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A B S T R A C T   

We built a dynamic, spatial food web model for the Barents Sea, developed with Ecospace by including species’ 
habitat requirements and ecological interactions. The model was used to test the spatial shifts of different 
functional groups due to warming. We compared model-predicted and field-surveyed biomass of functional 
groups (FGs) spatial distributions in relatively cold and warm years. The Ecospace model included habitat 
foraging capacities for environmental parameters such as water temperature and bottom depth for 74 FGs out of 
a total of 108 FGs. We created two plausible scenarios, one representing a relatively cold year (2004) and another 
representing a warm year (2013) with differences of ca. 0.3 ◦C in bottom temperature, 0.6 ◦C in surface tem
perature, and 7% less ice coverage between them. Comparison of centre of gravity, inertia, and spatial overlap of 
the modelled and surveyed spatial distributions in warm and cold years showed that the model represented the 
past distributions of the functional groups satisfactorily. We observed poleward shifts of 41 and 68 km for the 
modelled and observed distributions, respectively, in the average centre of gravity position for the 35 FGs with 
lowest sampling uncertainty. The model predicted that the whole community had shifted distribution towards 
the northeast at an average rate of 4.4 km year− 1 and 67 km ◦C-1 between 2004 and 2013. We conclude that our 
Ecospace model represents past observed species distributions in the Barents Sea satisfactorily, and may predict 
the direction and magnitude of temperature-driven changes in spatial distributions. This ability may be useful for 
predicting the impact of climate changes on species and FG distributions in future scenarios.   

1. Introduction 

Many marine species have changed their spatial distributions over 
the past few decades due to global climate change (Poloczanska et al., 
2016). At high latitudes in the Barents Sea, poleward shifts of marine 
fish spatial distributions due to warming have been documented based 
on survey observations (Fossheim et al., 2015; Frainer et al., 2017). 
There is, however, less documentation of spatial shifts for other group of 
organisms that are less surveyed than fishes. In high latitude areas, 
changes in air and water temperature often co-occur with changes in ice 
coverage, light availability, open-water area, and primary production 
(Dalpadado et al., 2020; Pedersen et al., 2021; Reigstad et al., 2011). In 
the Barents Sea, pelagic primary production increased markedly with 
decreasing ice coverage (Dalpadado et al. 2020), and the associated 
changes in several environmental factors may complicate the evaluation 
of warming effects. Although a species’ distribution is highly connected 
to environmental aspects, it also depends on the responses of its 

predators and prey to changes in environmental conditions and the 
availability of suitable habitats. 

Marine species differ significantly in their thermal responses, with 
arctic species preferring low temperature and boreal species preferring 
higher temperature, as well as in the range of thermal tolerance, i.e., 
narrow (stenothermal) vs wide (eurythermal) responses (Pörtner and 
Gutt, 2016). Thus, spatial distribution responses to temperature changes 
are expected to depend on the thermal response of the species. Spatial 
models for components in marine ecosystems span in complexity from 
conceptual models (Nordøy et al., 2008) to statistical (Fall et al., 2018; 
Husson et al., 2020), species-distribution, individual-based models 
(Gonzalez-Mirelis et al., 2021; Huse et al., 2004), dynamic mass-balance 
(Slagstad and McClimans, 2005), and spatially resolved end-to-end 
models (Audzijonyte et al., 2019). Spatial modelling involving func
tional groups (FGs) at all trophic levels has been less common, though 
modelling approaches such as Atlantis and Ecopath with Ecosim and 
Ecospace (EwE) have such capacities (Audzijonyte et al., 2019; Fulton 
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et al., 2018; Walters et al., 1999). Dynamic spatial models can represent 
the biological community and include species’ habitat requirements (e. 
g., thermal responses) and ecological interactions. The dynamic spatial 
model Ecospace can incorporate environmental aspects of species’ 
habitat foraging capacity and predator-prey relationships to drive 
changes in functional groups. This enables the model to reproduce the 
impact on abiotic conditions, spatially, according to the strong envi
ronmental gradient in the region and, temporally, on distribution of 
boreal and arctic species with different habitat preferences. 

The EwE approaches model mass-balanced food webs based on the 
energy flows between FGs (Christensen et al., 2008). In this context, an 
FG may represent species, a sub-group of species, or a group of species 
that are functionally and ecologically similar. Based on this principle, 
Ecopath provides a static, mass-balanced snapshot of the system and is 
the base for the Ecosim and Ecospace approach (Christensen and Pauly, 
1992; Polovina, 1984; Walters et al., 1997). Ecospace is the 
spatio-temporal framework that allows one, based on the trophic re
lationships, to answer temporally- and spatially-explicit ecological 
questions (Christensen et al., 2014, 2008; Walters et al., 1997). 

In the Barents Sea, statistical and process-based models have been 
used in studies of how the modelled warming effects change the spatial 
distributions of some fish and zooplankton species (Huse and Ellingsen, 
2008; Skaret et al., 2014). Spatial shifts due to warming are also ex
pected in other areas. In an IPCC-based projection of a 3.7 ◦C increase in 
surface temperature and a 3.9 ◦C increase in bottom temperature off the 
North Atlantic coast of the USA, in the next 60–80 years, it is expected 
that target fishes will shift their distribution northward by about 100 to 
200 km (Kleisner et al., 2017). Considering the average predicted in
crease in surface water temperature in the North Sea, Perry et al. (2005) 
estimated that two commercial fishes may retract entirely from the 
north of the North Sea by 2050, and other species may extend their 
range northward to encompass the entire region. 

The Barents Sea is strongly influenced by the inflow of warm Atlantic 
water with temperature and flux that vary over time, with alternating 
warm and cold periods (González-Pola et al., 2020; Schlichtholz, 2019; 
Trofimov et al., 2019). However, over the past two decades, the water 
temperature has increased, and ice coverage has decreased more 
intensely (Ingvaldsen et al., 2021; Trofimov et al., 2019). In the Barents 
Sea, much information on the responses of FGs to environmental factors 
such as depth, temperature, bottom substrate, and ice-affinity is avail
able from monitoring surveys, e.g., the integrated ecosystem surveys 
initiated in 2004 (Dolgov, 2016; Eriksen et al., 2018; Husson et al., 
2020; Wienerroither et al., 2011). Information on responses of FGs to 
environmental factors can potentially be integrated into Ecospace 
habitat foraging functions, while comparing species using survey-based 
observation and modelled distributions could be helpful to evaluate the 
model results. It is expected that by including information on the re
sponses of FGs to environmental factors, such as habitat capacity, the 
model will represent the FGs’ distributions well. Due to the particular 
oceanic dynamics in the Barents Sea, with the influence of the warm 
Atlantic water from the southwest and the Arctic’s influence from the 
north and northwest, it is expected that all FGs in the Barents Sea 
ecosystem will move poleward with an increasing temperature and a 
reduction in ice coverage. 

Testing model predictions by confrontation with field-observed data 
early in the modelling process is essential to enhance model quality and 
avoid model misspecification (Jørgensen and Fath, 2011). However, few 
studies have evaluated marine spatial models’ output by comparing 
model-predicted to field-observed spatial distributions; see attempts by 
Huse et al. (2004). Ecospace uses a spatial grid which may be adapted to 
the spatial resolution of field sampling to ease comparison of modelled 
and observed data. There are few studies in which Ecospace-modelled 
distributions are compared directly to field-observed distributions, 
though see Coll et al. (2019) and Romagnoni et al. (2015). 

This work aimed to understand the effect of climate change on the 
spatial distributions of high-latitude marine biota. To do so, we 

developed an Ecospace model for the Barents Sea ecosystem from an 
already-published EwE model (Pedersen et al., 2021). Its performances 
were assessed based on the evaluation of its capacity to reproduce 
field-observed spatial distributions of the different FGs under two 
different climatic scenarios corresponding to a warm year (2013) and a 
relatively colder one (2004). Then the impact of warming was assessed 
through the measure of the shift in FGs distributions between the two 
years 

2. Material and methods 

2.1. Study area and Ecospace input data 

The model represents the Barents Sea Large Marine Ecosystem 
(LME), latitude minimum 63◦ 48′ 13′′ N and maximum 82◦ 57′ 57.7′′ N, 
longitude minimum 0◦ 51′ 48.3′′ W and maximum 68◦ 8′ 12′′ E (Marine 
regions, 2022), extending from the Norwegian Sea and eastwards to 
Novaya Zemlja and northwards from the coast of Norway and Russia 
(Drinkwater, 2011), covering an area of 2.01 million km2 (Skjoldal and 
Mundy, 2013) (Fig. 1). 

The Barents Sea is a relatively shallow shelf sea (Ozhign et al., 2011) 
with an average depth of about 230 m. The most profound areas deeper 
than 400 m are in the western part (Loeng and Drinkwater, 2007). The 
Barents Sea receives warm Atlantic water (above 2 ◦C) and coastal 
waters (above 3 ◦C) from the southwest (Loeng and Drinkwater, 2007) 
as well as some cold Arctic water with temperatures below 0 ◦C from the 
north and east (Hunt et al., 2013). The polar front is the transition zone 
between the warmer boreal southern part and the colder Arctic northern 
area (Loeng, 1991) (Fig. 1). The Barents Sea is seasonally ice-covered; 
the maximum ice coverage occurs in March–April, and the minimum 
in August–September (Drinkwater, 2011). 

The spatial distribution of organisms in the studied area reflects the 
climatic gradient within the Barents Sea (Andriyashev and Chernova, 
1995; Jørgensen et al., 2015; Renaud et al., 2018) and, during the recent 
warm period boreal fish species have generally expanded northwards at 
the expense of arctic species (Fossheim et al., 2015). The modelling 
design uses Ecopath-included data input from field surveys and litera
ture and is summarised in Fig. 2. 

2.2. Ecosystem survey 

The joint Ecosystem Survey run by the Institute of Marine Research 
(IMR) and Polar Research Institute of Marine Fisheries and Oceanog
raphy (PINRO) (Eriksen et al., 2018; Prozorkevich et al., 2020) aims to 
monitor the status of abiotic and biotic factors and changes in these in 
the Barents Sea ecosystem. It was initiated in 2004 and conducted 
annually in the autumn until the present day, gathering a considerable 
amount of data about the Barents Sea ecosystem. 

Data for species distribution used in this study came from the Cam
pelen 1800 bottom trawl (22 mm mesh size at cod end), which captures 
demersal and bathypelagic species, as well as epibenthic megafauna as 
bycatch at a towing speed of approximately 3 knots. Only stations from 
50 to 500 m depth towed between 15 and 60 min were kept, so as to 
ensure a homogeneous sampling of the offshore Barents Sea ecosystem. 
An average of 278 stations are sampled yearly in a grid design of 64.8 km 
mesh size, covering south and west of Svalbard to Franz Joseph Land and 
Novaya Zemlya. During the surveys, the catch per unit effort (CPUE) is 
calculated for each taxon and station by standardising species’ biomass 
by unit sampling area. 

2.3. Ecospace and Ecopath with Ecosim base model 

The model is based on an Ecopath with Ecosim calibrated model 
(Pedersen et al., 2021), representing the ecosystem of the Barents Sea 
LME in the year 2000. The model comprises 108 FGs representing 
mainly boreal and arctic species (for more details see Pedersen et al., 

M.C. Nascimento et al.                                                                                                                                                                                                                        



Ecological Modelling 481 (2023) 110358

3

2021). The Ecosim model has been fitted (calibrated) to a time-series for 
the period 1950–1996 to estimate predator-prey vulnerabilities (Ped
ersen et al., 2021), and these vulnerabilities have been carried over to 
the Ecospace model. The Ecopath and Ecosim model described in Ped
ersen et al. (2021) showed that the basic ecosystem structure was pre
served during the periods of overexploitation between 1970 and 1990 
and during the recovery after 1990. This resilience is expected to be 
reflected in the stability of FGs’ spatial distributions modelled by Eco
space. Another important aspect highlighted by Pedersen et al.’s (2021) 
model is the increase in productivity at lower trophic levels during warm 
years, leading to higher productivity for most high trophic level FGs, 
which is likely to impact the FGs spatial distributions. 

The Ecospace model applies a two-dimensional grid (basemap). The 
basemap identifies the spatial bounds and grid dimensions, and includes 
the modelled area’s environmental characteristics, defined habitats, and 
FG environmental limits (Christensen et al., 2014, 2008). Based on the 
temporal equations, Ecospace models the biomass of each FG within 
each cell in the grid over time by considering trophic interactions, 
fishing, and species’ movement (Christensen et al., 2008; Walters et al., 
1999). The habitat foraging capacity concept included in Ecospace aims 
to increase the model’s realism, making the food web interact effectively 
and spatiotemporally with the environmental variability (Christensen 
et al., 2014). 

The model ran with monthly time steps and the simulation time was 
set to 20 years. To define the Ecospace maps, we used the same pro
jection as the joint Ecosystem Survey, with a cell grid of square cells of 
64.8 km in length and width. The spatial environmental drivers (i.e., a 
value of the driver for each grid cell) included depth, bottom and surface 
temperature, days of ice coverage, the distance off the coast (Buhl-
Mortensen et al., 2015; Lien et al., 2013), and primary production 
(Reigstad et al., 2011). 

We constructed this model using the Ecopath with Ecosim and Eco
space software version 6.6.6 (Christensen et al., 2008). The model 
allocated the biomasses of the FGs dynamically across a 
two-dimensional grid map with 32 cells in the longitudinal direction and 
28 cells in the latitudinal direction, giving a total of 486 active cells 
(Fig. 3). The model calculated the FGs biomass spatial distributions 
based on FGs’ habitat foraging capacities, predation regimes, dispersal 
rates, and the spatially-resolved environmental input (Christensen et al., 
2014; Walters et al., 1999). 

The dispersal rate parameters needed in Ecospace are the average 

annual movement distances (of random movement) of the FGs across the 
ecosystem (Christensen et al., 2008). For this model, we specified seven 
different dispersal rate values, representing the mobility of various FGs 
based on their movement patterns. The choices of values for each 
dispersal rate were based on previous studies (Mackinson and Daskalov, 
2007; Püts et al., 2020; Romagnoni et al., 2015), as were the charac
teristics of all organisms in each FG and the environmental condition of 
the Barents Sea LME. We set 1000 km year− 1 for fast top predators and 
highly migratory mammals and birds; 600 km year− 1 for pelagic and 
migratory demersal FGs; 300 km year− 1 for faster moving demersal 
fishes FGs and pelagic advected FGs; 200 km year− 1 for snow crabs and 
coastal cod; 100 km year− 1 for red king crab, which is a mobile crab; 30 
km year− 1 for benthic invertebrates and detritus FGs; and 10 km year− 1 

for offal (Appendix A). 

2.4. Derivation of habitat capacity functions 

The Ecopath model is run based on a system of linear equations 
describing the average mass and energy flows between all FGs during a 
period of time (Christensen and Pauly, 1992). In the temporal dynamic 
framework of Ecopath, Ecosim simulates the ecosystem effects of 
changes in mortality and environmental forces (Christensen and Wal
ters, 2004). The consumption rates are calculated based on the foraging 
arena concept, where biomasses are divided into vulnerable and invul
nerable components (Ahrens et al., 2012). 

The Ecospace time-spatial model works based on the Ecosim set of 
equations, predicting the biomass dynamics in the two-dimensional grid 
map (Walters et al., 1999). Each active cell can contain one or more 
habitat type and environmental driver, such as water temperature and 
bottom depth. These habitat types can affect the computed foraging 
capacity of the FGs, implemented via separate environmental preference 
functions for each environmental parameter calculated for each cell. 
This procedure allows more variation amongst the cells to distribute the 
FGs over the map where they are most likely to occur (Christensen et al., 
2014). 

The habitat foraging capacity is based on the foraging arena theory 
(Ahrens et al., 2012). The computed habitat foraging capacity is calcu
lated from FGs affinity for given habitats and functional responses to 
environmental conditions based on the habitat layers in the basemap. 
Each habitat type gets a proportion assigned according to how suitable it 
is for a certain FG (Christensen et al., 2014). Environmental capacity is 

Fig. 1. Map of Barents Sea Large Marine Ecosystem. Borders of the ecosystem are shown in red lines (based on https://www.pame.is/projects/ecosystem-approach/ 
arctic-large-marine-ecosystems-lme-s). The Kola transect for hydrographic monitoring is shown as a black dotted line, and the polar front position based on Loeng 
(1989a) is shown as a blue line. 
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based on environmental driver maps. It enables the model to drive the 
FGs’ foraging capacity from the cumulative effects of multiple physical, 
oceanographic, environmental, and topographic conditions spatially 
and runs in conjunction with the food web and fisheries dynamics (Coll 
et al., 2019). 

We used two approaches to derive habitat capacity functions: i) the 
quantile generalised additive model (QGAM) approach for FGs with 

sufficient survey data from the Ecosystem Survey with data from 2004 to 
2019; and ii) literature information on environmental preferences. For 
the habitat capacity based on data from the Ecosystem survey, we 
calculated one QGAM (Husson et al., 2020) per species-habitat variable 
couple using the QGAM package in R (Fasiolo et al., 2017). 

The QGAM is a generalised additive model (GAM) for which the 
fitted target is a chosen quantile rather than the mean. When fitting the 

Fig. 2. Diagram of the workflow and results of the main analysis. Comparison 1 is between the modelled vs observed distributions in the cold and warm scenario. 
Comparison 2 is between cold and warm scenarios for modelled and observed distributions. Comparison 3 is shifts in distributions from cold to warm scenarios 
between modelled and observed. Comparison 4 is between modelled cold and warm scenarios for the whole community. 

Fig. 3. Overview of basemaps of the 2004 scenario (cold year) showing A: the surface temperature (Nordic Seas 4 km numerical ocean model hindcast archive - 
SVIM); B: the bottom temperature (SVIM); and C: the primary production based on Reigstad et al. (2011), representing the primary production (PP) relative to the 
Ecopath PP baseline of the Barents Sea LME. 
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99th quantile, we thus estimated the maximum possible biomass for 
each FG in response to each environmental variable. This amounted to 
calculating a potential niche for each FG (Cade et al., 2005). We used the 
same methodology as Husson et al. (2020). The number of degrees of 
freedom in the QGAMs was limited to three in order to avoid complex 
regressions without ecological rationality. To evaluate the predictive 
power of each QGAM model, all results were fitted using a training 
dataset consisting of observations for the years 2004 to 2013. They were 
then evaluated on the testing dataset, which included observations for 
the years 2014–2019. 

To extract distribution parameters to be used as habitat foraging 
capacities for each FG in Ecospace, we fitted alternative classical 
continuous distribution curves: logistic, beta, log normal, exponential, 
and normal using the fitdistrplus (Delignette-Muller and Dutang, 2015), 
logspline (Charles et al., 2002), betareg (Cribari-Neto and Zeileis, 2010), 
and extraDistr (Wolodzko, 2019) packages in R on each QGAM 
species-environment model. In addition, we estimated binormal distri
butions, which is one of the possible shapes of habitat capacity function 
in Ecospace. It comprises two half-normal distribution functions speci
fied by three parameters: the mean, the left, and the right standard de
viation halves of normal distributions. The left half distribution fits the 
data below the mean and the right half distribution fits the distribution 
above the mean. The binormal distribution can approximate various 
function shapes ranging from ordinary normal distribution to 
sigmoid-shaped relationships. We adjusted functional relationships be
tween habitat capacity, and temperature and depth for some groups 
based on QGAM results to follow the observed distribution (Fig. 4, Ap
pendix B). Habitat capacity functions varied widely between FGs 
depending on the relationship between the FGs and the environmental 
drivers (Fig. 4). 

Most habitat capacity functions were entered as binormal distribu
tions (for more details, see Appendices B and C). However, the ‘ice 
coverage’ functions were entered as right shoulder function when the FG 
was more dependant on the ice, and left shoulder when the FG was 
assumed to avoid the ice. A beta function was used for ice coverage for 
crangonid shrimp. The distance off the coast was entered as an expo
nential function with decreasing habitat capacity with increased dis
tance from the coast. 

To derive literature-based habitat capacity relationships for the FGs 
that were not well represented in the Ecosystem survey results, we also 
included habitat capacities derived from published studies on spatial 
distributions as well as environmental preferences and tolerances. The 
Ecosystem Survey is conducted in autumn, the warmest months of the 

year, and therefore the survey does not cover the entire niche of the 
species. We included habitat capacity for 74 FGs, with 29 FGs using 
habitat capacities based on QGAM estimations and 45 FGs using habitat 
capacities based on literature and personal observations (for more de
tails, see Appendix C). 

The foraging capacity of FGs that were dominant in terms of biomass 
at its trophic levels were included sequentially one by one, followed by a 
comparison of the observed and modelled distributions of all FGs. This 
process was repeated until all FGs, including those with no habitat ca
pacity, had a modelled distribution similar to the observed, by including 
as few as possible habitat capacities so as to avoid overfitting the model. 
The QGAM calculations for 28 FGs, mainly commercial fishes caught by 
bottom trawl, indicate that depth, bottom, and surface temperature, and 
ice coverage can be good predictors for the distribution of most evalu
ated FGs. Fig. 4 shows an example of habitat capacities included in 
Ecospace as foraging capacity. Fig. 4A shows the temperature capacity 
for arctic (polar cod), arctic boreal (Northeast Arctic cod), and boreal 
(blue whiting) FGs. Fig. 4B shows the depth capacity for shallow (large 
bivalves), intermediate (pelagic amphipods), and deep (sperm whale) 
FGs. 

2.5. Scenario set-ups for cold and warm years 

The year 1990 marked the beginning of the most recent warm period 
in the Barents Sea region (Trofimov et al., 2019). In the mid-2000s the 
warming condition amplified (Schlichtholz, 2019). The species and FGs 
are expected to be affected by these environmental changes, and we 
expected that this model would be able to perform the calculations. 
However, to evaluate whether our model could represent the natural 
variability of the environmental conditions in the Barents Sea and FGs 
during the warming conditions of the past two decades, we specified two 
scenarios in Ecospace. One represented a warm and another a less-warm 
or cold year within the warm period, with differences in water tem
perature and ice coverage between the scenarios described below. 

Within the warm period from the beginning of the Ecosystem Survey 
onwards, the coldest year in the Kola section (Fig. 5) water column 
temperature time-series was 2011, and the warmest was 2012 (Fig. 5) 
(González-Pola et al., 2020). However, in order to validate the model, 
data from field observations were necessary, and the years that com
bined the best-observed data, the most extensive geographic coverage, 
and adequate environmental conditions were the cold 2004 and warm 
2013. 

Spatial environmental information for this model was taken from the 

Fig. 4. Examples of habitat capacity functions for bottom temperature (A) and bottom depth (B) for functional groups with different responses in the Barents Sea 
Ecospace model. Temperature response is shown for arctic (polar cod), arctic-boreal (Northeast Arctic cod), and boreal (blue whiting) FGs, and depth response for 
FGs preferring shallow (large bivalves), intermediate (pelagic amphipods) and deep (sperm whale) waters. See Appendix C for background data. 
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Nordic Seas 4 km numerical ocean model hindcast (SVIM) archive, a 
numerical ocean model hindcast that simulates the Nordic and Barents 
seas at a spatial resolution of 4 km (Lien et al., 2013). This model was 
developed from 1960 to 2011 and represents the Barents Sea’s physical 
environment well (Lien et al., 2013). However, it is annually updated 
and validated by observed data and provides continuous information 
about these areas’ environmental conditions. According to the SVIM 
-archive, the average annual surface temperature for the Barents Sea in 
2013 was 0.57 ◦C warmer than in 2004, and the average bottom tem
perature in 2013 was 0.27 ◦C higher than in 2004 (Appendix D, 
Table D1). We constructed two temperature scenarios, one for the 
relatively cold (2004) (Fig. 3) and another for the warm (2013) year 
based on SVIM archive. 

In Ecospace, functional groups can move to the four adjacent cells 
through random-directional movements mediated by habitat prefer
ences and responses of organisms to depredation risk and feeding con
ditions (Christensen et al., 2014). In order to define the FG habitat 
preferences, it is necessary to include basemaps that can embrace many 
environmental aspects. The present study included depth, bottom tem
perature, surface temperature, ice coverage, the distance off the coast, 
and sediment type (gravel, sand and mud, pebbles, and rocky bottom) 
(Appendix E). 

The scenarios were constructed based on the annual average values 
of each cell in the maps for the bottom and surface water temperature 
and ice coverage. The average, minimum, and maximum values of the 
scenario basemaps can be seen in Appendix D, Table D1. For phyto
plankton primary production, we digitised maps based on Reigstad et al. 
(2011) for the relatively cold (1998) and warm (2006) years. For the 
distance off the coast basemap, we built a map defining the ranges of 
distances 64.8 km, 129.6 km, 194.4 km, 259.2 km, 324 km, and 388.8 
km from the coast, which are the distances of the cells in the grid from 
the closest to the coast to the more distant. 

In addition to the environmental drivers, habitats may be specified in 
Ecospace assets of (water) cells sharing certain features affecting the 
movements, feeding rate, and survival of the Ecopath model components 
occurring therein (Christensen et al., 2008). All habitat maps for the 
substrate category were derived from MAREANO – The Sea in Maps and 
Pictures (Buhl-Mortensen et al., 2015). The MAREANO seabed map for 

substrate (grain size) has a higher resolution than our model grid, and 
we classified it into four discrete categories: gravel, sand and mud, 
pebbles, and rocky bottom (Appendix E). 

2.6. Comparison of modelled and survey-based spatial distributions 

To evaluate the performance of the Ecospace model for the Barents 
Sea, we compared the modelled and survey-observed distributions for a 
total of 35 FGs with good spatial distribution data available for warm 
and cold years encompassing the whole LME Barents Sea (Appendix F). 

Two major sources for spatial distributions were used. For 28 FGs, we 
obtained observed spatial distributions of biomass from the Ecosystem 
Survey for 2004 (cold) and 2013 (warm). For FGs (n = 7) with spatial 
data from the Ecosystem Survey in 2013 but with no information for 
2004, we used information from 2010 to represent a colder year than 
2013. We also digitised distributions for 20 FGs from published papers 
(Appendix D Table D2) to the same projection we used for the Ecospace 
basemap (projection = aea, datum based on Hayford (1909), and unit =
m). 

To convert the published distributions of original maps to raster 
maps at the same projection and scale as the Ecospace basemap, we used 
an image of the original map in GIF format. Using the open-source 
Quantum Geographic Information System (QGIS) and its raster tool 
georeferencer, we adjusted the figure with the projection used in the 
Ecospace basemap. We transferred the values from the TIFF image with 
a grid generated by the QGIS to a raster file with basemap dimensions 
and then plotted it using R (RStudio, 2021). See the digitalised maps in 
Appendix E. 

To evaluate the uncertainty in the resulting spatial grid matrices, we 
allocated the spatial distributions into uncertainty categories according 
to the origin and quality of the spatial distribution data using a score 
ranging from 1 (lowest uncertainty) to 5 (highest uncertainty) (Table 1 
and Appendix F). 

To compare the observed distributions from warm and cold years 
with the modelled distributions for 2004 and 2013 produced by the 
Ecospace model, we calculated the centre of gravity and inertia for each 
FG. Centre of gravity (CG) is the mean geographical location of the 
biomass distribution of the FG, and inertia is the spread (variance) of the 

Fig. 5. Average water column temperature in the Kola section (0–200 m depth). The line with the dots represents the historical data, and the grey bars show the 
years with spatial environmental data from the SVIM archive used in Ecospace for a relatively cold (2004) and warm (2013) year (values in Appendix D Table D1). 
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distribution of the observed and modelled distributions (Woillez et al., 
2007, 2009). To evaluate how the FGs spatial distribution overlapped, 
we calculated the global index of collocation (GIC). The GIC was 
calculated by comparing the distance between the CGs of a pair of FGs 
and their respective inertias (Woillez et al., 2007, 2009). The GIC ranges 
from 0, when each distribution is concentrated in a single and different 
location, to 1, when the CGs of the two distributions coincide. 

To evaluate how distant the observed spatial distributions are from 
the modelled distributions, we calculated the distance in km between 
the observed and the modelled centre of gravities for FGs based on the 
Pythagorean theorem. The angular deviation between observed and 
modelled distributions’ CGs was calculated using the arctangent of the 
observed and modelled CG difference. It was then converted to degrees 
on a 360◦ scale (azimuth). The same procedure was repeated to analyse 
the differences in FGs’ distribution between cold and warm years. 

To assess the main direction of spatial shifts, a clockwise circle 
centred on the modelled CGs was split into four equal quadrants: 

northeastern between 0◦ and 90◦; southeastern between 90◦ and 180◦; 
southwestern between 180◦ and 270◦; and northwestern between 270◦

and 360◦. Frequencies of FGs within each quadrant were compared, and 
this compartmentation allowed us to define the main direction of 
dislocation between modelled and the observed survey-based distribu
tion. Here, we set the results as the azimuth, an angle between 0◦ and 
360◦ measured clockwise from the north, and bearing, that is, an angle 
lower than 90◦ within a quadrant defined by the cardinal directions. To 
evaluate the main shift of CGs from the cold year to the warm year, we 
calculated the average directional shift of all modelled and observed 
CGs. 

Chi-square tests were applied on contingency table data to test if 
frequencies of directions of CG differed between north and south, east 
and west, or between quadrants, and a significance level of α = 0.05 was 
applied (Zar, 1998). The Kruskal-Wallis (KW) test was used to test if 
distributions of a variable were equal in more than two groups. 

To evaluate if the habitat overlap patterns of predators and prey in 
the modelled and observed distributions were similar, we calculated the 
GIC of all 35 predators’ FGs and their primary prey FGs with available 
distributions for cold and warm years. The shift rate (km year− 1) be
tween the CG position from cold to warm years was calculated by 
dividing the distance between the CG position from cold to warm year 
by the time interval in years. 

2.7. Evaluation of changes in the Barents Sea community distribution in 
the past decade due to warming conditions 

To evaluate changes in the modelled Barents Sea biological com
munity due to the observed warming conditions over the past two de
cades, we calculated the average CG position of all modelled FGs in the 
cold (2004) and warm (2013) years and compared the distance and the 
bearing between them as described above. We then divided the distance 
from the 2004 to 2013 average CG position by the time interval and the 
difference in the water temperature (bottom and surface) from these two 
years to find the shift rate. 

2.8. Thermal responses and distribution area 

For each FG we applied Aquamaps’ (Kaschner et al., 2019) param
eter of surface temperature, and used the 10th quantile as the minimum 
and 90th quantile at maximum of the trapezoid function as a measure of 
width of the thermal response. This width is expected to be small for 
stenothermal species with narrow thermal tolerances, and large for 
eurythermal species that have broad thermal flexibility (Pörtner and 
Gutt, 2016). We allocated FGs to biogeographical categories with arctic 
species as those with a maximum limit (90th) of 8 ◦C and the lower limit 
below 0 ◦C; arctic-boreal were the species with the minimum (10th) 
around 0 ◦C, the maximum (90th) around 10 ◦C, and the absolute 
maximum up to 12 ◦C; boreal were species with the minimum (10th) 
higher than 4 ◦C and maximum (90th) lower than 14 ◦C; and broad were 
the species with the range between the minimum (10th) and maximum 
(90th) embracing the arctic and boreal limits and beyond. 

To represent the area of the FGs distribution, we calculated the 
inertia area then divided the inertia of the modelled FGs’ warm year by 
the cold year and observed if the area increased, decreased, or remained 
stable. Then we compared the inertia area of all modelled FGs using the 
paired Wilcoxon test comparing cold (2004) and warm (2013) year 
scenarios. To compare the variation of the modelled area amongst the 
four biogeographical groups and the three thermoplasticity groups from 
the cold (2004) and the warm (2013) year, we calculated the average 
difference of the inertia area by group and then compared them using 
the KW test. 

Table 1 
Categories of the uncertainty score of the data collection of the observed dis
tribution of the FG.  

Uncertainty 
score 

Assumed 
uncertainty 

Description FGs 

1 Lowest FGs composed mainly 
of one species with 
sampling designed for 
that species and 
collected with 
appropriate gear. 

Northeast Arctic cod 
(+3), saithe (3+), 
haddock (3+), capelin 
age 3+, Polar cod age 
2+, blue whiting, large 
redfish 

2  FGs composed of 
species with the 
appropriated 
collection and gear, but 
the collection was not 
designed for that 
species, or mixed FGs 
comprised of few 
species with good data 
collection and the 
species with good data 
sampling converted 
from literature. 

Wolffishes, thorny 
skate, long rough dab, 
lumpfish, cephalopods, 
scyphomedusae, 
chaetognaths, 
Thysanoessa, large krill, 
medium-sized 
copepods, northern 
shrimp 

3  Represented mainly by 
mixed FGs (comprised 
of many species), with 
few representatives 
with excellent or good 
sampled data, or well- 
sampled groups with 
mixed ages, e.g., cod 
0–2 (average of 
0–group data and adult 
data). 

Northeast Arctic cod 
(0–2), saithe (0–2), 
haddock (1–2), other 
small gadoids (Norway 
pout), Stichaeidae 
(daubed and snake 
blenny), other large 
benthic invertebrate 
feeding fishes (Arctic 
skate), Small herring, 
capelin age 0–2, small 
redfish, snow crab 

4  Mainly mixed FGs, 
with few 
representatives with 
excellent or good 
sampled data, and 
well-sampled groups 
with mixed ages, e.g., 
cod age 0–2 (average of 
0–group data and adult 
data). 

Large Greenland 
halibut, small 
Greenland halibut, 
other benthivore flatfish 
(lemon sole and plaice), 
crangonid and other 
shrimps, other large 
crustaceans, predatory 
asteroids, detrivorous 
polychaetes 

5 Highest Possible to compare in 
general, but showing 
gaps that made the 
comparison less 
reliable, e.g., without 
separation between 
cold and warm year 
distribution or not 
covering the same 
area. 

All other FGs  
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3. Results 

3.1. Comparison of modelled and observed distributions within cold and 
warm years 

The FGs’ distributions generated by the Ecospace model in cold and 
warm years were generally similar to the available observed distribu
tions. Modelled and observed centres of gravity and inertia of FGs had 
similar values for most groups (Table 2 and Appendix G). Generally, the 
modelled distributions of FGs showed high spatial overlap with the 
observed distributions, with the average values for the global index of 
collocation (GIC) between modelled and observed distributions of 0.89 
in cold and 0.88 in warm years (Table 2). An example of this is Thysa
noessa (small krill), with a GIC of 0.87 for the cold and a GIC of 0.81 for 
the warm years (Fig. 6). 

In the cold year scenario, the majority (57%) of CGs for observed 
distributions were located south of modelled distributions of CGs, and in 
the warm year scenario, most (60%) were located north of the modelled 
distributions of CGs (Table 2, Fig. 7, Fig. 8). However, the frequencies of 
northerly or southerly directions of differences between modelled and 
observed CGs in the cold or warm year scenario did not differ signifi
cantly (χ2 = 2.06, df = 1, p = 0.15). The frequencies of eastward or 

westward directions of differences between modelled and observed CGs 
in the cold or warm year scenario did not differ significantly (χ2 = 0.23, 
df = 1, p = 0.63). Neither were there significant higher frequencies of 
differences between modelled and observed CG in the northerly or 
southerly direction for the cold (χ2 = 0.71, df = 1, p = 0.40, Fig. 8) or the 
warm scenario (χ2 = 1.40, df = 1, p = 0.24, Fig. 8). 

The frequencies of directions for the difference between modelled 
and observed CG in the various quadrants did not differ significantly 
between the cold and warm scenarios (χ2 = 5.25, df = 3, p = 0.15, 
Table 2, Fig. 7). In the cold year scenario, the frequencies in the quad
rants did not differ significantly (χ2 = 3.29, df = 3, p = 0.35, Fig. 8). The 
distance between the modelled and observed CGs for each FG were less 
than 250 km for most FGs, except for six FGs which had distances up to 
444 km (Table 2, Fig. 7). In the warm year scenario, 20% of the observed 
CGs were located northeast of the modelled CGs, 20% were southeast, 
20% southwest, and 40% were northwest (Table 2, Fig. 8), though the 
frequencies in the quadrants did not differ significantly (χ2 = 4.2, df = 3, 
p = 0.24, Fig. 8). Most of the CGs in observed warm years were located 
less than 300 km from the modelled CGs (Fig. 7), except for seven FGs 
which had distances up to 429 km (Table 2). 

The median distance between the CG for modelled and observed 
distributions was most prominent for the FG with the highest 

Table 2 
Functional groups (FGs) with good observed survey spatial distribution data for both warm and cold years for the Barents Sea as a whole, and compared with the 
modelled distribution in cold and warm years. GIC is the global index of collocation (overlap index between modelled and observed distribution). Distance is the 
distance between the modelled and observed centre of gravity, azimuth is the angle of the dislocation between the modelled (origo) and observed centres of gravity, 
and bearing is the angle of the dislocation between the modelled (origo) and observed centres of gravity divided by the direction into four quadrants of 90◦

FG 
Number 

FG Name GIC Distance (km) Azimuth (degrees 360◦) Bearing (NE, SE, SW, 
NW)   

Cold 
(2004) 

Warm 
(2013) 

Cold 
(2004) 

Warm 
(2013) 

Cold 
(2004) 

Warm 
(2013) 

Cold 
(2004) 

Warm 
(2013) 

29 Northeast Arctic cod (3+) 0.91 1.00 217 47 175 338 5 SE 22 NW 
30 Northeast Arctic cod (0–2) 0.91 0.94 209 170 206 271 26 SW 89 NW 
33 Saithe (3+) 0.93 0.67 99 206 240 270 60 SW 90 SW 
34 Saithe (0–2) 0.82 0.89 189 142 82 339 82 NE 21 NW 
35 Haddock (3+) 0.86 0.85 225 256 102 54 78 SE 54 NE 
36 Haddock (0–2) 0.97 0.84 89 251 21 4 21 NE 4 NE 
37 Other small gadoids 0.66 0.72 248 210 256 253 85 SW 83 SW 
38 Large Greenland halibut 0.74 1.00 387 28 341 300 19 NW 60 NW 
39 Small Greenland halibut 0.65 0.74 411 358 302 296 58 NW 64 NW 
41 Wolffishes 0.92 1.00 202 41 130 154 50 SE 26 SE 
42 Stichaeidae 0.94 0.94 183 186 318 334 42 NW 26 NW 
44 Other large bent invertebrate feeding 

fish 
0.99 0.93 77 171 86 53 86 NE 53 NE 

45 Thorny skate 1.00 0.99 28 63 204 134 24 SW 46 SE 
46 Long rough dab 0.91 0.96 203 138 190 154 10 SW 26 SE 
47 Other benthivore flatfish 0.67 0.68 444 407 170 209 10 SE 29 SW 
49 Small herring 0.85 0.97 165 48 69 231 69 NE 51 SW 
50 Capelin (3+) 0.85 0.81 241 324 291 314 69 NW 46 NW 
51 Capelin (0–2) 0.97 0.77 110 273 255 237 75 SW 57 SW 
52 Polar cod (2+) 0.96 0.80 115 254 313 326 47 NW 34 NW 
54 Blue whiting 0.94 0.79 101 216 295 305 65 NW 55 NW 
57 Lumpfish 0.93 0.93 174 179 249 282 69 SW 78 NW 
59 Large redfish 0.92 0.97 139 96 253 302 76 SW 58 NW 
60 Small redfish 0.94 0.96 121 107 268 318 88 SW 42 NW 
62 Cephalopods 0.94 0.89 174 232 222 196 42 SW 16 SW 
63 Scyphomedusae 0.94 1.00 175 37 262 285 82 SW 75 NW 
64 Chaetognaths 0.96 0.88 155 296 223 150 43 SW 30 SE 
65 Thysanoessa 0.87 0.81 238 304 223 195 43 SW 15 SW 
66 Large krill 0.98 0.87 70 220 0 64 0 NE 67 NE 
71 Medium sized copepods 1.00 0.97 42 165 90 286 90 NE 74 NW 
79 Northern shrimp (Pandalus borealis) 0.98 0.99 104 67 77 133 77 NE 47 SE 
80 Crangonid and other shrimps 0.86 0.81 302 359 99 86 81 SE 86 NE 
81 Other large crustaceans 0.83 0.93 290 201 119 100 61 SE 80 SE 
83 Predatory asteroids 0.76 0.68 367 429 82 81 82 NE 81 NE 
87 Detrivorous polychaetes 0.97 0.97 103 111 33 4 33 NE 4 NE 
101 Snow crab 0.87 0.76 217 309 101 97 79 SE 87 SE  

Average 0.89 0.88 189 197        
SD 0.10 0.10 102 110       

The distances between centres of gravity for the modelled and observed FGs distributions were on average 189 km (SD = 102 km, n = 35) and 197 km (SD = 110 km) in 
the cold and warm scenario, respectively. 
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uncertainty score for the observed data, and CG differed significantly 
between uncertainty scores in the cold (KW, χ2 = 8.83, df = 3, p = 0.03) 
but not in the warm (KW, χ2 = 1.92, df = 3, p = 0.58) scenarios 

(Appendix D Figs. D1 and D2). 

Fig. 6. Comparison of survey-observed and modelled spatial distributions of the krill Thysanoessa and its centre of gravity and inertia. Observed unit, based on 
Eriksen and Dalpadado (2011); Mikhina et al. (2019); Orlova et al. (2010), is wet weight in g m− 2. and Modelled by Ecospace (unit is carbon in g m− 2) the dis
tribution of Thysanoessa (FG 65) shows a high overlap index (GIC) between cold (GIC is 0.87) and warm (GIC is 0.81). The squares and circles represent the centre of 
gravity of the modelled observed distributions, respectively. The green and purple ellipses represent the inertia of the modelled and observed distribution, 
respectively, and the crosses inside the ellipses represent the maximum inertia (long axis) and the minimum inertia (short axis). For the maps’ georeference, 
see Fig. 3. 

Fig. 7. Comparison of the distance and direction (azimuth) of difference in centre of gravity positions for functional groups in the Barents Sea Ecospace model. The 
distance and azimuth were calculated between the modelled (origo) centres of gravity and observed distribution centres of gravity. Each bar represents a functional 
group. Green lines represent the observed data with the lowest uncertainty score regarding the sampling; blue represents the second-lowest uncertainty; purple the 
third-lowest; and red the highest uncertainty score. The thickness of the lines represents the overlap index (GIC) between observed and modelled distribution; thinner 
lines represent low overlap while thick lines represent high overlap. The black-red spot represents the average position of the observed CGs of all compared FGs 
compared to the modelled CGs in the origo. 
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3.2. Differences between distributions in cold and warm years 

3.2.1. Differences between modelled distributions of FGs with lowest 
sampling uncertainties 

Most FGs (80%) had more northerly CGs both from modelled and 
observed distributions in the warm than in the cold scenario (χ2 = 25.20, 
df = 1, p < 0.001 in both cases) (Table 3, Fig. 9). The north-south pattern 
of differences in CGs was similar in modelled and observed distributions 
(Figs. 9, 10) and the mean rate of poleward shift between 2004 and 2013 
was 17 km year− 1 for observed distributions and 7 km year− 1 for the 
model outputs. The frequencies of northerly versus southerly differences 
for CGs between cold and warm scenarios did not significantly vary 
between modelled and observed distributions (χ2 = 0.32, df = 1, p =
0.57). The CGs from the modelled distributions showed a significant 
eastward shift from cold to warm years (86%, χ2 = 17.86, df = 1, p <
0.001). In contrast, the CGs from the observed distributions did not show 
a significant eastward shift from cold to warm years (57%, χ2 = 0.71, df 
= 1, p = 0.40) (Table 3, Fig. 9, Fig. 10). The average distances between 
CGs of cold and warm years were 56 km (SD 24) for the modelled, and 
157 km (SD 80) for the observed distributions; the distributions of 
change in CGs differed significantly (KWχ2 = 30.821, df = 1, p < 0.001) 
(Table 3). 

For the modelled distributions, 66% of the distribution CGs had a 
more north-easterly distribution in the warm than in the cold year, 20% 
a more south-easterly, and 14% a more north-westerly distribution (χ2 

= 33.91, df = 3, p < 0.01) (Table 3, Fig. 9, Fig. 10). For observed dis
tributions, 43% of CGs shifted towards the northeast from the cold to the 
warm year, 37% towards the northwest, 14% towards the southeast, and 
6% towards the southwest (χ2 = 13.34, df = 3, p < 0.01) (Table 3, Fig. 9, 
Fig. 10). The most discrepant values were for large Greenland halibut 
with a distance of 345 km (azimuth 162◦), saithe (age 0–2) with 237 km 
(azimuth 293◦), and small herring with 198 km (azimuth 245◦) (Table 3, 

Fig. 9). 
For most FGs, the shifts in CG from cold to warm years were in the 

same direction for the modelled and observed distributions CGs 
(Table 3, Fig. 9). However, saithe age 3+, wolffishes, small herring, blue 
whiting, cephalopods, chaetognaths, small krill, and medium-sized co
pepods showed an utterly different bearing. Saithe age 0–2, large 
Greenland halibut, capelin age 0–2, and northern shrimps showed 
opposite directions of change in CGs from the cold to the warm year 
scenarios. 

The average CG position of all 35 FGs for both modelled and 
observed distributions showed shifts from cold to warm years in a 
northeastward direction, towards 38◦ NE for the modelled and towards 
12◦ NE for the observed distributions (Fig. 9). The distances in the shift 
of average values for CGs were also similar, with 41 km for the modelled 
and 68 km for the observed distributions (Fig. 9). 

3.2.2. Differences between modelled distributions for all FGs 
The Ecospace model shows poleward shifts in the distribution CG 

from cold to warm years for most FGs. Of the 104 non-detritus FGs 
included in this analysis, 83 FG shifted their distribution CG northerly 
and 21 FGs shifted their distribution CG southerly in the warm year 
scenario compared with the cold year scenario, including benthic and 
pelagic invertebrates. For more details, see Appendix H. 

3.3. Predator-prey distribution overlap 

The spatial overlap index between the main prey for the predators 
revealed that most prey of evaluated FGs had high spatial overlap with 
their predator distribution, both for modelled and observed distribu
tions. However, the modelled predator FGs’ distribution had signifi
cantly higher overlap (average GIC = 0.86, SD = 0.16) with their prey 
distribution than the observed distributions (GIC = 0.72, SD =0.18, 

Fig. 8. Frequencies of directional shifts in distribution of CG for the FGs from modelled to observed distribution. Above are the chi-square values for test of equal 
number of FGs per direction category. (A) FGs with CG shifting when considering only northward and southward direction in cold years and (B) in warm year. (C) 
FGs with CG shifting when considering only eastward and westward direction in cold years and (D) in warm year. (F) FG with CG shifting when considering the four 
main directions in cold year and (F) in warm year. 
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Table 3 
Comparison of modelled and observed spatial distributions between the cold and the warm year scenarios. GIC is the global index of collocation between distributions 
of cold and warm years. Distance is the distance between the centre of gravity of the cold and warm years and angle is the angle between the centre of gravity from the 
cold to the warm years. Azimuth is the angle of the shift of the centre of gravity from cold (origo) to warm years, and bearing is the angle of the shift of the centre of 
gravity from cold (origo) to warm years in four quadrants of 90◦

FG Number FG Name GIC Distance (km) Azimuth (degrees 360◦) Bearing (NE, SE, SW, NW) 
modelled observed modelled observed modelled observed modelled observed 

29 Northeast Arctic cod (3+) 1.00 0.84 34 287 22 353 22 NE 7 NW 
33 Saithe (3+) 1.00 0.86 20 110 126 289 54 SE 71 NW 
34 Saithe (0–2) 1.00 0.76 23 237 120 293 60 SE 67 NW 
35 Haddock (3+) 0.98 0.91 89 181 111 23 69 SE 23 NE 
36 Haddock (1–2) 0.98 0.94 78 125 111 23 49 SE 22 NE 
37 Other small gadoids 1.00 0.98 4 35 114 92 66 SE 88 SE 
38 Large Greenland halibut 1.00 0.75 24 345 8 162 8 NE 18 SE 
39 Small Greenland halibut 0.99 1.00 64 5 340 322 20 NW 38 NW 
41 Wolffishes 0.99 0.95 69 131 75 328 75 NE 32 NW 
42 Stichaeidae 1.00 0.98 53 102 22 38 22 NE 38 NE 
44 Other large bent invertebrate feeding fish 1.00 0.91 31 144 8 26 8 NE 26 NE 
45 Thorny skate 0.99 0.96 80 131 66 84 66 NE 84 NE 
46 Long rough dab 0.99 0.92 64 179 21 41 21 NE 41 NE 
47 Other benthivore Flatfish 1.00 0.53 47 264 49 95 49 NE 65 NW 
49 Small herring 1.00 0.78 14 198 72 245 72 NE 65 SW 
50 Capelin age 3+ 0.99 0.88 55 192 15 2 15 NE 2 NE 
51 Capelin age 0–2 1.00 0.85 50 129 17 236 17 NE 56 SW 
52 Polar cod age 2+ 0.97 0.76 113 254 357 236 3 NW 15 NW 
88 Blue whiting 0.99 0.93 55 85 92 339 88 SE 21 NW 
57 Lumpfish 0.99 0.91 54 148 23 3 23 NE 3 NE 
59 Large redfish 0.99 0.90 49 137 87 47 87 NE 47 NE 
60 Small redfish 0.99 0.90 51 137 80 47 80 NE 47 NE 
62 Cephalopods 0.98 1.00 89 28 344 104 16 NW 76 SE 
63 Scyphomedusae 0.99 0.90 65 207 71 75 71 NE 75 NE 
64 Chaetognaths 0.99 0.81 84 276 10 102 10 NE 78 SE 
65 Thysanoessa 0.99 0.95 67 119 17 118 17 NE 62 SE 
66 Large krill 0.99 0.77 56 257 102 89 78 SE 89 NE 
71 Medium–sized copepods 0.99 0.92 65 149 78 293 78 NE 67 NW 
79 Northern shrimp 0.99 1.00 58 28 38 218 38 NE 38 SW 
80 Crangonid and other shrimps 0.99 0.92 86 171 6 24 6 NE 24 NE 
81 Other large crustaceans 1.00 0.92 50 167 358 341 2 NW 19 NW 
87 Predatory asteroids 1.00 0.95 35 81 356 47 4 NW 47 NE 
91 Detrivorous polychaetes 1.00 0.96 56 78 27 342 27 NE 18 NW 
82 Snow crab 0.99 0.83 79 148 7 45 7 NE 45 NE  

Average 0.99 0.88 56 157        
SD 0.01 0.10 24 80        

Fig. 9. Comparison of the difference in distance and azimuth of change in direction in centres of gravity for FGs between the cold and the warm year. The centre of 
gravity of the cold year distribution is at the centre of the plot. Each bar represents a functional group, and the centres of gravity for the warm year are positioned at 
the end of the bars. The thickness of the lines represents the overlap index (GIC) between cold and warm year distribution; thinner lines represent low overlap while 
thicker represent high overlap. The black and red spot represents the average centre of gravity shift from cold to warm years. In the observed figure, green lines 
represent the observed data with the lowest uncertainty score regarding the sampling; blue represent the second-lowest; purple the third-lowest; and red the highest 
uncertainty score. 
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Appendix D, Table D3) (Paired T-test t = 5.51, df = 42, p<0.05). 3.4. Changes in the Barents Sea community distribution in the last decade 
due to warming conditions 

The average CG position of all 104 living modelled FGs, excluding 
the detritus groups, shifted 40 km poleward from 2004 to 2013 on a 

Fig. 10. Frequencies of directional shifts in the distribution of CG for the FGs from cold to warm years. Above are the chi-square values, p-values, and df for the test 
of an equal number of FGs per direction category. (A) FGs with CG shifting when considering only northward and southward direction in the modelled and (B) in 
observed distributions. (C) FGs with CG shifting when considering only eastward and westward direction in the modelled and (D) in observed distributions. (E) FG 
with CG shifting when considering the four main directions in the modelled and (F) in the observed distributions. 

Fig. 11. Average CG position and inertia area of all modelled FGs. The centre of the cross is the average position of the CG for the whole community, the square is the 
cold year, and the circle is the warm year. The ellipses represent the average inertia for all 104 FGs: the blue is the cold year and the red is the warm year. The 
distance between the two CGs and the average rate is shown to the right of the ellipses. 
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bearing of 27◦ NE Fig. 11 and Appendix H). Based on the average CGs 
for 2004 and 2013 and the nine years’ time interval, the community 
shifted poleward at a rate of 4.4 km year− 1. The rate of the poleward 
shift of the whole community was 67 km ◦C− 1 based on the surface water 
temperature and 133 km ◦C-1 based on the bottom water temperature. 

3.5. Changes in the distribution area with warming 

The average inertia area was 275,302 km2 (sd = 103,982) in the cold 
year (2004) and 286,802 km2 (sd = 106,737) in the warm year, corre
sponding to an increase of 4%. The inertia areas of all modelled FGs were 
significantly larger in warm than in cold years (paired Wilcoxon test, V 
= 725, p < 0.001). Based on the Aquamaps thermal limits of the species, 
17% of the FGs are arctic, 14% arctic-boreal, 51% boreal, and 17% 
broad. Most FG groups increased the inertia in warmer conditions 
(73%), 22% reduced, and 5% neither increased nor decreased. All broad 
FGs increased the inertia area in warmer conditions, though a few FGs 
reduced the inertia area in all other biogeographical categories. Of all 23 
FGs that reduced the inertia area in warmer conditions, only six reduced 
the inertia area by more than 5% in warmer conditions. Large calanoids 
was the FG with the most considerable reduction in inertia area in 
warmer conditions (− 11%), followed by bowhead (− 7%, thermal range 
= 4.8 ◦C), narwhale (− 6%, thermal range = 12.7 ◦C), and other 
piscivorous fish (− 6%, thermal range = 8.1 ◦C). Within the FGs that 
increased inertia area in warmer conditions, the difference was larger, 
with the symphagic amphipods being the FG with the most considerable 
difference (+63%) followed by mackerel (+42%, thermal range =
11.8 ◦C), and sperm whale (+27%, thermal range = 16 ◦C); for all the 
other 73 FGs with larger inertia area in warmer conditions, the incre
ment ranged between +1 and +22 ◦C (Appendix D, Fig. D3). However, 
they do not differ significantly amongst the biogeographical groups 
(Kruskal Wallis test KW = 0.7, df = 3, p = 0.86). 

4. Discussion 

4.1. Evaluation of the Ecospace model 

As far as we know, this is the first spatial model for the Barents Sea at 
the food web level, comprising FGs at all trophic levels and with the 
same spatial resolution as the survey field-observed spatial distributions. 
Our study shows that the Ecospace modelled and observed spatial dis
tributions can easily be compared and evaluated by using CG and 
inertia. 

It is known that the species distributions in the Barents Sea are 
strongly related to the environmental conditions (Aune et al., 2021; 
Dalpadado et al., 2003; Loeng, 1989b; Nakken and Raknes, 1987). The 
ability to predict these distributions in the context of environmental 
changes and differential natural resource usage can be very beneficial 
for resource management and species conservation. The Ecospace model 
includes multiple spatial drivers that are coupled to the foraging ca
pacity of FGs. This enable Ecospace to simulate spatial responses to 
multiple physical, oceanographic, and environmental drivers (Chris
tensen et al., 2014; Coll et al., 2019), and contribute to a good repre
sentation of the FGs distribution with a high overlap between the 
observed and modelled distribution. 

During the process of individual inclusion of the habitat capacities 
and comparison with the survey-observed distribution, we observed that 
depth, bottom, and surface temperatures were crucial to model the 
species’ distributions in the Barents Sea Ecospace model. This is in line 
with other studies that identified these environmental drivers as good 
predictors of species distributions in the Barents Sea (Husson et al., 
2020) as well in other marine ecosystems (Burgos et al., 2020; Coll et al., 
2019).The use of the habitat foraging capacity functions, and contrast
ing warm and relatively colder years, allowed us to observe the rele
vance of the inclusion of temperature, depth, ice, and productivity as 
forcings to predictive models, as they proved to be essential to describe 

the changes observed between cold and warm years in the Barents Sea 
LME. The use of habitat capacities based on the QGAM method for 
Barents Sea data improved the fit of the model to observed distributions. 
However, information from literature (e.g., Aquamaps, Fishbase and 
SeaLifeBase), similar to what we used for species with no local infor
mation for habitat capacity, has been used exclusively or as comple
mentary to distribution descriptor tools in many studies (e.g., Adebola 
and de Mutsert, 2019; Coll et al., 2019, 2020). Coll et al. (2019) argued 
that the modelling tools used to describe species distributions, such as 
QGAM, can be complemented by either using the response functions 
derived from statistical analysis in the Ecopath calculations or by forcing 
the niche priors of Ecospace foraging capacity directly with the results 
from the statistical model. Using the foraging habitat capacity is crucial 
for more reliable results, as we were able to confirm in our model. 
Ecospace is a dynamic model that includes predator-prey interactions 
and, in our study, the use of habitat capacity functions to force distri
butions leds to more realistic spatial distributions for some FGs that 
lacked habitat capacities. When there was no information available 
locally, e.g., based on field data for the Ecospace model area, sources 
such as FishBase and SeaLifeBase were useful to derive habitat foraging 
capacity functions. 

Trophic models always carry some uncertainties, generalisations, 
and different levels of accuracy in the data and the FG. In a model as 
large as the present Ecospace model, some FGs consist of several species 
while others represent single species (see Appendix F). However, we 
argue that the model can effectively predict the spatial distributions for 
all evaluated FGs. 

The FGs with assumed high uncertainty in field-sampled distribu
tions were expected to overlap less with the model output than the FGs 
with assumed low uncertainty. This can be observed with Greenland 
halibut FGs categorised as having a high uncertainty of sampling (score 
4). According to the Ecosystem Survey report (Anon., 2004), large 
Greenland halibut distribution was primarily outside of the survey area 
in the Ecosystem Survey in 2004. This could affect both the small and 
large Greenland halibut observed distribution. The same report dis
cusses how adult Greenland halibut’s main concentrations were in the 
deeper part of the Spitsbergen slope and southeast of a line drawn be
tween Bear Island and Hopen Island (Anon., 2004), close to where our 
model shows the centre of gravity of this species’ distribution. It suggests 
that, despite the lower overlap index value for this species, our model 
may represent the distribution close to the expected natural distribution 
of this species. In the warm year (2013), the observed and modelled 
distributions of both FGs of Greenland halibut overlapped more than in 
the cold year (2004). This could reflect the enlargement of the sampled 
area northeast of the original area in 2013 (Prokhorova, 2013). 

None of the Ecosystem Surveys covered the extreme northeastern 
part of the study area (Eriksen, 2014). Thus, because of incomplete 
coverage in this area, the spatial distributions for some FGs from the 
Ecosystem Survey could show more southerly distributions than the real 
distributions. The Barents Sea is deepest in the southwest, where the 
bottom water is warmest (Loeng and Drinkwater, 2007). Thus, a 
northward change in the distribution of a species will also affect its 
depth distribution, affecting predator-prey relationships and potentially 
affecting predation mortalities and competition effects (Fall et al., 
2018). The generally higher overlap for modelled than observed 
predator-prey may result from the inability of the model to incorporate 
all the complexity of the natural systems, in which FGs can make new 
and unexpected connections in response to restrictions or lack of re
sources that the model cannot predict. 

4.2. Changes in modelled and observed distributions between cold and 
warm years 

That the observed distributions were positioned more northerly in 
warm than in cold years was expected for high-latitude species in 
warmer conditions (Eriksen et al., 2017; Fossheim et al., 2015; Frainer 
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et al., 2017; Poloczanska et al., 2016; Skaret et al., 2014). The model 
outputs showed a similar northeastward shift from the cold to the warm 
scenario, indicating that our model may be a good predictor tool for the 
effects of warming on spatial distribution changes of functional groups 
in the Barents Sea ecosystem. This distribution shift was expected and is 
in line with other model predictions of changes in species distributions 
due to global warming, showing boreal and arctic species moving their 
distributions poleward, albeit in different ways (Christiansen et al., 
2014; Fossheim et al., 2015; Frainer et al., 2017; Hollowed et al., 2013; 
Perry et al., 2005; Poloczanska et al., 2016; Pörtner and Gutt, 2016). 

The similar average CG position of the modelled and the observed 
FGs’ distributions in cold and warm years indicates a similar average 
distribution pattern in the modelled and observed data. The poleward 
shifts from the cold to warm years in average CG were similar for the 
modelled (41 km) and observed (68 km) data and could indicate a 
similar average response to change in temperature in modelled and 
observed distributions. However, some FGs have shown different bear
ings in the shift between cold and warm years, though most displace
ments were in similar directions to what was observed by field surveys. 
Thus, we can affirm that our model can effectively and spatially repre
sent the Barents Sea ecosystem and its past changes due to environ
mental changes. 

4.3. Effects of warming on distribution of the whole community 

Most (80%) of the 104 living FGs of the model shifted distribution 
poleward in the warm scenario. The other groups (e.g., coastal cod, 
saithe, and other small gadoids) mostly shifted distribution southeast
ward, which may to some extent also be a result of a search for colder 
conditions. This is because the southeastern part of the Barents Sea LME 
is colder than the western part, mainly due to the contact with the White 
and Kara seas, known for being cold seas (Kohnemann et al., 2017). We 
included ‘distance off the coast’ as habitat capacity for some FGs that 
shifted distribution towards the southeast, and this restricted the FGs 
from moving to colder conditions in the northern Barents Sea, ‘forcing’ 
these FGs to move to cold conditions in the southeastern Barents Sea. 
Some boreal species associated with the warmer Atlantic water, such as 
mackerel, Atlantic puffin, and blue whiting, shifted their distribution 
towards the southwest. In these cases, when evaluating their natural 
distributions (Anker-Nilssen et al. 2000; Belikov et al. 2011; Olafsdottir 
et al., 2019), this shift direction means that they are expanding into the 
Barents Sea, probably already due to the Atlantification of the Barents 
Sea with the warming conditions of the past few decades. 

The rate of poleward shift based on average CGs of all the modelled 
FGs in our study was 4.4 km year− 1 between the 2004 and 2013 sce
narios. This community shift rate seems to be higher than most poleward 
shifts of organisms due to warming reported in other studies. In the 
North Sea, six demersal fish species moved north (boundaries of the 
distribution) at a rate of 2.2 km year− 1 in warmer conditions (Perry 
et al., 2005). In Iceland’s coastal waters, 82 fish species showed distri
bution shifts at a mean rate of 0.014◦ latitude/year (~1.55 km year− 1), 
most of them poleward, during 22 years with warming conditions 
(Campana et al., 2020). 

The shift rate of the centre of distribution produced by our model 
seems to be similar to rates observed in other subpolar and boreal areas. 
In our study, the community as a whole shifted on average 67 km ◦C-1 

poleward based on the surface temperature although, based on the 
bottom temperature, the community as a whole shifted 133 km ◦C-1 

poleward. Campana et al. (2020) observed an average shift of 38 km ◦C-1 

in the fish community distribution in Icelandic waters based on average 
water column temperature. In the North Sea, Dulvy et al. (2008) 
observed a poleward shift of demersal fish species at a rate that ranged 
between 10 and 70 km ◦C-1 based on temperature from the lower half of 
the water column, and Perry et al. (2005) observed an average distri
bution shift of 164 km ◦C-1 for 15 demersal fishes based on bottom 
temperature. 

The measures for water temperature may be critical for the value of 
shift rate because surface waters are more susceptible to rises in air 
temperature while deeper waters are more thermally stable (Manabe 
et al., 1990). Thus, the shift rate based on bottom temperature tends to 
be higher than based on surface or the whole water column temperature. 
Our study shows results similar to those which Perry et al. (2005) found 
in the North Sea. The shift rate in our study was based on the average CG 
position for the whole community, including benthic and pelagic spe
cies, and steno- and eurythermal species. The rate can vary depending 
on the FG and their particularities, and here our point is to present an 
overview of the community pattern in the Barents Sea. 

4.4. Thermal responses to warming 

Boreal and arctic species in the Barents Sea differ markedly regarding 
resource use and habitat affinities, and how environmental changes 
impact their distribution and the community as a whole (Frainer et al., 
2017). Many authors have argued that boreal species have tended to 
move or increase their distributions poleward during the period of 
recent warming (Fossheim et al., 2015; Perry et al., 2005; Poloczanska 
et al., 2016). In contrast, arctic species have been observed to reduce the 
area of their distributions by being restricted to high latitudes, searching 
for polar conditions (Christiansen et al., 2014; Fossheim et al., 2015; 
Frainer et al., 2017; Hollowed et al., 2013; Pörtner and Gutt, 2016). In 
our study, a few FGs reduced their modelled distribution areas under 
warmer conditions. On average, even the stenothermal arctic and 
arctic-boreal FGs more frequently increased than reduced distribution 
areas in warmer conditions. Campana et al. (2020) argued that in Ice
land, the stenothermal species with a distribution close to their thermal 
limits were the most likely to change their distribution. The increase in 
the water temperature observed in the Barents Sea in the period of the 
present study was probably too small to force the water temperature 
close to the thermal limit of any stenothermal species in the Barents Sea. 
This may be one possible explanation for the overall increase in the 
distribution area in warmer conditions in our study. 

4.5. Limitations of the study 

Some of the observed distributions were not from 2004, which rep
resented a cold year, or from 2013, which represented a warm year, but 
were from other years with different environmental conditions that may 
have contributed to less accurate results. It is evident that once we were 
not constantly comparing the same years (and consequently not the 
same environmental conditions), we could not include all relevant 
environmental and physiological possible variables. Thus, we did not 
expect a complete distribution overlap between observed and modelled 
functional groups. However, the generally high spatial overlap between 
observed and modelled distribution indicates the good representativity 
of our model. Even though the Barents Sea Ecospace model has some 
limitations, it seems to effectively model the spatial distributions of FGs 
in the Barents Sea LME well. 

5. Conclusions 

The Ecospace model of the Barents Sea LME simulated similar spatial 
distributions of FGs as did the survey-based observed distributions in 
cold and warm years. Most FGs shifted their modelled and observed 
distributions poleward under warmer conditions. The poleward shifts in 
the average centre of gravity for the 35 FGs with observational data was 
41 km for modelled and 68 km for observed distributions. The whole 
modelled community shifted 40 km towards the northeast (poleward) 
from the relatively cold 2004 to the warm 2013, corresponding to a shift 
rate of 67 km ◦C-1 surface temperature and 133 km ◦C-1 bottom tem
perature. The warming conditions led to an average increase of 4% in 
the modelled FGs distribution area measured as inertia area. The 
Ecopspace model for the Barents Sea can be used to predict future 
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changes in spatial distributions under warming scenarios. We are now 
using the model applying different climatic scenarios and spatio- 
temporal predictions, to answer questions regarding the impacts of 
fishery and global changes on future mid- and long-term scenarios. 
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