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Abstract

A remarkably high diversity of native small spindle-shells (Gastropoda, Fasciolariidae, Fusininae) has been recently invento-
ried in the Mediterranean Sea, with 23 species identified based on shell morphology. They have almost invariably been classified 
in the genus Fusinus, and a few of them recently moved to other genera (Aptyxis Troschel 1868, Aegeofusinus Russo, 2017 and 
Gracilipurpura Jousseaume, 1880), mostly based on the sole shell features. We have reconstructed a molecular phylogenetic 
framework for the Mediterranean Fusininae, focusing on native species representative of the genus-level taxa. Our results con-
firmed that Fusinus s.s. (type species Murex colus Linnaeus, 1758) should be restricted to a group of large-shelled species from the 
Indo-West Pacific and does not fit any of the small-shelled Mediterranean fusinines. We confirm that Murex syracusanus Linnae-
us, 1758 represents a distinct lineage, and show that for all the remaining species the pattern is suggestive of a single monophyletic 
radiation of small Mediterranean fusinines, for which the name Pseudofusus Monterosato, 1884 must be used. 

Keywords: Fasciolariidae; Molecular phylogeny; Systematics; Aegeofusinus; Aptyxis; Fusinus; Gracilipurpura; Hadriania; 
Pseudofusus.

Introduction

Spindle-shells, along with tulip shells and horse-
conchs, belong to the neogastropod family Fasciolariidae 
Gray, 1853. This large lineage of predatory marine snails 
probably appeared during the Albian (Bandel, 1993), and 
includes over 500 extant species in c. 63 currently ac-
cepted extant genera worldwide (MolluscaBase, 2022). 
Fasciolariids feed on sedentary polychaetes, bivalves, 
cirripedes and other gastropods (Taylor et al., 1980), and 
a large majority of species undergo a non-planktotrophic 
intracapsular development (Leal, 1991).

A recent molecular phylogenetic study (Couto et al., 
2016) provided support to recognize three major lineag-
es within the family Fasciolariidae [excluding the unsta-
bly positioned Dolicholatirus Bellardi, 1884 and Tera-
latirus Coomans, 1965, which are now classified in the 

Dolicholatiridae (Kantor et al., 2022a]: 
1.	 the so-called Fasciolaria tulipa (Linnaeus, 1758) 

clade, including several genera and broadly corre-
sponding to a revised concept of Fasciolariinae; 

2.	 the Peristernia nassatula (Lamarck, 1822) clade, for 
which the subfamily name Peristerniinae Tryon, 1880 
can be used, with species usually ascribed to Peris-
ternia Mörch, 1852 and Fusolatirus Kuroda & Habe, 
1971;

3.	 the Fusinus colus (Linnaeus, 1758) clade, including 
almost all taxa of Fusininae Wrigley, 1927.
Within the latter clade, five major lineages were re-

covered, broadly corresponding to five genera: Fusi-
nus Rafinesque, 1815, Amiantofusus Fraussen, Kantor 
& Hadorn, 2007, Granulifusus Kuroda & Habe, 1954, 
Chryseofusus Hadorn & Fraussen, 2003 and Angulofu-
sus Fedosov & Kantor, 2012, with species traditionally 
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ascribed to Pseudolatirus Bellardi, 1884 (previously in 
Peristerniinae) split among Granulifusus and Chryseofu-
sus.

Kantor et al. (2018) revised Pseudolatirus restricting 
its use to fossil species only. Adding new sequences, they 
provided a framework including the newly introduced 
genera Okutanius Kantor, Fedosov, Snyder & Bouchet, 
2018 (preoccupied name, replaced by Takashius Kantor, 
Fedosov, Snyder & Bouchet, 2022, type species Fusolati-
rus kuroseanus Okutani, 1975) and Vermeijius Kantor, 
Fedosov, Snyder & Bouchet, 2018 (type species Pseudol-
atirus pallidus Kuroda & Habe, 1961). 

Subsequently, Vermeij & Snyder (2018:71), in a mor-
phology-based revision, proposed groupings of extant 
and fossil ‘large’ fusinines in genera largely but not com-
pletely in agreement with the molecular phylogenetic 
schemes of Couto et al. (2016) and Kantor et al. (2018). 

The currently accepted fusinine systematics (Mollus-
caBase, 2022) is largely based on Vermeij & Snyder (2018) 
and recognises 46 genera, of which 15 exclusively fossil.

In the Mediterranean Sea, beside the recently immi-
grated alien species Marmorofusus verrucosus (Gmelin, 
1791), a remarkably high diversity of native small spin-
dle-shells has been inventoried, with 23 species identified 
based on shell morphology (Buzzurro & Russo, 2007; 
Prkić & Russo, 2008; Russo, 2013, 2017; Russo & Ger-
manà, 2014; Russo & Angelidis, 2016; Russo & Calasci-
betta, 2018; Russo & Pagli, 2019). All those species have 
been almost invariably placed in Fusinus, until Russo 
(2015) proposed to resurrect the genus Aptyxis Troschel, 
1868 for Murex syracusanus Linnaeus, 1758; then, Rus-
so (2017) introduced the new genus Aegeofusinus Rus-
so, 2017 to include some small species endemic to the 
Aegean Sea; and eventually, Vermeij & Snyder (2018) 
proposed to place Murex rostratus Olivi, 1792 in the ge-
nus Gracilipurpura Jousseaume, 1880 (Table 1), together 
with a group of related fossil species. 

In this work, we aimed at drawing a molecular phy-
logenetic framework for the Mediterranean Fusininae, by 
expanding the molecular dataset of Couto et al. (2016) 
and Kantor et al. (2018) with the inclusion of addition-
al samples representative of the native Mediterranean 
genus-level taxa. This work will provide a systematic 
scheme for a future revision of the diversity of the spin-
dle-shells of the north-eastern Atlantic and the Mediterra-
nean, in an integrative taxonomy framework.

Material and Methods

Specimen collection

We have used sequences derived from Couto et al. 
(2016) and Kantor et al. (2018) relative to 58 specimens. 
Additionally, DNA sequences were obtained from 10 
specimens belonging to 5 Mediterranean species, cur-
rently classified as: Gracilipurpura rostrata, Fusinus 
pulchellus, F. parvulus, Aegeofusinus rolani, A. eviae. 

Two buccinoidean species, corresponding to the 
vouchers MNHN-IM-2013-60325 (Buccinidae indet.) 

MNHN-IM- 2013-19891 (Manaria sp.; Eosiphonidae), 
were used as outgroups (sequences derived after Kantor 
et al., 2022b). Voucher ID, collecting localities, sequence 
details and GenBank accession numbers are reported in 
Table 2.

Molecular analyses and sequence alignment

Specimens were either directly fixed in alcohol upon 
collection, or pre-treated with microwave to separate the 
animal from the shell (Galindo et al., 2014). For each 
specimen, whole genomic DNA was extracted from a ~ 
1 mm3 clip of foot tissue by using a ‘salting out’ protocol 
(Aljanabi & Martinez, 1997), or a proteinase K/phenol–
chloroform extraction protocol (Oliverio & Mariottini, 
2001), with a final elution volume of 50 µL. 

Four molecular markers were amplified: the 658-bp 
barcode region of the mitochondrial COI gene, using the 
primers LCO1490 and HCO2198 (Folmer et al. 1994); a 
c. 800-bp region of the mitochondrial 16S rDNA, with the 
primers 16SA (Palumbi, 1996) and CGLeuR (Hayashi, 
2003); a c. 777-bp region of the nuclear 28S rDNA with 
the primers C1 and D2 (Jovelin & Justine, 2001); and a 
328-bp region of the H3 nuclear gene, with the primers 
H3F and H3R (Colgan et al., 2000).

PCR reactions were performed with 1 µL of undilut-
ed DNA template in 25 µL reactions. Reaction volumes 
consisted of 2.5 µL of 10x NH4 Reaction Buffer, 2.5 µL 
of 50 mM MgCl2 Solution, 0.15 µL of BIOTAQ DNA 
Polymerase, 0.4 µL of each 25 pM primer solution, 1 µL 
of 10% BSA solution, 0.5 µL of 10 mM nucleotide mix 
solution. PCR conditions were as follows: initial denatur-
ation (94 °C/5′); 35 cycles of denaturation (94 °C/30′′), 
annealing (48°C for COI, 52°C for 16S, 56°C for 28S, 
57°C for H3/40′′), and extension (72 °C/1′); final ex-
tension (72 °C/10′). PCR products were purified using 
ExoSAP-IT (USB Corporation) and both strands were 
sequenced at Macrogen, Inc. COI and H3 sequences were 
aligned using the alignment algorithm of Geneious v. 11 
[Biomatters, 2022. https://www.geneious.com (20 June 
2022)] and checked for stop codons, while 16S rRNA 
and 28S rRNA sequences were aligned with the E-INS-i 
algorithm in MAFFT v. 7 (Katoh & Standley, 2013; Ka-
toh et al., 2019). Sequences were deposited in GenBank 
(accession numbers: COI, ON166814-ON166823; 16S, 
ON178680-ON178689; 28S, ON178690-ON178697; 
H3, ON214773-ON214782).

Phylogenetic analyses

In our phylogenetic analyses we used several distinct 
datasets.

Each single-gene dataset (COI; 16S rRNA; 28S rRNA; 
H3) was employed to derive single-gene trees that were 
used to check for phylogenetic consistency of the place-
ment of each single sequence. Two concatenated datasets 
were also produced including only those specimens for 
which three out of four genes (G3) and all four genes 
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Table 1. Currently accepted species of Fusininae from the Mediterranean and the Ibero-Moroccan Gulf, with their classification 
(MolluscaBase, 2021) and known distribution (according to: Buzzurro & Russo, 2007; Prkić & Russo, 2008; Gofas, 2011; Russo, 
2013, 2017; Russo & Germanà, 2014; Russo & Angelidis, 2016; Russo & Calascibetta, 2018; Russo & Pagli, 2019).

Genus species Distribution Sequenced
Aegeofusinus Russo, 2017

Aegeofusinus angeli (Russo & Angelidis, 
2016)

Aegean Sea (Chalki Is.)

Aegeofusinus eviae (Buzzurro & Russo, 
2007)

Aegean Sea (Astypalea Is.) 

Aegeofusinus margaritae (Buzzurro & 
Russo, 2007)

Aegean Sea (Karpathos Is.)

Aegeofusinus patriciae (Russo & Olivieri, 
2013)

Aegean Sea (Crete Is.)

Aegeofusinus profetai (Nofroni, 1982) Aegean Sea (Karpathos Is.)
Aegeofusinus rolani (Buzzurro & Ovalis, 
2005)

Aegean Sea (Saronikós Gulf; Cyclades) 

Aptyxis Troschel, 1868
Aptyxis syracusana (Linnaeus, 1758) Mediterranean Sea (excluding Alboran Sea) 

Gracilipurpura Jousseaume, 1880
Gracilipurpura rostrata (Olivi, 1792) Entire Mediterranean Sea and neighbouring 

Atlantic


Fusinus Rafinesque, 1815
Fusinus albacarinoides Hadorn, Afonso & 
Rolán, 2009

Ibero-Moroccan Gulf

Fusinus alternatus Buzzurro & Russo, 2007 Tyrrhenian Sea; Sicily Channel; Aegean Sea
Fusinus buzzurroi Prkić & Russo, 2008 Adriatic (Croatia)
Fusinus clarae Russo & Renda in Russo, 
2013

Messina Strait and southern Sardinia

Fusinus corallinus Russo & Germanà, 2014 Jonian Sea (eastern Sicily)
Fusinus cretellai Buzzurro & Russo, 2008 Alboran Sea and Ibero-Moroccan Gulf
Fusinus dimassai Buzzurro & Russo, 2007 Messina Strait and Lampedusa Is.
Fusinus dimitrii Buzzurro & Ovalis in 
Buzzurro & Russo, 2007

Aegean Sea (Limnos Is.)

Fusinus fioritai Russo & Pagli, 2019 Jonian Sea
Fusinus insularis Russo & Calascibetta, 
2018

Southern Tyrrhenian Sea (N Sicily)

Fusinus labronicus (Monterosato, 1884) Central Mediterranean (N Tyrrhenian; 
Sardinia; southern France)

Fusinus parvulus (Monterosato, 1884) Mediterranean Sea (excluding Alboran Sea) 

Fusinus pulchellus (Philippi, 1840) Entire Mediterranean Sea and neighbouring 
Atlantic



Fusinus raricostatus (Del Prete, 1883) Southern Tyrrhenian Sea; Sicily Channel; 
Sardinia (Adriatic?)

Fusinus rusticulus (Monterosato, 1880) Gulf of Gabès
Fusinus ventimigliai Russo & Renda in 
Russo, 2013

Messina Strait

Marmorofusus Snyder & Lyons, 2014
Marmorofusus verrucosus (Gmelin, 1791) Alien from Western Indian Ocean: Levant 

basin
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(G4) were available. Analyses were performed on large 
datasets including selected sequences from all fasciolari-
id subfamilies (using the two buccinoideans as outgroup), 
or on reduced datasets focusing only on the Fusininae 
(using a fasciolariine, Fasciolaria bullisi Lyons, 1972, 
and a peristerniine, Peristernia sp., as outgroups). The 
Bayesian information criterion implemented in jModelT-
est v. 2.1.7 (Darriba & Posada, 2012) was used to iden-
tify the best substitution models and parameters for each 
gene partition; the substitution models selected for each 
partition were the following: GTR+I (COI 1st codon po-
sition), HKY (COI 2nd codon position), GTR+G (COI 
3rd codon position), HKY+I+G (16S), GTR+I+G (28S), 
and HKY+I+G (H3).

Phylogenetic analyses were performed using max-
imum likelihood (ML) and Bayesian approaches. ML 
analyses were run on the IQ-TREE web server using 
W-IQ-TREE v. 1 (Trifinopoulos et al., 2016; with 1000 
ultrafast bootstrap replicates). Bayesian analyses were 
performed using MrBayes v. 3.2.3 (Ronquist et al. 2012; 
107 generations, trees sampled every 1,000 generations, 
25% burn-in) on the CIPRES Science Gateway (Miller et 
al., 2010). Convergence of MCMC was assumed to have 

occurred when the effective sample size was >200 and 
the potential scale reduction factor was approximately 1, 
as calculated with Tracer v. 1.7 (Rambaut et al., 2018). 
Only nodes with ultrafast bootstrap values (UfB) ≥0.95 
or posterior probabilities (PP) values ≥0.95 were consid-
ered to be highly supported.

Abbreviations

MNHN: Muséum National d’Histoire Naturelle, Paris.
MHNG: Muséum d’Histoire Naturelle, Genève.
P.R.: private collection Paolo Russo, Venezia.
UfB: ultrafast bootstrap values in Maximum Likelihood 
analyses. 
PP: posterior probabilities of nodes in Bayesian Analyses.

Results

All single-gene trees are reported in Supplementary 
materials (Figs S1-S8). In our multilocus G3 and G4 trees 
(Figs 1, 2) the included fasciolariids always formed three 

Fig. 1: ML tree (G3 dataset) portraying the relationships among lineages of Fasciolariidae. Lineages of Fusininae corresponding to 
currently accepted genera are marked. A clade corresponding to a restricted concept of Fusinus s.s. (see also Couto et al., 2016, and 
Kantor et al., 2018) is highlighted in red; in violet a clade of Mediterranean species currently classified in Aegeofusinus, Fusinus 
and Gracilipurpura. Numbers at nodes correspond to ultrafast bootstrap support for ML, and posterior probability for BI, respec-
tively (only UfB ≥0.95 and PP ≥0.95 are reported; closed circles indicate 100% BS and 1 PP).
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distinct clades – as in Couto et al. (2016) and Kantor et 
al. (2018) – corresponding to the three subfamilies Fasci-
olariinae, Peristerniinae and Fusiniinae, highly supported 
by both, PP and UfB.

Within the Fusininae we retrieved almost all rec-
ognised genera as monophyletic, with high UfB and PP 
supports, in all G3 and G4 analyses. We could not un-
ambiguously resolve the relationships among most of 
the genera. However, in the G3 analyses we recovered a 
clade (UfB 82%, PP 1) with Amiantofusus as the sister to 
a maximally supported clade, including species ascribed 
to Fusinus s.s., Aristofusus, Propefusus, Cyrtulus and the 
Mediterranean native fusinines; recognition of Cyrtu-
lus as a distinct genus would make Fusinus as currently 
recognised polyphyletic. This pattern was also strong-
ly supported in the G4 analysis, with the clade Aptyxis 
syracusana + Aristofusus + Propefusus + Fusinus s.s. as 
sister to the remaining Mediterranean fusinines. The lat-
ter formed a maximally supported monophyletic group 
including Aegeofusinus eviae, A. rolani, Gracilipurpura 
rostrata, Fusinus pulchellus and F. parvulus (with the 
two Aegeofusinus never forming a monophyletic unit in 
any analysis). 

Discussion

All our analyses confirmed the monophyly of the 
Fusininae as previously reported by Couto et al. (2016) 
and Kantor et al. (2018). The inclusion of the additional 

Mediterranean taxa did not alter the internal phylogenet-
ic pattern of the Fusininae, where at least nine lineages 
worthy of genus level classification were identified. Six 
of them corresponded to the genera Amiantofusus, Angu-
lofusus, Chryseofusus, Granulifusus, Takashius and Ver-
meijius as delimited by Kantor et al. (2018). 

Our results are in agreement with the view of Vermeij 
& Snyder (2018) that Fusinus s.s. (type species Murex 
colus) should be restricted to the group of large-shelled 
species from the Indo-West Pacific (Fig. 3); however, it 
should also include – as shown by Couto et al. (2016) 
and Kantor et al. (2018) – the morphologically divergent 
‘Cyrtulus’ serotinus Hinds, 1843 (from Marquesas) and 
‘Cyrtulus’ mauiensis (Callomon & Snyder, 2006) (from 
Hawaii). Conversely, Aristofusus excavatus (G. B. Sower-
by II, 1880) and Propefusus australis (Quoy & Gaimard, 
1833) may be kept as representing distinct genera (with 
five and three species, respectively) as suggested by their 
morphology (Vermeij & Snyder, 2018). In this frame-
work, Fusinus s.s. is quite evidently not the appropriate 
genus for the small-shelled Mediterranean fusinines. The 
Mediterranean species here analysed split into two dis-
tinct lineages: one represented by Aptyxis syracusana 
(thus justifying the use of Aptyxis for this species, which 
is also supported by radular differences; see below) and 
the other including the remaining assayed species. For 
the latter, the pattern is suggestive of a single radiation 
of the small fusinines of the Mediterranean Sea currently 
ascribed to Fusinus and Aegeofusinus. In fact, the two 
Aegean species assayed here, which are among those 

Fig. 2: ML tree of selected taxa (G4 dataset), showing the relationships among fusinine genus level lineages. Numbers at nodes 
correspond to ultrafast bootstrap support for ML, and posterior probability for BI, respectively (only UfB ≥0.95 and PP ≥0.95 are 
reported; closed circles indicate 100% BS and 1 PP).
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recently (Russo, 2017) ascribed to the genus Aegeofusi-
nus (A. eviae and A. rolani, the latter very similar mor-
phologically to the type species A. margaritae), belong 
in this radiation but do not represent a distinct lineage. 
Concerning all these species, we show herein (see below) 
that the name Gracilipurpura was not introduced for Mu-
rex rostratus; however, there is a genus name available, 
Pseudofusus Monterosato, 1884, which can be used. 

Therefore, we propose the following arrangement 
for the systematics of the Mediterranean Fusininae. The 
scheme is derived from the present results, is extended 
to the non-assayed nominal species by inference on mor-
phological similarity, and will serve as a framework for a 
future revision of the Mediterranean fusinine fauna.

Systematics 

Class Gastropoda Cuvier, 1795

Order Neogastropoda Wenz, 1938
Family Fasciolariidae Gray, 1853
Subfamily Fusininae Wrigley, 1927

Genus Aptyxis Troschel, 1868
Aptyxis Troschel, 1868: 61, 64. Type species by monoty-
py: Murex syracusanus Linnaeus, 1758 

Remarks
Russo (2015), based on shell and radular morphology 

(see also Bouchet & Warén, 1985:160, fig. 381; Russo, 
2016), resurrected this genus for the type species, Mu-
rex syracusanus Linnaeus, 1758, and for Fusus luteopic-
tus Dall, 1877. For the latter species, Snyder & Vermeij 
(2016) established the new genus Hesperaptyxis that 
should be tested for validity by molecular data. Landau 
et al. (2013) included in the genus Aptyxis the fossil Fu-
sus palatinus Strausz, 1954, from the Middle Miocene of 
Turkey, which would serve in future studies to calibrate 

Fig. 3: Representative vouchers of species of Fusininae (shells not to scale). A: Fusinus colus (Linnaeus, 1758) (type species of 
Fusinus), syntype, courtesy of Linnaean Society, length 113 mm; B: Fusinus salisbury Fulton, 1930, East China Sea, coll. P.R., 
length 246 mm; C, D: Pseudofusus rostratus (Olivi, 1792) (type species of Pseudofusus Monterosato); C: probable syntype of 
Fusus strigosus Lamarck, 1822, “Méditerranée”, MHNG INVE 51731, length 48.5 mm; D: Northern Adriatic, coll. P.R., length 
39 mm; E: Pseudofusus pulchellus (Philippi, 1844), Sicily Channel, coll. P.R., length 15 mm; F: Pseudofusus rolani (Buzzurro & 
Ovalis, 2005), Saronikos Gulf, coll. P.R., length 13.7 mm; G: Pseudofusus parvulus (Monterosato, 1884), Porto Palo (Sicily), coll. 
P.R., length 15 mm; H: Pseudofusus margaritae (Buzzurro & Russo, 2007) (type species of Aegeofusinus), Kàrpathos Is., coll. 
P.R., length 15.5 mm; I: Pseudofusus eviae (Buzzurro & Russo, 2007), Astypalea Is., coll. P.R., length 12.7 mm.
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the age of this lineage.

Genus Pseudofusus Monterosato, 1884
Pseudofusus Monterosato, 1884: 117. Type species by 
subsequent designation (Crosse, 1885): Murex rostratus 
Olivi, 1792 
Aegeofusinus, Russo, 2017 (type species by original des-
ignation: Fusinus margaritae Buzzurro & Russo, 2007)
Gracilipurpura sensu Vermeij & Snyder (2018:71) not 
Jousseaume, 1880: 335
Carinofusus Ceulemans, Landau & Van Dingen, 2014 
(type species by original designation: Clavella neogenica 
Cossmann, 1901)

Remarks
Monterosato (1884: 117) explicitly considered Fusus 

Lamarck as unfit to host the small Mediterranean spin-
dle shells, which he suggested to place in “Aptysis” (sic! 
lapsus calami for Aptyxis) and in another “section” to be 
called Pseudofusus, with the following resulting classi-
fication: Aptyxis syracyusana, Pseudofusus rostratus, P. 
pulchellus, P. rusticulus, P. labronicus. 

Pseudofusus Monterosato 1884 is the first available 
name certainly applied to the clade of Murex rostratus. 
Monterosato has repeatedly used Pseudofusus (Montero-
sato 1890; 1891; 1917) as also did Carus (1889: 405-406), 
Pallary (1900: 267; 1904: 225; 1914), Praus Franceschi-
ni (1906: 58), Coen (1914: 7, 24; 1917: 318; 1933: 173; 
1937: scheda), Bellini (1902: 97; 1929: 31), Franchini 
& Zanca (1977:8). Others (Malatesta, 1960; Bouchet & 
Warén, 1985; Snyder, 2003; Buzzurro & Russo, 2007) 
regarded Pseudofusus as a junior synonym of Fusinus.

Vermeij & Snyder (2018:71), proposed to classify 
Murex rostratus (and a group of related fossil species) 
in Gracilipurpura Jousseaume, 1880 (type species “Fu-
sus strigosus Lamk.”: Jousseaume, 1880: 335; “Fusus 
strigosus Lin.”, Jousseaume, 1881: 331). Fusus strigo-
sus was actually described by Lamarck (1822: 130), 
from the Gulf of Taranto (vernacular name: “Fuseau de 
Tarente”) without any image. A probable syntype in the 
museum of Genève (Finet & Snyder, 2012: fig. 8B; Fig. 
3C) is clearly a specimen of Murex rostratus Olivi. From 
here the suggestion by Vermeij & Snyder (2018), to use 
Gracilipurpura for the species that has long been called 
Fusinus rostratus (Olivi). However, it is quite evident 
from Jousseaume’s description (“Genre Gracillipurpura 
(nob.) type Fusus strigosus Lin., coquille allongée à spire 
conique, tours rapeux ornés de gros plis longitudinaux 
aux deux extrémités; bord columellaire appliqué en ar-
rière et à peine détaché en avant, canal médiocre déjeté 
a gauche et fermé à l’état adulte” (Jousseaume, 1881: 
331-332) that he was not dealing with a fasciolariid but 
rather with an ocenebrine muricid (canal déjeté a gauche 
et fermé à l’état adulte). In fact, Jousseaume (1880, 1881) 
introduced Gracilipurpura in the framework of a major 
revision of the Muricidae, and placed it after “Tritonalia 
(Flem)” (=Ocenebra Gray, 1847) and before the fossil Ly-
ropurpura Jousseaume, 1880, two typical ocenebrine mu-
ricid lineages. He evidently misidentified Fusus strigosus 
Lamarck. This misidentification of Fusus strigosus had 

previously occurred also with Blainville (1828) who re-
described Fusus strigosus Lamarck, modifying the de-
scription, using the same vernacular name (“Fuseaux”), 
and indicating the same locality (Gulf of Taranto); ad-
mitting that he did not know the types, he figured under 
this name (Blainville, 1828: pl. 4D, fig. 3) a typical deep 
water specimen of the ocenebrine Hadriania craticula-
ta Bucquoy & Dautzenberg, 1882 (as also pointed out 
by Weinkauff, 1868: 100). This is, therefore, a case of 
misidentified type species (ICZN, 1999); the use of Gra-
cilipurpura can be stabilized by selecting as type species 
either the fasciolariid species denoted by the name used 
by Jousseaume (Fusus strigosus = Murex rostratus), or 
the muricid species actually intended by Jousseaume (i.e. 
Hadriania craticulata, albeit using a wrong name). The 
first option would have the only advantage of maintain-
ing the very recently (Vermeij & Snyder, 2018) proposed 
use of Gracilipurpura for Murex rostratus, extending it 
also to the remaining species of this clade; however, it 
would be completely disrespectful of the evident original 
intention of Jousseaume to introduce a genus name for 
an ocenebrine muricid lineage. The second option makes 
Gracilipurpura an objective senior synonym of Hadri-
ania Bucquoy & Dautzenberg, 1882; it is noteworthy 
that the affected species, Hadriania craticulata Bucquoy 
& Dautzenberg, 1882, has already one of the most trou-
bled nomenclatural histories of the Mediterranean fauna. 
Therefore, respecting the original intention of Jousseau-
me, we select and fix as type species of Gracilipurpura 
Jousseaume, 1880 (according to the ICZN, 1999) the tax-
onomic species actually involved in the misidentification, 
i.e. Hadriania craticulata Bucquoy & Dautzenberg, 1882 
(= Fusus strigosus sensu Jousseaume, 1880, not Fusus 
strigosus Lamarck, 1822). 

We include the following nominal taxa from the Med-
iterranean and the Ibero-Moroccan Gulf in Pseudofusus: 

Pseudofusus rostratus (Olivi, 1792)
Pseudofusus albacarinoides (Hadorn, Afonso & Rolán, 
2009)
Pseudofusus alternatus (Buzzurro & Russo, 2007)
Pseudofusus angeli (Russo & Angelidis, 2016)
Pseudofusus buzzurroi (Prkić & Russo, 2008)
Pseudofusus clarae (Russo & Renda in Russo, 2013)
Pseudofusus corallinus (Russo & Germanà, 2014)
Pseudofusus cretellai (Buzzurro & Russo, 2008)
Pseudofusus dimassai (Buzzurro & Russo, 2007)
Pseudofusus dimitrii (Buzzurro & Ovalis in Buzzurro & 
Russo, 2007)
Pseudofusus eviae (Buzzurro & Russo, 2007)
Pseudofusus fioritai (Russo & Pagli, 2019)
Pseudofusus insularis (Russo & Calascibetta, 2018)
Pseudofusus labronicus Monterosato, 1884
Pseudofusus margaritae (Buzzurro & Russo, 2007)
Pseudofusus parvulus (Monterosato, 1884)
Pseudofusus patriciae (Russo & Olivieri, 2013)
Pseudofusus profetai (Nofroni, 1982)
Pseudofusus pulchellus (Philippi, 1840)
Pseudofusus raricostatus (Del Prete, 1883)
Pseudofusus rolani (Buzzurro & Ovalis, 2005)
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Pseudofusus rusticulus (Monterosato, 1880)
Pseudofusus ventimigliai (Russo & Renda in Russo, 
2013)

A few species have wide ranges (P. rostratus, P. pul-
chellus, P. parvulus) whereas most taxa have restricted 
to very restricted ranges. All species have a paucispiral 
protoconch, indicating a non-planktotrophic larval de-
velopment (probably entirely intracapsular), which may 
be related to the geographic pattern. Two of the involved 
species, P. rostratus and P. pulchellus, are very hard or 
impossible to separate morphologically in the area of the 
Alboran Sea (Gofas, 2011). Present results did not un-
equivocally nor consistently resolve the assayed speci-
mens morphologically ascribed to either species, suggest-
ing that they represent either a single species, or a pair of 
species that have diverged very recently. It is hoped that 
enlarging the sampling will help clarifying this issue. 
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Fig. S1: Phylogenetic relationships among fasciolariids as illustrated by the Bayesian majority consensus tree of the 16S align-
ment. The tree is rooted on two buccinoideans (the Eosiphonidae Manaria sp., voucher MNHN-IM-2013-19891, and an undeter-
mined Buccinidae, voucher MNHN-IM-2013-60365). Support values are given as posterior probabilities for the Bayesian analysis 
based on 107 generations, 25% burnin (only values ≥0.95 are shown).
Fig. S2: Phylogenetic relationships among fasciolariids as illustrated by the Bayesian majority consensus tree of the 28S align-
ment. The tree is rooted on two buccinoideans (the Eosiphonidae Manaria sp., voucher MNHN-IM-2013-19891, and an undeter-
mined Buccinidae, voucher MNHN-IM-2013-60365). Support values are given as posterior probabilities for the Bayesian analysis 
based on 107 generations, 25% burnin (only values ≥0.95 are shown).
Fig. S3: Phylogenetic relationships among fasciolariids as illustrated by the Bayesian majority consensus tree of the COI align-
ment. The tree is rooted on two buccinoideans (the Eosiphonidae Manaria sp., voucher MNHN-IM-2013-19891, and an undeter-
mined Buccinidae, voucher MNHN-IM-2013-60365). Support values are given as posterior probabilities for the Bayesian analysis 
based on 107 generations, 25% burnin (only values ≥0.95 are shown).
Fig. S4: Phylogenetic relationships among fasciolariids as illustrated by the Bayesian majority consensus tree of the H3 align-
ment. The tree is rooted on two buccinoideans (the Eosiphonidae Manaria sp., voucher MNHN-IM-2013-19891, and an undeter-
mined Buccinidae, voucher MNHN-IM-2013-60365). Support values are given as posterior probabilities for the Bayesian analysis 
based on 107 generations, 25% burnin (only values ≥0.95 are shown).
Fig.S5:  Phylogenetic relationships among conoideans as illustrated by the ML majority consensus tree of the 16S alignment. 
The tree is rooted on two buccinoideans (the Eosiphonidae Manaria sp., voucher MNHN-IM-2013-19891, and an undetermined 
Buccinidae, voucher MNHN-IM-2013-60365). Support values are given as ultrafast bootstrap support after ML analysis of 1000 
pseudoreplicates (only values ≥95% are shown).
Fig. S6: Phylogenetic relationships among conoideans as illustrated by the ML majority consensus tree of the 28S alignment. 
The tree is rooted on two buccinoideans (the Eosiphonidae Manaria sp., voucher MNHN-IM-2013-19891, and an undetermined 
Buccinidae, voucher MNHN-IM-2013-60365). Support values are given as ultrafast bootstrap support after ML analysis of 1000 
pseudoreplicates (only values ≥95% are shown).
Fig. S7: Phylogenetic relationships among conoideans as illustrated by the ML majority consensus tree of the COI alignment. 
The tree is rooted on two buccinoideans (the Eosiphonidae Manaria sp., voucher MNHN-IM-2013-19891, and an undetermined 
Buccinidae, voucher MNHN-IM-2013-60365). Support values are given as ultrafast bootstrap support after ML analysis of 1000 
pseudoreplicates (only values ≥95% are shown).
Fig. S8: Phylogenetic relationships among conoideans as illustrated by the ML majority consensus tree of the H3 alignment. 
The tree is rooted on two buccinoideans (the Eosiphonidae Manaria sp., voucher MNHN-IM-2013-19891, and an undetermined 
Buccinidae, voucher MNHN-IM-2013-60365). Support values are given as ultrafast bootstrap support after ML analysis of 1000 
pseudoreplicates (only values ≥95% are shown).
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