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(Cushman), a pollution-tolerant and euryhaline spe-
cies. This study demonstrates that benthic foraminif-
eral assemblages provide a reliable pollution proxy in 
the brackish environments of Nile Delta that can be 
used in the periodical monitoring of the coastal lakes.
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Introduction

The Egyptian government, with its ambitious strate-
gies for the future, plans to protect and conserve the 
coastal ecosystems for sustainable development. Goal 
#14 of the Egyptian National 2030 Agenda is “con-
serve and sustainably use of the oceans, seas, and 
marine resources.” Decision makers critically need 
fundamental data regarding the current conditions 
and predictions of future changes in ecosystems qual-
ity, to determine and mandate precautions regarding 
the hazardous effects of environmental deterioration. 
Lake Edku is a human-impacted Nile Delta Lake on 
the northern Mediterranean coast of Egypt. It sup-
ports a fishery that accounts for more than 5% of the 
Egyptian northern lakes fish production and provides 
habitat for both wintering and breeding water birds 
(Khalil et  al., 2013). The environment of the lake 
has been substantially degraded after the construc-
tion of Aswan High Dam over the Nile River in 1965 
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(Zalat & Vildary, 2007) as it resulted in (1) checking 
the flow of water downstream, (2) drastic changes in 
the physico-chemical and biological parameters of 
the Nile ecosystem, and (3) the reduction in area of 
three critical lacustrine ecosystems of the Nile Delta 
including Edku Lake (Abdel-Satar et  al., 2017; El-
Shazly, 2019). The input of untreated wastes from 
many local pollution sources (agricultural, industrial, 
and urban effluents) along its eastern and southern 
margins was an additional threat on Edku Lake’s 
environmental quality (Badr & Hussein, 2010). 
Dickman (1998) concluded that assessments of the 
ecological quality of aquatic ecosystems should not 
depend on chemical measurements only, yet pollut-
ant impacts can be observed directly by studying the 
affected biological communities.

Benthic foraminifera (BF) are single-celled micro-
scopic organisms (Kingdom Protista), many of which 
construct shells (commonly called tests) made of cal-
cium carbonate or by agglutinating sediment particles. 
Because BF are extremely diverse and cosmopolitan, 
some species can tolerate in almost any marine envi-
ronment (Förderer et al., 2018). With relatively short 
life cycles, BF can respond quickly to changes in 
physical and geochemical factors including tempera-
ture, salinity, pH, oxygen variability, sediment texture, 
organic carbon, and inorganic sediment composition, 
through changing foraminiferal assemblages (Murray, 
2006). In addition, changes in their community struc-
ture (e.g., assemblages) have been widely used as a 
tool to help in the interpretation and reconstruction of 
modern and ancient environments (e.g., de Jesus et al., 
2020; Narayan et  al., 2015; Reymond et  al., 2013). 
An added advantage of BF is their high preservation 
potential in the sediment record and the abundance 
of their tests that provides comparative information 
to assess short-term environmental changes (years 
to decades). The responses of BF to environmental 
stress have been used for more than 60 years as indi-
cators for characterization and monitoring anthropo-
genically impacted coastal systems (e.g., Ben-Eliahu 
et al., 2020; Chalkley et al., 2019; Dimiza et al., 2019; 
Resig, 1960). Benthic foraminifera respond to both 
natural and anthropogenic environmental gradients 
as evidenced in taxonomic structure, foraminiferal 
density and diversity, and increased occurrences of 
deformities (e.g., Coccioni et al., 2009; Elshanawany 
et  al., 2011; Martins et  al., 2016; Samir & El-Din, 
2001; Yanko et al., 1998).

The main objectives of the present work were to 
(1) investigate the species composition and diver-
sity of the benthic foraminiferal assemblages and (2) 
determine the foraminiferal assemblage response to 
wastewater discharges, including organic-carbon and 
heavy metals. Two ecological proxies, species rich-
ness and foraminiferal abnormality index (FAI), were 
utilized as environmental stress indicators.

Materials and methods

Data collection

Lake Edku is the third-largest, shallow-brackish 
coastal basin in northern Egypt (Fig. 1), situated west 
of the Nile Delta (latitudes 31° 11′ 30″ and 31° 18′ 
00″ N, longitudes 31° 8′ 30″ and 31° 23′ 00″ E) and 
separated from the Mediterranean Sea a coastal by 
sand barrier. A narrow, 2 m depth entrance (Boughaz 
El-Maadia) on the west side allows hydrodynamic cir-
culation between Lake Edku and Abu-Qir Bay. Abdel 
Halim et al. (2013) reported a very low average salin-
ity (1.13%o ± 0.19) in the eastern basin of the lake, 
which is affected by discharges from the El-Khairy 
drain. Seawater enters the lake from Abu-Qir Bay 
through Boughaz El-Maadia, increasing the salin-
ity to about 15‰ in the lake entrance (Abdel Halim 
et al., 2013). The water in the lake varies from clear 
to very turbid with sediment and plankton where its 
water depth ranges from 40 to 150 cm with an aver-
age of ~ 1 m (Abdallah, 2017). Lake Edku is divided 
into three main basins: western, central, and eastern. 
Two main drains; El-Khairy drain, which connects to 
three subdrains (Edku, El-Bousily and Damanhour), 
and the Barsik drain (Fig.  1), discharge domestic, 
agricultural, and industrial wastewater (Ossman &  
Badr, 2010), as well as the drainage water of more 
than 300 fish farms, into middle and eastern lake 
basins (Badr & Hussein, 2010). The lake receives 
total annual untreated drainage water (domestic, 
agricultural, and industrial) of 592 × 106 m3/year 
and 348 × 106 m3 from El-Khairy and Barsik drains, 
respectively (Morsy et al., 2020).

Short sediment cores were collected in triplicate 
in 2020 from nine sites; one replicate was used for 
sedimentological and geochemical analyses and two 
replicates for foraminiferal assessment (Fig.  1). The 
sampling was undertaken using heavy duty PVC 
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tubes (5  cm diameter and 50  cm height). The sedi-
ment cores were carefully extruded, preserved in 
clean labeled polyethylene bags, and were kept in ice 
tank until arrival at the laboratory. As the core sam-
ples lack any kind of stratification, they were sliced 
at 5-cm intervals to yield three or four subsamples 
(0–5 cm, 5–15 cm, 15–25 cm, and 25–35 cm).

Geochemical and contamination evaluation data

The mechanical sieving and pipette analyses were 
applied for grain size determination (Folk, 1980), and 
the percentages of sand (S%), silt (Z%), and clay (C%) 
were calculated. The total organic carbon (TOC%) 
was determined by loss in ignition (Heiri et al., 2001), 

and the total carbonate (TCO3%) was determined by 
the indirect method (Vogel, 1978). Concentrations 
of seven elements were analyzed (Cu, Pb, Zn, Cd, 
Cr, Ni, and As) using the method described by Liao 
et  al. (2014). Three environmental quality indices 
were employed to evaluate sediment contamination: 
(1) contamination factor (CF) (Pekey et al., 2004), (2) 
degree of contamination (DC) (Håkanson, 1980), and 
(3) sediment quality guidelines (SQG) (Long et  al., 
1995; MacDonald et  al., 2000). The methodologies 
used to determine the environmental variables and to 
calculate the environmental quality indices were fully 
described in BadrElDin et al. (2022). The base values 
that correspond to the terminologies used to describe 
the CF and DC are presented in Table 1.

Fig. 1   A Map showing 
location of Edku Lake 
northeast Nile Delta of 
Egypt. B Google map 
showing the sampling loca-
tions after BadrElDin et al. 
(2022)
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Foraminiferal data

For all samples, constant volumes of 50 cm3 were 
washed over 63-μm sieves, and coarse fractions were 
oven-dried at 50 °C. Samples were examined using a 
stereomicroscope, and ~ 100 foraminiferal tests were 
handpicked from each sample (the foraminiferal fauna 
of Lake Edku was made up of very few species; see 
also Fatela and Taborda (2002)). Specimens were 
identified to genera level following the generic classi-
fication of Loeblich and Tappan (1988) and to species 
level consistent mainly with Cimerman and Langer 
(1991) and a variety of sources. The name of each spe-
cies was checked and revised in accordance with the 
online database WoRMS (World Register of Marine 
Species; Hayward et  al., 2020). Species richness and 
foraminiferal abnormality index (FAI, Coccioni et al., 
2005) were evaluated. Selected species and deformed 

specimens were photographed using scanning electron 
microscope (SEM) JSM–IT 200 in Faculty of Science, 
Alexandria University.

Statistical analyses

Species counts in each sample were converted to per-
cent abundance (i.e., species relative abundance). The 
data set was the averages of the species relative abun-
dance, and all determined environmental variables for 
each individual core and its related salinity (Table 2). 
The salinity data was provided by Prof. Nadia B.E. 
Badr (personal communication). The results of CF, 
DC, and FAI were not included in the statistical analy-
ses. Analysis was applied to taxa that averaging ≥ 5% 
relative abundance in at least one core in the subse-
quent statistical analyses (Fishbein & Patterson, 1993). 
The infrequently occurring taxa do not significantly 
affect the formation of the major groups (Frezza & 
Carboni, 2009; Romano et al., 2008), and focusing on 
the most abundant taxa reduces background noise and 
reveals the underlying signatures of the assemblages 
(Fajemila et  al., 2020). The data set was normalized 
using the equation (N = (value-mean)/standard devia-
tion). One-way ANOVA analysis was performed to 
show the variability between the cores using Past pro-
gram (V. 4.03). Q-mode cluster analysis (QCA) and 
principal component analysis (PCA) were carried out 
to identify cores characterized by similar assemblages 
and illustrate the key factors controlling the distribu-
tion of BF in core sediments (Chai et al., 2017; Jiang 

Table 1   Terminology of pollution classes for contamination 
factor (CF) and degree of contamination (DC)

a Contamination factor (CF) classes after Qingjie et al. (2008)
b Degree of Contamination (DC) classes after Håkanson (1980)

Contamination factora Degree of contaminationb

CF Pollution DC Pollution

< 1 Low < 8 Low
1 –3 Moderate 8–16 Moderate
3–6 Considerable 16–32 Considerable
≥ 6 Very high ≥ 32 Very High

Table 2   Salinity and the averages of sedimentological and chemical variables for each core of Edku Lake

Core Salinity (‰) S% Z% C% TOC% TCO3% Cu Zn Pb Cd Cr Ni As

I 3.5 59.7 38.0 2.3 1.59 15.1 47.5 97.1 56.1 2.7 4.0 19.9 4.9
II 3.3 56.7 39.7 3.7 1.75 18.1 37.4 132.5 63.0 4.4 3.5 23.6 8.7
III 3.1 56.3 41.0 2.7 3.35 5.2 43.4 157.2 59.5 6.7 9.9 23.8 24.0
IV 2.5 56.0 40.0 4.0 5.69 5.9 57.7 107.9 92.7 6.8 15.5 36.3 28.9
V 2.8 42.0 52.3 5.7 3.52 5.7 85.6 140.8 93.3 7.4 8.9 21.8 31.1
VI 2.0 40.0 53.7 6.3 4.08 12.9 121.6 151. 8 83.5 7.7 22.3 24.4 34.7
VII 1.8 38.5 50.3 11.3 5.35 14.5 121.7 296.2 82.2 9.6 26.2 40.0 38.6
VIII 1.5 33.0 51.5 15.5 6.30 16.5 148.7 259.6 142.2 10.9 26.6 42.4 43.7
IX 1.3 28.8 54.3 17.0 8.97 19.3 198.0 399.1 145.2 11.4 35.1 48.2 45.3
Min 1.3 28.8 38.0 2.3 1.6 5.2 37.4 97.1 56.1 2.7 3.5 19.9 4.9
Max 3.5 59.7 54.3 17.0 9.0 19.3 198.0 399.1 145.2 11.4 35.1 48.2 45.3
Mean 2.4 45.7 46.7 7.6 4.5 12.6 95.7 193.6 90.8 7.5 16.9 31.2 28.9
Std 0.8 11.6 6.9 5.6 2.3 5.6 55.5 102.1 32.9 2.9 11.2 10.6 14.3
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et  al., 2019). The QCA and PCA analyses were per-
formed using the program of SPSS/PC (V. 22).

Results

Sediment analyses

Sedimentological and geochemical results and pollu-
tion assessment were presented briefly in BadrElDin 
et al. (2022). The following is a summary of the fun-
damental data used in the present work.

Grain size analyses indicated that the sand fraction 
was dominating (averages ⁓ 56–60%) the northwest 
parts of Edku Lake near Boughaz El-Maadia outlet 
(cores I–III; Table  2). The percent sand decreased 
eastward, with the muddiest textures in cores VIII 
and IX (Table  2). There was no trend for the verti-
cal distribution of the grain size classes (sand, silt, 
and clay). Each core tended to be nearly homogenous 
regarding sediments grain size (Appendix 1). This 
was reflected by the absence of sediments stratifica-
tion in all cores.

Averages of total organic carbon percentages 
(TOC%) were ranged from ⁓ 1.6% in core I near 
Boughaz El-Maadia to ⁓9% in core IX, located 
in the eastern basin near El-Khairy, Edku, and 
El-Bousily drains (Table  2). Vertically, the total 
organic carbon showed upward increase in all 
cores with the lowest percentage in core I (1.58%, 
15–25  cm) and the highest of 10.8% in the upper 
5  cm in core IX. The total carbonate percentages 

(TCO3%) were varied in average from ⁓ 5% in cores 
III to ⁓ 19% in core IX (Table 2). The highest total 
carbonate contents were in concomitant with the 
presence of molluscan shell fragments (gastropods 
and bivalves).

The concentrations of the metals in the nine sedi-
ment cores at all stations increase generally upward 
(Appendix 2). Regionally, the highest concentrations 
were found in cores VII and IX from the eastern part 
of the lake and in core VIII from the southern part 
of the lake in the vicinity of Barsik drain (Appen-
dix 2). The CF indicated that sediments (vertically 
and regionally) have low degrees of contamination 
with respect to Ni and Cr and a very high degree of 
contamination with Cd (Table 3, Figs. 2 and 3). The 
sediments CF for Cu, Zn, and As showed low to con-
siderable degree of contamination where those of Pb 
had moderate to very high degree of contamination. 
Regionally, the sediments CF was increased gener-
ally eastward. The vertical and regional DC values 
also showed a high degree of contamination in cores 
VII–IX (Table 3, Figs. 2 and 3).

To assess sediment quality, we compared the 
concentrations of the elements assessed to the 
effects-range low (ERL) and effects-range medium 
(ERM) guidelines derived from the database of 
Long et  al. (1995) to understand the potential for 
contamination to affect aquatic organisms. Verti-
cally, Zn and Ni levels in the upper core IX (east-
ern basin) exceeded the ERM guidelines (Fig.  4). 
Copper and Pb concentrations at all cores exceeded 
the ERL threshold but did not reach the ERM 

Table 3   The averages 
of contamination factor 
(CF) and degree of 
contamination (DC) for 
each core of Edku Lake

Core Cu Zn Pb Cd Cr Ni Fe As DC

I 1.1 1.0 2.8 9.1 0.0 0.3 0.5 0.4 15.1
II 0.8 1.4 3.2 14.7 0.0 0.4 0.2 0.7 21.3
III 1.0 1.7 3.0 22.3 0.1 0.4 0.5 1.9 30.8
IV 1.3 1.1 4.6 22.8 0.2 0.5 0.7 2.2 33.4
V 1.9 1.5 4.7 24.7 0.1 0.3 0.9 2.4 36.5
VI 2.7 1.6 4.2 25.6 0.3 0.4 0.9 2.7 38.2
VII 2.7 3.1 4.1 32.1 0.3 0.6 1.0 3.0 46.9
VII 3.3 2.7 7.1 36.3 0.3 0.6 1.2 3.4 54.9
IX 4.4 4.2 7.3 38.1 0.4 0.7 1.3 3.5 59.8
Min 0.8 1.0 2.8 9.1 0.0 0.3 0.2 0.4 15.1
Max 4.4 4.2 7.3 38.1 0.4 0.7 1.3 3.5 59.8
Mean 2.1 2.0 4.5 25.1 0.2 0.5 0.8 2.2 37.4
Std 1.2 1.1 1.6 9.5 0.1 0.2 0.4 1.1 14.6
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concentrations. Only Cr concentrations in all stud-
ied cores were below established limits (ERL) for 
biological effects (Fig.  4). Regionally, Cd concen-
trations in the core sediments (VII–IX) exceeded 
the ERM threshold (Fig. 5), indicating potential for 
frequent detrimental effects.

Foraminiferal assemblages

Benthic foraminifera were found in all core samples 
examined (Table  4). From the 24 species identified, 
thirteen were porcelaneous miliolids, and eleven 
were hyaline rotaliids (Figs.  6 and 7). Hyaline taxa 

Fig. 2   Contamination factor (CF) and degree of contamination (DC) of total metals and in the core sediment of Edku Lake
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Fig. 3   Contamination Factor (CF) and degree of contamination (DC) of total metals for the averages of each core sediment of Edku 
Lake

Page 7 of 22    79



Environ Monit Assess (2023) 195:79	

1 3
Vol:. (1234567890)

dominated the assemblages, ranging from 75 to 
100% (Table 5). The dominant species were Ammo-
nia tepida (84%), Cribroelphidium excavatum (3%), 
and Quinqueloculina seminula (⁓ 3%) (Table 5). Por-
celaneous foraminifera, including Q. seminula, and 
hyaline C. excavatum were only found in the western 

basin near Boughaz El-Maadia (Table 6). Only tests 
of Ammonia tepida were found in samples from the 
central and eastern basins. The species richness was 
much higher in cores I, II, and III from the western 
side (Tables 5 and 6, Fig. 8A).

Fig. 4   Effects-range low (ERL) and effects-range median (ERM) after Long et al. (1995) in the core sediments of Edku Lake
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Fig. 5   Effects-range low (ERL) and effects-range median (ERM) after Long et al. (1995) for the averages of each core of Edku Lake

Page 9 of 22    79



Environ Monit Assess (2023) 195:79	

1 3
Vol:. (1234567890)

Ta
bl

e 
4  

F
or

am
in

ife
ra

l a
ss

em
bl

ag
e 

co
m

po
si

tio
n 

(%
) i

n 
th

e 
co

re
 se

di
m

en
ts

 o
f E

dk
u 

La
ke

Co
re

D
ep

th
Ve

rte
br

al
in

a 
str

ia
ta

 
d’

O
rb

ig
ny

Ad
elo

sin
a 

m
ed

ite
rr

an
en

sis
 

(L
e C

alv
ez

 &
 

Le
 C

alv
ez

)

Sp
iro

lo
cu

lin
a 

an
til

la
ru

m
 

d’
O

rb
ig

ny

Cy
cl

of
or

in
a 

co
nt

or
ta

 
(d

’O
rb

ig
ny

)

M
as

sil
in

a 
pa

ro
na

i 
M

ar
tin

ot
ti

Q
ui

nq
ue

lo
cu

lin
a 

au
be

ria
na

 
d’

O
rb

ig
ny

Q
ui

nq
ue

lo
cu

lin
a 

se
m

in
ul

a 
(L

in
na

eu
s)

M
ili

ol
in

el
la

 
su

br
ot

un
da

 
(M

on
ta

gu
)

Ps
eu

do
tri

lo
cu

lin
a 

ro
tu

nd
a 

(d
’O

rb
ig

ny
)

Tr
ilo

cu
lin

a 
tri

ca
rin

at
a 

d’
O

rb
ig

ny

Tr
ilo

cu
lin

a 
tri

go
nu

la
 

(L
am

ar
ck

)

I
0–

5
0

1
0

2
1

6
2

2
0

1
0

5–
15

3
3

1
3

0
9

1
1

0
0

3
15

–2
5

2
1

1
1

1
9

0
2

1
1

1
II

0–
5

0
3

0
2

0
4

13
1

0
2

0
5–

15
0

2
0

1
0

2
14

0
0

1
0

15
–2

5
0

1
0

2
0

3
11

0
0

1
0

II
I

0–
5

0
0

0
0

0
0

15
0

0
0

0
5–

15
0

0
0

3
0

0
11

0
0

0
0

15
–2

5
0

0
0

0
0

0
12

0
0

0
0

IV
0–

5
0

0
0

0
0

0
0

0
0

0
0

5–
15

0
0

0
0

0
0

0
0

0
0

0
15

–2
5

0
0

0
0

0
0

0
0

0
0

0
V

0–
5

0
0

0
0

0
0

0
0

0
0

0
5–

15
0

0
0

0
0

0
0

0
0

0
0

15
–2

5
0

0
0

0
0

0
0

0
0

0
0

V
I

0–
5

0
0

0
0

0
0

0
0

0
0

0
5–

15
0

0
0

0
0

0
0

0
0

0
0

15
–2

5
0

0
0

0
0

0
0

0
0

0
0

V
II

0–
5

0
0

0
0

0
0

0
0

0
0

0
5–

15
0

0
0

0
0

0
0

0
0

0
0

15
–2

5
0

0
0

0
0

0
0

0
0

0
0

25
–3

5
0

0
0

0
0

0
0

0
0

0
0

V
II

I
0–

5
0

0
0

0
0

0
0

0
0

0
0

5–
15

0
0

0
0

0
0

0
0

0
0

0
15

–2
5

0
0

0
0

0
0

0
0

0
0

0
25

–3
5

0
0

0
0

0
0

0
0

0
0

0
IX

0–
5

0
0

0
0

0
0

0
0

0
0

0
5–

15
0

0
0

0
0

0
0

0
0

0
0

15
–2

5
0

0
0

0
0

0
0

0
0

0
0

25
–3

5
0

0
0

0
0

0
0

0
0

0
0

79   Page 10 of 22



Environ Monit Assess (2023) 195:79

1 3
Vol.: (0123456789)

Ta
bl

e 
4  

(c
on

tin
ue

d)

Co
re

D
ep

th
Si

gm
oi

lin
ita

 
co

sta
ta

 
Sc

hl
um

be
rg

er

Si
gm

oi
lin

ita
 

gr
at

a 
(T

er
qu

em
)

Ro
sa

lin
a 

br
ad

yi
 

(C
us

hm
an

)

Ro
sa

lin
a 

m
ac

ro
po

ra
 

(H
of

ke
r)

C
ib

ic
id

es
 

re
fu

lg
en

s 
M

on
tfo

rt

Lo
ba

tu
la

 
lo

ba
tu

la
 

(W
al

ke
r 

&
 Ja

co
b)

As
te

ri
ge

ri
na

ta
 

m
am

ill
a 

(W
ill

ia
m

so
n)

Am
m

on
ia

 
be

cc
ar

ii 
(L

in
na

eu
s)

Am
m

on
ia

 
pa

rk
in

so
ni

an
a 

(d
’O

rb
ig

ny
)

Am
m

on
ia

 
te

pi
da

 
(C

us
hm

an
)

C
ri

br
oe

lp
hi

di
um

 
ex

ca
va

tu
m

 
(T

er
qu

em
)

El
ph

id
iu

m
 

cr
is

pu
m

 
(L

in
na

eu
s)

El
ph

id
iu

m
 

m
ac

el
lu

m
 

(F
ic

ht
el

 &
 

M
ol

l)

I
0–

5
1

1
2

2
13

1
5

0
7

36
12

3
2

5–
15

1
0

0
1

8
4

7
2

7
29

13
3

1
15

–2
5

0
0

3
1

13
3

9
3

4
27

8
5

4
II

0–
5

0
0

2
0

1
0

1
1

0
62

8
0

0
5–

15
1

0
0

2
1

0
1

7
3

54
9

0
2

15
–2

5
1

0
1

2
1

0
4

2
1

55
13

0
2

II
I

0–
5

0
0

0
0

2
0

3
1

0
71

8
0

0
5–

15
0

0
0

0
3

0
3

4
0

71
5

0
0

15
–2

5
0

0
1

0
1

0
2

3
0

75
6

0
0

IV
0–

5
0

0
0

0
0

0
0

0
0

10
0

0
0

0
5–

15
0

0
0

0
0

0
0

0
0

10
0

0
0

0
15

–2
5

0
0

0
0

0
0

0
0

0
10

0
0

0
0

V
0–

5
0

0
0

0
0

0
0

0
0

10
0

0
0

0
5–

15
0

0
0

0
0

0
0

0
0

10
0

0
0

0
15

–2
5

0
0

0
0

0
0

0
0

0
10

0
0

0
0

V
I

0–
5

0
0

0
0

0
0

0
0

0
10

0
0

0
0

5–
15

0
0

0
0

0
0

0
0

0
10

0
0

0
0

15
–2

5
0

0
0

0
0

0
0

0
0

10
0

0
0

0
V

II
0–

5
0

0
0

0
0

0
0

0
0

10
0

0
0

0
5–

15
0

0
0

0
0

0
0

0
0

10
0

0
0

0
15

–2
5

0
0

0
0

0
0

0
0

0
10

0
0

0
0

25
–3

5
0

0
0

0
0

0
0

0
0

10
0

0
0

0
V

II
I

0–
5

0
0

0
0

0
0

0
0

0
10

0
0

0
0

5–
15

0
0

0
0

0
0

0
0

0
10

0
0

0
0

15
–2

5
0

0
0

0
0

0
0

0
0

10
0

0
0

0
25

–3
5

0
0

0
0

0
0

0
0

0
10

0
0

0
0

IX
0–

5
0

0
0

0
0

0
0

0
0

10
0

0
0

0
5–

15
0

0
0

0
0

0
0

0
0

10
0

0
0

0
15

–2
5

0
0

0
0

0
0

0
0

0
10

0
0

0
0

25
–3

5
0

0
0

0
0

0
0

0
0

10
0

0
0

0

Page 11 of 22    79



Environ Monit Assess (2023) 195:79	

1 3
Vol:. (1234567890)

Morphological abnormalities, evaluated using 
the foraminiferal abnormality index (FAI), ranged 
between 0 and 10% (average for each core 0–5%) and 
were only found in specimens of A. tepida (Table 5, 
Appendices 3, 4, 5, and 6). No aberrant specimens 
were found in western cores I–III, whereas the FAI 
increased gradually eastward in the central and east-
ern basins, reaching its maximum value in the upper 
5 cm in core IX (10%, Tables 5 and 6). The percent-
ages of deformed specimens decreased downcore in 
cores V–IX.

Ammonia tepida specimens showed a wide range 
of deformation. The recorded morphological abnor-
malities included aberrant chamber shape, abnormal 
chamber size, additional chambers, abnormal test 
growth, elongated axes of rotation, spiroconvex coil-
ing, twisted test, excess deposition of calcium carbon-
ate, irregular periphery, and complex deformities. We 
classified the degree of test deformation according to 
the following criteria: (1) mild deformation (group 
A, Appendix 3), where the test maintains the general 
characteristics of a normal test and could be identified 
easily; (2) moderate deformation (group B, Appendi-
ces 4 and 5), where tests exhibited more than one type 
of deformation, yet the test retains the general charac-
teristics of normal tests; and (3) extreme deformation 
(group C, Appendix 6), where the tests show multiple 
complex deformations, such that species identifica-
tion was very difficult in some instances. The degree 
of deformation increased toward the eastern basin 
of Edku Lake (Table  5, Fig.  8A). Abnormal speci-
mens of groups A and B were represented in cores 
of the central and eastern lake basins (cores IV–IX), 
whereas the specimens belonging to group C were 
found only in cores VII–IX. The spatial and vertical 
distributions of malformed specimens were consistent 
with contaminant concentrations.

Multivariate analyses

One-way ANOVA revealed that the foraminiferal 
assemblages and the determined variables were 
significantly different among the cores (f = 3.1; 
p = 0.003). A dendrogram generated by hierarchical 
Q-mode cluster analysis showed two groups of sam-
ples that reflected the regional distribution of cores 
(Fig. 8B). Cluster I included cores I, II, and III from 
the northeastern basin near Boughaz El-Maadia 
outlet, whereas cluster II grouped the central cores 

(IV–V) and the eastern cores (VI–IX) close to the 
major drains (El-Khairy, Edku, El-Bousily, and 
Barsik) (Figs. 1 and 8B).

The principal component analysis (PCA) was used 
to realize the environmental variables probably affect-
ing the distribution of foraminiferal assemblages. 
The PCA revealed that the first two components clar-
ify ~ 86.3% of the total data variance (Fig. 9, Appen-
dix 7). The heavy metals, sand, silt, clay, TOC, and 
TCO3 are the predominant variables in the first com-
ponent, whereas the major contributors to the second 
component are the foraminiferal species, salinity, Cd, 
and As. Ammonia tepida showed high abundances 
positively related to the lower salinities and the 
higher concentrations of Cd and As. The foraminif-
eral species, Ammonia parkinsoniana, Quinqueloc-
ulina auberiana, Cibicides refulgens, Asterigerinata 
mamilla, and Cribroelphidium excavatum, showed a 
preference for areas with marine influence and lower 
Cd and As concentrations.

Discussion

Sediment analyses

The sedimentological and geochemical results and 
sediment quality assessment were briefly discussed in 
BadrElDin et al. (2022). Grain size analyses revealed 
that the lake sediments become finer in the eastward 
direction. Sediment texture in core I from the north-
west side of the lake near Boughaz El-Maadia outlet is 
sandy, where water and sediments exchange between 
Lake Edku and Abu Qir Bay take place. The regional 
distribution of mud% (Z% + C%) was ranged from 
40.3 to 71.3% with an average of 54.3%. Abdallah and 
Morsy (2013) stated that percent mud ranged from 11 
to 77% with an average of 47%.

Regionally, the total organic carbon generally 
increased in the eastward direction (range: ⁓ 1.6–9%) 
reaching its maximum near El-Khairy, Edku, and El-
Bousily drains. Organic matter in the sediment origi-
nates both from in  situ decomposition of plant and 
animal matter by bacteria and from the drains, espe-
cially in the eastern basin due to industrial and agri-
cultural activities along this part of the lake (Masoud 
et  al., 2005). Total carbonate percentages (TCO3%) 
were generally low in Lake Edku core sediments 
both regionally (range: 5–19%) and vertically (range: 
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4–21%) with obvious percentage increase in concord-
ance with the occurrence of molluscan shell frag-
ments. Carbonates in lake sediments were mostly bio-
clastics consisting of fragments of molluscan shells, 
ostracods, benthic foraminifera, and other calcareous 
organisms (Abdallah & Morsy, 2013).

The highest Cu, Pb, Zn, Cd, Cr, Ni, and As con-
centrations were found in cores VII and IX, from 
the eastern part of the lake affected by Edku and 

El-Khairy drains, and in core VIII in the south-
ern part of the lake in the vicinity of Barsik drain. 
These concentrations can be attributed to discharges 
from surrounding agriculture and domestic drains. 
Moreover, Cd and Pb are the major pollutants in the 
lake sediments, with highest concentrations found in 
cores VIII and IX. Roberts (2014) noted that because 
Cd is known to be linked with phosphatic fertiliz-
ers, Cd pollution can be associated with runoff from 

Fig. 6   1 Vertebralina 
striata d’Orbigny: 1a–b 
side views and 1c aper-
tural view. 2 Adelosina 
mediterranensis (Le Calvez 
& Le Calvez): 2a–b side 
views and 2c growth stage. 
3 Cycloforina contorta 
(d’Orbigny): 3a side view 
and 3b apertural view. 4 
Massilina paronai Marti-
notti: 4a–b side views. 5 
Quinqueloculina auberiana 
d’Orbigny: 5a–b side views 
and 5c apertural view. 6 
Quinqueloculina seminula 
(Linnaeus): 6a–b side views 
and 6c apertural view. 7 
Miliolinella subrotunda 
(Montagu), side view. 8 
Triloculina tricarinata 
d’Orbigny: 8a side view 
and 8b apertural view. 
9 Triloculina trigonula 
(Lamarck): 9a side view 
and 9b apertural view. 
10 Sigmoilinita costata 
Schlumberger, side view. 
11 Sigmoilinita grata (Ter-
quem), side view

Page 13 of 22    79



Environ Monit Assess (2023) 195:79	

1 3
Vol:. (1234567890)

agricultural lands. The contamination factors and 
degree of contamination herein indicate that chronic 
anthropogenic pollution is likely the major factor con-
trolling the distribution of metal contaminants in the 
lake sediments.

Foraminiferal assemblages

The foraminiferal assemblage in Lake Edku is very sparse, 
likely in response to multiple levels of environmental stress 

including freshwater influence, high organic carbon load, 
and elevated concentrations of Cd and Pb particularly in 
the eastern basin near El-Khairy and Barsik drains. The 
foraminiferal assemblage is dominated by two hyaline 
species, A. tepida and C. excavatum, and one porcelane-
ous species, Q. seminula. All three have been recognized 
as stress tolerant in previous studies (e.g., Debenay, 2009; 
Eichler et  al., 2007; Martins et  al., 2013). Recently C. 
excavatum was categorized as (third order) opportunistic 
species (Jorissen et al., 2018; Martínez-Colón et al., 2018). 

Fig. 7   1 Rosalina bradyi 
(Cushman): 1a–b side 
views. 2 Rosalina macro-
pora (Hofker): 2a–b side 
views, and 2c apertural 
view. 3 Cibicides refulgens 
Montfort: 3a–b side views, 
and 3c apertural view. 4 
Lobatula lobatula (Walker 
and Jacob), dorsal view. 
5 Asterigerinata mamilla 
(Williamson): 5a–b side 
views, and 5c apertural 
view. 6 Ammonia tepida 
(Cushman): 6a–b side 
views, and 6c apertural 
view. 7 Cribroelphidium 
excavatum (Terquem): 7a 
side view, and 7b apertural 
view. 8 Elphidium crispum 
(Linnaeus), 8a side view, 
and 8b apertural view
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In this work, C. excavatum showed a significant negative 
correlation with Cd and A. tepida (Fig. 9). Cribroelphid-
ium excavatum, the third-order opportunistic species, was 
abundant in the northwest parts of Edku Lake distant from 
areas of highly polluted conditions (Jorissen et al., 2018). 
Miliolids were only found in the western basin in sandy 
sediment and lower pollution condition. Generally, mili-
olids favor the sandy substrate (Elshanawany et al., 2011; 
Li et  al., 2015) and are sensitive to heavy metals pollu-
tion (Samir & El-Din, 2001). Some miliolids such as Q. 
seminula showed no response to heavy metals pollution 
(Martins et al., 2013). This could explain the dominance 
of Q. seminula in the northwest parts of Edku Lake near 

Boughaz El-Maadia outlet. The highest species richness 
(24 species total) was found in core I near Boughaz El-
Maadia, where salinity is highest, and the concentrations of 
all potentially toxic elements assessed are the lowest. Only 
the most stress-tolerant specie, A. tepida, was even found 
in the central and eastern lake basins, which are character-
ized by low salinity, higher percentages of organic matter, 
and higher concentrations of all the elements analyzed.

Test deformation was only observed in A. tepida, 
which was the only species found in the central and 
eastern basins. The most deformed specimens belong-
ing to moderate and extreme deformation degrees 
(group B and group C) were found in cores VII–IX. 

Table 5   Miliolida%, 
Rotaliida%, species richness 
(S), degrees of deformation 
groups (A, B, and C) of 
Ammonia tepida, and 
foraminiferal abnormality 
index (FAI) in the core 
sediments of Edku Lake

ND not detected

Core Depth Miliolida% Rotaliida% Species 
richness 
(S)

Group A Group B Group C FAI

I 0–5 17 83 19 ND ND ND 0
5–15 25 75 19 ND ND ND 0

15–25 20 80 21 ND ND ND 0
II 0–5 25 75 12 ND ND ND 0

5–15 21 79 14 ND ND ND 0
15–25 19 81 15 ND ND ND 0

III 0–5 15 85 6 ND ND ND 0
5–15 14 86 7 ND ND ND 0

15–25 12 88 7 ND ND ND 0
IV 0–5 0 100 1 1 1 ND 2

5–15 0 100 1 2 1 ND 3
15–25 0 100 1 ND ND ND 0

V 0–5 0 100 1 2 2 ND 4
5–15 0 100 1 ND ND ND 0

15–25 0 100 1 ND ND ND 0
VI 0–5 0 100 1 4 1 ND 5

5–15 0 100 1 2 1 ND 3
15–25 0 100 1 1 ND ND 1

VII 0–5 0 100 1 1 3 3 7
5–15 0 100 1 ND 3 ND 3

15–25 0 100 1 1 ND ND 1
25–35 0 100 1 ND ND ND 0

VIII 0–5 0 100 1 ND 5 3 8
5–15 0 100 1 ND 4 1 5

15–25 0 100 1 1 2 ND 3
25–35 0 100 1 1 ND ND 1

IX 0–5 0 100 1 ND 3 7 10
5–15 0 100 1 ND 3 3 6

15–25 0 100 1 ND 4 ND 4
25–35 0 100 1 1 ND ND 1
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In addition, the vertical distribution of FAI and degree 
of deformation decreased downcore, consistent with 
decreasing metals concentrations and their pollu-
tion indices. Foraminiferal abnormality index (FAI) 
increased with decreasing salinity and with increas-
ing organic carbon and heavy metal concentrations, 
consistent with the work of Morvan et al. (2004), who 
found that FAI exceeding 1% reflected contaminated 
environments. Several studies reported that BF liv-
ing in hyposalinity waters or lagoons characterized 
by fluctuations of salinity tend to become deformed 
(Boltovskoy et al., 1991). In this work, correlating FAI 
to total (bulk) heavy metals concentrations may be a 
quite problematic issue. Several studies used the bio-
available fraction (releasable) of the heavy metals (e. 
g., Martínez-Colón et  al., 2017, 2018, Raposo et  al., 
2022). However, the total (bulk) heavy metals con-
centrations could be effective for biomonitoring par-
alic coastal environments. The high contents of TOC 
particularly in the eastern cores (VII–IX) and the sig-
nificant positive correlation observed with total heavy 
metal concentrations (Fig.  9) clarify that OC could 

play an essential role in bioavailability of heavy met-
als for bottom biota (BadrElDin et  al., 2022; Liang 
et al., 2019). On the other hand, the significant posi-
tive correlations between heavy metals and muds (Z% 
and C%; Fig. 9) indicated that muds could adsorb and 
provide a sink for the heavy metals (Martínez-Colón 
et  al., 2017). Minor changes in salinity or pH could 
lead to bioavailability of heavy metals to foraminifers 
due to desorption or scavenging from mud-sized sedi-
ment surfaces (Martínez-Colón et  al., 2009, 2018). 
Accordingly, the A. tepida test deformities in Edku 
Lake sediments could be attributed to multiple stress-
ors including the low salinity and the high contents of 
heavy metals.

According to Murray (2014), the fluctuations in 
salinity are a major ecological stressor for foraminif-
eral richness and distribution. Miliolids were only 
recorded near Boughaz ElMadiaa, in association 
with salinity closer to normal marine. Paralic envi-
ronments of the Nile Delta (Manzalla, Burullus, 
and Edku lakes) showed similar results (Badr-ElDin 
et  al., 2019; Elshanawany et  al., 2019; Orabi et  al., 

Fig. 8   A Regional distribution of the averages of species 
richness (S), A. tepida (in percentage), total organic carbon 
(TOC%), foraminiferal abnormality index (FAI), and degree 
of contamination (DC) in each core of Edku Lake. B Dendro-

gram of Q-mode cluster analysis using Ward’s linkage method, 
based on the averages in each core of foraminiferal species 
abundances and the geo-chemical variables, grouping cores 
from Edku Lake
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2017). The species A. tepida, C. excavatum, and 
Q. seminula are cosmopolitan euryhaline species 
(e.g., Debenay, 2009; Eichler et  al., 2007; Martins 
et  al., 2013), though the latter two are less tolerant 
to hyposalinity than A. tepida (El Baz, 2017). Thus, 
foraminiferal distributions in Lake Edku are certainly 
controlled by the salinity gradient.

Another source of stress is related to abundant 
organic carbon associated with muddy sediments, par-
ticularly in central and eastern basins. Ammonia tep-
ida is highly tolerant of numerous types of pollution, 
including fertilizers, municipal sewage, and hydrocar-
bons (e.g., Debenay et al., 2006; Frontalini et al., 2010; 
Martins et al., 2019), as well as to high percentages of 
organic carbon (Badr-ElDin et al., 2019; Melis et al., 
2019). Similarly, C. excavatum and Q. seminula have 
been reported in sediments enriched in organic carbon 
(e.g., Eichler et al., 2007; Mangoni et al., 2016). How-
ever, we found only A. tepida in the organic-rich sedi-
ments in the polluted central and eastern basins of the 
lake, supporting the argument that salinity is the major 
factor controlling foraminiferal taxa.

The eastern basin cores exhibited the highest con-
centrations of the evaluated elements. Contamination 
factors (Fig.  2) indicated that sediments from cores 
V–IX exhibited very high degrees of contamination, 
particularly with Cd and Pb. The effects range cat-
egories (Fig.  4) indicated that concentrations of all 
evaluated elements except Zn and Cr exceeded the 
ERL threshold in most cores. Concentrations of Cd 
exceeded the ERM threshold in cores VII–IX, while 
Zn and Ni concentrations exceeded such thresholds 
only in core IX. Caruso et al. (2011) reported that A. 
tepida can tolerate particularly high concentrations 
of heavy metals, and in the eastern basin of Edku 
Lake, A. tepida reacted to the high concentrations of 
heavy metals by the gradual increase in the number 
of deformed specimens and complexity of test distor-
tion. Thus, the high values of some or all of these ele-
ments likely produced deleterious effects documented 
by the eastward increase in numbers of deformed 
specimens and the increase in degree of deformation. 
In nearly all indices, contamination and potential for 
effects increased up-core, especially in the eastern 

Fig. 9   Principal components analysis (PCA) for the average values for foraminiferal species abundance and the chemical and sedi-
mentological variables for each core from Edku Lake. In frame the scree plot representing the number of components
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basin sites. Moreover, Zn concentrations in core I and 
in the subsurface samples from cores II to V were 
below the ERL threshold, increased dramatically in 
the surface of core VII and even exceeded the ERM 
threshold in the core IX (Fig.  4). Our results were 
consistent with those reported by Orabi et al. (2017), 
who found that deformation became more severe with 
increasing Cd and Zn concentrations. Thus, while the 
salinity gradient can explain why only A. tepida was 
found in the central and eastern basins of Lake Edku, 
elevated concentrations of Cd and Pb, and possibly of 
Zn and other potentially toxic elements, very likely 
are responsible for the increase in deformed A. tepida 
tests observed in proximity to drains discharging pol-
luted waters into the central and eastern basins.

Conclusions

The west to east decline in salinity appeared to be the 
primary factor limiting foraminiferal distributions at 
Lake Edku. Tests of the species A. tepida were found 
in sediments from all cores, whereas tests of Q. semi-
nula, C. excavatum, and 21 other species were found 
only in cores from the western basin, which receives 
seawater influx from the Mediterranean Sea. Higher 
organic carbon and heavy-metal concentrations in Lake 
Edku sediments reflect pollutants associated with agri-
cultural and urban activities. Concentrations of organic 
carbon and most of the heavy elements increased east-
ward, peaking in the surface sample nearest the major 
drain discharge. Elements found in concentrations 
with the highest potential for affecting aquatic organ-
isms were cadmium and lead and to a lesser extent zinc 
and nickel. Foraminiferal assemblages are responding 
to the multiple ecological stressors as indicated by the 
west to east decrease in species richness and by the 
increase in and degree of morphological deformation 
expressed. Benthic foraminifera are particularly suit-
able as environmental proxies and should be used for 
periodic monitoring of environmental quality of paralic 
coastal environments, such as those of the Nile Delta 
that are influenced by multiple natural and anthropo-
genic environmental sources of stress.
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