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ABSTRACT

Background. Ecological niche modeling is a set of analytical tools with applications in
diverse disciplines, yet creating these models rigorously is now a challenging task. The
calibration phase of these models is critical, but despite recent attempts at providing
tools for performing this step, adequate detail is still missing. Here, we present the
kuenm R package, a new set of tools for performing detailed development of ecological
niche models using the platform Maxent in a reproducible way.

Results. This package takes advantage of the versatility of R and Maxent to enable
detailed model calibration and selection, final model creation and evaluation, and
extrapolation risk analysis. Best parameters for modeling are selected considering
(1) statistical significance, (2) predictive power, and (3) model complexity. For final
models, we enable multiple parameter sets and model transfers, making processing
simpler. Users can also evaluate extrapolation risk in model transfers via mobility-
oriented parity (MOP) metric.

Discussion. Use of this package allows robust processes of model calibration, facilitating
creation of final models based on model significance, performance, and simplicity.
Model transfers to multiple scenarios, also facilitated in this package, significantly
reduce time invested in performing these tasks. Finally, efficient assessments of strict-
extrapolation risks in model transfers via the MOP and MESS metrics help to prevent
overinterpretation in model outcomes.

Subjects Biogeography, Bioinformatics, Computational Biology

Keywords Extrapolation risks, Model calibration, Model projections, Model selection, Species
distribution models

INTRODUCTION

Ecological niche modeling (ENM) is a set of analytical tools (Peterson et al., 2011) with
many potential applications in conservation planning (Franklin, 2013), climate change
impacts (Searcy & Shaffer, 2016), biological invasions (Jiménez-Valverde et al., 2011), and
the geography of disease transmission risk (Peterson, 2014), among others. A substantive
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theoretical basis did not appear until many years into the development of this field (Peterson
et al., 2011)—for lack of such a conceptual framework, many models have been developed
that are overly complex and that lack predictive power (Peterson ¢» Nakazawa, 2008).

Model calibration is a process in which the aim is to determine which combination of
parameters best represents the phenomenon of interest by finding the best fit with the data
(Steele & Werndl, 2013). Although recent contributions to the field have highlighted effects
of model settings on final results (Warren et al., 2014), parameters are still often selected
based on simple protocols, and final models are generally constructed based on single
parameterizations. However, multiple parameterizations can produce good fits to data,
and this possibility should be considered (Spear, 1997). Identifying possible combinations
of parameters may add complexity to the modeling process, but allows including critical
sources of variation (Peterson, Cobos ¢ Jiménez-Garcia, 2018).

Performed manually, detailed model calibration and final model creation is quite
time-consuming (e.g., a week or more). Hence, automating the process is essential for
increasing robustness of ENMs. Recent efforts to enable model calibration have improved
models (e.g., Muscarella et al., 2014), and have greatly accelerated various phases of the
niche modeling process (Kass et al., 2018). However, more detailed calibration processes
and automatization of more phases (e.g., model transfer, extrapolation risk analysis) are
still needed.

Here, we introduce kuenm, an R package that automates important calibration and
evaluation steps in ENM. In its current version, this package uses Maxent (Phillips, Anderson
& Schapire, 2006) as the modeling algorithm, and automates model calibration, creation
of final models and their transfers and evaluations, and assessment of extrapolation risks.

DESCRIPTION AND FUNCTIONALITY

Processes implemented

This package implements three crucial phases of ENM: calibration, final model creation
and evaluation, and extrapolation risk analysis (Fig. 1). Model calibration is performed in
two steps: creation of large numbers of candidate models, and evaluation and selection of
best models. Candidate models are created using Maxent, with different values of Maxent’s
regularization multiplier parameter, combinations of feature classes, and distinct sets of
environmental predictors. For each parameter setting, two models are created: one based
on the complete set of occurrences, and the other based on the training data only (see
data set description in Requirements and Dependencies). Model selection is based on
significance, predictive ability, and complexity, in that order of priority: i.e., models are
filtered first to detect those that are statistically significant; the omission rate criterion is
applied to this reduced set of models; finally, among the significant and low-omission
candidate models, those with values of delta AICc lower than two are selected. Significance
and omission rates are calculated on models created with training data, using separate
testing data subsets; model complexity is calculated on models created with the complete
set of occurrences (excluding independent records, see below). We note that the full set of
results of this three-part evaluation are provided, so users are able to apply their own sets
of criteria.

Cobos et al. (2019), PeerJ, DOI 10.7717/peerj.6281 2115


https://peerj.com
http://dx.doi.org/10.7717/peerj.6281

Peer

Ecological niche modeling process

\
-~
Initial data Data cleaning Organize Model calibration Final model Extrapolation
preparation data construction risk analysis
and evaluation
Occurrence data Prepare
filtering occurrences )
) - Training datasets Candidate model F'nal_ models
o Reducing - Testing dataset creation with no
ceurrence autocorrelation - Full dataset transfers |dentification
data (training + testing) of high-
Calibration area ) I?%e':e?dept Slet Candidate _model Final models extrapolation
delimitation (M) o oae orina evaluation with transfers sk
Environmental evaluation risk areas
data Variable Predictors in Model Final model
preparation the species M selection evaluation
Multiple candidate
Variable selection sets
B [T [T -
Low Medium High
- T . ku.enm package

Time employed in performing each phase

Figure 1 Schematic description of the ecological niche modeling process, and steps that can be per-
formed using the kuenm package. Color bars under each step of the ecological niche modeling process re-
flect an approximate range of times that may be needed for execution.

Full-size Gal DOI: 10.7717/peerj.6281/fig-1

Creation of final models in Maxent and transfers to other times or regions can be
performed using the parameters selected during calibration. Final models can be created
with three options of extrapolation: free extrapolation, extrapolation with clamping, and
no extrapolation. Under free extrapolation settings, responses in areas environmentally
different from the calibration area follow trends in the calibration environmental data.
With the extrapolation and clamping setting, the response in areas with environments
distinct from those in the calibration area is clamped to levels presented at the periphery
of the calibration region in environmental space. Finally, under the no extrapolation
setting, the response is set to zero if the environments in transfer areas are more extreme
than those in areas across which the models were calibrated. Final models are evaluated
based on statistical significance and omission rates using independent data (see below, in
Requirements and Dependencies) when such data are available (Table 1). This evaluation
performed as a post-modeling calibration process is not common enough in ENM;
however, it can be useful, especially when other independent data (e.g., information on
species distributions generated in explorations after creation of models) can be used to
test models.

Although Maxent allows assessing extrapolation via the multivariate environmental
similarity surface metric (MESS; Elith, Kearney ¢ Phillips, 2010), the mobility-oriented
parity (MOP) index, implemented in kuenm is a metric proposed by Owens et al. (2013)
that offers more robust measures of extrapolative conditions in final model transfers.
In addition, the kuenm package allow users to use a function (kuenm_start, optional)
that creates an R Markdown file that contains a brief guide to perform the main analyses
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Table 1 Description of the main functions implemented in the kuenm R package. Additional details can be found in the main text of this
manuscript and the package tutorial.

Functions Description

kuenm_start Generates an R Markdown file that serves as a guide to perform the main processes implemented in kuenm.
This file contains a brief description of each process and chunks of code that will help beginner users in
performing each of the analyses. This file can be saved in distinct formats (e.g., HTML, DOCX, and PDF) to
record all the code to be used and other user comments, making the research more sharable and reproducible.

kuenm_cal Creates Maxent candidate models. These models are created with multiple combinations of regularization
multipliers, feature classes, and sets of environmental predictors. For each combination, it creates one Max-
ent model with the full set of occurrences, and another with training occurrence data only. Inputs are names of
files and folders present in the working directory. Outputs include a folder containing all of the models and a
file with Java codes for running candidate models (batch in Windows or bash in Unix), these files are written
in the working directory and not stored in memory to avoid RAM limitations.

kuenm_ceval Completes the process of calibration by evaluating candidate model performance and selecting the best ones,
based on significance (partial ROC; Peterson, Papes ¢ Soberdn, 2008), omission rates (derived from thresholded
models based on E = user specified omission percentage; see Anderson, Lew ¢ Peterson, 2003), and complex-
ity (AICc; Warren, Glor & Turelli, 2010). Inputs are names of files and folders present in working directory.
Outputs are written directly to the working directory, and include a file with the complete table of evaluation
results, a summary of the model selection process, a table containing the evaluation metrics for only the best
models, a figure of model performance across all models, and an HTML file reporting all of the results of the
process to guide interpretation.

kuenm_mod Takes the result of model evaluation and creates final models with the parameter sets selected as best.
Model projections are allowed, and are called by defining the folder in which subdirectories with transfer
environmental data are located; these transfers are performed automatically. Inputs are names of files and
folders present in working directory. Three options of extrapolation are facilitated using this function when
transfers are performed (free extrapolation, extrapolation and clamping, and no extrapolation; see Owers et al.,
2013) and more than one of these options can be performed in a single run. Final models and their transfers
are written directly to the working directory.

kuenm_feval Evaluates final models based on partial ROC statistics and omission rates as assessed with independent occur-
rence data. Models created with the best parameter settings can be evaluated if independent data are available,
to assess and evaluate their quality. Inputs are names of files and folders in the working directory; the output of
this evaluation (a table with the results) is written directly to the directory.

kuenm_mmop Calculates the mobility-oriented parity (MOP; Owers et al., 2013) metric for comparing sets of environmental
conditions between the calibration area (M) and multiple areas or scenarios to which models are transferred
(G). Inputs are names of files and folders in the working directory. The output maps represent the degree of
similarity between conditions in M and G, wherein values of zero correspond to areas of strict extrapolation.
All results are written to the working directory.

kuenm_omrat Calculates omission rates of single models based on single or multiple threshold values (E; see Anderson, Lew &
Peterson, 2003) specified by the user. Inputs and outputs are objects stored in memory; results indicate the rate
of omission of independent occurrence data used for evaluating models created with training data.

kuenm_proc Calculates statistical significance of single models based on the partial ROC and a threshold value (E; see Peter-
son, Papes & Soberon, 2008) specified by the user. Inputs and outputs are objects stored in memory; outputs in-
clude a table with the partial ROC summary and the outcomes of the iterated analyses.

kuenm_mop Calculates the MOP metric for comparisons of environmental conditions between a calibration area and a sin-

gle area or scenario to which models will be transferred. Inputs and outputs are objects stored in memory; out-
put includes a map resulting from this analysis.
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implemented. This file records all user comments and lines of code used for running
analyses, and can be saved in various formats, so users can share and reproduce their
research easily (Table 1).

Statistics of model performance and extrapolation risk

The statistics of model performance implemented in this package are partial ROC as a
measure of statistical significance, omission rates, and AICc. Partial ROC is calculated
instead of the full area under the ROC curve because the latter is not appropriate in
ENM (Lobo, Jiménez-Valverde ¢ Real, 2007; Jiménez-Valverde, 2012), and partial ROC
represents a more suitable indicator of statistical significance (Peterson, Papes ¢ Soberon,
2008). Statistical significance is determined by a bootstrap resampling of 50% of testing
data, and probabilities are assessed by direct count of the proportion of bootstrap replicates
for which the AUC ratio is <1.0 (Peterson, Papes & Soberon, 2008). Model evaluation,
however, must go beyond significance, to measure performance as well. Performance here
is measured using omission rates, which indicate how well models created with training
data predict test occurrences; these rates are calculated by default at a threshold of E =5%
(Anderson, Lew & Peterson, 2003), but this threshold can be changed depending on user
choice. Finally, to evaluate model complexity, AICc, delta AICc, and AICc weights, are
calculated; AICc values indicate how well models fit to the data while penalizing complexity
to favor simple models (Warren ¢ Seifert, 2011).

Users are able to assess extrapolation risks in transfer areas with the MOP metric. The
package calculates multivariate environmental distances between sites across the transfer
region (G) and the nearest portion of the calibration region (M or accessible area; Soberdn
¢ Peterson, 2005) to identify regions that present situations of strict or combinational
extrapolation. MOP is a metric improved for the purposes of ecological niche modeling
with which to estimate extrapolation risks because it assesses environmental difference
from the nearest part of the M region, whereas the MESS metric implemented within
Maxent evaluates difference from the centroid of the M region in environmental space.
Given the irregular nature of most environmental spaces, then, MOP is a more appropriate
metric of extrapolation in niche model transfers.

Requirements and dependencies

To maintain simplicity and avoid memory limitations in using this package owing to the
large file sizes involved in partial and final outcomes of the analyses developed by this
package, a data organization structure is needed (Fig. 2). This structure allows users to
run functions from a single directory per species that contains all input data needed and
that is where the results will be written directly when performing model calibration, final
model creation, and MOP analyses for transfer scenarios. Input data necessary to start
analyses include (1) the complete set of occurrences for calibration (i.e., species occurrence
records that have been filtered and thinned adequately); (2) training occurrences (part of
the complete set of occurrences set aside for creating candidate models to be evaluated
with testing data); (3) set of occurrences for testing candidate models (the other part of the
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Figure 2 Directory structure and data for starting (A) and when finished (B) using kuenm R package
functions. Roman numerals represent data needed and generated by the package: using the start function
(I), creating candidate models (II), evaluating candidate models (III), preparing projection layers (IV),
generating final models and its transfers (V), evaluating final models with independent data (VI), and an-
alyzing extrapolation risks in projection areas or scenarios (VII).

Full-size Gl DOI: 10.7717/peer;j.6281/fig-2

complete set of records); and (4) one or more sets of environmental variables to be used in
creating candidate models. Occurrences for training and testing models can be subsetted
in multiple ways (see partition methods in Muscarella et al., 2014), but some degree of
independence is desired. In addition, an entirely independent set of occurrence data (i.e.,
data not used during calibration that ideally come from other sources and are not spatially
autocorrelated with calibration data) can be used to test final models when available.
Other sets of environmental data representing distinct scenarios are required when model
transfers are desired. Rtools (in Windows), Java Development Kit, and Maxent are necessary
for using kuenm; R libraries imported are listed in Table S1 . Additional information and a
step by step guide for using the main functions of this package can be found in its GitHub
repository (https://github.com/marlonecobos/kuenm).
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EXAMPLE APPLICATION

Species and environmental data

For demonstrating the use of this package, we used as case studies the Turkey Tick,
Amblyomma americanum (Linnaeus, 1758), and the Cuban Small-eared Toad, Peltophryne
empusa Cope, 1862. Occurrence data were collected from online databases and the
scientific literature (Alonso Bosch, 2011). As environmental predictors, we used 15
variables from the WorldClim database version 1.4 (Hijmans et al., 2005; available at
http://www.worldclim.org), excluding the four that combine temperature and precipitation
owing to known artifacts (Escobar et al., 2014). We clipped the environmental data layers
to calibration areas defined as continental areas included within a buffer of 100 km
around the tick occurrences in United States, and the entire Cuban Archipelago for the
toad. Variables representing current climates and two future scenarios (representative
concentration pathways; RCP 4.5 and 8.5) for the NCAR-CCSM4 general circulation
model were used as transfer layers. Future data layers were obtained from the CGIAR
Research Program on Climate Change, Agriculture and Food Security database (available
at http://www.ccafs-climate.org/data_spatial_downscaling/). Predictors were obtained at a
spatial resolution of 10" for the tick and 30” for the toad.

We used jackknife processes in Maxent and correlation analyses to select distinct sets
of variables that contributed most to models, eliminating one variable per pair with
correlations of r > 0.8 (Table S2). We eliminated duplicates and reduced effects of spatial
autocorrelation by thinning records with a distance of 50 km for the tick (final N = 185)
and 5 km for the toad (final N = 67), using the spThin package (Aiello-Lammens et al.,
2015) in R 3.4.4 (R Core Team, 2018). We set aside one data subset for independent model
testing (7 occurrences for the tick and 3 for the toad; for demonstration purposes only) and
split the remaining occurrences randomly into 50-50% (tick) and 75-25% (toad) subsets
for model calibration and internal testing, respectively.

Model calibration

For each species, we created 1,479 candidate models by combining 3 sets of environmental
predictors, 17 values of regularization multiplier (0.1-1.0 at intervals of 0.1, 2—6 at intervals
of 1, and 8 and 10), and all 29 possible combinations of 5 feature classes (linear = 1,
quadratic = g, product = p, threshold = t, and hinge = h). We evaluated candidate model
performance based on significance (partial ROC, with 500 iterations and 50 percent of data
for bootstrapping), omission rates (E = 5%), and model complexity (AICc). Best models
were selected according to the following criteria: (1) significant models with (2) omission
rates <5%. Then, from among this model set, models with delta AICc values of <2 were
chosen as final models. Candidate model creation was performed using the kuenm_cal
function and candidate model evaluation and best model selection was done using the
kuenm_ ceval function.

Final models, evaluation, and extrapolation risk
We created final models for the two species using the full set of occurrences and
the selected parameterizations (Table 2). We produced 10 replicates by bootstrap,
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Table 2 Model performance under optimal parameters (*) and default parameters (~), regarding regularization multiplier (RM), feature
classes (FC), and sets of predictors (Pred. Sets), for the models of the example species. Delta AICc of models with default settings are relative
to the selected models. Bold numbers indicate final models that met the statistical significance and omission rate criteria during evaluation with
independent data.

RM FC Pred. Sets partial ROC Omission AICc Delta AICc Weight AICc Number of
rate 5% parameters

Tick

*0.10 Igp Set 3 0.00 0.04 3346.46 0.00 0.95 14.00

~1.00 lgph Set 1 0.00 0.08 3385.65 39.19 0.00 41.00

~1.00 lgph Set 2 0.00 0.08 3358.27 11.81 0.00 29.00

~1.00 lgph Set 3 0.00 0.09 3348.13 1.67 0.00 22.00

Toad

*0.70 P Set 3 0.05 0.00 1508.23 0.00 0.34 3.00

*0.10 Pq Set 3 0.03 0.00 1508.39 0.16 0.98 9.00

*3.00 Iqt Set 3 0.04 0.00 1509.89 1.66 0.11 3.00

*4.00 lh Set 3 0.04 0.00 1510.08 1.86 0.08 3.00

~1.00 Igh Set 1 0.29 0.25 1531.90 23.67 0.00 17.00

~1.00 Igh Set 2 0.29 0.25 1524.25 16.03 0.00 14.00

~1.00 Igh Set 3 0.16 0.19 1530.01 21.78 0.00 14.00

with logistic outputs, and transferred these models to the world (for the tick) and
all of the Cuban Archipelago (for the toad) for current and future scenarios (note
that any number of scenarios can be included). Final model evaluations consisted of
calculations of partial ROC and omission rates (based on E = 5%) using the independent
dataset. Final models and their evaluations were performed with the kuenm_mod and
kuenm_feval functions, respectively. When more than one best model was selected,
we used the median of all replicates across parameters to consolidate results for

the species. To identify extrapolation risks in model transfers, we performed MOP
analyses for each species using the kuenm_mmop function. All analyses starting
from model calibration, and the production of R Markdown files containing the
codes used for running these processes (created using the kuenm_start function,
available at https://github.com/marlonecobos/kuenm/tree/master/replicate_examples)
were performed using the kuenm R package.

Case study outcomes

First, we explore the performance of the candidate models with respect to each of the
three evaluation criteria separately. All candidate models resulted statistically significantly
better than null expectations (i.e., predictions from the models coincided with testing
occurrence data more frequently than would be expected by random association of points
and a prediction of that areal extent) for the tick, but only 7.0% (103) were significant for
the toad. Of the candidate models, 13 and 93 models met the omission rate criterion for
the tick and the toad, respectively. Referring to the global minimum AICc value, for the
tick, 5 models had delta AICc values <2, but for the toad none of the significant candidate
models was close to the global minimum; note that we do not use the global minimum

Cobos et al. (2019), PeerJ, DOI 10.7717/peerj.6281 8/15


https://peerj.com
https://github.com/marlonecobos/kuenm/tree/master/replicate_examples
http://dx.doi.org/10.7717/peerj.6281

Peer

AICc values in selection of final models, but rather we use the minimum AICc among the
significant and high-performing candidate models as our reference point.

Applying the three evaluation criteria together, for the tick, only one candidate model
met the full suite of selection criteria; for the toad, however, four candidate models met the
criteria (Table 2). None of the models calibrated on default settings in Maxent was selected
as optimal; in fact, for the toad, none of the default-settings models was even statistically
significant. After final model evaluation, the ENM for the tick and three of the four final
models for the toad met both statistical significance and omission rate criteria. MOP results
indicated broad areas of strict extrapolation for the tick for all transfer scenarios; for the
toad, only small areas of strict extrapolation were detected in future scenarios.

Analyses took ~10 h to process per species on a laptop computer with an i5 processor
and 4GB of RAM. Note that the number of parameter combinations tested and the number
of scenarios of transfer may increase or decrease processing time markedly.

DISCUSSION

This package allows detailed calibrations of ecological niche models in Maxent, helping
to select among complex and numerous sets of parameters those that demonstrate best
performance based on significance, predictive ability, and complexity level. Other options
for Maxent model calibration exist (e.g., Muscarella et al., 2014); however, we introduce an
alternative that allows consideration of more parameter settings (particularly different sets
of environmental variables) and a more robust metric of statistical significance (i.e., partial
ROC). Consideration of alternative environmental predictor variables during calibration
has previously been recognized as of special importance (Peterson et al., 2011; Peterson,
Cobos & Jiménez-Garcia, 2018), yet it has not been included in model calibration and
selection efforts to date. Although one could argue for including all of the environmental
variables, and simply trusting in regularization and internal up- or down-weighting of
variable contributions within Maxent processing, our experience indicates that such steps
can lead to overfit models (Peterson, Papes ¢~ Eaton, 2007).

As seen in the example applications, each species is different, and modeling ecological
niches of different species will have distinct results in each phase. For instance, for the
tick, all candidate models were significant, but for the toad (a Wallacean species, sensu
Saupe et al., 2012: a species whose distribution is limited more by its accessible area than
by the presence of limiting ecological conditions), only ~7% were significant (Fig. 3).
All candidate models created with default settings in Maxent for the toad produced
non-significant models (Table 2), supporting the use of significance as a first criterion in
filtering candidate models.

ENM transfers to future or past climate scenarios have become a common element
in diverse analyses in biogeography and conservation (Sequeira et al., 2018). This transfer
step, however, can lead to problematic extrapolations (Elith et al., 2011). Dealing with these
problems is not easy, and inappropriate interpretations can be made in extrapolative areas
(Figs. 4G—4H). The MOP analysis (Owens et al., 2013) is, therefore, a valuable tool for
dealing with these problems by performing robust identifications of extrapolation risks.
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Figure 3 Omission rates and AICc values for all, non-significant, and selected “best” candidate mod-
els for the tick (A) and the toad (B). Models were selected based on statistical significance, omission rates,
and AICc criteria.
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Using this package allows users to manage model complexity in dimensions not easily
manageable before, as the algorithm goes beyond software settings to include different sets
of environmental predictors. Note that, depending on the selection criteria, more than one
set of parameters may result in models that show best fit to the data (Table 2). Since this
package allows creating suites of models with multiple sets of parameters, considering all
of them in concert will improve the quality and robustness of the predictions. If more than
one best model is selected, creating a consensus among those predictions will require an
additional step, such as calculating the median, mean, or another metric of model agreement
across parameter sets. The kuenm package differs from other similar packages in various
aspects: (1) it offers a more rigorous process of model evaluation that includes partial
ROC (a metric more robust than traditional ROC, and not considered in other similar
packages) and automates best model selection; (2) it allows the users to test distinct sets
of environmental variables, which can be used to test hypothesis of variable contribution,
or to test among distinct calibration areas; (3) it automates ENM processes that have not
been automated before (e.g., final model creation using multiple extrapolation options
and transferring models to various scenarios at the time); and (4) it offers the chance to
use the MOP metric in a context in which extrapolation risks can be analyzed for multiple
scenarios to which models were transferred. These characteristics of the package make it a
good option for creating more robust ENMs using Maxent considering important sources
of model variation and uncertainty given by the multiple options of software settings and
input data.

We used Maxent in this package in view of Maxent’s wide use within the ENM
community (Merow, Smith & Silander, 2013) and its flexibility for setting parameters.
Future releases will include other functions for preparing data for ENM, and for performing
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Extrapolation risk in future projections (MOP results).

Full-size &) DOLI: 10.7717/peerj.6281/fig-4

other post-modeling analyses; for instance, tools for assessment of model variation deriving
from diverse sources (e.g., Peterson, Cobos ¢ Jiménez-Garcia, 2018). Although running
these routines can be time-consuming, we note that model calibration steps can be
similarly cumbersome in other biological optimizations, such as choosing evolutionary
models for estimating phylogenetic trees (Nylander, 2004).
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