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Abstract
Tracking the effects of habitat attributes on species distribution is pivotal to the understanding of community assembly 
across space and time. We used the elements of metacommunity (EMS), which evaluates coherence, turnover, and bound-
ary clumping of species, to access the spatial patterns of nematodes from three coastal habitats with increasing degree to 
wave exposure, namely, mangroves, estuarine unvegetated tidal flats, and sandy beaches. Each habitat was sampled in four 
locations, hundreds of kilometers apart from each other. We hypothesized that (1) coastal habitats act as metacommunity 
boundaries and drive positive turnover and clumped distribution of species and (2) metacommunity structure within coastal 
habitats depends on the habitats’ degree to wave exposure since wave energy generally decreases sediment heterogeneity 
and favors connectivity among locations. Habitats were the main drivers of species turnover, with tidal flats harboring a 
transitional assemblage between mangrove and sandy beach. Metacommunities from the different habitats showed distinct 
patterns of organization among locations. Mangroves were characterized by species loss, with smaller areas of mangroves 
harboring a subset of the species pool present on larger areas of mangroves. Tidal flats showed positive species turnover 
among the different estuaries, with co-occurring species responding as a group to environmental variations. Both patterns 
indicate environmental filtering as the main driver at these less wave-exposed habitats. At sandy beaches, in contrast, meta-
community displayed a random pattern, suggesting high connectivity among locations. Our study confirmed that habitat 
attributes may induce distinct mechanisms of metacommunity assembly at coastal soft-bottom ecosystems.
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Introduction

Coastlines are composed by a mosaic of discontinuous habi-
tats with varying levels of connectivity and heterogeneity 
(Rattray et al. 2015; Boyé et al. 2019). In these coastal habi-
tats, passive dispersal and connectivity of benthic communi-
ties, as well as seafloor sediment heterogeneity, are tightly 
coupled with wave exposure (Rattray et al. 2015; Rodil et al. 
2017). In sandy beaches, for instance, waves and currents are 
constantly resuspending and transporting sediments and ani-
mals, so that sediments are in general more homogeneous and 
invertebrate communities are mainly structured by physical/
advective forces (Mermillod-Blondin and Rosenberg 2006; 
Rodil et al. 2017). Mangroves and estuarine tidal flats, on the 
contrary, are characterized by lower wave exposure, result-
ing in muddier and more heterogenous sediments where bio-
geochemical/diffusion gradients are important structuring 
forces (Mermillod-Blondin and Rosenberg 2006; Vieira and 
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Fonseca 2013). Consequently, these different sedimentary 
habitats harbor benthic communities with distinct structure 
and composition. However, it is still not clear if these differ-
ent habitat attributes could also lead to distinct mechanisms 
driving metacommunity dynamics.

The metacommunity concept refers to the exchange of spe-
cies (in space and time) from distinct communities (Holyoak 
et al. 2005). There are two ways to explore metacommunity 
dynamics, the mechanism-based approach (Leibold et al. 2004) 
and the pattern-based approach (Leibold and Mikkelson 2002). 
The first evaluates the role of four mechanisms in metacom-
munity assembly, i.e., patch dynamics (PD), species sorting 
(SS), mass-effects (ME), and neutrality (NE), according to 
the dominance of the structuring mechanism, such as species 
competition (in the case of PD), environmental filtering (SS), 
dispersion (ME), and species equivalence (NE) (Leibold et al. 
2004; Brown et al. 2017). The pattern-based approach has 
become more widely used in the last few years (Leibold and 
Mikkelson 2002). This method explores the three main ele-
ments of metacommunity structure (EMS): coherence, turnover, 
and boundary clumping, and evaluates how empirical data fit to 
the conceptual distribution models (Presley et al. 2010).

Through the sequential analysis of the coherence, 
turnover and boundary clumping the EMS framework 
can evaluate the fitting of ecological communities to at 
least 8 distribution patterns and another 4 quasi patterns 
(Presley et al. 2010). The emerging empirical distribution 
is in general shaped by a combination of ecological pro-
cesses, e.g., dispersal, habitat specialization, competition, 
predation, tolerance to abiotic conditions, environmental 
heterogeneity, and often hard to disentangle and quantify 
(Valanko et al. 2015; Presley 2020). Therefore, the same 
mechanisms driving community assembly can lead to dif-
ferent spatiotemporal patterns. Despite this, some gener-
alizations can be made, for example, species-sorting or 
patch-dynamics can result in turnover or nestedness pat-
terns under strong environmental filtering (Gascón et al. 
2016; Josefson 2016). Also, metacommunities without 
significant coherence (i.e., checkerboard and random) can 
emerge as a function of mass-effect dynamics where inter-
specific differences in species dispersion are unimportant 
due to high connectivity (Datry et al. 2016; Presley et al. 
2019). Thus, it is possible to infer that coherence in meta-
community decreases when species dispersion overcomes 
the effects of environmental heterogeneity (Vanschoen-
winkel et al. 2007; Rodil et al. 2017). In this case, there is 
a transition between the mechanisms driving community 
assembly from environmental-based (species-sorting or 
patch-dynamics) to dispersion-based mechanisms (mass-
effect and neutral).

The EMS approach has been recently applied to 
understand the spatiotemporal dynamics of invertebrate 
communities from streams (Datry et  al. 2016), lakes 

(Dümmer et al. 2016), and coastal ecosystems (Valanko 
et al. 2015; Rodil et al. 2017; Alves et al. 2020). It has 
been suggested that environmental heterogeneity and 
connectivity are determined by hydrodynamic patterns 
(Vanschoenwinkel et al. 2007; Yeh et al. 2015; Rodil 
et al. 2017), with metacommunities showing coherent 
species distribution at moderate hydrodynamics and ran-
dom patterns when hydrodynamics is high (Yeh et al. 
2015). For soft-bottom coastal ecosystems, where habitat 
limits are not visually evident, the EMS approach can 
be very informative, helping us to understand whether 
distinct habitats can be considered as metacommunities’ 
boundaries and whether they harbor distinct communi-
ties which may display different patterns of organization 
(Presley et al. 2010; Gascón et al. 2016).

In this study, we investigated, by means of the EMS 
approach, the types of free-living nematode metacommu-
nities from three distinct coastal habitats with increasing 
degrees of wave-exposure: mangroves, estuarine tidal flats, 
and sandy beaches. We chose nematodes as model organ-
isms because they are widely distributed, highly diverse, 
and abundant across the landscape (Schratzberger and 
Ingels 2018). Specifically, we tested the hypotheses that 
(1) due to strong environmental filtering, metacommunities 
from distinct coastal habitats are characterized by species 
mostly limited to its habitat, with a high turnover in spe-
cies composition (i.e., taxa replacement) among habitats 
and a clumped distribution and (2) metacommunity struc-
ture from the three coastal habitats will differ according 
to habitat attributes; i.e., the increased wave exposure and 
connectivity will decrease the importance of environmental 
filtering (Fig. 1). As such, we expect sandy beaches, given 
their higher wave-exposure and connectivity, to present a 
random pattern of species distribution (i.e., non-significant 
coherence). In contrast, unvegetated estuarine tidal flats 
and mangroves, given their lower exposure to waves, lower 
connectivity, and higher environmental heterogeneity, are 
expected to exhibit a non-random pattern, which could be 
either a negative (nested) or a positive (clumped) turnover 
pattern among locations.

Methods

Study Area

The study was carried out in the subtropical coast of São 
Paulo, Brazil (between 25° 3′36.83″ and 23°20′16.02″ S 
and 47°55′45.53″ and 44°53′19.11″ O; Fig. 2). The region 
is located in the São Paulo Bight sector of the South-
ern Brazilian continental shelf, still under the influence 
of sediments from Río de La Plata and by confluence 
between Brazil and Malvinas currents (Mahiques et al. 
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2010). The littoral zone is composed of several estuarine 
systems dominated by mangrove forests, which are inter-
calated by barrier islands and sandy beaches of different 
sizes and orientation (Schaeffer-Novelli and Cintrón-
Molero 1990).

Sampling Design

One sampling campaign was conducted in February 2011 at 
the intertidal zone of three different coastal habitats: man-
groves, estuarine unvegetated tidal flats, and oceanic sandy 
beaches (Fig. 2). Each habitat was sampled in four different 
locations (hundreds of kilometer distant) at the littoral zone 
of São Paulo, Brazil SE (Fig. 2). At each location, replicates 
were arranged in two random plots (5 × 20 m) positioned 
parallel to the water line 700–1000 m apart from each other. 
Within each rectangular plot, 10 equally spaced subdivi-
sions were done and 4 were drawn randomly for sampling. 
For nematode assemblage analysis, samples in mangrove 
and tidal flats were taken with a 2.5-cm diameter core, down 
to a depth of 5 cm. In sandy beaches, they were done with 
a 3-cm diameter corer pushed to a depth of 10 cm (Fig. 2). 

Sandy beach cores were larger and deeper given the lower 
densities and wider range of vertical distribution of mei-
ofauna at sandy beaches (Steyaert et al. 2003; Somerfield 
and Warwick 2013). Four sediment samples (2 g each) were 
also collected for chloroplastic pigment content and four 
samples for granulometric analysis (10 g each). Samples 
for meiofauna analyses were fixed in 4% formaldehyde. 
Sediment samples for the photosynthetic pigments and grain 
size analyses were stored in a cooler in the field and frozen 
at −20 °C in the laboratory.

Sample Processing

Samples for nematode assemblage analysis were washed 
through a 45-μm mesh sieve. After washing, the flota-
tion method with colloidal silica solution (Ludox TM-50) 
adjusted to a specific gravity of 1.18 was used to separate 
organisms from the sediment (Giere 2009). All nema-
todes were counted on a Dolffus plate under a stereoscopic 
microscope. For each sample, 20% of total nematodes were 
randomly picked, evaporated to anhydrous glycerol and 
mounted on permanent slides for identification. A lowest 
and highest limit of 100 and 250 nematodes were established 
(i.e., when the total of nematodes was lower than 100, all 
individuals were picked for identification, and when the total 
was higher than 250, only 250 individuals were taken). Nem-
atodes were identified to genus level and further separated 
into species or putative morphospecies (Platt and Warwick 
1983, 1988; Warwick et al. 1998; Bezerra et al. 2019).

To evaluate the influence of the habitat sediment prop-
erties in the spatial patterns of variation of the nematode 
fauna, chlorophyll-a, and phaeopigments (as a proxy for 
microphytobenthos), sediment grain size and redox potential 
were sampled. Pigments were extracted with 10 ml acetone 
(100%) for 24 h in the dark at 4 °C. The extract was centri-
fuged at 4000 rpm for 5 min. Pigments were analyzed from 
absorbance spectra at 665 nm and 750 nm before and after 
acidification with HCL through a digital spectrophotometer. 
Concentrations of pigments were estimated using the equa-
tions of Lorenzen (1967). Sediment granulometry was deter-
mined by sieving dried samples and total organic content by 
difference in dry weight after combustion for 4 h at 550 °C. 
The redox potential was measured at the sediment surface 
(ca. 1 cm depth) using a Hanna Instruments HI 991,003.

Data Analysis

Spatial Variation on Metacommunity Structure

To test the hypothesis that distinct coastal habitats host 
metacommunities with distinct structure and composition, 
nested multivariate permutational analysis of variance (PER-
MANOVA) was performed on Bray–Curtis dissimilarity 
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Fig. 1   Theoretical framework of the habitats’ attributes driving 
meiobenthic metacommunity structure in coastal ecosystems. Num-
bers are indicating the presupposed degree of habitat’s exposure to 
hydrodynamics. Intertidal mangrove areas (1); unvegetated tidal flats 
(2); oceanic sandy beaches (3). The relative importance of ecological 
processes along the gradient is given by color bars (i.e., importance 
increasing from yellow to red)
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matrices of nematode community using “adonis” function of 
the R package “vegan” (Oksanen et al. 2019). Multivariate 
nematode data was Hellinger-transformed prior the analy-
sis (Legendre and Gallagher 2001). In addition, univariate 
PERMANOVAs based on Euclidean distances of nematode 
taxa richness and total density, Pielou’s evenness, and Shan-
non’s diversity indexes were made (see supplementary mate-
rial Fig. S2). PERMANOVA performed in a single response 
variable using Euclidean distance return the classical uni-
variate F statistic. Hence, PERMANOVA can be used to 
do a univariate ANOVA, where p-values are obtained by 
permutation, thus avoiding the assumption of normality 
(Anderson 2017).

To investigate the role of environmental filtering in the 
different habitats, the relationships between nematode com-
munity structure and environmental variables were tested 
using distance-based RDA (Peres-Neto et al. 2006) in the 
R package “vegan” (Oksanen et al. 2019). Sediment grain 
size and sorting, sediment organic matter content, sediment 
chlorophyll-a and phaeopigment concentrations, and redox 
potential were included as environmental descriptors.

Elements of Metacommunity Structure

The elements of metacommunity structure (EMS) framework 
was used to test the hypothesis that metacommunity spatial 

structure differ according to habitat attributes; i.e., sandy beaches 
will present a random pattern of species distribution, whereas 
unvegetated estuarine tidal flats and mangroves will exhibit either 
nested or positive turnover patterns. The EMS were estimated 
and interpreted according to Leibold and Mikkelson (2002) and 
Presley et al. (2010). The EMS approach tests the fit of empiri-
cal data to several types of metacommunity structure, such as 
checkerboard, nested, evenly spaced, Gleasonian, Clementsian, 
and random (Leibold and Mikkelson 2002; Presley et al. 2010). 
These patterns can be described by consecutive evaluation of 
three properties of metacommunity structure: coherence, turno-
ver, and boundary clumping (Fig. 3). The metrics were calcu-
lated from a presence–absence matrix, with sites as rows and 
species presence/absence as columns. The interaction matrix was 
ordinated via reciprocal averaging. Coherence was measured by 
comparing the number of observed absences in the ordination 
matrix to the number of absences in randomized null matrices. 
A smaller number of embedded absences (Abs) than expected 
by chance indicates positive coherence, while many absences 
(i.e., absence is significantly larger than expected by the null 
models) indicates negative coherence. Non-significant coher-
ence suggests a random metacommunity and there is no need 
to proceed with other tests. Further analysis presupposes that 
community matrices have a positive coherence. Turnover was 
measured as the number of times one species replaced another 
(Repl). Significantly negative turnover refers to nestedness, 
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Fig. 2   Map of the study area at the coast of São Paulo, SE Brazil, with the sampling design used in the study. Locations 100 km distant (Lo) are 
respectively Cananéia (A), Juréia (B), Boracéia (C), and Ubatumirim (D)
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whereas significantly positive turnover (i.e., Repl is significantly 
larger than expected by chance) indicates evenly spaced, Glea-
sonian or Clementsian metacommunities (Fig. 3). Significant 
positive coherence combined with a nonsignificant turnover 
can be interpreted as a quasi-structure (Presley et al. 2010). The 
evenly spaced, Gleasonian or Clementsian metacommunity types 
can be distinguished subsequently based on the index of bound-
ary clumping (Fig. 3). Boundary clumping was analyzed using 
Morisita’s I dispersion index. Statistical significance was obtained 
by comparing the observed range boundary of samples against 
a chi-square distribution. Coherence (Abs) and turnover (Repl) 
indices were tested using the fixed-proportional null model “r1,” 
where row sums are fixed (i.e., the species richness of each site 
was maintained), but column marginal frequencies (i.e., species 
frequencies of occurrence) were used as probabilities. Random 
matrices were produced based on 999 simulations, and statisti-
cal significance of Abs and Repl was assessed by comparing 
the observed outcomes to the distribution of outcomes derived 
from the randomizations (Leibold and Mikkelson 2002). Ele-
ments of metacommunity structure were evaluated based on axis 
1 of reciprocal averaging. EMS analyses were done using the R 
package “metacom” (Dallas 2014) in the R environment (version 
3.5.2, R Core Team 2018). Posteriorly, the correlation between 
site scores obtained from EMS ordination and environmental 
variables was investigated through least squares multiple regres-
sion to provide evidence of the importance of environmental 

filtering in structuring species distributions (see supplementary 
material Fig. S1; Table S1).

Results

Spatial Variation on Metacommunity Structure

We observed a total of 77 nematode taxa with average total 
abundance of 73 ± 202 ind.cm−2 (mean ± SD) in the man-
grove, a total of 62 taxa with average total abundance of 
81 ± 222 ind.cm−2 in estuarine tidal flat, and a total of 63 
taxa with average total abundance of 101 ± 207 ind.cm−2 
at sandy beach habitat (Fig. S2). There were no differences 
in total density of nematodes among habitats (p = 0.456; 
Fig. S2a). Average taxa richness (p = 0.050; Fig. S2b) and 
Shannon`s diversity (p = 0.030; Fig. S2c) were lower at 
estuarine tidal flats compared to mangrove and sandy beach 
habitats. Also, there were no differences in Pielou`s even-
ness among habitats (p = 0.060; Fig. S2d). However, the fre-
quency of occurrence of rare species (occurrence in < 10% 
of samples) was higher at sandy beach (Fig. S3).

Nematode species composition differed among man-
groves, tidal flats, and sandy beaches (Table 1; Fig. 4a–b). 
In the habitat less exposed to wave energy, i.e. mangroves, 
the fauna was structured by sediment organic matter content 
and variations in grain size and sorting; moreover, the domi-
nant species were Terschellingia longicaudata and Anoplos-
toma subulatum (Fig. 4a; Fig. S4). In tidal flats, nematode 
species distribution was associated with chlorophyll-a and 
phaeopigment concentrations (Fig. 4a; Fig. S4). Typical 
species of tidal flats were Desmodora cazca, Daptonema 
sp. 5, Viscosia sp. 1, and Spirinia sp. 1. Nematode com-
munities inhabiting sandy beaches were structured by sedi-
ment sorting and asymmetry, and by organic matter content. 
Sandy beaches with coarser sediments hosted slightly differ-
ent communities from those observed in fine and very fine 
sandy beaches (Fig. 4a; Fig. S4). Overall, the sandy beaches 
were characterized by the presence of Omicronema sp. 1 
and Paracanthonchus cochlearis. The first two CAP axes 
explained together 62% of the overall constrained variability 
in community structure (R2 = 0.295).

Elements of Metacommunity Structure

The overall nematode metacommunity considering the three 
habitats from the coastal ecosystem was coherent (z = 5.87, 
p < 0.001). Also, metacommunity presented more species 
replacement (Repl) than expected by chance (z = −8.11, 
p < 0.001) and significant boundary clumping (Morisita’s 
I = 1.65, p < 0.001). This suggests that nematode species 
respond to a structuring gradient as a group (Clementsian 
structure; Table 2). Local communities from mangroves, 

Fig. 3   Decision tree showing the analytical steps of the elements of 
metacommunity structure (EMS) framework,  adapted from Leibold 
and Mikkelson (2002) and Presley et al. (2010). Negative ( −), posi-
tive ( +), and non-significant (ns), lower than 1 (< 1) greater than 1 
(> 1) values for coherence, turnover, and boundary clumping indexes
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estuarine tidal flats, and sandy beaches were composed by 
different species groups that replaced each other along the 
coastal seascape (Fig. 5). Environmental variables explained 
81.3% of the variance in scores obtained from EMS analysis 
(p < 0.001). The best regression model according to a back-
ward stepwise selection included the fraction of very coarse 
sand and silt, phaeopigment concentrations, sediment sort-
ing, and the fraction of fine sand as significant explanatory 
variables (Table S1; Fig. S1).

Coherence was positive in mangrove and estuarine tidal 
flats (Table 2). Mangrove metacommunity showed less spe-
cies replacement (Repl) than expected by chance (z = 1.91, 
p < 0.001) and significant boundary clumping (Morisita’s 

I = 1.34, p < 0.001), characterizing a nested pattern with 
clumped species loss (Table 2). In unvegetated tidal flats, 
species replacement was higher than expected by chance 
(z = −2.24, p < 0.050), and significant boundary clumping 
was observed (Morisita’s I = 1.21, p < 0.001) suggesting 
a Clementsian structure (Table 2), where species groups 
replace each other along and within locations. There was 
no coherence in the sandy beach metacommunity structure 
(z = 0.41, p = 0.113), which suggests a random pattern where 
species were not structured by a major gradient (Table 2).

Table 1   Multivariate and univariate permutational analyses of 
variance PERMANOVA for metacommunity structure, and uni-
variate descriptors of community structure. df = degrees of freedom, 
MS = mean squares, (n = 4)

Significance codes: *P < 0.05; **P < 0.01; ***P < 0.001

df MS Pseudo-F

Overall metacommunity
  Ha 2 58,014.0 4.497***
  Location 9 12,900.0 2.467***
  Plot 12 5227.8 4.774***
  Residual 72 1094.9 -
  Total 95 - -

Total density
  Ha 2 1068.7 0.906
  Location 9 1178.7 1.663
  Plot 12 708.5 4.009***
  Residual 72 176.7 -
  Total 95 - -

Taxa richness
  Ha 2 2463.3 3.930*
  Location 9 626.7 1.862
  Plot 12 336.5 2.944**
  Residual 72 114.3 -
  Total 95 - -

Shannon’s diversity
  Ha 2 2.015 5.391*
  Location 9 0.373 1.902
  Plot 12 0.196 2.022*
  Residual 72 0.097 -
  Total 95 - -

Pielou’s evenness
  Ha 2 0.078 3.651
  Location 9 0.021 1.043
  Plot 12 0.020 2.627**
  Residual 72 0.008 -
  Total 95 - -
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Discussion

Our results supported hypothesis 1, that metacommunities from 
distinct coastal habitats are characterized by species mostly 
limited to their habitat, suggesting that distinct coastal habi-
tats act as metacommunity boundaries. Despite being adjacent 
environments with a strong interrelationship, mangroves, tidal 
flats, and sandy beaches hosted nematode metacommunities 
with different species composition. Indeed, the dominant spe-
cies observed on each habitat were those commonly reported 
for mangroves (Pinto et al. 2013; Brustolin et al. 2018), tidal 
flats (Vieira and Fonseca 2013; Fonseca and Netto 2015), and 
sandy beaches (Gheskiere et al. 2004; Gheskiere et al. 2005; 
Maria et al. 2013). Assemblages from each habitat were related 
to different environmental variables pointing to environmental 
filtering as an important mechanism of metacommunity assem-
bly for coastal soft-bottom communities at the landscape scale.

Environmental gradients affect metacommunity organi-
zation creating discrete communities (Heino et al. 2015b; 
Valanko et al. 2015; Menegotto et al. 2019). Particularly, the 
transition between terrestrial/freshwater and marine ecosys-
tems creates complex and dynamic environments resulting in 
a highly heterogeneous landscape, and the metacommunity 
spatial structure is more likely explained by a combination 
of mechanisms (Leibold and Loeuille 2015; Brown et al. 
2017; Presley 2020). The clumped distribution with posi-
tive species turnover (Clementsian) of the metacommunity 
across habitats observed here indicates that nematode spe-
cies displayed interdependent responses, where distinct spe-
cies groups replace each other along a transition gradient 
between mangrove and sandy beach environments. This 
supports the current notion that under strong environmental 
gradients, metacommunities are not randomly distributed 
across habitats (Gascón et al. 2016; Josefson 2016; Alves 

Table 2   Summary results of the elements of metacommunity analy-
sis (EMS) for the overall model including all habitats as well as for 
each habitat. Simulated mean (Sim), embedded absences (Abs), and 

replacement (Repl). Metacommunity structure: nested pattern with 
clumped species loss (NCSL), and random pattern (Random)

Significance codes: *P < 0.05; **P < 0.01; ***P < 0.001

Coherence Turnover Clumping Structure

Sim Abs Z Sim Repl z Morisita’s I

Overall 9585 9158 5.87*** 707,411 1,614,434  −8.11** 1.65*** Clementsian
Mangrove 1798 1759 1.98* 64,896 40,524 1.91*** 1.34*** NCSL
Tidal flat 1425 1364 2.65** 37,555 40,831  −2.24* 1.21*** Clementsian
Beach 1373 1367 0.41 - - - - Random

Fig. 5   Elements of metacom-
munity (EMS) site by species 
occurrence ordered matrices of 
the overall nematode metacom-
munity structure
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et al. 2020) and that at the scale of the landscape, habitat 
selection might be the most important mechanism shaping 
coastal communities. This agrees with the strong habitat 
selection also observed for deep-sea nematodes (Vanreusel 
et al. 2010). In this study, the meiofauna inhabiting unveg-
etated tidal flats were composed by either mangrove or sandy 
beach species at the edge of their distribution range. Such  
observation supports the idea that estuarine systems represent  
two-ecoclines, instead of an ecotone harboring a unique set of  
species (Attrill and Rundle 2002; Lallias et al. 2015).

The results discussed above, i.e. local communities 
inhabiting the same habitat type kilometers apart, resemble 
each other more than communities from different habitats 
embedded in the same landscape, also indicate that discon-
tinuous coastal habitats are, to a certain extent, connected. 
Like on rocky shores (Caro et al. 2010), variation in the 
supply of recruits from the regional pool seems not to affect 
the similarity in the structure of adult communities, even at 
the regional scale. Therefore, environmental filtering and 
priority effects are important in the assembly even when 
dispersion and passive recruitment are high. Differences in 
the sediment properties between habitats, rather than the 
distance, were the main drivers in structuring landscape 
metacommunity in our study (Fig. 4). Mangrove fauna was 
associated with muddier and poorly sorted sediments, fauna 
from estuarine sandflats was linked to higher concentrations 
of photosynthetic pigments, whereas sandy beach nematodes 
were associated with high asymmetry in grain size and well-
sorted sandy sediments. Although mangroves, tidal flats, and 
sandy beaches are considered open systems (Valanko et al.  
2015), the observed results are comparable to those of closed 
systems, such as lakes and temporary freshwater rock pools, 
where environmental limits are well defined. In these cases, 
dispersal ability is very important in metacommunity assem-
bly (Vanschoenwinkel et al. 2007; Dümmer et al. 2016), as 
it is for macrofaunal community assembly in soft bottom  
open coastal systems (Heino et al. 2015a; Rodil et al. 2017). 
Because wave energy can affect species dispersal, and  
therefore connectivity, differences in wave exposure between 
habitats might also be an important driver of differences 
in the mechanisms of community assembly (Valanko et al.  
2015).

Corroborating our second hypothesis, benthic commu-
nities from the different habitats showed distinct patterns 
of organization, which suggests they are structured by dif-
ferent mechanisms depending on the attributes of the envi-
ronment (Fig. 6). In our study, the negative (Nested) and 
positive turnover (Clementsian) patterns observed at lower 
wave energy mangroves and tidal flats, respectively, suggest 
limited connectivity and environmental filtering as a prin-
cipal structuring mechanism (Vanschoenwinkel et al. 2007; 
Gansfort et al. 2020), whereas random patterns at wave-
dominated sandy beaches suggests higher species mobility 

probably due to the passive remobilization and transport of 
particles (Rodil et al. 2017).

Mangrove habitat was distinguished by a pattern of spe-
cies loss. Nematode species richness was higher in large 
drainage basins with well-preserved mangroves such as 
Cananéia, than in smaller mangrove fragments (Fig. S2). 
According to the EMS framework, the interaction between 
species sorting and patch-dynamics most probably drive 
metacommunity organization at mangroves. It is possible 
that abiotic conditions, such as the oxygen-reduced environ-
ment, typical of mangrove sediments, selects a specific pool 

Species-sorting/patch-dynamics

Wave exposure

(a)

Fig. 6   Summary of our findings based on the EMS framework (Leibold 
and Mikkelson 2002; Presley et al. 2010) and the processes and mecha-
nisms most likely influencing the observed spatial patterns of nematode 
metacommunities. Nematode metacommunity displayed a Clementsian 
pattern with the three habitats representing ecologically distinct entities 
(a). Metacommunities from Mangrove showed a Nested pattern with 
clumped species loss (b). Tidal flat a Clementsian pattern with positive 
species turnover (c). Sandy beach a random pattern (d). The impor-
tance of environmental filtering and species-sorting dynamic increases 
with the decrease in wave exposure and the consequent changes in sedi-
ment texture towards estuarine and mangrove habitats
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of species capable of tolerating such reduced environment 
(Fonseca and Netto 2015). Aside from the differences in 
habitat specialization or abiotic tolerance, the consequent 
pattern of nested subsets observed for the mangrove fauna 
might be a result of interspecific differences in dispersal 
ability and the colonization/extinction dynamics (Presley 
2020). Differences in the size and complexity of drainage 
basins and mangrove forests (Brustolin et al. 2018) might 
affect richness at larger-scales (Huxham et al. 2010; Watt 
and Scrosati 2013). These results suggest that larger forests 
and drainage basins can operate as hot-spots of nematode 
species richness, while smaller and more isolated mangroves 
are cold-spots that harbor smaller subsets of those species 
adapted to mangrove environmental conditions. Hence, 
meiofaunal communities associated with smaller areas 
of mangrove forest may be more sensitive to disturbance 
than those associated with larger mangrove areas. In addi-
tion, environmental changes affecting the fitness of source 
populations might promote changes in populations at sink-
ing areas impacting beta-diversity of the habitat (Boughton 
1999; Munguia 2015).

Tidal flats, on the other hand, were characterized by a 
positive species turnover along the coastal seascape, sug-
gesting that local communities are composed by species with 
different environmental requirements, dispersal capacity, and 
life-history traits (Pulliam and Danielson 1991; Fonseca and 
Netto 2015). Estuarine communities are simultaneously 
affected by multiple environmental gradients, such as granu-
lometry, depth, salinity, dissolved oxygen, or the amount and 
quality of organic matter (Brustolin et al. 2014; Lallias et al. 
2015; Valanko et al. 2015; Menegotto et al. 2019). Spatially 
structured environmental gradients may have favored the 
higher species replacement among the different locations. 
In addition, limited dispersal among isolated sites can drive 
spatial structure even among passive dispersers (Gansfort 
et al. 2020). Therefore, according to the EMS framework, 
species sorting is the most probable mechanism explaining 
the metacommunity organization at tidal flats.

Conversely, dispersion-based mechanisms likely drive 
nematode distribution at sandy beaches, which result in 
higher occurrence of rare species (species that occurred 
in < 10% of the samples) compared to mangrove and tidal 
flats (see supplementary material Fig.  S3). Hence, the 
importance of environmental filtering is lower in this habi-
tat. The metacommunity was randomly structured, which 
means species have independent responses to multiple envi-
ronmental gradients. In addition, higher habitat homogeniza-
tion, due to the higher wave exposure, as well as the spatial 
connectivity of this habitat (Yeh et al. 2015), likely reduce 
the effects of biotic interactions allowing species coexist-
ence. Randomness can be associated with high connectivity; 
hence, mass-effect and neutral mechanisms most likely drive 

the assembly of soft-bottom communities at sandy beaches 
(Yeh et al. 2015; Gascón et al. 2016).

Here, we demonstrated that environmental variabil-
ity shapes metacommunity at heterogeneous landscapes. 
Within habitats, however, assemblages showed distinct 
patterns of organization that depended on environmental 
attributes such as wave energy, connectivity, and related 
parameters (Fig. 6). These results support the hypothesis 
that wave energy may modulate species dispersal and the 
role of environmental filtering in structuring metacommuni-
ties at different habitats being an important driver of meta-
community structure in soft-bottom coastal communities. 
From a conservation perspective, the present results support 
the idea that distinct habitats need different management 
strategies (Pulliam and Danielson 1991; Fahrig 2003; Boyé 
et al. 2019). For instance, the degradation of larger areas of 
mangroves threatens many more species than the degrada-
tion of multiple smaller areas of mangroves. Moreover, if 
we expect some level of connectivity among mangroves, 
the effect of degradation in large forests may propagate to 
smaller neighboring fragments. For the sandy beaches, their 
high connectivity implies that in addition to preserving its 
environmental conditions, it is necessary to consider the 
process of dispersion and colonization in order to maintain 
connectivity and viable populations.
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