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global scale from spaceborne radar imagery provided by the Sentinel-1 mission. This new method contributes
significantly to the information depth of freely available data sets, which provide the spatiotemporal patterns of
offshore wind turbines. Furthermore, by combining freely available Earth observation and GIS data, commonly
reported attributes of the offshore wind energy sector are compiled to provide a first impression of how this
data can be used. All attributes are investigated to provide an in-depth overview of the developments in the
offshore wind energy sector over the last five years. Between July 2016 and June 2021, the installed capacity
worldwide grew from 13.5 GW to 40.6 GW. This corresponds to an increase of 27.1 GW or 200%. In total
8885 OWTs were installed until June 2021 with an additional 852 under construction. The European Union
(15.2 GW), China (14.1 GW) and the United Kingdom (10.7 GW) are the three major contributors to the
offshore wind energy sector. China has seen the largest growth in the last five years of 13 GW, followed
by the EU with 8 GW and the UK with 5.8 GW. The provided analysis at the end of this study describes
the offshore wind energy sector in a transition phase between decades of maturity and massive growth at
a time when carbon-neutral energy production is massively supported. Overall the proposed approaches for
independent offshore wind turbine capacity estimation and spatiotemporal investigation of the offshore wind
energy sector can be used by all stakeholders involved in the upcoming challenge of integrated planning and
implementation of offshore wind energy projects.

1. Introduction

In the Climate Pact of the 26th UN Climate Change Conference
(COP26) in 2021, 65 countries agreed to massively decrease the use of
fossil fuels for energy production with a coal phaseout until
2040 (COP26, 2021a). Another agreement urges the transition to
zero-emission vehicles, pointing out the necessity of rapid progress
in charging infrastructure and enabling the electrical grid for the
increasing demand for electric vehicles (COP26, 2021b). These two
goals are exemplary for a long-term carbon-neutral society: Energy
production based on fossil fuels has to phase out while the demand
for electrical power by new, carbon-neutral technologies increases.
Electrical power generation has to change and expand simultaneously
to achieve both goals. Therefore, a major contribution to future energy
production in carbon-neutral societies will be a massive increase in
renewable energy.
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The offshore wind energy sector has grown steadily since 1991
and has become an important contributor to a carbon-neutral energy
mix (Rodrigues et al., 2015). With the current promotion of renewable
energy, there will be a massive expansion in the upcoming decades.
In 2021, the UK government introduced the Net Zero Strategy, which
targets to increase its offshore wind energy capacity from 10.5 GW
in 2020 to 40 GW by 2030 (UK Gov., 2021). With an investment of
EUR 800 billion, the EU announced expanding its offshore wind energy
capacity from 12 GW in 2020 to 60 GW in 2030 and up to 300 GW
in 2050 (EC, 2020). These two strategies will mainly affect the North
Sea Basin. However, with an already ongoing and worldwide most
extensive expansion in China and recently started constructions in the
United States, the South and East China Sea and the US Atlantic coast
are further examples demonstrating the global scale of the offshore
wind energy expansion (Rodrigues et al., 2015). Thus, offshore wind
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energy infrastructure deployment in marine space will increase dra-
matically. Today, many stakeholders are involved, and legal, economic,
and ecological conflicts have to be considered along with the urgent
task of deploying carbon-neutral energy infrastructure (Gusatu et al.,
2020). Therefore, public access to independent information and ongo-
ing monitoring of the offshore wind energy sector is crucial. With the
proposed approach for offshore wind turbine (OWT) installed capacity
estimation from freely available Sentinel-1 data, this study contributes
to adding this most important metric to freely available offshore wind
energy data sets, which describe the spatiotemporal patterns of single
OWTs, but not their capacity.

Recent developments in image processing, especially from the deep
learning domain (Zhu et al., 2017; Ma et al., 2019; Hoeser and Kuen-
zer, 2020), and free access to remote sensing data enable users to
extract small-scale single object entities in large-scale Earth observation
archives (Hoeser et al., 2020). Recently, Hoeser et al. (2022) introduced
the DeepOWT data set, a global data set of offshore wind energy
infrastructure which provides single OWT locations along with their
deployment stages between 2016 and 2021, based on Earth observation
data. In this study, the DeepOWT data set is employed to model the
installed capacity of offshore wind turbines on a local to global scale
and conduct an in-depth investigation of key attributes of the offshore
wind energy sector over the last five years. Therefore, new data, which
highly increases the information depth of the spatiotemporal DeepOWT
data set, is derived from freely available Earth observation images.
Thus, this application of Earth observation and geoinformation is an
example of how the data and techniques from these domains can be
used to investigate the current developments in the offshore wind
energy sector.

2. Related research

Studies of detecting persistent marine infrastructure with Earth
observation data have been carried out to provide data that can be
used to investigate the human impact on marine ecosystems or to
report the development of specific industries like oil production or
offshore renewable energy. Radar remote sensing is specifically suitable
since it is unaffected by clouds and offshore objects appear as bright
backscatter clusters in front of the darker sea with a low backscat-
ter coefficient. These imaging characteristics are commonly used to
investigate offshore infrastructure. Wong et al. (2019) proposed a de-
tection process based on the constant false alarm rate (CFAR) approach,
which investigates preprocessed Sentinel-1 images by the difference
of Gaussians (DoG) method to find object locations and further post-
processing to weed out false positives. They deployed their algorithm
on the Google Earth Engine and detected oil rigs in the Gulf of Mexico
and offshore wind turbines in the exclusive economic zones of the UK
and China. Zhang et al. (2021) processed the Sentinel-1 archive on a
global scale and provided OWT locations by applying a morphological
approach in combination with multiple thresholds to remove false
positives. In addition to the spatial locations, the estimated first appear-
ance of an OWT between 2014 and 2019 is provided in their study.
Xu et al. (2020) investigated multispectral images from the Sentinel-
2 and Landsat missions. To extract marine infrastructure, they used
order statistic filtering in combinations with predefined thresholds.
Combining the object candidates with existing vector geometries of
offshore wind farms or human interpretation could further distinguish
offshore wind energy infrastructure.

In a preceding study to this work, Hoeser et al. (2022) proposed the
DeepOWT data set, which provides offshore wind energy infrastructure
objects along with their deployment dynamics. Fig. 1 summarises how
the DeepOWT data set was derived from Sentinel-1 images on a global
scale. The Sentinel-1 acquisitions of the second quarter of 2021 were
reduced to median composites on which a cascade of two convolu-
tional neural networks (CNNs), optimised on fully synthetic training
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data (Hoeser and Kuenzer, 2022), detect offshore wind energy infras-
tructure. OWTs, transformer stations and platforms under construction
were differentiated during the detection of the second CNN. The class
differentiation is based on the investigation of the difference in spatial
features which these classes represent, see Fig. 2. Based on the detected
bounding box of an offshore infrastructure object, the multi-temporal
deployment dynamics were derived by investigating changes in the
local radar signature for a five-year stack of quarterly images. The final
DeepOWT data set provides point locations which describe offshore
wind energy infrastructure and their quarterly deployment stages from
July 2016 until June 2021.

The reported studies mainly focus on improving spatiotemporal
information. However, an important metric besides the location and
deployment stage of an OWT is the installed capacity. As reported in
Section 1, this metric is commonly used to inform about the size and
development of the offshore wind energy sector and to communicate
expansion goals of offshore wind energy strategies for the upcoming
decades. Therefore, this study uses the spatiotemporal information
provided by the DeepOWT data set to model this essential metric on
a global scale based on Earth observation data.

Considering the achievements of related research, the contribution
of this study can thus be divided into three aspects:

+ The introduction to a newly developed radargrammetric approach
for calculating the hub height of horizontal axis wind turbines
(HAWTs) with subsequent statistical modelling of the installed
capacity via the calculated height.

+ The calculation of all turbine heights and corresponding installed
capacities for all OWTs included in the global DeepOWT data set,
based solely on Sentinel-1 data.

+ A spatiotemporal analysis of the offshore wind energy sector from
an Earth observation and geoinformation perspective, based on
the enriched DeepOWT data set.

Fig. 3 highlights the benefits and contributions of the extended
version of the DeepOWT data set proposed in this study by comparing it
to other scientific and industrial global offshore wind turbine data sets.
With the additional information on hub height and installed capacity
at an OWT level, this extended version of the DeepOWT data set is the
only existing data set, which is freely accessible and provides this depth
of information on a global scale, see 3a). Furthermore, the DeepOWT
data set provides the most spatially and temporally robust mapping
performance compared to other freely available data sets, see 3b).

3. Data and material

This study uses the recently published DeepOWT data set due to its
open accessibility, accurate spatiotemporal information and underlying
Earth observation data, the Sentinel-1 archive. DeepOWT describes
turbine locations with a quarterly time series from July 2016 until June
2021 along with the information if a turbine is under construction,
readily deployed, or neither of both (Hoeser et al., 2022). Fig. 4 gives
an impression of the data set, its global extent, two regional hot spots
and a local example of turbine and transformer station locations for
a large OWT cluster in the North Sea Basin. To further enrich the
information for each single OWT location, the Google Earth Engine
(GEE) (Gorelick et al., 2017) was used to query Sentinel-1 C-band
radar data (Torres et al.,, 2012) for calculating the OWT height and
installed capacity. Ground truth data of 50 OWT clusters regarding their
hub height and the corresponding capacity in MW were acquired from
publicly available sources, like OWF operator specifications, public
planning documents or news portals, see the supplementary material in
Appendix B. This data was used to validate the height calculation based
on the Sentinel-1 images and to build the statistical model which links
OWT height to OWT installed capacity. Moreover, the water depth from
NOAA'’s ETOPO1 topography data set, available on the GEE, was also
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Fig. 1. Graphical summary of the workflow which has been used to derive the DeepOWT data set by Hoeser et al. (2022). Two convolutional neural networks analyse global
Sentinel-1 data to find OWT locations. A time series from June 2016 until July 2021 is analysed for each OWT location to derive its deployment dynamics.

queried for each turbine location. ETOPO1 describes land topography
and ocean bathymetry at a resolution of 1 arc minute on a global
scale by combining multiple regional data sets (Amante and Eakins,
2009). Furthermore, the OWT locations from the DeepOWT data set
are combined with vector data which describe the exclusive economic
zones (EEZ) (Flanders Marine Institute, 2020) and the global coastline
with minor islands (Natural Earth, 2022) to derive national affiliation
and the minimum distance to the coast for each OWT, respectively.

4. Methodology
4.1. Installed capacity estimation

In order to design an independent and region agnostic estimation of
the installed capacity, the workflow was based on freely and globally
available Sentinel-1 data. Two steps were used to derive the installed
capacity of an OWT from spaceborne radar imagery. In step one, the
turbine’s hub height is calculated by a radargrammetric investigation
of the radar signature at an OWT location. In step two, a model links
the calculated hub height to the installed capacity for each turbine.

4.1.1. Offshore wind turbine height calculation

Fig. 5(a) shows conceptually how the hub height of an OWT was cal-
culated with Sentinel-1 data. A rectangular 400 x 400 m area was de-
fined for each OWT location. For these areas, all Sentinel-1 acquisitions
between April to June 2021 with the specification GRD (ground range
detected), IW (interferometric wide swath), VH (vertical-horizontal
polarised), ascending orbit and from a single platform A or B were
stacked and reduced to a single band median composite. The example
in Fig. 5 shows two main backscatter clusters. One large cluster in the
centre at the detected location of an OWT and left to it, a smaller
cluster. The smaller cluster to the left of the OWT appears due to the
right-looking sensor geometry, and the layover effect (Meric et al.,
2009) depicted in 5(b). The radar signal first hits the nacelle before
hitting the larger foundation at sea level. Thus, when projected onto the
ground range, the part of the signal that hits the nacelle gets distorted
and appears in front of the undistorted centre location. Visually in the
map-view, it looks like the turbine leans toward the sensor.

Furthermore, 5(c) and (d) describe how the resulting geometry can
be used for height calculation. 5(c) describes how the local incident
angle 0 increases with increasing ground range. At the same time,
a increases too, allowing to approximate a right angle between the
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Fig. 2. Visualisation of different spatial features of offshore wind turbines and offshore wind energy substations in Sentinel-1 radar signatures as they occur in median composites,
which are based on ascending and descending orbit directions. The employed CNN-cascade in Hoeser et al. (2022) uses these features to differentiate both classes during the

generation of the DeepOWT data set.

theoretical hypotenuse of nacelle and layover cluster, and the radar
signal with a local incident angle 6, + at the OWT location, see
Fig. 5(d). It follows that « and 6,y are equal.

The incident angle 6,1, and thus «a, is provided as a separate layer
for each Sentinel-1 acquisition. For each OWT location, the correspond-
ing incident angle is retrieved by querying the incident angle band
of all Sentinel-1 acquisitions provided by the GEE, contributing to the
quarterly median composite. In order to avoid different incident angles,
in the case of locations where two neighbouring orbits overlap and to
retrieve a single value for the height calculation, the stack of queried
incident angles is reduced. Therefore, the incident angle with the most
frequent occurrence, the mode of all incident angles, is selected from
the quarterly stack of incident angles.

A theoretical right triangle can be constructed to calculate the hub
height of the OWT, where the side opposite is the hub height, the side
adjacent is the absolute distance between the centre cluster and layover
cluster, and « is its corresponding angle. The layover cluster location
was extracted by applying a peak finder algorithm on the maximum
swath profile along the horizontal axis of the radar image, see 5(e).
By reprojecting the coordinates of OWT and layover centre to their
corresponding UTM coordinate system, the absolute distance between
the points was calculated. The calculation of the side opposite was
done cluster-wise for each OWT. Therefore, an OWT cluster was defined

manually by its spatial proximity and OWT deployment date, provided
by the DeepOWT data set. In order to reduce outliers of calculated
height values, the median of all calculated heights within one cluster
defines the final height for all OWTs of the same cluster.

For 50 OWT clusters, the calculated heights were compared to
ground truth data. Fig. 6 shows that the variance of the calculated
heights can explain 77% of the variance of the ground truth heights,
and the mean absolute error is 6.45 m. Since the derived locations
of OWT and layover cluster are the pixel centres in the Sentinel-1
image with a spatial resolution of 10 x 10 m, the side adjacent has
a theoretical error ¢,,; with a range between —10 and +10 m, see
Fig. 7. The maximal contribution of this sub-pixel error to the absolute
height error eh,_ ,; ranges from 6 m to 10.36 m depending on the local
incident angle. For the Sentinel-1 IW GRD products, the near range
angle is 6,,;, (31°), and the far range angle is 0,,,, (46°) (Torres et al.,
2012). Thus the mean absolute error of 6.45 m of the calculated heights
is within the range of the maximum error eh, » demonstrating the
general practicality of the height calculation approach.

4.1.2. Installed capacity model

In order to model the installed capacity, the data set of 50 OWT
clusters, for which hub height and nominal capacity were looked up in
operator specifications and official planning documents, was randomly
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Fig. 3. (a) Qualitative comparison of content and accessibility of different offshore wind turbines (OWT) datasets from science and industry. (b) Quantitative comparison of OWT
mapping performance of freely available datasets for the two ground truth test sites, the North Sea Basin and the East China Sea. *A detailed description of the methodological
workflow for the calculation of the F1 scores, as well as all related scores for an in-depth comparison, can be found in Appendix A.

Fig. 4. Locations of offshore wind energy infrastructure, provided by the DeepOWT data set. The magnifications show (a) OWT clusters in the North Sea Basin, (b) a local close
up of one large OWT cluster of the Netherlands and Belgium, and (c) OWT clusters in the northern East China Sea in June 2021.

split into a train and test data set with 36 and 14 entries, respectively.
Fig. 8 proposes a correlation between hub height and installed capacity
of a wind turbine for the train split. With this observation, the parame-
ter installed capacity can be estimated using the calculated height as the
independent variable. The hypothetical model % is a sigmoid function,
see Eq. (1), in order to approximate logistic growth where L is the
curve’s maximum, k the logistic growth rate, x, the offset of the x-axis
and b the offset of the y-axis.
L

m +b (1)

The sigmoid function enables the modelling of logistic growth,
which can be recognised in the first half of the training data between
hub heights of 60 to about 95 m. However, the further progression
beyond 95 m diverges from a purely logistic growth, with a higher

h(x) =

variance and tendency to level off. Thus the second part of the sigmoid
function supports modelling this part of the training data without
overestimating higher heights.

The parameters of the hypothetical model are optimised by min-
imising the least-squares cost function on the train data, resulting in
the fitted model shown in Fig. 8 and its corresponding 95% confidence
interval (CI). The optimised model was used to predict the installed
capacity for each OWT based on the calculated heights. The predictions
were compared to the test and also the train OWT clusters. The corre-
sponding error distribution of test and train split were compared by
a Kolmogorov-Smirnov (KS) test (Smirnov, 1939) with a significance
level of 0.05. The KS test confirmed the null hypothesis with p = 0.09,
that both distributions are identical, see Fig. 9. Thus, the train and test
split are combined in the following error discussion.
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radar instrument and the target object.

Fig. 9 shows that the variance of the estimated installed capacity can
explain 90% of the variance of the ground truth capacity. Furthermore,
the error follows a normal distribution with a mean at 4.76 MW close
to 0. Thus, no systematical error was observed, which tends to always
over or underestimate the installed capacity. The mean absolute error is
36.16 MW, less than 15% of the mean installed capacity of the ground
truth data of 244.98 MW. For a large-scale comparison of the model
predictions on more than the 50 OWT clusters, we refer to Section 5,
where region-based capacities from different sources are compared
with the installed capacity estimations in this study.

4.2. Deriving commonly reported attributes

To further enrich an OWT location besides its hub height and
installed capacity, more attributes commonly reported in the wind
energy sector to describe an offshore wind farm or turbine were derived
by spatial queries and geoprocessing.

4.2.1. Offshore wind turbine distance to coast and nearest neighbour

The two characteristics, distance to the nearest OWT and minimum
distance to shoreline, were added for each OWT. Before the distance
was calculated, every data set used in these processes was reprojected
to each OWT location’s corresponding UTM coordinate reference sys-
tem (CRS). No auxiliary data was necessary to calculate the minimum
distance between OWTs. Fig. 10 shows a pattern of the resulting
distances in a European offshore wind farm cluster. This visualisation
shows a trend of increasing turbine distance over time due to the
installation of OWT with larger rotor diameters.

For the OWT to shoreline distance, a detailed coastline including
minor islands was used as the target polygon (Natural Earth, 2022).
In order to minimise the processing effort, for each OWT location, the
global data set was clipped with a 200 km radius around the OWT
location before searching for the smallest OWT to shoreline distance.
Similar to the nearest OWT distance, the distance to the shoreline
increases over time for the local example of the east England coast,
shown in Fig. 11. The Hornsea Project, also visualised in this figure,
is the furthest offshore wind farm project from the mainland, partly
deployed in 2021.
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4.2.2. Offshore wind turbine water depth and national affiliation

For the last two attributes, the water depth at an OWT location
and the national affiliation, spatial queries are used to obtain the
information. The water depth was obtained from NOAA’s ETOPO1 data
set (Amante and Eakins, 2009) via the GEE by using OWT locations
provided by the DeepOWT data set. Fig. 12 shows the bathymetry
component of the ETOPO1 data set for the two wind energy production
hotspots, the North Sea Basin; and the northern East China Sea and the
Yellow Sea. Both sites show large areas with relatively shallow waters
close to the coast, which is one crucial factor for cost-efficient offshore
wind turbine deployment. For the European Union, the difference in
areas with a shallow water depth of the North Sea Basin compared to
the Atlantic Ocean and large parts of the Mediterranean Sea is striking,
and one explanation why nearly all OWFs of the EU are installed in the
North Sea Basin and Baltic Sea.

The national affiliation was queried by applying a spatial join with
the DeepOWT data set and the geometries of the national exclusive
economic zones (EEZ) Flanders Marine Institute (2020). This completes
the information enrichment of the DeepOWT data set. Six commonly
used attributes for describing offshore wind farm projects (Rodrigues
et al., 2015) have been added to the DeepOWT data set by combining
methods from Earth observation, geoinformation and statistics.

5. Spatiotemporal evolution of turbine count and installed capac-
ity

By combining the DeepOWT data set with further investigations
of Sentinel-1 data, it was possible to provide installed wind energy
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Fig. 9. Error discussion of the estimated offshore wind turbine installed capacity. The upper row shows the correlation between predicted and ground truth installed capacity and
the residuals. The lower row shows the distributions of the error and absolute error.

capacity estimations based on this single Earth observation mission. In five years. Fig. 13 shows that mainly three big players dominate the
June 2021, the cumulative installed capacity of 8885 offshore wind offshore wind sector: The European Union, the People’s Republic of
turbines was 40.6 GW for the entire Earth. This corresponds to an China and the United Kingdom, sorted by installed capacity. Despite
increase of 27.2 GW or 200% realised by 5268 OWTs deployed within one of the worldwide largest onshore wind capacities in the United
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Fig. 10. An Offshore wind farm (OWF) cluster in the exclusive economic zones of the Netherlands and Belgium. The temporal dynamic indicates a trend of an increasing distance
between single turbines.
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Fig. 11. Offshore wind farms (OWF) and their single turbine locations at the East England coast in the North Sea Basin. The temporal dynamic indicates an increasing distance
between OWF projects and the shoreline.

States of America, offshore wind energy is early, with pilot projects has started for large-scale offshore wind farms on the Atlantic coast,
and only seven installed OWTs. However, recently construction work and new sites are under development in this region.



T. Hoeser and C. Kuenzer

DD/e
U//

./

y' 10
:5!5%2 {? N
7! >10

SN o

-

0° 3°

36°
\

0 100 200
L | |
Albers Equal Area Conic

\ \
116° 118°

)]
120°

122°

6°

124°

International Journal of Applied Earth Observation and Geoinformation 112 (2022) 102957

I OWF boundary

0 100 200 300 400 500km
L 1 | | | |

Albers Equal Area Conic

NOAA ETOPO1 bathymetry

in
= N U

T
75° 90° 105° 120° 135°

Fig. 12. Bathymetry of (a) the North Sea Basin and Baltic Sea and (b) the northern East China Sea and the Yellow Sea. Both sites show large areas of shallow water depth of
about 50 m or less near the coast, which is an important factor for offshore wind farm deployment.

Fig. 13 already suggests recently high deployment dynamics in
China with the most wind turbines built and under construction world-
wide, which is confirmed in Fig. 14. In the last five years, China has
had the highest increase in both installed capacity and the number of
installed OWTs. Fig. 15 provides in-depth insight into the temporal
deployment dynamics from July 2016 until June 2021. For China, it
shows that the onset of offshore wind turbine deployment took place
about five years ago and that within the last five years, the global
trend of the offshore wind energy sector was greatly influenced by the
deployment of 2960 OWTs with a cumulative capacity of 13 GW. By
finishing the planned projects with 627 OWTs under construction in

10

June 2021, in 2022, China will lead in the number of readily deployed
OWTs and installed offshore wind turbine capacity worldwide. In com-
parison, the EU and UK already had numerous offshore wind farms back
in 2016, originating from the initial Danish offshore wind farm project
Vindeby in 1991 with 5.5 MW and developed the offshore wind sector
to maturity over the last decades (Rodrigues et al., 2015). Since 2016,
the number of OWTs and installed capacity increased by 1313 OWT
and 8 GW, and 916 OWT and 5.8 GW for the EU and UK, respectively.
In the upcoming decades, EU’s (EC, 2020) and UK’s (UK Gov., 2021)
offshore wind programmes will lead to a surge of offshore wind farm
projects. Together with China’s recent and ongoing contribution, the
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Fig. 13. Global distribution of offshore cumulative installed capacity (upper part), and the number of offshore wind turbines, readily deployed and under construction (lower part)
by the end of June 2021. Single points in the maps indicate clusters of offshore wind farm projects. The three major offshore wind energy sector contributors are the EU, China
and the UK. Further contributors are aggregated to the group “Other” referred to in the proceeding analysis.

regional changes between 2016Q3 and 2021Q2

d B China

149 \e? Cay - EU
s UK

12 A Other

growth in installed capacity [GW]

b

S

Ch i"a
O¢p, or

growth in OWT

3000 3
\O\J € O
& 2
A\
2500 © v,

2000 -

1500 A

1000 ~

500 1

z

S

Chin a9
Oty or

Fig. 14. Absolute changes in installed capacity (left) and the number of readily deployed offshore wind turbines (OWT) (right) within five years from July 2016 to June 2021,
aggregated by region. The error bars for installed capacity indicate the standard deviation of the model used for the estimation.

start of construction work of large-scale offshore wind farms in the
US and other nations joining the offshore wind energy sector, these
developments will further contribute toward carbon-neutral energy
production on a global scale.

This study’s reported number of installed capacity solely relies on
investigations of Earth observation data, as presented in Section 4.1.

11

The installed capacity for 2020 is 35.149 GW on a global scale. This
value is 0.144 GW below the official value of 35.293 GW for 2020
published by the Global Wind Energy Council (GWEC), whose annual
reports can be assumed to be the strongest baseline. Fig. 16 provides
a comparison of the derived installed capacity and number of tur-
bines with several official reports. The estimated installed capacity
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Fig. 15. Temporal dynamics of the installed capacity (upper part) and the corresponding number of offshore wind turbines (lower part) aggregated by regions. The time series

shows the quarterly evolution over five years between July 2016 and June 2021.

and number of OWTs reported in this study are largely confirmed by
these reports and can even provide consistently annual numbers. This
demonstrates that freely available Earth observation data, combined
with the proposed analysis techniques, can independently monitor the
global dynamics of the offshore wind energy sector. Furthermore, the
small-scale resolution based on individual turbines allows a fast and
individual aggregation of units in space and time in order to examine
developments in detail. This is impossible by using the public reports
mentioned above since they only provide aggregated information. The
following analysis of the attributes compiled in this study gives an
impression of how trends in the offshore wind energy sector can be
analysed by flexibly aggregating information in time and space.

6. Spatiotemporal evolution of site specifications
Fig. 17 provides an overview of temporal dynamics on a global scale

and differences between the major offshore wind energy-producing
regions for all investigated attributes. Installed capacity and hub height

12

show similar trends and regional characteristics for the same investiga-
tion units. The quantile regression trend lines show that fewer small
OWT units of nominal capacity and hub height were installed over
the last five years. Nevertheless, at the same time, the trend for larger
OWT units is not that clear yet. When looking at regional comparisons
and keeping the deployment dynamics of the last five years in mind,
it becomes clear that the surge of installed OWTs in China was charac-
terised by OWTs with medium hub height and nominal capacity, about
4 MW, compared to such in the EU or UK. This explains why China has
more OWT units than the EU, but the EU still had a higher amount of
installed capacity in June 2021, see Fig. 13. Since China’s contribution
to the temporal dynamics has been the most influential over the last
five years, the Chinese signal subdued the trend of larger OWT units
on a global scale. However, when looking at the regional comparison,
the EU and UK have already started building larger OWTs with higher
nominal capacities, a trend that will continue.

The third row of Fig. 17 shows the development of the minimum
distance to the shoreline. The global temporal trend appears to be
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Commission et al., 2019; Wikipedia, 2022; Xu et al., 2020; Zhang et al., 2021).

mixed and less distinct due to regional peculiarities for this attribute.
Most of the OWTs in China are built very close to the shoreline, whereas
in the EU, and lately, in the UK, OWTs are built further away from the
coast, resulting in a mixed global trend. However, for China and the
UK, the temporal trends are clear. New OWTs are getting constructed
with increasing distance to the coast. For example, in 2019 the first
phase of the Hornsea Project was finished 120 km from the North
East coast of England, which can clearly be seen even in the global
trend in 2019Q2-2019Q4. More projects with increasing distance to
the coast are planned in the EEZ of the UK where shallow waters are
available far off the coast, like the Dogger Bank, where the Dogger
Bank Wind Farm will be realised in the upcoming years with a maximal

13

distance to the shoreline of about 290 km. The necessity of increasing
distance to the shoreline indicates that capacities have already been
exploited for a specific region near the shore. For the UK and China,
this is a continuously progressive process. For the EU, single EEZs of its
members are very different in shape and bathymetry. Thus, it appears
to be that no general trend exists. Here, it would be interesting to look
at a national scale to see how much of its nearshore capacities each
EU member already has used and which bathymetry characteristics are
generally prevalent.

The nearest neighbour distance between OWTs shows an increase
for higher values, indicating that OWT units with larger rotor diameters
that need larger distances to the next OWT are getting installed, which
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Fig. 17. On the left side are the temporal dynamics between July 2016 and June 2021 of the offshore wind turbine (OWT) related attributes on a global scale. The dashed trend
lines show the 0.05-0.5-0.95 quantile regressions. For the attribute distance to coast, the 0.95 quantile regression for the EU, UK and China are provided separately. On the right

side, the same attributes are aggregated by regions for the entire period.

was already locally observed in Fig. 10. However, the large amount
of slightly smaller turbines that were built in China leads to a general
trend of smaller distances on a global scale. With major offshore wind
farm projects being deployed, like the Jiangsu Qidong in 2021, new
projects with larger OWT sizes will also reverse this trend in China and
eventually globally.

The last attribute, water depth, appears to be stable over the last five
years. Until 2021 OWTs are normally bottom-fixed and directly built on
structures rammed in the sea ground, known as monopile foundations;
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tripod or jacket foundations, which are fixated by using caissons or
gravity foundations stand directly on the seabed. All of them are used
in water depths up to 50 m, as reported in the last row of Fig. 17.
Regional differences can be observed between China, the EU and UK.
Large parts of the recently built OWTs in China are in nearshore areas
with a strong tidal influence and therewith shallow water depth. Even
when these areas can also be found in the coastal environments of the
EU and UK, they are not used for OWT deployment, primarily due to
strict nature reserve regulations of tidal flats.
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In addition to these general observations regarding water depth,
several outliers stand out, both from the temporal and regional per-
spectives. These outliers do not come from wrong bathymetry estimates
of the underlying ETOPO1 data set but are pilot projects of floating
offshore wind farms that allow offshore wind turbines to be installed
in deeper water depths and with less construction-related impact on the
seabed. In 2017 UK’s Hywind Scotland floating wind farm was installed
in the North Sea Basin, followed by the WindFloat project at the
Portuguese Atlantic coast in the EU in 2020, see Fig. 18. These two pilot
projects are of major interest since they proved that floating offshore
wind farms are technically feasible, and by continuing maturity of this
technique and larger project sizes will also become acceptable from
an economic perspective (Ramachandran et al., 2021). Floating wind
farms will play a major role for the EU since they increase the number
of possible offshore wind farm deployment sites (Bento and Fontes,
2019). This is especially important for the Atlantic and Mediterranean
coasts (Pustina et al., 2020) with typically steeply sloping water depths
compared to the North Sea Basin and Baltic Sea. Fig. 18 provides an
overview of the European bathymetry with the water depth given for
the two mentioned pilot projects as well as the median water depth of
all OWTs in the EU. With the development of new technologies for the
offshore wind industry, the EU and UK continue their role as pioneers
in this technology.

7. Discussion

In this study, freely available Earth observation and GIS data were
used to generate a database, which can provide in-depth information
about the development of the offshore wind energy sector on multiple
temporal and spatial scales. The comparison with third-party surveys,
especially the established reports of the Global Wind Energy Coun-
cil (Lee and Zhao, 2021, 2020) and Wind Europe (Ramirez et al.,
2021) demonstrate that the proposed approach can be used to provide
detailed insights into the spatiotemporal evolution of the offshore wind
energy sector. The OWT analysis delineates the offshore wind energy
sector in a transition phase between decades of reaching maturity and
at the beginning of a global expansion of large-scale offshore wind
energy production. In addition to that, the still ongoing development
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Fig. 18. Two types of floating offshore wind turbines (OWTs) and their application in the pilot projects Hywind in Scotland and WindFloat Atlantic on the Portuguese coast. All
turbines are included in the DeepOWT data set, as shown by the green detection boxes. Next to them is the bathymetry of the EU and UK, along with the locations of the two
floating offshore wind farm projects. The EU median label indicates the median water depth of all OWTs in the EU.
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of new technologies, like floating wind turbines (Ramachandran et al.,
2021), open up future application areas of offshore wind farms (UK
Gov., 2021). This will lead to a further increase in offshore wind
projects in the long term.

The proposed approaches for calculating the hub height of hori-
zontal axis wind turbines and estimating the installed capacity bring
new and important information to already existing and freely available
OWT data sets. Thereby the proposed approaches are data set agnostic
and only rely on point locations of turbines and the openly accessible
Sentinel-1 archive. However, the quality of the OWT data is important
for the quality of the derived attributes hub height and installed capac-
ity. The location of the turbine centre has to be as accurate as possible.
Shifts in the centre location would directly influence the proposed
height calculation and thus the installed capacity. Furthermore, the
optimal conditions are met by a data set which provides detailed
information about the deployment stage. Without the centre pole and
nacelle of an OWT installed, no layover effects appear in the radar
imagery, and thus no height calculation can be conducted. Hence, a
foundation of an OWT has to be differentiated from a foundation with a
turbine on top. The earlier mentioned studies by Wong et al. (2019), Xu
et al. (2020) and Zhang et al. (2021) do not differentiate between
these deployment stages. By classifying turbine foundations and readily
deployed turbines both as operational OWTs, the number of OWTs in
these data sets suffers from temporal overestimation, which can be
seen in Fig. 16. This overestimation in OWTs would directly influence
the estimation of installed capacity based on this number. Thus, the
most robust processing and accurate results for height estimation and
even more important installed capacity estimation are so far only
ensured by combining the proposed approaches with the DeepOWT
data set (Hoeser et al., 2022).

The introduced methods for calculating OWT height and installed
capacity add important context to the recently proposed DeepOWT
data set (Hoeser et al., 2022). The results presented in this study
provide insights into technical metrics commonly used to report about
developments of the offshore wind energy sector (Lee and Zhao, 2021,
2020; Ramirez et al., 2021; European Commission et al., 2019). In
order to provide more insights into the offshore wind energy sector,
the data set has to be further discussed and contextualised by adding
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expert knowledge from outside the Earth observation and geoinforma-
tion domain. With its quarterly frequency, multiple aspects and their
spatiotemporal influence on the offshore wind energy sector can be
investigated, like the entry into force of legal decisions, new regulations
on multi-use policies and nature reserve, price developments in the
energy and CO, markets, or subsidies for renewable energy (deCastro
et al., 2019). Furthermore, the effects of offshore wind infrastructure
on marine ecosystems can be investigated more easily when accurate
spatiotemporal information is available, especially when their char-
acteristic attributes can be derived from freely available data. All
together, the data set and proposed approaches to derive turbine height
and installed capacity focus primarily on providing free offshore wind
energy infrastructure data for a large scientific community. Freely
available data can accelerate the gain of insights, especially in research
areas not directly linked to the industry. Nevertheless, their insights
are linked indirectly to the offshore wind energy sector. Today, carbon-
free and autonomous energy production are already strong arguments
for investing in offshore wind energy. However, it is also important to
ensure sustainability during the deployment, production and decom-
missioning phase of offshore wind farms. Without insights gathered
by e.g. ecological studies, this crucial component remains underrepre-
sented. With more research in this direction, the involved offshore wind
energy industry has the opportunity to adapt practices in order to foster
sustainability. Such adaptations that foster sustainable offshore wind
energy projects will add additional value to the offshore wind energy
industry.

With the upcoming growth of the offshore wind energy sector (Ro-
drigues et al., 2015), the support of accompanying studies and indepen-
dent research are of major importance to ensure that all stakeholders
are getting involved (Gusatu et al., 2021), and adverse effects are kept
to a minimum during a phase of maximising installed capacities in
marine and coastal ecosystems. Thus, freely available data is one major
building block enabling these essential investigations.

Especially for OWT, the levelised cost of energy is highly sensitive
to maintenance measures and OWT downtime (Ren et al., 2021). Well-
prepared maintenance measures are necessary to avoid unplanned
downtime. Condition monitoring systems are powerful tools to manage
maintenance strategies to achieve the highest possible availability at
the lowest possible cost for the individual units (Ren et al., 2021; Le
and Andrews, 2016). The resulting question is to what extent the data
and methods presented can be used to detect and document turbine
downtimes and thus support the organisation of maintenance measures.

The 10 m pixel spacing and the six to twelve-day revisit rate of the
Sentinel-1 mission show the limits of the applications for which the
Sentinel-1 mission can be used. Hence, reliably detecting unplanned
OWT downtimes or changes in single components of the OWT is
impossible. Only the complete decommissioning of an OWT would
be possible since it is a reverse of the construction process, which,
as described, can be detected. In order to gain further insights into
the operational phase of an OWT, data with a very high spatial and
temporal resolution have to be taken into account. Radar missions like
TerraSAR-X and ICEYE, both with a spatial resolution of up to 25 cm,
and optical missions like WorldView (up to 30 cm) and Skysat (up to
50 cm) provide a spatial resolution which offers the possibility for new
applications related to maintenance management. However, only the
PlanetScope mission with a daily revisit rate and a spatial resolution
of 3 m could provide a sampling frequency which is suitable for such
applications. Nevertheless, since PlanetScope operates optical sensor
systems, cloud cover will reduce its applicability. Thus, with available
methods and sensor systems, today, day-to-day monitoring of single
OWTs is not possible from an Earth observation perspective, which
demonstrates the current methodological boundaries of what is possible
with satellite-based Earth observation data.

As shown in Section 6, shallow water areas near the coast are
used for offshore wind energy production in different ways in different
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regions. Such areas offer favourable conditions, as costs during con-
struction are lower due to reduced logistical effort and less materials
for foundations and submarine cables to be used (Kim et al., 2018).
However, These areas are often characterised by intensive multiple use
by different stakeholders and purposes that mix socio-economic and
environmental interests such as fishing, aquaculture, shipping routes,
recreational spaces, populated coastal areas, cultural heritage or nature
conservation areas (Kim et al., 2018; Russell and Firestone, 2022;
Gusatu et al., 2020; Virtanen et al., 2022). Embedding offshore wind
energy sites in these already diverse and existing multiple uses of
coastal areas poses major planning challenges (Gusatu et al., 2021;
Virtanen et al., 2022). Chinese inter tidal offshore wind farm projects in
Jiangsu province demonstrate how offshore wind energy infrastructure
can be built and operated in multi-use shallow water areas with chal-
lenging sediment dynamics (Zhang et al., 2022). With the additional
information on OWT level derived in the proposed study, particularly
the installed capacity, it is possible to contextualise the spatio-temporal
OWT data with socio-economic and ecological data to investigate better
the cost-benefit of offshore wind turbines in multi-use shallow water
areas.

Recent developments in the offshore wind energy sector have led
to the increased demand for floating offshore wind turbines in or-
der to realise offshore wind farms in deep water (Bento and Fontes,
2019). In these environments, floating offshore wind turbines have
to withstand different kinds of environmental loads such as regular
and irregular waves of changing magnitude (Pustina et al., 2020),
aerodynamic loads and strong currents (Shah et al., 2021). Dynamic
control measures are necessary to reduce structural loads and maintain
optimal performance conditions in these extreme environments (Shah
et al.,, 2021; Gao et al.,, 2022). Due to the movements of floating
offshore platforms in connection with the six to twelve-day recording
frequency of the Sentinel-1 mission, the methodology for hub height
calculation and capacity estimation must be critically questioned. The
following results were obtained for the two, in Fig. 18 introduced,
floating offshore wind farm projects, Hywind Scotland and WindFloat
Atlantic: The reported (r) and the estimated (e) installed capacities are
Hywind: 6 MW (1), 6.76 MW =+ 0.21 MW (e), WindFloat: 8.4 MW (r),
8.06 MW +0.89 MW (e). These examples show that the proposed
method achieves robust results for floating offshore wind turbines.
The explanation lies in the investigation of median composites of all
Sentinel-1 acquisitions within a quarter during height calculation. Thus,
the approach becomes robust against outliers, which would occur if
only a single acquisition had been used.

Future analysis of Earth observation data can build on the proposed
workflow and further improve the modelling of installed capacity.
The impact of technological improvements on the installed capacity
of horizontal axis wind turbines (HAWT) will become greater, making
the hub height less significant as the sole indicator. Thus, multiple
variables will become necessary to estimate the installed capacity in
the future. Primarily attributes provided in this study, such as the date
of deployment and minimum distance to the nearest neighbour, can be
used potentially. The deployment date is suitable to communicate tech-
nological improvements gained over time, and the minimum distance
among OWTs is indirectly related to the rotor diameter, a crucial metric
for investigating the installed capacity of HAWTs.

An adaptation of the proposed approaches for height calculation
and installed capacity estimation must be considered in case new
turbine designs are established. Alternative designs such as the vertical
axis wind turbine (VAWT) represent entirely different turbine layouts
which will also be entirely different in the radar backscatter signal.
The procedures presented need to be revised in the situation where
a VAWT design has been presented and successfully implemented at
a scale comparable to HAWTs. However, the introduced procedures
assume the HAWT design, which is currently the only turbine design
used for industrial-scale offshore wind farms (Liu et al., 2019; Hand and
Cashman, 2020; Mohan Kumar et al., 2019). In general, wind energy
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Table A.1
Overview of all calculated metrics to compare the mapping performance of offshore
wind turbines of different data sets.

GT group GT OWTs Detected OWTs TP FP FN Pr Re F1
DeepOWT

North Sea 4016 3997 3996 1 20 1.000 0.995 0.997
East China Sea 2208 2184 2168 16 40 0.993 0.982 0.987
micro avg 6224 6181 6164 17 60 0.997 0.990 0.994
macro avg 6224 6181 6164 17 60 0.997 0.989 0.993
OSM

North Sea 4016 4038 3581 457 435 0.887 0.892 0.889
East China Sea 2208 384 373 11 1835 0.971 0.169 0.288
micro avg 6224 4422 3954 468 2270 0.894 0.635 0.743
macro avg 6224 4422 3954 468 2270 0.917 0.565 0.640
GOWTv1.3

North Sea 3571 3496 3332 164 239 0.953 0.933 0.943
East China Sea 1208 1233 1149 84 59 0.932 0.951 0.941
micro avg 4779 4729 4481 248 298 0.948 0.938 0.943
macro avg 4779 4729 4481 248 298 0.944 0.941 0.942
GOWTv2021

North Sea 4016 4483 3965 518 51 0.884 0.987 0.933
East China Sea 2208 3649 2080 1569 128 0.570 0.942 0.710
micro avg 6224 8132 6045 2087 179 0.743 0.971 0.842
macro avg 6224 8132 6045 2087 179 0.733 0.967 0.828

production has a broad field of potential generator layouts. We refer
to Roga et al. (2022) for a recent review of different types of generator
layouts. Due to the potential introduction of new generator designs into
the offshore wind sector and changes in the established HAWT design, it
is necessary to refine the approach of estimating the installed capacity
continuously. This is an ongoing task for future research in order to
consolidate the global monitoring of the offshore wind energy sector
with Earth observation data.

8. Conclusion

This study proposes an approach to calculate the hub height of
offshore wind turbines (OWTs) and to estimate their corresponding
installed capacity on a global scale. The entire process is based on freely
available Earth observation and GIS data. The recently proposed global
data set of OWTs, the DeepOWT data set (Hoeser et al., 2022), and the
Sentinel-1 archive. Further site specifications of OWTs were obtained
and used to provide a spatiotemporal analysis of the recent evolution
of the offshore wind energy sector.

Between July 2016 and June 2021 additional 5268 OWTs with a
derived cumulative capacity of 27.2 GW were deployed worldwide.
Together, the cumulative installed capacity in June 2021 was 40.6 GW
provided by 8885 OWTs. Thus within the investigated five years, the
installed capacity was increased by 200%. The three major contributors
are the European Union (EU) (3096 OWTs and 15.2 GW), China (3267
OWTs and 14.1 GW), and the United Kingdom (UK) (2378 OWTs and
10.7 GW). China had the highest growth rate with 13 GW and 2960
OWTs. In the same period, the offshore wind sector in the EU and
UK grew by 8 GW and 1313 OWTs, and 5.8 GW and 916 OWTs,
respectively. Most OWTs were deployed and are still under construction
in the North Sea Basin and the East and the South China Sea. With
new technologies like floating wind farms, water depths deeper as 50 m
will become accessible in future. The deepest depth of 110 m is of the
European pilot project Hywind Scotland.

A progressively larger distance between recently deployed OWTs
and the shoreline indicates that at established regions of wind energy
production, potential offshore areas close to the coast have already
been exploited. This aspect and the high number of recently constructed
artificial objects in marine ecosystems make it obvious that integrated
planning that includes all stakeholders involved in coastal and marine
space is necessary. Future research that further investigates the pro-
posed methods and data is necessary to add expert knowledge from
other domains to ensure that carbon-neutral energy production with
offshore wind turbines is as sustainable as possible.
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Appendix A. F1 score calculation for OWT mapping of different
data sets

Fig. 3(b) compares freely accessible data sets which contain offshore
wind turbine (OWT) locations. The comparison provides insights into
the mapping performance of the different data sets. To compare these
data sets quantitatively, they were assessed on manually labelled data
of the two most important offshore wind energy production sites, the
North Sea Basin and the East China Sea. The employed ground truth
data sets originate from Hoeser et al. (2022) and can be downloaded
from https://zenodo.org/record/5933967.

The data sets reviewed are the DeepOWT data set , OWT locations
from the Open Street Map (OSM) database and the global offshore
wind turbine data set (GOWT) presented by Zhang et al. (2021), in its
original version (v1.3) and the current version after the latest update
(v2021). All data sets, except GOWT v1.3, were compared with the
ground truth datasets describing the status at the end of the second
quarter of 2021. For GOWT vl1.3, ground truth datasets were used,
which show the status at the end of the fourth quarter of 2019. All
data sets to be checked have been prepared to show OWTs detected
until the respective ground truth date. Furthermore, a spatial subset of
all data sets was made based on the boundaries of the ground truth test
sites, the North Sea Basin and the East China Sea. These Polygons are
also included in the ground truth repository referenced above.

Following this, the F1 scores were calculated for each data set,
grouped by the two ground truth test sites (North Sea Basin and East
China Sea). For a subsequent combination of both test sites, the macro
averaging method was used to prevent an overrepresentation of the
numerically more represented OWTs from the North Sea Basin test site,
where conditions are easier than in the East China Sea due to the stage
and dynamics of the offshore wind energy sector development, coastal
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Fig. A.19. Definition of True Positive (TP), False Positive (FP) and False Negative (FN) for mapped offshore wind turbine (OWT) locations.

morphology and location of offshore wind farms. However, to provide a
complete picture, also the micro average F1 scores have been calculated
and are provided with all other metrics in Table A.1.

Fig. A.19 gives an overview of the Definitions of True Positives (TP),
False Positives (FP) and False Negatives (FN). If an OWT location is
within a radius of 100 m of a ground truth OWT location, this mapped
location is considered a TP. If a mapped OWT location lies outside this
radius, the location is defined as FP. If there is a ground truth location
without a mapped OWT location within a radius of 100 m, it is defined
as FN.

The following equations were used to calculate the metrics (Preci-
sion (Pr), Recall (Rc)):

Pr=—1_ A1)
TP + FP
c= TP A.2)
TP + FN
Pr x Rc
Fl=2x ——— A.3
Pr +Rc (A-3)
1 n
Prmacro—avg = ; 2 PI',- (A4)
i=1
1 n
Rcmacro—avg = ; z Re; (A.5)
i=1
1 n
Flmacro—avg = ; z F1; (A.6)
i=1

Table A.1 holds all calculated metrics grouped by data set and test
site.

Appendix B. Supplementary data

The Zenodo repository https://doi.org/10.5281/zenodo.6903489
contains:

- supplementary_data_B_OWT_height_capacity.csv -
Train/test offshore wind turbine height and installed capacity
values

» supplementary_data_B_DeepOWT_1_21_2_plus.geo-
json - Extended version of the DeepOWT data set (https://
zenodo.org/record/5933967) by all of the derived attributes in
this study e.g. OWT hub height and installed capacity.
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