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Abstract
Losses of coastal wetlands have been observed worldwide, but the extent to which inland wetlands have
been exploited by humans is currently unknown on a global scale. Here, we map the distribution of land
reclamation over global inland and coastal wetlands using high-resolution satellite observations. Results
show that the total area of reclaimed wetlands was 132,886 km2 globally, with about 2/3 contributed
from inland wetlands. From 1984 to 2020, the net gain of reclaimed inland wetlands (26,385 km2) was
1.6 times that of coastal wetlands (16,371 km2), due primarily to reduced coastal exploitation in the last
decade. We identi�ed signi�cant contributions of wetland reclamation to �shery production, and further
revealed greater reclamation rates within than outside protected areas. Our study highlights that the more
intensively reclaimed inland wetlands should be highly prioritized, and our global synthesis provides a
critical benchmark for assessing potential consequences of wetland exploitation and for future
restoration efforts.

Main Text
Inland and coastal wetlands have been exploited for centuries, to accommodate anthropogenic pressures
for food security and urban development1,2. These exploited wetlands were mainly reclaimed for
agricultural or aquacultural purposes (Extended Data Fig. 1); although with apparent socio-economic
bene�ts, they could also cause potential environmental and ecological consequences, such as
biodiversity loss and water quality deterioration3,4. For example, reclamation has caused a 73% reduction
of mangrove coverage in China in the past �fty years5, causing a substantial loss of carbon stocks,
increasing the risks of coastal erosion, and threatening the habitats of various aquatic organisms6–9.
Almost all of the world’s freshwater consumption and > 40% of all living species rely on wetlands, yet the
rate of wetland loss is reported to be three times faster than forests10. This calls for an urgent need for a
better understanding of the con�ict between socio-economic development and the eco-environmental
safety of wetland ecosystems.

Detailed characterization of land-use transformations over global wetlands is the �rst step toward future
strategies for the sustainable management of natural resources. Recently, high-resolution satellite-based
maps of the extent and dynamics of marine coastal wetlands, such as tidal �ats, mangroves, and salt
marshes, have become available11–13. Previous studies have utilized these datasets to achieve a
consensus on the overall degradation of global coastal wetlands4,14,15. However, it is challenging to
further differentiate undisturbed natural wetlands from those converted into agricultural lands or
aquaculture ponds, which all could be seasonally inundated and with vegetation growth, hitherto
hindering accurate assessments of their distinct ecosystem functions. Furthermore, the reclamation of
lakes and river �oodplains was also reported worldwide1,16, and could potentially cause more immediate
adverse impacts on humans (such as �oods) than the reclamation of coastal wetlands17. However, the
extent to which inland wetlands have been developed is currently unknown on a global scale.
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Here, we applied a deep learning method to identify human-reclaimed areas over global inland and
coastal wetlands using 30-m resolution satellite observations, addressing two fundamental questions: (i)
where and how have global inland and coastal wetlands been exploited over the past four decades? and
(ii) have exploitation activities intensi�ed within this timeframe? We examine these questions at national,
regional, and global scales.

Mapping Reclaimed Areas In Global Inland And Coastal Wetlands

To map human-reclaimed wetlands, we used the Global Surface Water Occurrence (GSWO) dataset18 and
a deep-learning algorithm (see Methods). The GSWO dataset was generated using 4.5 million 30-m
resolution Landsat images acquired between 1984 and 2020. For every 30×30-m pixel, the dataset
provides a time series of the probabilities of water present within the pixel. An automated deep learning
classi�cation algorithm was applied to identify wetlands characterized by evident human modi�cations
(e.g., regular shape boundaries and uniformly arranged patterns) from the GSWO data, reclaimed mainly
for agricultural or aquacultural purposes (Extended Data Fig. 1 & Extended Data Fig. 2). Validation using
high-resolution images from Google Earth show overall accuracies of > 90% for the classi�cation of
reclaimed wetlands (Extended Data Table 1), with similar performance for both inland and coastal
wetlands. Here, we de�ne coastal wetlands as regions within 30 km of distance from the coastline and
with a surface water connection to the sea. We applied the algorithm to water occurrence data during
three time periods (1984–2000, 2001–2010, and 2011–2020), and used their combined area as the total
area of reclaimed wetlands over the past four decades. We further gridded the data into 1°×1° grid cells,
and analyzed the associated long-term changes across three time periods.

Spatial Patterns

A total of 132,886 km2 of wetlands have been reclaimed globally, of which 85,762 km2 (64.5%) and
47,124 km2 (35.5%) were located in inland and coastal regions, respectively (Fig. 1). Most wetlands
reclamations are found in low elevation (< 10 m, Extended Data Fig. 3) and are distributed within the
latitudinal band of 5°S-40°N. Freshwater lakes were hotspots of human exploitation, representing 58.4%
of the total area of transitioned inland wetlands.

Global wetland reclamation was primarily found in Asia, accounting for 65,095 km2 (75.9%) and 40,618
km2 (86.2%) of total inland and coastal areas, respectively. Almost all countries in South and Southeast
Asia experienced intensive human exploitation along coastlines, with marked reclamations also identi�ed
in low-altitude inland regions (Extended Data Fig. 3). As a result, 8 of the 10 countries with the largest
transitioned wetlands were found in Asia (China, Vietnam, Indonesia, India, Thailand, Uzbekistan,
Pakistan, and Myanmar), with China alone accounting for 38.1% (40,322 km2) of the total global
transformation (Fig. 2a). These results are consistent with the �ndings of previous localized studies1,5.
Unexpectedly, although small in size and with a limited coastline, Vietnam (21,446 km2) ranked second



Page 5/20

globally in transitioned area, with human-transformed wetlands accounting for 6.6% of the country’s
territory (Fig. 2b). Similar disproportionally large shares of wetland transitions were also found in many
other Southeast Asian countries (such as Singapore, Thailand, Cambodia, Myanmar, Indonesia)
(Supplementary Table 3).

Intensively reclaimed inland wetlands were also identi�ed in the USA (especially in California, Florida, and
alongside the Mississippi River), making it the third largest country of reclaimed wetlands, even though
coastal wetlands there were less developed (Fig. 2a). Other heavily exploited regions were found in
Mexico (especially along the coast of the Gulf of California), Ecuador (Río Guayas River Delta), Egypt (the
Nile River Delta), and Iraq (the �oodplain of Tigris-Euphrates river system), highlighting the heterogeneous
distributions of human-transformed wetlands and the importance of the synoptic view provided by
satellite remote sensing.

Based on the interpretation of global probability samples (see Methods), we estimated the proportions of
the two major land-use transformations: paddy �elds and aquaculture ponds. Most of the reclaimed
wetlands (~ 94%) were used for paddy �elds or aquaculture ponds, but their contributions varied by
region: paddy �elds dominated inland wetlands, while aquaculture dominated coastal wetlands, in both
cases representing > 60% of wetland transformations in these respective regions (Extended Data Fig. 4).
Areas of wetland reclamation for other purposes (e.g., salt ponds, mine ponds, tailing ponds, treatment
plants) were much smaller (~ 6%), but they represent major contributions in Africa (33.1% for inland and
47.2% for coastal regions, respectively). It should be noted that the reclamation types related to dry
season paddy rice production and rainy season aquaculture production are practiced in a seasonal
rotation scheme in some regions (Extended Data Fig. 1 & Extended Data Fig. 5), posing challenges to
differentiate them further.

Long-term Trends
Wetland reclamation showed steady increases in both inland and coastal wetlands across the three time
periods of 1984–2000, 2001–2010, and 2011–2020 (Fig. 3). Yet, the net areal gain over inland wetlands
(+ 26,385 km2) was 1.61 times that in coastal areas (+ 16,371 km2) over the past four decades, and with
spatially and temporally divergent patterns.

From 1984–2000 to 2001–2010, the global net gain of reclaimed areas was comparable between inland
(+ 12,757 km2 or + 34%) and coastal (+ 11,842 km2 or + 53%) wetlands (Fig. 3). The increases in inland
water transitions were the result of high expansion rates in Asia (+ 43%), South America (+ 95%), and
North America (+ 18%), whereas minor increases were found in Africa and Oceania (both < 2%), and a net
loss (-24%) was observed in Europe (Fig. 4a). Meanwhile, the most intensi�ed coastal exploitations were
detected in North America (+ 58%) and Asia (+ 59%), while losses of reclaimed wetlands were found along
European coastlines (-12%) (Fig. 4b).
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From 2001–2010 to 2011–2020, widespread reclamation of inland natural wetlands was found across
all six continents, resulting in an areal gain of + 13,628 km2 (+ 27%) (Fig. 4a). By contrast, the global
increases in transitioned coastal wetlands (+ 4,528 km2 or + 13%) were much smaller than those of the
earlier period, due primarily to the substantially decelerated expansion rates in North America and Asia
(rates decreased by > 40%), although reclamation expanded in Africa (+ 26%) and Europe (+ 23%)
(Fig. 4b).

For all global 1°×1° grid cells, we classi�ed the change trajectory of wetland reclamation within three time
periods into �ve patterns (see Methods): continuous increase, continuous decrease, decrease then
increase, increase then decrease, and stable (Fig. 3). Continuous increases were found in 21% and 30% of
the global inland and coastal grids, respectively, and the spatial patterns align closely with those of the
most intensively exploited regions (such as Asia, USA, and South America) (Fig. 1 & Extended Data
Fig. 6). By contrast, recent decreases were identi�ed in some reclamation hotspots (i.e., increase then
decrease), which could be due to an increase in the restoration of natural wetlands (Extended Data
Fig. 7a-f) or further transition into non-wetlands (Extended Data Fig. 7g-l). The least common pattern
detected in grid cells was continuous decrease (< 5%), and was primarily found in Eastern Europe.

Impacts And Implications Of Human-reclaimed Wetlands
Exploitation of wetlands has contributed substantially to the increase of agri-food production over the
past decades. Our analysis revealed signi�cant correlations not only between �shery production and total
areas of reclaimed aquaculture ponds at the national level (Extended Data Fig. 8a; R = 0.9, P < 0.05), but
also between the changes in these two variables from 1984–2000 to 2011–2020 (Extended Data Fig. 8b;
R = 0.8, P < 0.05). Furthermore, the reported larger increase in freshwater aquaculture than mariculture in
the past 20 years19 also agreed with the more intensive exploitation over inland than coastal zones
(Fig. 1). In fact, the intensi�cation of wetland reclamation and the associated development of
aquaculture played a crucial role in alleviating poverty in various South and Southeast Asian countries20

and sub-Saharan Africa21. Moreover, the substantial wetland conversion into agricultural land (i.e., rice
paddies), especially from inland freshwater lakes, supported the increasing food demands of many
developing countries22.

The recently decelerated development of coastal wetlands could be ascribed to the widespread efforts on
coastal conservation and restoration23. A recent study also detected a rebound of coastal wetlands in
China following a national conservation strategy enacted in 201224. We further compared the areal
changes in wetland reclamation within and outside global protected areas (de�ned by the World
Database on Protected Areas). The increasing rates of reclaimed areas were found to be even greater
within than outside protected areas, for both inland and coastal wetlands and across different periods
(Extended Data Fig. 9), which indeed raises some conservation concerns. Although such unexpected
patterns did not apply to all countries, our results indicate that the implementation of conservation plans
should be improved in the future.
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Although providing many socio-economic bene�ts, transitions of natural wetlands could cause
degradation of inland and coastal ecosystem services. In China, freshwater aquaculture in some eastern
provinces represents > 20% of the total nutrient pollution, posing threats to drinking water resources.
Nutrients released from reclaimed marine ponds to the coastal environment could reach similar levels to
those exported from rivers in some highly polluted regions25,26. In many other countries and regions, over-
intensi�cation of coastal aquaculture has created excessive nutrient enrichments23, contributing to the
emergence of harmful algal blooms that have triggered hypoxia and mass �sh mortality events, beach
closure and other environmental disasters27–29. Moreover, the intensi�cation of coastal aquaculture,
mostly in South and Southeast Asia, could increase the potential impacts of sea level rise and extreme
weather events on people’s livelihoods and the regional economy at large4,5,30. Nevertheless, our
temporally and spatially detailed maps provide essential baseline information to perform a global-scale
assessment of the adverse environmental and ecological consequences of wetland exploitation.

Our study’s major contribution and improvement over previous efforts is to provide the �rst spatially
explicit global synthesis of the human footprint on inland and coastal wetlands. Admittedly, the extent to
which natural processes (i.e., sea level rise, coastal erosion, storms)8,9,31 have modulated global wetlands
was not discussed here. However, our results reveal the great extent to which humans are modifying
wetlands, demonstrating that the exploitation of inland wetlands was more intensive than in coastal
zones, especially during the last decade. Compared to the coastal environment, the global environmental
impacts of inland wetland loss are understudied and often overlooked by decision-makers19,23,32,
highlighting the urgency of future investigation, management, and mitigation efforts to focus on the
especially vulnerable inland wetlands. Furthermore, the International Union for Conservation of Nature
(IUCN) has recently set an ambitious target to protect 30% of the planet by 203033, and our benchmark is
expected to aid in the future designation of new protected areas and in evaluating the effectiveness of
this policy.
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Methods
Global Surface Water (GSW) dataset

The Global Surface Water (GSW) dataset was developed by the European Commission's Joint Research
Centre (JRC), and maps the spatio-temporal distribution of surface water at the global scale (60°S − 
80°N) using 30-m Landsat imagery acquired from 1984 to 202018. The GSW occurrence (GSWO) provides
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the probability of historical water presence (with a range of 0–100%) over the past four decades. We also
used the JRC Monthly History Collection (or MHC, version1.3) data to generate the water occurrence for
three separate time periods (1984–2000, 2001–2010, and 2011–2020). The MHC data provides monthly
classi�ed images over the past four decades, where each 30-m resolution pixel was classi�ed into water,
non-water, or no data on a monthly basis. We used the water occurrence images to (i) prepare the training,
validation, and testing labels of human-reclaimed wetlands for the classi�cation approach, and (ii)
examine changes in global reclaimed wetlands across different periods. The GSW dataset is available at
Google Earth Engine (GEE) (website: https://earthengine.google.com/), and the generation of water
occurrence for different periods was also performed through GEE.

Classifying human-reclaimed wetlands using deep learning

The human-reclaimed wetlands we mapped here include two major land-use types: paddy �elds and
aquacultural ponds (Extended Data Fig. 1); other occasional reclamation purposes (e.g., salt ponds, mine
ponds, tailing ponds for the industrial mining process, water treatment plants, and stormwater treatment)
can also be identi�ed over inland and coastal wetlands. In theory, human-reclaimed wetlands can be
determined manually through moderate to high-resolution satellite images34, due to their distinct features
from natural wetlands (i.e., regularly-shaped boundaries and uniformly-arranged patterns) (Extended Data
Fig. 1). However, global mapping of reclaimed wetlands has encountered at least two major challenges:
1) spatially and temporally varied inundation conditions, making it di�cult to characterize the wetland
features using snapshots of satellite images; 2) the spectral features of reclaimed and natural wetlands
are similar in many cases (i.e., reclaimed aquacultural ponds vs. natural waters, and crops in paddy �elds
vs. natural wetland vegetation), posing large uncertainty for image classi�cations with multispectral
satellite observations. Fortunately, the water occurrence dataset, generated using 30 m-resolution
historical Landsat images, can resolve these problems and provide insight into the inundation patterns on
global surface water18. Apart from giving an indicator of differentiating permanent waters, seasonal
waters, and land, the water occurrence also magni�es texture differences between human-reclaimed and
natural wetlands (Extended Data Fig. 1). As such, we utilized a deep learning-based image segmentation
method to determine global reclaimed inland and coastal wetlands using the water occurrence dataset.

Preparing reliable labels is the �rst step for applying supervised machine learning approaches. In practice,
we visually interpreted and manually delineated human-reclaimed wetlands over GSWO images for 133
sites (ranging from 35.8 km2 to 19795.3 km2) distributed across different continents. For each site, we
drew a box to determine both positive (human-reclaimed wetlands) and negative (others) samples within
each box (Extended Data Fig. 2). We additionally selected 131 no-reclamation sites (ranging from 6.0 km2

to 7886.7 km2) with only negative samples, because the negative samples in the above 133 sites were
insu�cient to represent the various types of natural wetlands (e.g., tidal �ats, densely-distributed lakes,
intertidal zones, and �oodplains). When preparing the labels, we also veri�ed their validity using high-
resolution Google Earth images. In total, we delineated 15,731.7 km2 of positive (9,884.94 km2 for inland
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and 5,846.76 km2 for coastal wetlands) and 85,712 km2 of negative labels (77,031.69 km2 for inland and
8,680.31 km2 for coastal wetlands).

We adopted the U-Net architecture to classify human-reclaimed wetlands, which was initially developed
for tree mapping by Brandt et al.35. The U-Net is a convolutional neural network (CNN) architecture for
fast and precise image segmentations36. It incorporates a contracting and an expansive path that is
designed explicitly for concatenation with the correspondingly down-sampled feature map from the
contracting path (6). The U-Net architecture can combine features from different spatial regions of the
image and thus increase the performance of locating areas of interest, and its intelligence in training end-
to-end from very few images and allowing the prediction of full context and global locations and texture
simultaneously has been demonstrated36–38.

We adopted the improved settings to the classic U-Net architecture by Brandt et al. (5), including two
convolution layers, max pooling, and batch normalization. We further made the following essential
adjustments to match our task (Supplementary Table 1):

First, we did not normalize the GSWO images or patches of GSWO images, because the procedure of
producing GSWO images already counterweighs the impacts of no data induced by cloud cover and
seasonality in data volume18. We also omitted the pixel-wise weight maps during training as it was set
specially for tree mapping in Brandt et al. (5).

Second, we enlarged the patch size from 256×256 to 512×512 pixels, since larger patches represent more
exclusive features of human-reclaimed wetlands. Besides, the patches were sequentially sampled with a
1/4 overlap within boxes instead of using random sampling during training. In some cases, while random
sampling made the �nal model perform well on all sampled patches of the training and validation
datasets, the model showed poor generalization performance in independent areas out of these sampled
areas. However, sequentially sampling ensured all pixels in boxes could be included in the training
procedures, and the 1/4 overlap also allowed that image features at the borders of adjacent patches
could be fully learned by the U-Net model.

Third, the piecewise a�ne, perspective transformation, and linear contrast enhancement in data
augmentation were not applied. This is because piecewise a�ne and perspective transformation tends to
distort regularized boundaries of reclaimed wetlands, and linear contrast enhancement could change the
water-occurrence range (0%-100%).

Fourth, we developed a new loss function to train the U-Net model. (20). The original form adopted by
Brandt et al. (5) was the Tversky loss, which performs well for unbalanced data due to its ability to weigh
the penalties of false positives and false negatives during training39. However, the Tversky loss only
contributes to model training when a batch incorporates at least one patch with positive samples
(Eq. (1)). As some of our training images only contain negative samples (such as the additionally
prepared 131 boxes), we revised the loss function as follows:
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(i) If a batch has positive samples, we used the same Tversky loss as in Brandt et al. (5):

1

where TP are true positives, FP are false positives, FN are false negatives, respectively, and where α + β = 1
holds for the two weights. The Tversky loss is modulated by changing the weights (α and β) of FP and
FN. We �nally set  = 0.6 and  = 0.4 in Tversky loss to balance the commission and omission errors.

(ii) If a batch only constitutes negative samples (i.e., TP = 0), the loss function (denoted as Neg loss) was
designed as follows:

2

where Pi is the predicted probability for each pixel in all patches of a batch. The closer thePi to 1, the
greater the probability of being predicted as positive. N is the number of pixels. The Neg loss aims to
reduce the cases that negative samples are incorrectly identi�ed as positive samples in a batch with no
positive samples. The combination of the Tversky loss and the Neg loss function balances the focus on
positive samples and negative samples, and is applicable when the training dataset has a large number
of negative samples.

We split the labels in the 264 boxes into training (50%), validation (30%), and testing datasets (20%) to
perform the hyperparameter tuning of the U-Net (Supplementary Table 1), and we monitored the model
performance by comparing several performance metrics, including recall, precision, F1 Score, and MIoU
(Mean Intersection over Union):

3

4

5

Tverskyloss = 1 −
TP

TP + α ∗ FP + β ∗ FN

α β

Negloss =
∑8

i=1 Pi

N

Recall =
TP

TP + FN

Precision =
TP

TP + FP

F1Score = 2 ∙
Precsion ∙ Recall

Precision + Recall
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6

where TN are true negatives. After several rounds of hyperparameter tuning, we �nalized the trained
model with the hyperparameter settings listed in Supplementary Table 1.

Our trained model exhibited a balanced performance in training, validation, and test datasets, as
demonstrated by their similar high values in all four accuracy indices (> 0.83, see Supplementary
Table 2). Besides these pixel-wised accuracy matrices, we compared the predicted and labeled human-
reclaimed areas within 96 randomly selected patches (512×512 pixels) in the testing datasets. The
results also demonstrated favorable agreements between these two areal estimates (R2 = 0.92, root-
mean-square error (RMSE) = 5.12 km2, see Supplementary Fig. 1).

We applied the well-trained U-Net model to global water occurrence maps over three periods (1984–2000,
2001–2010, and 2011–2020) to generate the maps of human-reclaimed wetlands. Then, we adopted an
extensive post-processing procedure for potential artifacts on our predicted global maps. For example,
the stripes over Landsat 7 ETM + data could also produce straight boundaries similar to human-reclaimed
wetlands, and we ensured that all such misclassi�cations were removed. After post-processing, we
converted the global raster maps of human-reclaimed wetlands over three periods into polygons for
further analysis.

Reference samples used to assess classi�cation accuracies

We selected 10,553 reference points over high-resolution (sub-meter) Google Earth images to evaluate the
accuracy of our mapped human-reclaimed wetlands, where the points were selected through a strati�ed
random sampling strategy40. We only sampled one point within a polygon of predicted reclaimed
wetlands, and ensured every country with reclaimed wetlands had at least one validation point. Sample
points within the polygons of reclaimed wetlands (i.e., positive samples) were randomly selected (i.e., see
Supplementary Fig. 2), and negative samples were selected within 1 km buffer zone but outside the
polygons. The total positive and negative validation sample points were 5276 and 5277, respectively, and
were distributed globally along the coast (5530 points) and within inland areas (5,023 points) (see
Supplementary Fig. 2). For each point, we checked all available high-resolution historical images (2011–
2020) on Google Earth, and the points would be deemed as reclaimed wetlands if more than half of these
images show features of human reclamation. Comparisons between referenced random points and the
GSWO-predicted maps showed high accuracy levels in both inland and coastal regions, demonstrated by
the high values in users, producers, and overall accuracies (mostly > 90%, see Extended Data Table 1).
Note that we only validated the wetland reclamation map in 2011–2020, because high-resolution images
were not available in the early period of Google Earth in many regions. Note that, additional uncertainties
in our predicted maps could also include the omission errors (> 20%) of seasonal waters for the JRC MHC
products18, leading to underestimates in areas of global reclaimed wetlands (reclaimed paddy �elds

MIoU = [ + ] /2
TP

TP + FP + FN

TN

TN + FP + FN
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often show seasonally-inundated patterns). Thus, our estimate represents an underestimation of the total
human reclamation occurring in wetlands.

Analyzing the use of wetland reclamation

When performing the accuracy assessments, high-resolution Google Earth images also helped us to
identify the reclamation purposes of the sampled regions (Extended Data Fig. 1). As such, the proportion
of the major reclamation purposes could be represented by these global probability samples; this method
was also widely adopted by previous land cover studies14,41. A total of 2492 and 2242 reference points
were predicted as reclaimed inland and coastal wetlands (Extended Data Table 1), respectively, and we
further assigned a reclamation type for each point (paddy �elds, aquacultural ponds, or others) by
visually interpreting the corresponding high-resolution Google Earth images. The points assigned as
others include arti�cial wetlands for various industrial purposes (e.g., salt ponds, tailing ponds for the
industrial mining process, mine ponds, and stormwater treatment areas). We calculated the global and
continental proportions of three reclamation types in inland and coastal wetlands (Extended Data Fig. 4).
We acknowledge that further distinction between paddy �elds, aquacultural ponds, and others remains
challenging due to the similarities in spectral features and inundation patterns, with the additional
di�culty of seasonal rotations between different reclamation purposes found in some regions (Extended
Data Fig. 5).

Analyzing global spatial and temporal patterns

To compare the extent and change in human-reclaimed wetlands over inland and coastal regions, the
boundaries of coastal and inland wetlands need to be differentiated. We de�ned coastal wetlands as
potentially inundated areas (i.e., water occurrence of ≥ 1%) within 30 km of the coast and with a direct
water connection to the ocean. Speci�cally, we used the Open Street Map (OSM) dataset to determine
ocean boundaries (the water layers of OSM de�ne global water-related surfaces (60°S − 90°N) at 3sec
resolution (~ 90 m at the equator)42, and we rasterized the associated surface water maps and excluded
regions with water occurrence < 1% in the GSWO map or with > 30 km distance from the coast. Then, we
determined ocean-connected regions using an 8-neighborhood method43. By contrast, all other wetlands
outside these pre-de�ned coastal areas were considered inland wetlands. Note that, the distance used in
previous studies to de�ne coastal areas ranged from 1 to 100 km depending on the focus of
interest13,14,44. Our sensitivity analysis revealed that the reclamation on coastal wetlands was less
intensive than inland wetlands even with a distance of 100 km used to de�ne the coastal zone, similar to
the results here using 30 km.

We estimated the total area of human-reclaimed wetlands over the past four decades as the combined
area of wetland reclamation over all three time periods (1984–2000, 2001–2010, and 2011–2020). We
further gridded the global data into 1°×1°cells (see Fig. 1), and examined the areal changes in human-
reclaimed wetlands across different time periods. We classi�ed the changing trajectory for each 1°×1°into
�ve patterns: continuous increase, continuous decrease, decrease then increase, increase then decrease,
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and stable (see Fig. 3). The area of reclaimed wetlands within a grid cell was considered stable if the
areal change between two periods was < 1 km2. Note that when a human-disturbed wetland was further
converted into a non-wetland (i.e., built-up areas or roads) or restored into natural wetlands within one
period, it would be excluded from detection in the subsequent period.

We compared the total area of human-reclaimed wetlands and associated changes between inland and
coastal regions, and also performed continental and country-level statistics (Fig. 2, Fig. 3, Fig. 4,
Supplementary Table 3), using the boundaries provided by the marine region geodatabase
(https://www.marineregions.org/downloads.php).

We examined the elevation distribution of human-reclaimed wetlands based on the SRTM elevation data
(Extended Data Fig. 3)42,45. We further estimated the proportion of reclaimed inland wetlands in lakes,
using lake boundaries as de�ned in the GLAKES dataset46; GLAKES provides the maximum extent of > 
3 million lakes with a surface area > 0.03 km2.

Analyzing the potential impacts of wetland reclamation

We examined the potential contribution of wetland reclamation to �shery production by analyzing the
correlation between areas of aquacultural ponds and aquacultural production. Country-level aquaculture
production data provided by the Food and Agriculture Organization (FAO) of the United Nations was
obtained via https://ourworldindata.org/grapher/aquaculture-farmed-�sh-production. For each country,
we summed the reclaimed areas for inland and coastal wetlands, and then multiplied their corresponding
proportions of aquacultural ponds to estimate the total area of aquacultural ponds (Fig. 1). The areas of
reclaimed aquacultural ponds were estimated for the overall (1984–2020), the start (1984–2000), and
the end (2011–2020) periods. During this calculation, we assumed that the proportions of aquacultural
ponds for different countries were the same, and remained stable across different periods. Moreover, the
calculations were performed separately for inland and coastal wetlands, due to their different proportions
of aquacultural ponds (Fig. 1). Meanwhile, we estimated the mean aquacultural production for different
periods (the data for the overall and the end periods were only available through 2018) using datasets
from FAO. We analyzed the correlation between maximum aquacultural production and the total area of
reclaimed aquacultural ponds at the national level for the overall period (Extended Data Fig. 8a). Then, we
further examined the correlation between changes in aquacultural production and changes in reclaimed
areas between the start and the end periods (Extended Data Fig. 8b), and such a relationship could be
interpreted as the sensitivity of aquacultural production to reclaimed areas of aquacultural ponds. We
also attempted to analyze the contribution of reclaimed paddy �elds to agricultural production, but such
a task is impeded for the following reasons: (1) the identi�cation of cultivated crop type in the reclaimed
paddy �elds is technically challenging, and therefore, the associated impacts on the agricultural
production are di�cult to determine. And (2) besides the expansion in arable land, the intensi�ed use of
fertilizer and the improvement in irrigation facilities have contributed substantially to the increase in
agricultural production in the past decades47,48.
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We further compared the change rates of wetland reclamation within and outside global protected areas
between different subperiods (Extended Data Fig. 9), to examine whether the expansion of human
reclamation over global wetlands was reduced in established protected areas. The global protected areas
were obtained from the World Database on Protected Areas
(https://www.protectedplanet.net/en/thematic-areas/wdpa?tab=WDPA), a comprehensive and complete
database showing the extent of terrestrial and marine protected areas across the globe.
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Figures

Figure 1

Global patterns of human-reclaimed wetlands from 1984 to 2020. (a) Inland wetlands.(b) Coastal
wetlands. The data are aggregated into 1°×1° grid cells, and the global total areas and the proportion per
continent are presented within each panel. The proportions of different reclamation purposes
(aquaculture ponds, paddy �elds, and others) are presented using pie charts within the panel. The right
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and underside of (b) show the 1° latitudinal and longitudinal pro�les for both inland and coastal regions.
NA: North America, SA: South America, EU: Europe, AF: Africa, AS: Asia, OC: Oceania.

Figure 2

Country-level statistics for human-reclaimed wetlands. (a) Top 30 countries for the total area of human-
reclaimed wetlands from 1984 to 2020, with the data for lower-ranking countries magni�ed. Areas of
inland wetlands and coastal wetlands are displayed in solid and hollow bars, respectively. (b) Fraction of
human-reclaimed wetlands to country size. The 10 countries/regions with the highest fractions are
presented in the lower left, and their locations are indicated on the global map. Gray-hatched areas
indicate countries/regions with no human-reclaimed wetlands detected by satellite.
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Figure 3

Global patterns of changes in reclaimed wetlands across the three time periods of 1984-2000, 2001-2010,
and 2011-2020. (a) Inland wetlands. (b) Coastal wetlands. The changing trajectory for each 1°×1°grid cell
was classi�ed into �ve types of temporal dynamics: continuous increase, continuous decrease, decrease
then increase, increase then decrease, and stable (see Methods). The bar charts present the total human-
reclaimed areas for different periods, and the pie charts show the fractions of different changing
trajectories.
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Figure 4

Comparison of the total reclaimed areas within different periods (1984-2000, 2001-2010, and 2011-2020).
(a) Inland wetlands. (b) Coastal wetlands. The annotated numbers (in percentage) are the relative areal
changes from the previous to the current period.
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