoring, 
the completeness and accuracy of reference databases used for taxonomic assign-
ment of eDNA sequences are among the challenges to be tackled. Here, we have 
developed a workflow that evaluates the current status of GenBank for marine fishes. 
For a given combination of species and barcodes, a gap analysis is performed and po-
tentially erroneous sequences are identified. Our gap analysis based on the four most 
used genes (cytochrome c oxidase subunit 1, 12S rRNA, 16S rRNA, and cytochrome 
b) for fish eDNA metabarcoding found that COI, the universal choice for metazoans,
is the gene covering the highest number of Northeast Atlantic marine fishes (70%),
while 12S rRNA, the preferred region for fish-targeting studies, only covers about
50% of the species. The presence of too close and too distant barcode sequences
as expected by their taxonomic classification confirms the existence of erroneous
sequences in GenBank that our workflow can detect and eliminate. Comparing taxo-
nomic assignments of real marine eDNA samples with raw and clean reference data-
bases for the most used 12S rRNA barcodes (teleo and MiFish), we confirmed that both
barcodes perform differently and demonstrated that the application of the database
cleaning workflow can result in drastic changes in community composition. Besides
providing a tool for reference database curation, this study confirms the need to in-
crease 12S rRNA reference sequences for European marine fishes and evidences the
dangers of taxonomic assignments by directly querying GenBank. We have developed
a workflow that evaluates the current status of GenBank for marine fishes. For a given
combination of species and barcodes, a gap analysis is performed and potentially er-
roneous sequences are identified.
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1  |  INTRODUC TION

Environmental DNA (eDNA) metabarcoding studies are often based 
on public reference databases on whose accuracy and completeness 
lies the reliability of taxonomic assignment (Richardson et al., 2018; 
Virgilio et al., 2010). Some public databases have filtering options and 
analysis tools available for quality controls, such as the trackability 
of the voucher specimens, but are focused on specific regions (e.g., 
BOLD (Ratnasingham & Hebert, 2007) mostly covers the COI gene). 
This severely limits their use when targeting taxa for which the best-
performing primers are located in other regions, such as ribosomal 
genes. The most complete reference database is GenBank (Benson 
et al., 2012), but it acts as a mere sequence repository and its un-
verified submission process often leads to misannotated sequences 
(Steinegger & Salzberg, 2020). Although the reliability of GenBank 
for a range of DNA-based monitoring applications has been praised 
(Leray et al., 2019), it has also been contested (Locatelli et al., 2020). 
If the number of expected species in the study area is modest, se-
quences of the species of interest can be downloaded and manually 
curated to remove misannotated sequences, and barcoding of the 
missing species in public repositories can be performed to complete 
the reference database (Collins et al., 2021; Thomsen et al., 2016; 
West et al., 2021). On the other hand, when the number of species 
expected in a region is very large (e.g., fishes in a large marine area), 
manual curation of the database is unviable (Leray et al., 2020) and 
incompleteness of the database is expected (Weigand et al., 2019). 
Incompleteness of reference databases can lead to false-negative 
detection, leading to, for example, failure in detecting alien species 
(Klymus et al., 2017); inaccuracy of reference databases can lead to 
false-positive detections, resulting, for example, in incorrectly re-
porting species presence (Port et al., 2016).

Reference database completeness and accuracy are especially rel-
evant for marine fishes, with about 20.000 described species (WoRMS 
Editorial Board, 2022), which makes manual curation and completion 
of databases difficult. eDNA metabarcoding is being increasingly ap-
plied to their study during the last years (Fraija-Fernández et al., 2020; 
Tsuji et al., 2019) and has arisen as a promising, alternative tool for 
monitoring this important resource (Gilbey et al., 2021). Fish eDNA 
metabarcoding studies have been conducted using a variety of bar-
codes, the most common ones being those based on the mitochon-
drial cytochrome b (cytb), small (12S) and large (16S) subunit ribosomal 
RNA (rRNA), and cytochrome c oxidase subunit 1 (COI) genes (Zhang 
et al.,  2020). From these, the COI-based barcodes are considered 
standard for animal metabarcoding studies (Leray et al.,  2013; 
Vrijenhoek,  1994), have been sequenced for a broad range of 
European marine fishes (Weigand et al., 2019), and curated reference 
databases are available (Oliveira et al., 2016). However, because eDNA 
extracted from water samples contains traces of many abundant or-
ganisms other than fish, the use of COI metazoan universal primers 
results in over-amplification of non-target taxa (Collins et al.,  2019; 
Fraija-Fernández et al., 2020), and fish-specific primers have been de-
veloped, mostly based on the 12S rRNA gene, such as those amplify-
ing the teleo (Valentini et al., 2016) or MiFish (Miya et al., 2015) regions

Studies using marine water eDNA metabarcoding to assess fish 
diversity based on 12S rRNA perform taxonomic assignment in a va-
riety of ways. Some authors assign taxonomy by directly querying 
GenBank (e.g., Lamy et al., 2021; Sato et al., 2021; Zhou et al., 2022), 
which might result in erroneous assignments due to the presence of 
problematic records (Li et al., 2018). Others rely on filtered versions 
of GenBank containing only the target barcode of the sequences 
from the species of interest. This filtering can be done either 
using the information in the record definition (Arranz et al., 2020; 
Barco et al., 2022; Gold et al., 2021; Iwasaki et al., 2013; Machida 
et al., 2017; Mariani et al., 2021; Russo et al., 2021) or based on sim-
ilarity searches (Heller et al., 2018; Leray et al., 2022). Yet, although 
the use of these filtered versions is popular in marine fish eDNA me-
tabarcoding studies (Kawato et al., 2021; Kume et al., 2021; Nguyen 
et al.,  2020; Oka et al.,  2021; Polanco et al.,  2021), the methods 
used to extract the sequences are not meant to remove potential 
contaminations other than those identifiable through their labelling 
(e.g., Arranz et al.,  2020). Finally, other studies attempt to reduce 
potentially erroneous sequences by visual inspection of phyloge-
netic trees (e.g. Canals et al., 2021; Collins et al., 2019, 2021; Fraija-
Fernández et al., 2020), but this approach is tedious, not viable for 
databases composed by a large number of species, and limited by the 
low phylogenetic resolution of short barcodes (Polanco et al., 2021; 
Zhang et al., 2020). Thus, more dynamic screening tools are neces-
sary to overcome reference database quality issues and meet the 
high expectations concerning global biodiversity eDNA monitoring. 
Here, to assist future marine fish eDNA metabarcoding studies, we 
have developed an automated workflow to (i) perform a gap analysis 
of GenBank for a list of species of interest, (ii) create a reference da-
tabase of specific barcodes for the species of interest, and (iii) detect 
and eliminate the most obvious spurious sequences. As a study case, 
we have applied this workflow to the fish inhabiting the European 
Marine Regions. We have assessed the gaps for COI and 12S rRNA-
based barcodes, generated a curated reference database for the 
most widely used (i.e., teleo and MiFish) regions from the 12S rRNA 
gene, and compared the performance of the taxonomic assignment 
using the reference database before and after database curation on 
marine eDNA samples. Finally, we contribute to the reference da-
tabase completeness by barcoding the 12S rRNA sequence of 21 
different fish species. This newly developed workflow, which can be 
applied to any mitochondrial barcode and set of species, and results 
derived from it constitute a step ahead for increasing the complete-
ness and accuracy of reference databases for marine fish eDNA me-
tabarcoding studies. This, together with additional barcoding efforts 
to populate reference databases, is a major milestone for making fish 
eDNA biomonitoring reliable and trustworthy.

2  |  MATERIAL S AND METHODS

A summary of the procedures followed is presented in Figure 1 and 
all the scripts used are available on GitHub (https://github.com/rodri​
guez-ezpel​eta/NEA_fish_DB).

https://github.com/rodriguez-ezpeleta/NEA_fish_DB
https://github.com/rodriguez-ezpeleta/NEA_fish_DB
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2.1  |  Fish checklist assembly and reference 
sequence retrieval

The list of fish species present in the northeast Atlantic and adjacent 
seas was assembled from FishBase (Froese & Pauly, 2022) by retriev-
ing the species occurring in the European Marine Regions (Baltic Sea, 
Barents Sea, Black Sea, Canary Current, Celtic Biscay Shelf, Faroe 
Plateau, Greenland Sea, Iberian Coastal, Iceland Shelf and Sea, North 
Sea, Norwegian Sea, and Mediterranean Sea) using the R package 
rfishbase (Boettiger et al., 2012), and taxonomy was extracted from 
World Register of Marine Species (WoRMS Editorial Board,  2022). 
All mitochondrial gene records available in GenBank for the species 
in the reference list were identified using eUtils (Sayers,  2008) and 
were assigned as belonging to one of the most common genes used in 
metazoan metabarcoding surveys, that is, cytochrome oxidase I (COI), 
cytochrome b (cytb), 12S rRNA (12S), and 16S rRNA (16S), based on 
their definition or, those with ambiguous definition, based on BLAST 
searches (Altschul et al., 1990) against complete COI, 12S, 16S, and/
or cytb sequences, respectively; matches were considered if query se-
quences had ≥60% sequence similarity with the complete sequences.

2.2  |  Barcoding gap analysis

The barcoding gap analysis was carried out for two barcodes of the two 
most widely used genes in fish metabarcoding studies: mlCOI (Leray 
et al., 2013) and folCOI (Vrijenhoek, 1994) from COI, and teleo (Valentini 

et al., 2016) and MiFish (Miya et al., 2015) from 12S rRNA. First, se-
quences from all COI and 12S rRNA records identified above were 
downloaded from GenBank. Using mothur (Schloss et al., 2009), these 
sequences were aligned against reference alignments of COI and 12S 
rRNA reference sequences (previously aligned with MAFFT (Katoh & 
Standley, 2013)) and trimmed to the 12S rRNA and COI regions. Then, 
complete folCOI, mlCOI, teleo, and MiFish barcode regions were identi-
fied using cutadapt (Martin, 2011), and partial sequences covering at 
least 90% of the barcode region were identified using mothur with the 
complete barcode regions as template. Both the complete and partial 
barcodes were kept for the barcoding gap analysis. Similarity matrices 
were calculated based on sequence similarity scores obtained by all-
against-all BLAST analysis. Similarity value distributions were visual-
ized in heatmaps for six different taxonomic categories: intraspecific 
(SP), intra-genus (GE), intra-family (FA), intra-order (OR), intra-class 
(CL), and intra-phylum (PH), and classified into five levels so that Level 
1 comprises the range of intraspecific similarity values (excluding outli-
ers) and Levels 2–5 comprise values resulting from dividing uniformly 
the range of values between the minimum similarity value and the low-
est value of Level 1. Pairs with no BLAST hits among them because of 
not enough coverage or too distant were reported as “No dist.”

2.3  |  Automated curation of reference databases

To identify potentially erroneous sequences in the database, a se-
ries of rules were developed according to how sequences clustered 

F I G U R E  1  Schematic view of the workflow developed in this study. Numbers correspond to specific scripts.
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within a given combination of level and taxonomic category, focus-
ing on the squares far from the diagonal in heatmaps, which rep-
resent sequences that are too similar or too different given their 
taxonomy. We focused on the extremes, selecting levels 3 to 5 for 
intraspecific relationships (i.e., too distant pairs) and levels 1 and 2 
for intra-phylum, intra-class, and intra-order interspecific relation-
ships (i.e., too similar pairs). For each chosen taxonomic classification 
and level, independent networks were created, and the decision tree 
method developed (Figure S1) was applied to tag sequences as cor-
rect, erroneous, or problematic on the basics of how they clustered 
in a network of “too similar” or “too different” sequences, respec-
tively. Using this decision tree, sequences more similar to sequences 
of other classes or orders than to sequences of the same species, 
genus, or family are tagged as erroneous if there is enough infor-
mation to conclude which of the sequences is potentially erroneous 
within the network and tagged as problematic when the informa-
tion is not enough to resolve it. Networks that are too complicated 
to resolve by the decision tree can be visually inspected, combined 
with other evidence such as blast searches or phylogenetic trees, 
and manually tag the sequences as correct, erroneous, or problem-
atic. Erroneous-tagged sequences are removed from the database 
and erroneous and problematic-tagged sequences are compiled in 
two independent lists including the reason for their classification as 
erroneous or problematic. Finally, a curated database is created and 
outputted in fasta and tax formats, which are the files required for 
the posterior use of the database for taxonomic classification.

2.4  |  Amplicon data generation, bioinformatic 
processing and analysis

We analyzed marine water samples with the two most used barcodes 
in fish eDNA metabarcoding studies (i.e., teleo and MiFish). For that aim, 
30 5-L water samples were collected at different locations, time, and 
depths in the Bay of Biscay (Figure S2). Water filtering, DNA extrac-
tion, and amplification with the teleo primer pair (Valentini et al., 2016) 
were performed as described in Fraija-Fernández et al. (2020). An ap-
proximate DNA volume of 100 μL was extracted from each sample. 
The concentration of the extractions was calculated, and the DNA 
concentration of the samples was homogenized to 5 ng/μl by diluting 
samples exceeding the desired concentration. For both primer pairs, 
three replicate PCR amplifications were done per sample in a final vol-
ume of 20 μL, including 10 μL of KAPA HiFi HotStart ReadyMix (KAPA 
Biosystems), 0.4 μL of each amplification primer (final concentration of 
0.2 μM), 7.2 μL of Milli-Q water, and 2 μL (10 ng) template DNA. The 
thermocycling profile for PCR amplification with MiFish primer pair 
(Miya et al., 2015) included 3 min at 95°C; 35 cycles of 20 s at 98°C, 15 s 
at 60°C, and 15 s at 72°C; and finally, 5 min at 72°C. Replicate PCR prod-
ucts were combined and purified using AMPure XP beads (Beckman 
Coulter) following manufacturer's instructions and used as templates 
for the generation of 12 × 8 dual-indexed amplicons in the second PCR 
following the “16S Metagenomic Sequence Library Preparation” pro-
tocol (Illumina) using the Nextera XT Index Kit (Illumina). PCR-negative 

controls resulted in no visible amplification in agarose gels. Multiplexed 
PCR products were purified using the AMPure XP beads, quantified 
using Quant-iT dsDNA HS assay kit using a Qubit® 2.0 Fluorometer 
(Life Technologies), and adjusted to 4 nM. Then, 5 μL of each sample 
were pooled, checked for size and concentration using the Agilent 
2100 bioanalyzer (Agilent Technologies), sequenced using the 2 × 300 
paired-end protocol on the Illumina MiSeq platform (Illumina), and 
demultiplexed based on their barcode sequences. The quality of de-
multiplexed reads was verified with FASTQC (Andrews, 2010). Primer 
pairs were removed using cutadapt (Martin, 2011), allowing a maximum 
error rate of 20%. Reads longer than 30 nucleotides and containing 
the two primer sequences were kept and merged using pear (Zhang 
et al., 2014) with a minimum overlap of 10 nucleotides for MiFish and 
20 nucleotides for teleo. Pairs with average quality lower than 33 Phred 
score were removed with Trimmomatic (Bolger et al., 2014) and those 
reads shorter than 60 and 140 nucleotides for teleo and MiFish, re-
spectively, not covering the target region or containing ambiguous po-
sitions were discarded using mothur. Potential chimeras were detected 
based on UCHIME (Edgar et al., 2011) and removed. Taxonomy was 
assigned to unique reads using the Bayesian classifier method (Wang 
et al.,  2007) implemented in mothur (cutoff = 60) using the teleo and 
MiFish databases before and after the automated curation process. 
Only reads assigned to species level were considered in subsequent 
steps. Ordination of communities (considering only shared species 
between both barcodes) was carried out using non-metric multidi-
mensional scaling (NMDS; metaMDS function, vegan package version 
4.1.1 (Oksanen et al., 2013)) analyses based on Bray–Curtis dissimilari-
ties (vegdist function, vegan package). ANOSIM (analysis of similarity; 
Clarke (1993)) was used to test if samples were grouped according to 
the factor barcode (anosim function, vegan package).

2.5  |  Generation of 12S rRNA sequences

Fin and muscle tissue samples from morphologically identified speci-
mens (Table S1) were obtained during the CSIC SUMMER-2020 sur-
vey in the Western Mediterranean Sea (Balearic Islands, Alboran 
Sea, Gulf of Cadiz, and Atlantic Ocean) and from fishing vessels land-
ing in the port of Ondarroa (Basque Country, Spain). For each sam-
ple, genomic DNA was extracted from muscle tissue or fin using the 
Wizard Genomic DNA Purification kit (Promega) following manufac-
turer's instructions for “Isolating Genomic DNA from Tissue Culture 
Cells and Animal Tissue.” Extracted DNA was resuspended in Milli-Q 
water and its concentration was determined with NANODROP 
(Thermo Scientific™). The extracted DNA was then amplified using 
the MarineFish primer pair (Jin et al., 2013), a 900- to 1100-bp-long 
12S rRNA region covering both teleo and MiFish regions, by mixing 
10 μL of 2X PCR Master Mix (Fisher Scientific), 0.4 μL of each primer, 
2 μL DNA template (1–20 ng), and 7.2 μL of nuclease-free water, and 
using the following amplification conditions: 95°C for 3 min; 35 cy-
cles of denaturation at 95°C for 30 s, annealing at 56°C for 30 s, and 
extension at 72°C for 75 s; and final extension at 72°C for 10 min. 
The PCR products were migrated in a 2% agarose gel in TAE buffer 
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and purified using ILUSTRA EXOSTAR1-Step (Cytiva) following 
manufacturer's conditions and sent for Sanger sequencing. Forward 
and reverse sequences were merged and SeqTrace software 
(Stucky,  2012) was used for quality filtering (minimum confidence 
score of 30). Sequences were submitted to GenBank (accession 
numbers available in Table  S1) and added to the above-generated 
teleo and MiFish reference databases.

3  |  RESULTS

3.1  |  Assessment of database completeness for the 
most used fish eDNA metabarcoding markers

The list of Northeast Atlantic and Mediterranean marine fishes com-
piled included 1791 species: 1603 Actinopterygii, 174 Elasmobranchii, 
8 Holocephali, 4 Petromyzonti, and 2 Myxini (Table  S2). In total, 
1277, 1067, 1047, and 898 fish species have COI, 12S, 16S, and cytb 
gene records available, respectively, including 42,115 COI, 27,546 
cytb, 8542 16S, and 6820 12S sequences (Figure 2a). The COI gene 
is the one with the highest number of sequences and species cov-
erage (70%), and cytb, despite having the second highest number 
of sequences, is the one with the lowest species coverage (50%). 
This is due to a high number of cytb records belonging to a small 

number of species (e.g., Atlantic cod Gadus morhua, European an-
chovy Engraulis encrasicolus, or milkfish Chanos chanos). 12S and 16S 
rRNA exhibit similar species coverage values (about 60%). The COI-
based barcodes (folCOI, mlCOI) have the highest species coverage 
(>70%), whereas 12S rRNA barcodes cover between 40% (teleo) and 
48% (MiFish) of the species (Figure 2b,c). To increase the 12 rRNA-
based barcode coverage, we have sequenced the teleo and MiFish 
regions of 21 species, from which 5 and 16 had none or only one of 
the barcodes available at the time of submission (Table S1).

3.2  |  Using the barcoding gap principle for 
potential error detection in reference databases

Distance matrices resulted in more than half a billion sequence pair 
comparisons for both COI barcodes and about 8 and 5 million pair 
comparisons for MiFish and teleo, respectively. In all barcodes, the 
average pairwise similarity decreases as sequences belong to more 
distant taxonomic categories (Figure 3a), but an unexpected number 
of outliers representing low similarity in pairs of sequences belong-
ing to the same species and high similarity in sequences belonging to 
taxonomically distant species are noticeable. The categorization of 
distance ranges in levels (Table S3) revealed the number of pairs that 
do not behave as expected according to the barcoding gap principle, 

F I G U R E  2  Reference database gap analysis. (a) Cumulative coverage (%) of European marine fishes for each gene. Numbers on bars 
indicate the number of species for which there are sequences available (above) and the total number of sequences available in GenBank 
(below) for each gene. (b) Barcode availability for COI and 12S gene markers. Dark red and dark blue represent portion of species with both 
barcodes available (i.e., mlCOI and folCOI for COI and MiFish and teleo for 12S). Light red and light blue represent portion of species with 
only one of the two barcodes available (i.e., mlCOI or folCOI for COI and MiFish or teleo for 12S). (c) Venn diagram showing the number of 
species with available references for mlCOI, folCOI, teleo, and MiFish barcodes.
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that is, those that are too similar but belong to different species, or 
those that are too distant while being taxonomically close (at the 
most top-right and bottom-left squares of Figure 3b).

3.3  |  Diagnosis and flagging of sequences by 
automatic screening

Our decision tree approach (see Methods; Figure  S1) applied to 
networks within these pairs identified potentially erroneous and 
problematic sequences. Notably, our approach detected spurious 
sequences for both 12S rRNA barcodes (summarized in Tables  S4 
and S5). Broadly, three types of networks were distinguished ac-
cording to their clustering structure. The first type consists of net-
works formed by a central sequence (both for intra- and interspecific 
relationships), where that central sequence is evaluated; for exam-
ple, one central sequence of Alburnus alburnus was more similar to 
Phoxinus phoxinus sequences than to other sequences of A. alburnus 
for both teleo and MiFish (Figure 4a,b), so it was classified as poten-
tially erroneous, and one central sequence of Carcharodon carcharias 
was identical to Cetorhinus maximus sequences (Figure 4c,d) while 
showing low similarity to other C. carcharias sequences and was also 
tagged as potentially erroneous. The second type consists of net-
works with no central sequence with only two species, where all 
sequences of the network are analyzed one by one; for example, we 
found Engraulis encrasicolus sequences being not only more similar 
than expected to Istiophorus albicans sequences but also very similar 
to each other (including those not represented in the network) and 
located within expected intraspecific distances (Figure 4e), so they 
were labeled as correct. Although for I. albicans there were no other 
sequences in the database, I. albicans sequences were more similar 
to Engraulis sequences than to other sequences from the Istiophorus 
genus, being thus, the I. albicans sequences labeled as erroneous. 
The third type consists of networks formed by more than two spe-
cies and no central sequence, which cannot be analyzed automati-
cally and require manual inspection; for example, a network with 
two non-gadoid sequences (belonging to Argyropelecus gigas and 
Crystallogobius linearis) that are identical to many Gadidae sequences 
(Figure 4f), where C. linearis sequence would be classified as errone-
ous for being more similar to sequences of the Gadidae family than 
to other sequences of the same species but the sequence of A. gigas 
would be classified as problematic due to lack of information to com-
pare within the database because there are no more sequences for 
A. gigas, and no intra-genus relationships are available.

3.4  |  Performance evaluation of raw and curated 
reference databases

For the 30 samples included in this study, we obtained 2,274,886 
and 1,462,841 MiFish and teleo reads, respectively (Tables S6 and 
S7), from which ≈90% were assigned to the species level. For teleo, 
the Atlantic sailfish Istiophorus albicans represented 35% of the 

reads when using the raw database. Because I. albicans sequences 
were labeled as erroneous by our automated workflow in the teleo 
database, reads previously assigned to sailfish using the raw data-
base were classified as anchovy with the clean database, leading to 
more coherent results across barcodes (Figure 5). A total of 94 spe-
cies were identified in the study, from which 28 were detected by 
both barcodes (Figure 6). Although the relative abundance of some 
species (e.g., Sprattus sprattus and Trachurus trachurus) was substan-
tially different in several samples, a positive correlation between the 
relative read abundance of most of the species detected by both 
barcodes is observed (Figure  7a). A total of 66 species were only 
detected by one of the barcodes, but they represented a very small 
percent of reads (<1%). Finally, the barcode used was not supported 
to be the main factor determining the fish community composition 
of the samples (Figure 7b) (ANOSIM test, R: 0.047, p-value: 0.0161).

4  |  DISCUSSION

4.1  |  Database completeness

Marine fishes constitute an important resource globally (FAO, 
F., 2012), whose management scale monitoring is costly and time 
consuming with traditional methods. Thus, eDNA metabarcod-
ing has arisen as a promising, alternative tool applied in an in-
creasing number of studies, including invasive species detection 
(Sepulveda et al.,  2020), migration pattern discovery (Thalinger 
et al., 2019), or behavior assessment (Canals et al., 2021). In this 
context, the availability of curated and complete databases will be 
foremost for the uptake of eDNA-based approaches in fisheries 
monitoring. From the most used genes for fish metabarcoding, we 
confirm that COI-based barcodes considered standard for meta-
zoans (Hebert et al., 2003) are the most abundant in GenBank 
(Porter & Hajibabaei,  2018). Yet, the non-fish taxa amplifica-
tion in marine eDNA water samples (Collins et al.,  2019; Fraija-
Fernández et al.,  2020) makes 12S rRNA-based barcodes more 
suitable (McClenaghan et al., 2020; Zhang et al., 2020) even with 
less species coverage in reference databases (Collins et al., 2019). 
We highlight that the 12S rRNA gene, although being the most 
used region for fishes, is only sequenced for half of the fish spe-
cies inhabiting European marine waters, with the actual number 
of species available for specific barcodes (i.e., teleo and MiFish) 
even lower. This is due to MiFish and teleo barcodes being non-
overlapping, so the existence of a 12S rRNA sequence for a given 
species does not imply that both regions are covered.

In our analyses, based on marine water samples, the difference in 
completeness of MiFish and teleo databases does not result in major 
differences in the overall community, since the most abundant spe-
cies in our samples are present in both databases. While 70% of the 
species were detected by only one barcode, they represented a very 
small read abundance, likely reflecting rare DNA (Kelly et al., 2017; 
Stat et al., 2019). Despite ongoing efforts to increase the coverage 
of reference databases, sequences of key species are lacking, and 
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F I G U R E  3  Barcoding gap analysis. (a) Boxplots depicting sequence pair distances (%) for intraspecific (SP) and interspecific divergences 
at different taxonomic levels (GE, FA, OR, CL, and PH). Levels are indicated with dashed horizontal lines (note that the values vary for each 
barcode). Outliers are represented with red dots. (b) Heatmaps representing number of pairs within different divergence levels.
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shifting fish eDNA metabarcoding studies to remote areas with less 
known diversity, such as the deep sea, or specific applications, such 
as invasive species detection, increases its relevance. For instance, 
because in this study we have identified as erroneous the only two 
available records of teleo region for Istiophorus albicans, it turns out 
to be one more missing species in the database. To contribute to 
completing the 12S rRNA barcode reference database, required for 
present and future eDNA-based fish monitoring, we have barcoded 
both missing and poorly represented species, including deep sea and 
commercial fishes.

4.2  |  Database accuracy

Public reference databases function as open sources of information 
where researchers submit their sequence data, enhancing reproducibil-
ity and transparency (Deiner et al., 2017; Leray et al., 2020). However, the 
free and open submission process is a “double-edged sword” because 
it leads to unverified record accumulation (Porter & Hajibabaei, 2018), 
some of which result in misannotated sequences (Steinegger & 
Salzberg, 2020). Contaminant amplification and data entry error cases 
in GenBank have been reported previously (Leray et al., 2019). Also, 

F I G U R E  4  Examples of developed networks for teleo (left) and MiFish (right) databases. (a, b) Intraspecific distance analysis of the 
common bleak Alburnus alburnus sequences of (a) MiFish region in level 3 and (b) teleo region in level 4. (c, d) Interspecific (intra-order level) 
distance analysis of one sequence of the great white shark Carcharodon carcharias and sequences of the barking shark Cetorhinus maximus 
in level 1 of (c) MiFish and (d) teleo sequences. (e) Complex structure network formed by two species. (f) Complex multispecies structure 
network of interspecific (intra-class level) comparisons in Level 1.
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misidentifications of sampled specimens can occur, especially when 
referring to species with morphological similarities (Lyon et al., 2018), 
rare species, or individuals derived from fishery vessels (Figueiredo 
et al., 2020; Kirsch et al., 2018). This can be due to lack of taxonomists 
(Buyck, 1999) or to rapid classification onboard based on the most likely 
species (FAO, 2004). Even if the voucher specimen is correctly identi-
fied, additional issues can occur downstream of the sample processing 
and analysis. For instance, contaminant DNA of Homo sapiens (Kryukov 
& Imanishi, 2016), bacteria (Strong et al., 2014), or species in previously 
extracted samples could result in erroneously labeled sequences in the 
database or the formation of chimeric sequences (Haas et al., 2011). 
Effort is being made to identify incorrect records (Bucklin et al., 2021; 
Leray et al., 2019), but their removal takes time because errors are not 
always reported, much less corrected. An example of the magnitude 

of the consequences is given in this work with the misassignment of 
Engraulis encrassicolus sequences to Istiophorus albicans (Figure  5). 
E. encrassicolus is the most abundant small pelagic in the Bay of Biscay
(Uriarte et al., 1996), whereas I. albicans, instead, is rare in the region 
(ICCAT,  2019). Because they correspond to very different consumer 
levels in the food web and their commercial importance is different in 
the study area, the raw database-derived results would have led to a 
wrong interpretation of ecological and economical relevance; the use
of our barcoding gap-based error detection method has allowed to 
identify and solve the issue.

The so-called barcoding gap relies on the principle that the 
larger the difference between intraspecific and interspecific genetic 
distances, the more accurate the taxonomic classification (Hebert 
et al.,  2004). For fishes, the barcoding gap has been examined for 

F I G U R E  5  Barplots showing the read relative abundance for the 17 most abundant species using MiFish (left) and teleo (right) barcodes, 
performing the taxonomic assignment against raw (top) and curated (bottom) reference databases. Less abundant species are merged into 
“Other_species.”
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large (500–900 bp) mitochondrial regions (Cawthorn et al., 2012; Li 
et al., 2018), but eDNA metabarcoding usually relies on shorter DNA 
fragments (≈ 60–170 bp), for which the barcoding gap requires fur-
ther examination. Here, we examine the barcoding gap for short bar-
codes widely used for fish and found an excess number of pairs of 
sequences that do not follow the barcoding gap principle (Figure 3). 
For these outlier pairs, defining a strategy to identify the erroneous 
sequence should be feasible considering the high taxonomic distance 
between them. Cases closer to the diagonal of the heatmap are more 
complex and make it especially challenging to identify whether se-
quences are truly erroneous or whether natural reasons make the pair 
be out of the diagonal. For example, low taxonomic discrimination by 
the 12S gene has been reported within fish genera (e.g., Sebastes, 
Anarchias) and families (e.g., Gadidae, Cyprinidae, Istiophoridae) (Gold 
et al.,  2021; Johnstone et al.,  2007; Thomsen et al.,  2016), which 
could make sequences appear more similar than expected according 
to taxonomy. Similarly, biological phenomena such as inter-specific 
introgression could make sequences from the same species appear 
more distant than expected and species from different species closer 
than expected (Viñas & Tudela, 2009). These challenging cases are 
not limited to the accuracy of the reference database but to the cho-
sen barcode region, and different primer combinations are a promis-
ing solution to tackle them (Ficetola & Taberlet, 2023).

4.3  |  Toward an automated database 
curation procedure

Our workflow performs a quick screening to detect erroneously la-
beled sequences and flag problematic ones; additionally, it provides 
the networks for the sequences that did not result in a clear diagnos-
tic due to the complexity of the distance relationships so that they 
can be manually inspected. Thus, this workflow is a significant step 
in automatically improving GenBank-based reference databases for 
diverse taxa. Unlike other steps in the bioinformatics processing of 
sequencing data, there is a notable lack of homogeneity in the refer-
ence database curation for taxonomic assignment between similar 
studies. The most accurate approach for manual curation is the use 
of phylogenetic trees, which allows detailed inspection for errone-
ous sequence detection (; Collins et al.,  2019; Leray et al.,  2019). 
However, manual inspection of phylogenetic trees is not viable for 
large databases and has limitations for short and unequal-length 
sequences. Here, we explore an alternative solution and propose a 
workflow for spurious sequence detection based on network analy-
sis. Briefly, the approach considers spurious sequences that are 
more similar to sequences from other species than to sequences of 
their own (labeled) species. We have focused on 12S rRNA barcodes 
as being the preferred region for fish eDNA metabarcoding, yet the 

F I G U R E  6  Venn diagram representing the species identified in this study. Bar plots indicate the relative abundance (%) of species 
detected with only one barcode. Species highlighted in blue also have representative sequences in the reference database of the other 
barcode but were not detected.
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method can be used for any barcode. We acknowledge that the tool 
assumes a linear relationship between similarity and taxonomic re-
latedness, which is not always fulfilled by real sequences. Yet, this as-
sumption ensures the detection of errors in the extreme cases, and, 
moreover, the tool allows to modify taxonomic ranges and distance 
levels to be included in the analyses so that less extreme cases can 
also be inspected. Thus, this workflow not only allows to retrieve the 
barcode sequences corresponding to a given list of species but per-
forms a first screening of spurious sequences, allowing one to elimi-
nate, flag, or further inspect them. A limiting factor of the method is 
related to the poor representation of some species in the reference 
databases due to the existence of barcoded species with only one 
record available because verifying single records is complex with any 
screening method. Distance matrices rely on the confidence of close 
records, which will rarely be mislabeled. Although being an unlikely 

scenario, it is a limitation to take into consideration, especially when 
single records are abundant such as in our study.

Noteworthy, our method was able to detect a particularly challeng-
ing but existing problem in genetic databases: the chimeric sequences. 
For example, although present in both the teleo and MiFish reference 
databases, I. albicans sequences were only labeled as erroneous in the 
teleo database. In the MiFish database, I. albicans sequences were more 
similar to other Istiophorus sequences than to sequences belonging to 
the genus Engraulis. This can be explained by the formation of chime-
ras between the target species and other species during the barcoding 
process, either in the PCR or assembly steps (Haas et al., 2011). The 
fact that no reads were classified as I. albicans with the MiFish raw da-
tabase supports the chimeric structure of the sequence, being some 
regions truly from I. albicans and others from Engraulis. In line with the 
above, it is noteworthy to remark that database curation substantially 

F I G U R E  7  (a) Relationship between relative abundance of reads of shared species between MiFish and teleo barcodes. Shaded area 
represents the 95% confidence interval of the linear regression. (b) Non-metric multidimensional scaling (NMDS) for shared species using the 
two markers.
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changed the taxonomic assignment of teleo reads, which highlights the 
importance of caution and critical reasoning when analyzing metabar-
coding data to avoid wrong interpretations or misunderstandings. 
Although minor differences were observed between the taxonomic 
assignments of MiFish reads using raw and curated versions of the da-
tabase, potential erroneous sequences belonging to species not de-
tected in the study were also identified, which may be problematic 
in studies involving other fish assemblages. To guarantee reliable fish 
eDNA metabarcoding applications, such as management-scale diver-
sity monitoring, the suitability and quality of reference databases need 
to be considered. The completeness and accuracy evaluation are to 
become good practices in the field with the use of tools such as the 
pipeline developed in this study.
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