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Abstract

To successfully implement environmental DNA-based (eDNA) diversity monitoring,
the completeness and accuracy of reference databases used for taxonomic assign-
ment of eDNA sequences are among the challenges to be tackled. Here, we have
developed a workflow that evaluates the current status of GenBank for marine fishes.
For a given combination of species and barcodes, a gap analysis is performed and po-
tentially erroneous sequences are identified. Our gap analysis based on the four most
used genes (cytochrome c oxidase subunit 1, 12S rRNA, 16S rRNA, and cytochrome
b) for fish eDNA metabarcoding found that COI, the universal choice for metazoans,
is the gene covering the highest number of Northeast Atlantic marine fishes (70%),
while 12S rRNA, the preferred region for fish-targeting studies, only covers about
50% of the species. The presence of too close and too distant barcode sequences
as expected by their taxonomic classification confirms the existence of erroneous
sequences in GenBank that our workflow can detect and eliminate. Comparing taxo-
nomic assignments of real marine eDNA samples with raw and clean reference data-
bases for the most used 12S rRNA barcodes (teleo and MiFish), we confirmed that both
barcodes perform differently and demonstrated that the application of the database
cleaning workflow can result in drastic changes in community composition. Besides
providing a tool for reference database curation, this study confirms the need to in-
crease 12S rRNA reference sequences for European marine fishes and evidences the
dangers of taxonomic assignments by directly querying GenBank. We have developed
a workflow that evaluates the current status of GenBank for marine fishes. For a given
combination of species and barcodes, a gap analysis is performed and potentially er-

roneous sequences are identified.
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1 | INTRODUCTION

Environmental DNA (eDNA) metabarcoding studies are often based
on public reference databases on whose accuracy and completeness
lies the reliability of taxonomic assignment (Richardson et al., 2018;
Virgilio et al., 2010). Some public databases have filtering options and
analysis tools available for quality controls, such as the trackability
of the voucher specimens, but are focused on specific regions (e.g.,
BOLD (Ratnasingham & Hebert, 2007) mostly covers the COIl gene).
This severely limits their use when targeting taxa for which the best-
performing primers are located in other regions, such as ribosomal
genes. The most complete reference database is GenBank (Benson
et al., 2012), but it acts as a mere sequence repository and its un-
verified submission process often leads to misannotated sequences
(Steinegger & Salzberg, 2020). Although the reliability of GenBank
for a range of DNA-based monitoring applications has been praised
(Leray et al., 2019), it has also been contested (Locatelli et al., 2020).
If the number of expected species in the study area is modest, se-
qguences of the species of interest can be downloaded and manually
curated to remove misannotated sequences, and barcoding of the
missing species in public repositories can be performed to complete
the reference database (Collins et al., 2021; Thomsen et al., 2016;
West et al., 2021). On the other hand, when the number of species
expected in a region is very large (e.g., fishes in a large marine area),
manual curation of the database is unviable (Leray et al., 2020) and
incompleteness of the database is expected (Weigand et al., 2019).
Incompleteness of reference databases can lead to false-negative
detection, leading to, for example, failure in detecting alien species
(Klymus et al., 2017); inaccuracy of reference databases can lead to
false-positive detections, resulting, for example, in incorrectly re-
porting species presence (Port et al., 2016).

Reference database completeness and accuracy are especially rel-
evant for marine fishes, with about 20.000 described species (WoRMS
Editorial Board, 2022), which makes manual curation and completion
of databases difficult. eDNA metabarcoding is being increasingly ap-
plied to their study during the last years (Fraija-Fernandez et al., 2020;
Tsuji et al., 2019) and has arisen as a promising, alternative tool for
monitoring this important resource (Gilbey et al., 2021). Fish eDNA
metabarcoding studies have been conducted using a variety of bar-
codes, the most common ones being those based on the mitochon-
drial cytochrome b (cytb), small (12S) and large (16S) subunit ribosomal
RNA (rRNA), and cytochrome c oxidase subunit 1 (COIl) genes (Zhang
et al, 2020). From these, the COl-based barcodes are considered
standard for animal metabarcoding studies (Leray et al., 2013;
Vrijenhoek, 1994), have been sequenced for a broad range of
European marine fishes (Weigand et al., 2019), and curated reference
databases are available (Oliveira et al., 2016). However, because eDNA
extracted from water samples contains traces of many abundant or-
ganisms other than fish, the use of COI metazoan universal primers
results in over-amplification of non-target taxa (Collins et al., 2019;
Fraija-Fernandez et al., 2020), and fish-specific primers have been de-
veloped, mostly based on the 12S rRNA gene, such as those amplify-
ing the teleo (Valentini et al., 2016) or MiFish (Miya et al., 2015) regions

Open Access
Dediicated to the study and use of environmental DNA for basic and applied sciences

Studies using marine water eDNA metabarcoding to assess fish
diversity based on 12S rRNA perform taxonomic assignment in a va-
riety of ways. Some authors assign taxonomy by directly querying
GenBank (e.g., Lamy et al., 2021; Sato et al., 2021; Zhou et al., 2022),
which might result in erroneous assignments due to the presence of
problematic records (Li et al., 2018). Others rely on filtered versions
of GenBank containing only the target barcode of the sequences
from the species of interest. This filtering can be done either
using the information in the record definition (Arranz et al., 2020;
Barco et al., 2022; Gold et al., 2021; Iwasaki et al., 2013; Machida
et al., 2017; Mariani et al., 2021; Russo et al., 2021) or based on sim-
ilarity searches (Heller et al., 2018; Leray et al., 2022). Yet, although
the use of these filtered versions is popular in marine fish eDNA me-
tabarcoding studies (Kawato et al., 2021; Kume et al., 2021; Nguyen
et al., 2020; Oka et al., 2021; Polanco et al., 2021), the methods
used to extract the sequences are not meant to remove potential
contaminations other than those identifiable through their labelling
(e.g., Arranz et al., 2020). Finally, other studies attempt to reduce
potentially erroneous sequences by visual inspection of phyloge-
netic trees (e.g. Canals et al., 2021; Collins et al., 2019, 2021; Fraija-
Fernandez et al., 2020), but this approach is tedious, not viable for
databases composed by a large number of species, and limited by the
low phylogenetic resolution of short barcodes (Polanco et al., 2021;
Zhang et al., 2020). Thus, more dynamic screening tools are neces-
sary to overcome reference database quality issues and meet the
high expectations concerning global biodiversity eDNA monitoring.
Here, to assist future marine fish eDNA metabarcoding studies, we
have developed an automated workflow to (i) perform a gap analysis
of GenBank for a list of species of interest, (ii) create a reference da-
tabase of specific barcodes for the species of interest, and (iii) detect
and eliminate the most obvious spurious sequences. As a study case,
we have applied this workflow to the fish inhabiting the European
Marine Regions. We have assessed the gaps for COl and 12S rRNA-
based barcodes, generated a curated reference database for the
most widely used (i.e., teleo and MiFish) regions from the 12S rRNA
gene, and compared the performance of the taxonomic assignment
using the reference database before and after database curation on
marine eDNA samples. Finally, we contribute to the reference da-
tabase completeness by barcoding the 12S rRNA sequence of 21
different fish species. This newly developed workflow, which can be
applied to any mitochondrial barcode and set of species, and results
derived from it constitute a step ahead for increasing the complete-
ness and accuracy of reference databases for marine fish eDNA me-
tabarcoding studies. This, together with additional barcoding efforts
to populate reference databases, is a major milestone for making fish
eDNA biomonitoring reliable and trustworthy.

2 | MATERIALS AND METHODS

A summary of the procedures followed is presented in Figure 1 and
all the scripts used are available on GitHub (https://github.com/rodri
guez-ezpeleta/NEA _fish_DB).


https://github.com/rodriguez-ezpeleta/NEA_fish_DB
https://github.com/rodriguez-ezpeleta/NEA_fish_DB
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2.1 | Fish checklist assembly and reference
sequence retrieval

The list of fish species present in the northeast Atlantic and adjacent
seas was assembled from FishBase (Froese & Pauly, 2022) by retriev-
ing the species occurring in the European Marine Regions (Baltic Sea,
Barents Sea, Black Sea, Canary Current, Celtic Biscay Shelf, Faroe
Plateau, Greenland Sea, Iberian Coastal, Iceland Shelf and Sea, North
Sea, Norwegian Sea, and Mediterranean Sea) using the R package
rfishbase (Boettiger et al., 2012), and taxonomy was extracted from
World Register of Marine Species (WoRMS Editorial Board, 2022).
All mitochondrial gene records available in GenBank for the species
in the reference list were identified using eUrtils (Sayers, 2008) and
were assigned as belonging to one of the most common genes used in
metazoan metabarcoding surveys, that is, cytochrome oxidase | (COI),
cytochrome b (cytb), 12S rRNA (12S), and 16S rRNA (16S), based on
their definition or, those with ambiguous definition, based on BLAST
searches (Altschul et al., 1990) against complete COI, 12S, 16S, and/
or cytb sequences, respectively; matches were considered if query se-

quences had 260% sequence similarity with the complete sequences.

2.2 | Barcoding gap analysis

The barcoding gap analysis was carried out for two barcodes of the two
most widely used genes in fish metabarcoding studies: mICOI (Leray
etal., 2013) and folCOI (Vrijenhoek, 1994) from COI, and teleo (Valentini
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et al., 2016) and MiFish (Miya et al., 2015) from 12S rRNA. First, se-
quences from all COI and 12S rRNA records identified above were
downloaded from GenBank. Using mothur (Schloss et al., 2009), these
sequences were aligned against reference alignments of COl and 12S
rRNA reference sequences (previously aligned with MAFFT (Katoh &
Standley, 2013)) and trimmed to the 125 rRNA and COl regions. Then,
complete folCOIl, mICOlI, teleo, and MiFish barcode regions were identi-
fied using cutadapt (Martin, 2011), and partial sequences covering at
least 90% of the barcode region were identified using mothur with the
complete barcode regions as template. Both the complete and partial
barcodes were kept for the barcoding gap analysis. Similarity matrices
were calculated based on sequence similarity scores obtained by all-
against-all BLAST analysis. Similarity value distributions were visual-
ized in heatmaps for six different taxonomic categories: intraspecific
(SP), intra-genus (GE), intra-family (FA), intra-order (OR), intra-class
(CL), and intra-phylum (PH), and classified into five levels so that Level
1 comprises the range of intraspecific similarity values (excluding outli-
ers) and Levels 2-5 comprise values resulting from dividing uniformly
the range of values between the minimum similarity value and the low-
est value of Level 1. Pairs with no BLAST hits among them because of

not enough coverage or too distant were reported as “No dist.”

2.3 | Automated curation of reference databases

To identify potentially erroneous sequences in the database, a se-

ries of rules were developed according to how sequences clustered
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6_barcodingGapGraphics.R
7_doNetworkstoClean.R

FIGURE 1 Schematic view of the workflow developed in this study. Numbers correspond to specific scripts.
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within a given combination of level and taxonomic category, focus-
ing on the squares far from the diagonal in heatmaps, which rep-
resent sequences that are too similar or too different given their
taxonomy. We focused on the extremes, selecting levels 3 to 5 for
intraspecific relationships (i.e., too distant pairs) and levels 1 and 2
for intra-phylum, intra-class, and intra-order interspecific relation-
ships (i.e., too similar pairs). For each chosen taxonomic classification
and level, independent networks were created, and the decision tree
method developed (Figure S1) was applied to tag sequences as cor-
rect, erroneous, or problematic on the basics of how they clustered
in a network of “too similar” or “too different” sequences, respec-
tively. Using this decision tree, sequences more similar to sequences
of other classes or orders than to sequences of the same species,
genus, or family are tagged as erroneous if there is enough infor-
mation to conclude which of the sequences is potentially erroneous
within the network and tagged as problematic when the informa-
tion is not enough to resolve it. Networks that are too complicated
to resolve by the decision tree can be visually inspected, combined
with other evidence such as blast searches or phylogenetic trees,
and manually tag the sequences as correct, erroneous, or problem-
atic. Erroneous-tagged sequences are removed from the database
and erroneous and problematic-tagged sequences are compiled in
two independent lists including the reason for their classification as
erroneous or problematic. Finally, a curated database is created and
outputted in fasta and tax formats, which are the files required for

the posterior use of the database for taxonomic classification.

2.4 | Amplicon data generation, bioinformatic
processing and analysis

We analyzed marine water samples with the two most used barcodes
in fish eDNA metabarcoding studies (i.e., teleo and MiFish). For that aim,
30 5-L water samples were collected at different locations, time, and
depths in the Bay of Biscay (Figure S2). Water filtering, DNA extrac-
tion, and amplification with the teleo primer pair (Valentini et al., 2016)
were performed as described in Fraija-Fernandez et al. (2020). An ap-
proximate DNA volume of 100pL was extracted from each sample.
The concentration of the extractions was calculated, and the DNA
concentration of the samples was homogenized to 5ng/pl by diluting
samples exceeding the desired concentration. For both primer pairs,
three replicate PCR amplifications were done per sample in a final vol-
ume of 20pL, including 10puL of KAPA HiFi HotStart ReadyMix (KAPA
Biosystems), 0.4 uL of each amplification primer (final concentration of
0.2uM), 7.2uL of Milli-Q water, and 2puL (10ng) template DNA. The
thermocycling profile for PCR amplification with MiFish primer pair
(Miya etal., 2015) included 3min at 95°C; 35cycles of 20s at 98°C, 155
at 60°C,and 15sat 72°C; and finally, 5min at 72°C. Replicate PCR prod-
ucts were combined and purified using AMPure XP beads (Beckman
Coulter) following manufacturer's instructions and used as templates
for the generation of 12x 8 dual-indexed amplicons in the second PCR
following the “16S Metagenomic Sequence Library Preparation” pro-
tocol (Illumina) using the Nextera XT Index Kit (lllumina). PCR-negative
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controls resulted in no visible amplification in agarose gels. Multiplexed
PCR products were purified using the AMPure XP beads, quantified
using Quant-iT dsDNA HS assay kit using a Qubit® 2.0 Fluorometer
(Life Technologies), and adjusted to 4nM. Then, 5uL of each sample
were pooled, checked for size and concentration using the Agilent
2100 bioanalyzer (Agilent Technologies), sequenced using the 2x 300
paired-end protocol on the lllumina MiSeq platform (lllumina), and
demultiplexed based on their barcode sequences. The quality of de-
multiplexed reads was verified with FASTQC (Andrews, 2010). Primer
pairs were removed using cutadapt (Martin, 2011), allowing a maximum
error rate of 20%. Reads longer than 30 nucleotides and containing
the two primer sequences were kept and merged using pear (Zhang
et al., 2014) with a minimum overlap of 10 nucleotides for MiFish and
20 nucleotides for teleo. Pairs with average quality lower than 33 Phred
score were removed with Trimmomatic (Bolger et al., 2014) and those
reads shorter than 60 and 140 nucleotides for teleo and MiFish, re-
spectively, not covering the target region or containing ambiguous po-
sitions were discarded using mothur. Potential chimeras were detected
based on UCHIME (Edgar et al., 2011) and removed. Taxonomy was
assigned to unique reads using the Bayesian classifier method (Wang
et al., 2007) implemented in mothur (cutoff=60) using the teleo and
MiFish databases before and after the automated curation process.
Only reads assigned to species level were considered in subsequent
steps. Ordination of communities (considering only shared species
between both barcodes) was carried out using non-metric multidi-
mensional scaling (NMDS; metaMDS function, vegan package version
4.1.1 (Oksanen et al., 2013)) analyses based on Bray-Curtis dissimilari-
ties (vegdist function, vegan package). ANOSIM (analysis of similarity;
Clarke (1993)) was used to test if samples were grouped according to
the factor barcode (anosim function, vegan package).

2.5 | Generation of 12S rRNA sequences

Fin and muscle tissue samples from morphologically identified speci-
mens (Table S1) were obtained during the CSIC SUMMER-2020 sur-
vey in the Western Mediterranean Sea (Balearic Islands, Alboran
Sea, Gulf of Cadiz, and Atlantic Ocean) and from fishing vessels land-
ing in the port of Ondarroa (Basque Country, Spain). For each sam-
ple, genomic DNA was extracted from muscle tissue or fin using the
Wizard Genomic DNA Purification kit (Promega) following manufac-
turer's instructions for “Isolating Genomic DNA from Tissue Culture
Cells and Animal Tissue.” Extracted DNA was resuspended in Milli-Q
water and its concentration was determined with NANODROP
(Thermo Scientific™). The extracted DNA was then amplified using
the MarineFish primer pair (Jin et al., 2013), a 900- to 1100-bp-long
12S rRNA region covering both teleo and MiFish regions, by mixing
10puL of 2X PCR Master Mix (Fisher Scientific), 0.4 uL of each primer,
2uL DNA template (1-20ng), and 7.2 uL of nuclease-free water, and
using the following amplification conditions: 95°C for 3min; 35cy-
cles of denaturation at 95°C for 30s, annealing at 56°C for 30s, and
extension at 72°C for 75s; and final extension at 72°C for 10 min.
The PCR products were migrated in a 2% agarose gel in TAE buffer
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and purified using ILUSTRA EXOSTAR1-Step (Cytiva) following
manufacturer's conditions and sent for Sanger sequencing. Forward
and reverse sequences were merged and SeqTrace software
(Stucky, 2012) was used for quality filtering (minimum confidence
score of 30). Sequences were submitted to GenBank (accession
numbers available in Table S1) and added to the above-generated

teleo and MiFish reference databases.

3 | RESULTS
3.1 | Assessment of database completeness for the
most used fish eDNA metabarcoding markers

The list of Northeast Atlantic and Mediterranean marine fishes com-
piledincluded 1791 species: 1603 Actinopterygii, 174 Elasmobranchii,
8 Holocephali, 4 Petromyzonti, and 2 Myxini (Table S2). In total,
1277, 1067, 1047, and 898 fish species have COI, 12S, 16S, and cytb
gene records available, respectively, including 42,115 COI, 27,546
cytb, 8542 16S, and 6820 12S sequences (Figure 2a). The COI gene
is the one with the highest number of sequences and species cov-
erage (70%), and cytb, despite having the second highest number
of sequences, is the one with the lowest species coverage (50%).
This is due to a high number of cytb records belonging to a small
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number of species (e.g., Atlantic cod Gadus morhua, European an-
chovy Engraulis encrasicolus, or milkfish Chanos chanos). 125 and 16S
rRNA exhibit similar species coverage values (about 60%). The COI-
based barcodes (folCOIl, mICOIl) have the highest species coverage
(>70%), whereas 12S rRNA barcodes cover between 40% (teleo) and
48% (MiFish) of the species (Figure 2b,c). To increase the 12 rRNA-
based barcode coverage, we have sequenced the teleo and MiFish
regions of 21 species, from which 5 and 16 had none or only one of

the barcodes available at the time of submission (Table S1).

3.2 | Using the barcoding gap principle for
potential error detection in reference databases

Distance matrices resulted in more than half a billion sequence pair
comparisons for both COIl barcodes and about 8 and 5 million pair
comparisons for MiFish and teleo, respectively. In all barcodes, the
average pairwise similarity decreases as sequences belong to more
distant taxonomic categories (Figure 3a), but an unexpected number
of outliers representing low similarity in pairs of sequences belong-
ing to the same species and high similarity in sequences belonging to
taxonomically distant species are noticeable. The categorization of
distance ranges in levels (Table S3) revealed the number of pairs that
do not behave as expected according to the barcoding gap principle,

(b) I Barcode region available
Gene sequence without barcode

COl region 12S region

(©

miCcOI teleo

folCOI MiFish

24

FIGURE 2 Reference database gap analysis. (a) Cumulative coverage (%) of European marine fishes for each gene. Numbers on bars
indicate the number of species for which there are sequences available (above) and the total number of sequences available in GenBank
(below) for each gene. (b) Barcode availability for COl and 12S gene markers. Dark red and dark blue represent portion of species with both
barcodes available (i.e., mICOI and folCOI for COIl and MiFish and teleo for 12S). Light red and light blue represent portion of species with
only one of the two barcodes available (i.e., mICOI or folCOI for COIl and MiFish or teleo for 12S). (c) Venn diagram showing the number of
species with available references for mICOI, folCOI, teleo, and MiFish barcodes.
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that is, those that are too similar but belong to different species, or
those that are too distant while being taxonomically close (at the

most top-right and bottom-left squares of Figure 3b).

3.3 | Diagnosis and flagging of sequences by
automatic screening

Our decision tree approach (see Methods; Figure S1) applied to
networks within these pairs identified potentially erroneous and
problematic sequences. Notably, our approach detected spurious
sequences for both 125 rRNA barcodes (summarized in Tables S4
and S5). Broadly, three types of networks were distinguished ac-
cording to their clustering structure. The first type consists of net-
works formed by a central sequence (both for intra- and interspecific
relationships), where that central sequence is evaluated; for exam-
ple, one central sequence of Alburnus alburnus was more similar to
Phoxinus phoxinus sequences than to other sequences of A.alburnus
for both teleo and MiFish (Figure 4a,b), so it was classified as poten-
tially erroneous, and one central sequence of Carcharodon carcharias
was identical to Cetorhinus maximus sequences (Figure 4c,d) while
showing low similarity to other C.carcharias sequences and was also
tagged as potentially erroneous. The second type consists of net-
works with no central sequence with only two species, where all
sequences of the network are analyzed one by one; for example, we
found Engraulis encrasicolus sequences being not only more similar
than expected to Istiophorus albicans sequences but also very similar
to each other (including those not represented in the network) and
located within expected intraspecific distances (Figure 4e), so they
were labeled as correct. Although for . albicans there were no other
sequences in the database, I.albicans sequences were more similar
to Engraulis sequences than to other sequences from the Istiophorus
genus, being thus, the l.albicans sequences labeled as erroneous.
The third type consists of networks formed by more than two spe-
cies and no central sequence, which cannot be analyzed automati-
cally and require manual inspection; for example, a network with
two non-gadoid sequences (belonging to Argyropelecus gigas and
Crystallogobius linearis) that are identical to many Gadidae sequences
(Figure 4f), where C.linearis sequence would be classified as errone-
ous for being more similar to sequences of the Gadidae family than
to other sequences of the same species but the sequence of A. gigas
would be classified as problematic due to lack of information to com-
pare within the database because there are no more sequences for

A.gigas, and no intra-genus relationships are available.

3.4 | Performance evaluation of raw and curated
reference databases

For the 30 samples included in this study, we obtained 2,274,886
and 1,462,841 MiFish and teleo reads, respectively (Tables S6 and
S7), from which =90% were assigned to the species level. For teleo,
the Atlantic sailfish Istiophorus albicans represented 35% of the
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reads when using the raw database. Because I.albicans sequences
were labeled as erroneous by our automated workflow in the teleo
database, reads previously assigned to sailfish using the raw data-
base were classified as anchovy with the clean database, leading to
more coherent results across barcodes (Figure 5). A total of 94 spe-
cies were identified in the study, from which 28 were detected by
both barcodes (Figure 6). Although the relative abundance of some
species (e.g., Sprattus sprattus and Trachurus trachurus) was substan-
tially different in several samples, a positive correlation between the
relative read abundance of most of the species detected by both
barcodes is observed (Figure 7a). A total of 66 species were only
detected by one of the barcodes, but they represented a very small
percent of reads (<1%). Finally, the barcode used was not supported
to be the main factor determining the fish community composition
of the samples (Figure 7b) (ANOSIM test, R: 0.047, p-value: 0.0161).

4 | DISCUSSION

4.1 | Database completeness

Marine fishes constitute an important resource globally (FAO,
F., 2012), whose management scale monitoring is costly and time
consuming with traditional methods. Thus, eDNA metabarcod-
ing has arisen as a promising, alternative tool applied in an in-
creasing number of studies, including invasive species detection
(Sepulveda et al., 2020), migration pattern discovery (Thalinger
et al., 2019), or behavior assessment (Canals et al., 2021). In this
context, the availability of curated and complete databases will be
foremost for the uptake of eDNA-based approaches in fisheries
monitoring. From the most used genes for fish metabarcoding, we
confirm that COl-based barcodes considered standard for meta-
zoans (Hebert et al., 2003) are the most abundant in GenBank
(Porter & Hajibabaei, 2018). Yet, the non-fish taxa amplifica-
tion in marine eDNA water samples (Collins et al., 2019; Fraija-
Fernandez et al., 2020) makes 12S rRNA-based barcodes more
suitable (McClenaghan et al., 2020; Zhang et al., 2020) even with
less species coverage in reference databases (Collins et al., 2019).
We highlight that the 12S rRNA gene, although being the most
used region for fishes, is only sequenced for half of the fish spe-
cies inhabiting European marine waters, with the actual number
of species available for specific barcodes (i.e., teleo and MiFish)
even lower. This is due to MiFish and teleo barcodes being non-
overlapping, so the existence of a 12S rRNA sequence for a given
species does not imply that both regions are covered.

In our analyses, based on marine water samples, the difference in
completeness of MiFish and teleo databases does not result in major
differences in the overall community, since the most abundant spe-
cies in our samples are present in both databases. While 70% of the
species were detected by only one barcode, they represented a very
small read abundance, likely reflecting rare DNA (Kelly et al., 2017
Stat et al., 2019). Despite ongoing efforts to increase the coverage
of reference databases, sequences of key species are lacking, and
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shifting fish eDNA metabarcoding studies to remote areas with less
known diversity, such as the deep sea, or specific applications, such
as invasive species detection, increases its relevance. For instance,
because in this study we have identified as erroneous the only two
available records of teleo region for Istiophorus albicans, it turns out
to be one more missing species in the database. To contribute to
completing the 12S rRNA barcode reference database, required for
present and future eDNA-based fish monitoring, we have barcoded
both missing and poorly represented species, including deep sea and
commercial fishes.

4.2 | Database accuracy

Public reference databases function as open sources of information
where researchers submit their sequence data, enhancing reproducibil-
ityandtransparency (Deineretal.,2017; Leray etal.,2020). However, the
free and open submission process is a “double-edged sword” because
it leads to unverified record accumulation (Porter & Hajibabaei, 2018),
some of which result in misannotated sequences (Steinegger &
Salzberg, 2020). Contaminant amplification and data entry error cases
in GenBank have been reported previously (Leray et al., 2019). Also,
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misidentifications of sampled specimens can occur, especially when
referring to species with morphological similarities (Lyon et al., 2018),
rare species, or individuals derived from fishery vessels (Figueiredo
et al., 2020; Kirsch et al., 2018). This can be due to lack of taxonomists
(Buyck, 1999) or to rapid classification onboard based on the most likely
species (FAQ, 2004). Even if the voucher specimen is correctly identi-
fied, additional issues can occur downstream of the sample processing
and analysis. For instance, contaminant DNA of Homo sapiens (Kryukov
& Imanishi, 2016), bacteria (Strong et al., 2014), or species in previously
extracted samples could result in erroneously labeled sequences in the
database or the formation of chimeric sequences (Haas et al., 2011).
Effort is being made to identify incorrect records (Bucklin et al., 2021;
Leray et al., 2019), but their removal takes time because errors are not
always reported, much less corrected. An example of the magnitude

of the consequences is given in this work with the misassignment of
Engraulis encrassicolus sequences to Istiophorus albicans (Figure 5).
E.encrassicolus is the most abundant small pelagic in the Bay of Biscay
(Uriarte et al., 1996), whereas l.albicans, instead, is rare in the region
(ICCAT, 2019). Because they correspond to very different consumer
levels in the food web and their commercial importance is different in
the study area, the raw database-derived results would have led to a
wrong interpretation of ecological and economical relevance; the use
of our barcoding gap-based error detection method has allowed to
identify and solve the issue.

The so-called barcoding gap relies on the principle that the
larger the difference between intraspecific and interspecific genetic
distances, the more accurate the taxonomic classification (Hebert
et al., 2004). For fishes, the barcoding gap has been examined for
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barcode but were not detected.

large (500-900bp) mitochondrial regions (Cawthorn et al., 2012; Li
et al., 2018), but eDNA metabarcoding usually relies on shorter DNA
fragments (= 60-170bp), for which the barcoding gap requires fur-
ther examination. Here, we examine the barcoding gap for short bar-
codes widely used for fish and found an excess number of pairs of
sequences that do not follow the barcoding gap principle (Figure 3).
For these outlier pairs, defining a strategy to identify the erroneous
sequence should be feasible considering the high taxonomic distance
between them. Cases closer to the diagonal of the heatmap are more
complex and make it especially challenging to identify whether se-
quences are truly erroneous or whether natural reasons make the pair
be out of the diagonal. For example, low taxonomic discrimination by
the 12S gene has been reported within fish genera (e.g., Sebastes,
Anarchias) and families (e.g., Gadidae, Cyprinidae, Istiophoridae) (Gold
et al., 2021; Johnstone et al., 2007; Thomsen et al., 2016), which
could make sequences appear more similar than expected according
to taxonomy. Similarly, biological phenomena such as inter-specific
introgression could make sequences from the same species appear
more distant than expected and species from different species closer
than expected (Vifas & Tudela, 2009). These challenging cases are
not limited to the accuracy of the reference database but to the cho-
sen barcode region, and different primer combinations are a promis-
ing solution to tackle them (Ficetola & Taberlet, 2023).

4.3 | Toward an automated database
curation procedure

Our workflow performs a quick screening to detect erroneously la-
beled sequences and flag problematic ones; additionally, it provides
the networks for the sequences that did not result in a clear diagnos-
tic due to the complexity of the distance relationships so that they
can be manually inspected. Thus, this workflow is a significant step
in automatically improving GenBank-based reference databases for
diverse taxa. Unlike other steps in the bioinformatics processing of
sequencing data, there is a notable lack of homogeneity in the refer-
ence database curation for taxonomic assignment between similar
studies. The most accurate approach for manual curation is the use
of phylogenetic trees, which allows detailed inspection for errone-
ous sequence detection (; Collins et al., 2019; Leray et al., 2019).
However, manual inspection of phylogenetic trees is not viable for
large databases and has limitations for short and unequal-length
sequences. Here, we explore an alternative solution and propose a
workflow for spurious sequence detection based on network analy-
sis. Briefly, the approach considers spurious sequences that are
more similar to sequences from other species than to sequences of
their own (labeled) species. We have focused on 12S rRNA barcodes
as being the preferred region for fish eDNA metabarcoding, yet the
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method can be used for any barcode. We acknowledge that the tool
assumes a linear relationship between similarity and taxonomic re-
latedness, which is not always fulfilled by real sequences. Yet, this as-
sumption ensures the detection of errors in the extreme cases, and,
moreover, the tool allows to modify taxonomic ranges and distance
levels to be included in the analyses so that less extreme cases can
also be inspected. Thus, this workflow not only allows to retrieve the
barcode sequences corresponding to a given list of species but per-
forms a first screening of spurious sequences, allowing one to elimi-
nate, flag, or further inspect them. A limiting factor of the method is
related to the poor representation of some species in the reference
databases due to the existence of barcoded species with only one
record available because verifying single records is complex with any
screening method. Distance matrices rely on the confidence of close
records, which will rarely be mislabeled. Although being an unlikely

scenario, it is a limitation to take into consideration, especially when
single records are abundant such as in our study.

Noteworthy, our method was able to detect a particularly challeng-
ing but existing problem in genetic databases: the chimeric sequences.
For example, although present in both the teleo and MiFish reference
databases, I.albicans sequences were only labeled as erroneous in the
teleo database. In the MiFish database, I. albicans sequences were more
similar to other Istiophorus sequences than to sequences belonging to
the genus Engraulis. This can be explained by the formation of chime-
ras between the target species and other species during the barcoding
process, either in the PCR or assembly steps (Haas et al., 2011). The
fact that no reads were classified as I.albicans with the MiFish raw da-
tabase supports the chimeric structure of the sequence, being some
regions truly from I.albicans and others from Engraulis. In line with the
above, it is noteworthy to remark that database curation substantially
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changed the taxonomic assignment of teleo reads, which highlights the
importance of caution and critical reasoning when analyzing metabar-
coding data to avoid wrong interpretations or misunderstandings.
Although minor differences were observed between the taxonomic
assignments of MiFish reads using raw and curated versions of the da-
tabase, potential erroneous sequences belonging to species not de-
tected in the study were also identified, which may be problematic
in studies involving other fish assemblages. To guarantee reliable fish
eDNA metabarcoding applications, such as management-scale diver-
sity monitoring, the suitability and quality of reference databases need
to be considered. The completeness and accuracy evaluation are to
become good practices in the field with the use of tools such as the
pipeline developed in this study.
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