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A B S T R A C T   

Extreme rainfall events often lead to excessive river flows and severe flooding for Pacific Island nations. Fiji, in 
particular, is often exposed to extreme rainfall events and associated flooding, with significant impacts on 
properties, infrastructure, agriculture, and the tourism sector. While these occurrences are often associated with 
tropical cyclones (TCs), the specific characteristics of TCs that produce extreme rainfall are not well understood. 
In particular, TC intensity does not appear to be a useful guide in predicting rainfall, since weaker TCs are 
capable of producing large rainfall compared to more intense systems. Therefore, other TC characteristics, in 
particular TC track morphology and background climate conditions, may provide more useful insights into what 
drives TC related extreme rainfall. This study aimed to address this problem by developing a decision tree to 
identify the most important predictors of TC related extreme rainfall (i.e., 95th percentile) for Fiji. TC attributes 
considered include; TC duration, the average moving speed of TCs, the minimum distance of TCs from land, 
seasonality, intensity (wind speed) and the geometry of TCs (i.e., geographical location, shape and length via 
cluster and sinuosity analyses of TC tracks). In addition, potential predictors based on the phases of Indo-Pacific 
climate modes were input to the decision tree to represent large scale background conditions. It was found that a 
TC’s minimum distance from land was the most important influence on extreme rainfall, followed by TC cluster 
grouping, seasonality and duration. The application of this model could result in improved TC risk evaluations 
and could be used by forecasters and decision-makers on mitigating TC impacts over the Fiji Islands.   

1. Introduction 

The Fiji group (Fig. 1) comprises more than 300 islands and is cen
trally located over the International Date Line (180◦) within the south
west Pacific (SWP) region (Yeo and Blong, 2010; Kumar et al., 2014). 
The weather pattern in Fiji is mostly described as a tropical marine (only 
slight seasonal temperature variations), where the climate features are 
influenced by South Pacific Convergence Zone (SPCZ), trade winds, 
sub-tropical highs, tropical cyclones (TCs) and land topography (CSIRO 
Australian Bureau of Meteorology and SPREP, 2015). Fiji is susceptible 
to regular flooding events (McKenzie et al., 2005) associated with 
orographic rainfall, which is attributed to the topography of its larger 
islands (Viti Levu and Vanua Levu), with a maximum elevation of up to 
1300 m above sea level, as well as prevailing southeast trade winds (Yeo, 
2013; Kuleshov et al., 2014; Kumar et al., 2014). These features result in 
a wet zone on Fiji’s eastern side and a drier leeward zone on the western 
side (Terry, 2007). 

During the wet season (i.e., TC season between November and April), 
extreme or heavy rainfall events often lead to excessive river flows and 
severe flooding. Fiji has experienced extreme rainfall and associated 
flooding with significant damage to properties, public infrastructure, 
agriculture and the tourism sector (Yeo, 2013; Kuleshov et al., 2014). In 
particular, these events affect the fertile land along rivers, which im
pacts the agricultural sector, a source of income for Fijian farmers. 
Extreme rainfall events in this region are often associated with TCs 
(Terry, 2007; McGree et al., 2010; Kuleshov et al., 2014; Deo and Walsh, 
2017), with four per year on average passing through Fiji’s Exclusive 
Economic Zone (EEZ; Flanders Marine Institute, 2018; Sharma et al., 
2021). Some examples of TCs that produced extreme rainfall for Fiji 
includes; TC Ami (January 2003; Category 3) with a peak 24-hour 
rainfall of 311 mm, TC Winston (February 2016; Category 5), with a 
peak 24-hour rainfall of 358 mm and TC June (May 1997; Category 2), 
which delivered 341 mm of rainfall within a 24-hour period (Terry and 
Raj, 1999; Terry et al., 2004; Fiji Meteorological Service, 2017). 
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Importantly, these three examples highlight that TC category is not 
necessarily the best indicator of extreme rainfall since weaker (non-
severe) systems such as TC June (Category 2) recorded comparable 
24-hour rainfall than the more intense Category 5 TC Winston. This 
indicates that the magnitude of a TC’s impacts (in terms of extreme 
rainfall and associated flooding) are potentially associated with other TC 
characteristics and/or background climatic conditions. This hypothesis 
is supported by Terry (2007), who noted that the concept of TC intensity 
as a useful guide for expected rainfall is often misunderstood since 
weaker systems are also capable of producing large rainfall compared to 
intense systems. Indeed, intense TC systems are more often associated 
with wind-driven impacts, rather than rainfall. 

An evaluation of typical TC track characteristics (in terms of shape, 
location and sinuosity) for the SWP region was recently carried out by 
Sharma et al. (2021) (hereafter, referred to as SMV21). The authors 
grouped historical TC tracks from 1948 to 2017 into five distinct clus
ters, with Fiji being largely impacted by TCs from Clusters 1, 2 and 4 
(Fig. 2). Further, the authors grouped historical TCs into four different 
sinuosity categories from straight through to highly sinuous. However, it 
is not clear if/how these differing TC characteristics (or others such as 
distance to land, TC duration, etc.) may subsequently impact the likeli
hood of TC induced extreme rainfall. Research has also shown that 
Indo-Pacific climate modes (e.g., El Niño-Southern Oscillation (ENSO), 
ENSO Modoki, Madden-Julian Oscillation (MJO), Indian Ocean Dipole 
(IOD) and Southern Annular Mode (SAM)) play an important role in 
modulating TC genesis and tracks in the SWP region and its sub-regions 
(Chand and Walsh, 2009, 2010; Diamond and Renwick, 2015; Magee 
et al., 2017; Magee and Verdon-Kidd, 2018; SMV21). The findings of 
these studies provide implications for understanding and improving 
seasonal TC outlooks and short-term projections of TC pathways once a 
TC is established. However, the impact of Indo-Pacific climate modes on 
TC induced extreme rainfall has yet to be investigated. This paper aims 
to identify how/what characteristics of TCs (including the background 
climate conditions in which they occur) contribute to extreme rainfall in 
Fiji and how this information can be modelled to improve TC outlooks. 
The objectives of this paper are:  

1. Quantify the contribution of TCs to extreme rainfall events across 
Fiji.  

2. Explore the relationship between TC characteristics, Indo-Pacific 
climate modes and the incidence of extreme rainfall events in Fiji 
to identify potential predictors.  

3. Rank the importance of each predictor variable via classification 
modelling (i.e., a decision tree). 

2. Data 

2.1. TC track data 

This study uses the South Pacific Enhanced Archive of Tropical Cy
clones (SPEArTC) database for best track TC data that are mostly 
available at 6-hour intervals for the entire TC lifecycle (Diamond et al., 
2012). The SPEArTC database is built using several existing TC data
bases including the International Best Tracks for Climate Stewardship 
(IBTrACS; Knapp et al., 2010), Joint Typhoon Warning Centre (JTWC; 
Chu et al., 2002), Southern Hemisphere Tropical Cyclone Data Portal 
(Australian Bureau of Meteorology, 2018), Regional Specialised Mete
orological Centre Nadi, Tropical Cyclone Warning Centre Wellington, 
TC tracking maps from Fiji, New Caledonia, New Zealand, Tonga, Sol
omon Islands and Vanuatu, and old historical records such as Visher 
(1922) (Diamond et al., 2012; Magee et al., 2016). 

The first point of each unique track in the SPEArTC dataset is 
considered as the TC genesis point (TC formation), and the last point as 
the TC decay point (i.e., where TC ended/terminated). This dataset was 
chosen for two reasons. Firstly, it is considered as the most complete 
repository of TC data for the SWP region (Magee et al., 2016; Sharma 
et al., 2020). Secondly, to maintain consistency with SMV21 where the 
same dataset was used to evaluate and characterise SWP TC tracks (see 
Fig. 2). As such, TC tracks between 1948 and 2017 that have been 
allocated to each of the five clusters and sinuosity index (SI) groups (in 
Figure 11 of SMV21) are utilised here. 

In brief, these clusters consist of SWP TC tracks, separated and 
grouped via a probabilistic curve clustering technique (Gaffney, 2004; 
Gaffney et al., 2007) into distinct groups, based on their geographical 

Fig. 1. Location map of the Fiji Islands within the SWP region (indicated in the inset map by a red box). Major towns/centres are listed in blue font (capital city in 
bold), island names in black italicised font and the four divisions in brown uppercase. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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location, shape and length. SMV21 also classified the SWP TC tracks into 
four SI categories: straight, quasi-straight, curving, and sinuous. 
Collectively, SMV21 reported continued dominance of straight TCs 
within the eastern SWP, while the western SWP region is typically 
exposed to highly sinuous tracks. Further, a baseline climatology of SWP 
island nations and territories, particularly of the Fiji Islands was devel
oped, i.e., the number of TCs that traversed Fiji’s EEZ (Flanders Marine 
Institute, 2018). It was demonstrated that the Fiji Islands was most 
vulnerable to Cluster 4 tracks (see Fig. 2) that largely comprise of 
intricate TC tracks (established in Figure 11 of SMV21); however, were 
also occasionally impacted by Cluster 1 and 2 tracks. SMV21 highlighted 
that intricate (or highly sinuous) TC tracks could be more impactful 
given the risk of multiple landfalls due to looping and backtracking. As 
such, the analyses of this paper builds on these initial findings. 

The SPEArTC database was filtered to identify only those TCs that 
traversed the Fiji EEZ between November and April (Fiji’s TC season). 
Note that if the duration of a TC within the Fiji EEZ was very brief (e.g., <
6 hours), or if a 6-hourly observation was not recorded, the event was 
not included in this analysis. The corresponding wind speed data for 
each TC from the SPEArTC database, which is the maximum 10-min 
sustained winds in knots, was also used in this analysis following the 
conversion 1 knot = 1.85 km/h. 

2.2. Rainfall data 

The rainfall data used in this study were obtained directly from the 
Fiji Meteorological Service (FMS). Daily rainfall was available from 
1960-onwards for selected stations in Fiji (see Table 1; Fig. 1). 

2.3. Climate indices 

The following climate indices are used in this analysis:  

• ENSO index: monthly Oceanic Niño Index (ONI) utilised in this study 
was obtained from the National Oceanic and Atmospheric Admin
istration, Climate Prediction Centre (Kousky and Higgins, 2007). 
ONI is based on the 3-month running mean of Extended Recon
structed Sea Surface Temperature Version 5 (ERSSTv5) (Huang et al., 
2017a, 2017b) sea surface temperature (SST) anomalies in the 
Niño3.4 region (5◦N–5◦S, 120◦–170◦W). The anomaly calculation of 
ONI is based on the multiple centred 30-year base period, which is 

updated every five years. This approach ensures that the classifica
tion of El Niño (EN) and La Niña (LN) events are defined by their 
contemporary climatology and remain fixed over most of the his
torical period. A threshold of ±0.5 ◦C is used to define the EN and LN 
phases when the periods of below-/above-average SSTs occur for at 
least five consecutive overlapping seasons, while SSTs in-between 
are classified as ENSO neutral events.  

• ENSO Modoki Index (EMI): differences in the monthly SST anomalies 
(using ERSSTv5) between Modoki A (10◦N–10◦S, 165◦E− 140◦W), 
Modoki B (5◦N–15◦S, 110◦W–70◦W) and Modoki C (20◦N–10◦S, 
125◦E− 145◦E) regions and calculated using equation (1) after Ashok 
et al. (2007):  

EMI = (Modoki A) − 0.5 × (Modoki B) − 0.5 × (Modoki C)               (1) 

The three distinct phases of EMI are the El Niño Modoki (ENM), La 
Niña Modoki (LNM) and Modoki Neutral. 

• IOD E (eastern Indian Ocean dipole): monthly ERSSTv5 SST anom
alies within the south-eastern Indian Ocean (0◦–10◦S, 90◦E− 110◦E), 
whereby positive (negative) IOD E phase indicates warmer (cooler) 
SSTs (Saji et al., 1999). 

Fig. 2. TC tracks for all five clusters (characterised by their geographical location and shape) and their numbered mean regression curves (MRCs) from 1948 to 2017 
adapted from SMV21. Also shown is the EEZ of the Fiji Islands. 

Table 1 
List of stations from the FMS database with their respective locations in Fiji (see 
Fig. 1). Also shown is a summary of the raw daily rainfall data for all months 
from 1st January 1960 to 30th April 2017. See the table footnote for actual names 
of some stations as per FMS dataset.  

Station Location 
Lat / Lon 

% of missing data 

Nadia -17.75◦S / 177.45◦E 0.01% 
Suvab -18.15◦S / 178.45◦E 0.02% 
Labasac -16.47◦S / 179.33◦E 2.38% 
Lakeba -18.23◦S / 178.80◦W 1.66% 
Rakirakid -17.37◦S / 178.17◦E 0.88% 
Nabouwalu -16.98◦S / 178.70◦E 1.52% 
Udu Point -16.43◦S / 179.38◦E 5.49%  

a Nadi Airport. 
b Laucala Bay. 
c Labasa Airfield. 
d Penang Mill. 
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• Indonesian Index (II): monthly SST anomalies (using ERSSTv5) 
within the Indonesian region (0◦–10◦S, 120◦E− 130◦E), whereby 
positive (negative) II phase indicates warmer (cooler) SSTs (Nicholls, 
1989; Verdon and Franks, 2005).  

• SAM: the station-based SAM index (used by the British Antarctic 
Survey which uses an empirical definition of SAM) is the monthly 
differences in the mean sea level pressure observed from six in-situ 
stations close to 40◦S and 65◦S (Marshall, 2003; Ho et al., 2012; 
Diamond and Renwick, 2015; Fogt and Marshall, 2020). Based on the 
recommendations of Ho et al. (2012) and its application on SWP TCs 
(Diamond and Renwick, 2015), the Marshall Index is selected, which 
is available from 1957. The Marshall Index’s zonal mean was 
standardised using the 1981–2010 climatological baseline. SAM is 
calculated using the following equation after Gong and Wang (1999): 

SAM= ​ P∗
40◦S − P∗

65◦S (2) 

All monthly anomaly values for all climate indices were calculated 
using the 1981–2010 climatological baseline (World Meteorological 
Organization, 2017). Positive, negative and neutral phases of each 
climate mode were defined using a threshold of ±0.5 standard de
viations from the mean. TC tracks were then stratified (grouped) ac
cording to positive, negative and neutral phases of the monthly index 
values of each climate mode. 

3. Methods 

3.1. Homogeneity analysis of rainfall datasets 

An initial quality test of the rainfall data was carried out by evalu
ating the statistics derived from the raw rainfall data obtained from the 
FMS (Table 1). This homogeneity test included an examination of the 
proportion of missing data (i.e., examining the number of expected and 
missing data from each station), based on the time period. The RStudio 
software package, RHtests_dlyPrcp, was employed to test the dataset’s 
completeness (Wang and Feng, 2013). RHtests_dlyPrcp software is 
designed explicitly for homogenisation of daily precipitation data, 
which are non-negative, non-continuous and non-normally distributed 
(Wang et al., 2010). The package uses a number of statistical tests such 
as transPMFred algorithm (Wang et al., 2010), which integrates a data 
adaptive Box-Cox transformation procedure into the PMFred algorithm 
(Wang, 2008a) to make the data approximate to a normal distribution. 
The PMFred algorithm is based on the penalised maximal F test (Wang, 
2008b) that is embedded in a recursive testing algorithm (Wang, 
2008a). With the benefit of using without a reference series, this package 
is used to detect changepoints or jumps in the dataset (Wang, 2008a, 
2008b; Wang et al., 2010). Daily rainfall data for each station (indicated 
in Table 1) were tested to detect any changepoints. Consequently, 
another quality test was carried out to examine the available and 
missing rainfall data within each time period identified from (if any) 
changepoints until 2017 to warrant if the rainfall data within a station 
were reliable for further analysis. A consistent time period across all 
stations was then chosen for further analysis. 

3.2. Identifying extreme rainfall events and related TCs 

As per the World Meteorological Organisation (WMO), extreme 
rainfall events can be considered in two ways: (i) using a fixed threshold 
that has a certain associated impact, e.g., riverine flooding—exemplified 
in Nguyen-Thi et al. (2012), or (ii) percentile-based thresholds 
(TT-DEWCE & WMO, 2016). For example, the Australian Bureau of 
Meteorology uses 95th and 99th percentiles to define very wet and 
extremely wet days, respectively (Haylock and Nicholls, 2000; Austra
lian Bureau of Meteorology, 2020a). In this study, the 95th percentile 
threshold was chosen and applied to the rainfall data to identify extreme 
rainfall events for each station (identified after performing homogeneity 
tests). The rainfall values above (below) this threshold were categorised 

as extreme (non-extreme) rainfall events, and the dates on which this 
occurred were extracted. These extreme rainfall event dates were then 
cross-checked with TC events that passed within the Fiji EEZ (taking into 
account any time difference between rainfall and TC datasets). TCs that 
corresponded to extreme rainfall event dates were defined as an 
‘extreme rainfall TC event’ and all others were labelled as a ‘non-
extreme rainfall TC event’. Further, to examine the temporal variability 
between extreme rainfall events that were either TC related or TC un
related, the total number of events within each set (i.e., extreme rainfall 
events related to TCs or not related to TCs) was tallied, followed by 
evaluation of their rainfall distribution (i.e., 24-hour rainfall in mm). 

3.3. Spatio-temporal analysis 

The spatial variability between extreme rainfall TC events and non- 
extreme rainfall TC events across each station was assessed by 
computing difference density plots over a 1◦ × 1◦ grid box. The temporal 
analysis included evaluation of TC track attributes, such as duration, 
average moving speed, seasonality, cluster and SI groupings. The latter 
two attributes were derived from SMV21, where the SWP TC tracks 
(inclusive of Fiji TC tracks) were classified into respective clusters and SI 
groups (see Fig. 2). Except for clusters and SI categories, all the TC at
tributes evaluated were based on the TC tracks portion within the Fiji 
EEZ (e.g., duration within the EEZ rather than the TCs entire duration). 

In addition to the above parameters, each TC’s proximity to land was 
investigated, as this has previously been noted as an important factor in 
rainfall occurrence (Waylen and Harrison, 2005; Byun and Lee, 2012; 
Khouakhi et al., 2017). In this case, the minimum distance between each 
station and the TC’s track position, when closest to the land, was 
measured. Further, TC intensity was included to assess its relationship 
with extreme rainfall (building on the observations made in the Intro
duction). All TCs were classed into five categories, in addition to a 
tropical depression category, following the Australian TC intensity scale 
(Table 2; Australian Bureau of Meteorology, 2020b). The classification 
scheme uses the maximum 10-min sustained wind speed (Table 2). TCs 
with no information on wind speed (and/or pressure estimates) in the 
SPEArTC database were not included in this analysis. Further, the in
fluence of climate modes on both extreme rainfall TC events and 
non-extreme rainfall TC events was also investigated. 

3.4. Decision tree analysis using C5.0 

A decision tree analysis was performed to identify the relative 
importance of each TC track characteristic (and climate mode) on 
extreme rainfall events. This is a classification procedure that utilises a 
tree structure to model the relationships between input features (pre
dictors) and potential outcomes (target/diagnosis variable) (Brodley 
and Friedl, 1997; Lantz, 2019). The decision tree approach is advanta
geous given it works well with a variety of data (i.e., does not require the 
linearity assumption), and is not sensitive to outliers (Nam et al., 2018). 
Several algorithms have been implemented over time to compute deci
sion trees. However, the most well-known is the C5.0 algorithm, which 
other studies have successfully applied to generate decision trees to 
detect TC genesis or analyse TC impact risks (e.g., Park et al., 2016; Nam 
et al., 2018; Zhang et al., 2019). 

Table 2 
TC classification based on the Australian intensity scale. Maximum mean wind 
refers to 10-min sustained wind speed.  

Category Abbreviation Maximum Mean Wind (km/h) 

Tropical Depression TD < 63 
One Cat 1 63–88 
Two Cat 2 89–117 

Three Cat 3 118–159 
Four Cat 4 160–200 
Five Cat 5 > 200  
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Initially developed as C4.5, the C5.0 algorithm is an improved 
version that is efficient and performs well with large datasets, which can 
be continuous, categorical or binary (Quinlan, 1993; Kuhn and Johnson, 
2013). The core algorithm of C5.0 (based on C4.5) uses a recursive bi
nary split system to develop a decision tree from training data (Quinlan, 
1993; Park et al., 2016; Rulequest Research, 2019). At each node of the 
decision tree, the most efficient attribute is selected, based on the en
tropy concept, to split the training samples into two groups by class 
(Kuhn and Johnson, 2013; Park et al., 2016; Lantz, 2019; Packt Editorial 
Staff, 2020). In other words, it partitions the dataset into smaller and 
homogenous groups such that each node of the split contains a larger 
proportion of one class, which is known as purity (Kuhn and Johnson, 
2013). Purity is defined as having maximum accuracy or minimal 
misclassification errors and is evaluated through entropy/information 
gain (Quinlan, 1993; Kuhn and Johnson, 2013). In information theory, 
entropy assesses the uncertainty associated with a random variable 
(Shannon, 1948; Fan et al., 2011) and is calculated through the 
following equation: 

Entropy (S) = −
∑c

i=1
pi log2 pi (3) 

Thus, for a given segment of data (S), pi refers to the proportion of 
values falling into the class level i, and the term c refers to the number of 
different class levels. A low entropy with a minimum zero value in
dicates a completely homogenous sample, while a maximum value of 
one indicates higher uncertainty (Fan et al., 2011). In addition, infor
mation gain (for feature F) is associated with the changes in the ho
mogeneity resulting from a split on each possible feature. This is 
computed by subtracting the weighted entropies of each branch result
ing from the split (S2), from the original entropy before the split (S1), 
demonstrated in equation (4) (Packt Editorial Staff, 2020). 

InfoGain(F) = ​ Entropy (S1) − Entropy (S2) (4) 

After a split, a complication arises given that the data is divided into 
more than one partition. To accommodate this, the total entropy across 
all the partitions needs to be considered when computing Entropy (S2). 
This is attained by weighting each partition’s entropy according to the 
proportion of all records falling into that partition, demonstrated in 
equation (5) (Packt Editorial Staff, 2020). 

Entropy (S) =
∑n

i=1
wi Entropy(Pi) (5) 

Equation (5) ensures that the resultant total entropy from a split is 
the sum of entropy of each n partitions, weighted by the proportion of 
cases falling in the partition wi. In training a decision tree, the best split 
is selected by maximising information gain, which is achieved by 
eliminating more entropies. 

One of the C5.0 algorithm outcomes is the variable importance/ 
attribute usage, presented either as ‘splits’ or ‘usage’. The ‘splits’ metric 
calculates the percentage of splits associated with each variable or 
predictor. The ‘usage’ metric or the importance of predictors is 

measured by determining the proportion of the training set samples that 
fall into all the terminal nodes after the split (Quinlan, 1993; Kuhn and 
Johnson, 2013). The information gained from this metric enables 
identification of important input variables (in terms of their contribu
tion) to predict the target/diagnosis variable (Park et al., 2016). 

Consistent with previous studies (e.g., Hsieh and Tang, 1998; Clark, 
2004), the model was validated to overcome the problem of over-fitting 
(Kuhn and Johnson, 2013). The validation process assures the accuracy 
of the predictions that the model generates. In this study, this process 
was carried out in two parts. First, through the retrospective pruning 
process to ensure that the minimum number of samples (training data) 
supplied for at least two branches of a split did not result in an 
under-/over-fitted model (Rulequest Research, 2019). Next, a 10-fold 
cross-validation was performed, whereby the training dataset was 
randomly partitioned into 10 folds (i.e., split into 10 groups or parti
tions). Around ~90% of the dataset (nine folds) were trained using the 
C5.0 model and then tested/validated on the remaining ~10% of the 
dataset to estimate the model’s performance. This process was repeated 
until every fold was used as a test dataset (Quinlan, 1993; Kuhn and 
Johnson, 2013; Rulequest Research, 2019). 

4. Results 

4.1. Analysis of rainfall data 

The FMS daily rainfall data’s homogeneity was assessed to identify a 
reliable time period for further analyses. An initial quality check 
revealed inconsistencies (shown as proportions of missing data) in the 
dataset for the majority of the stations (Table 1). The homogeneity tests 
confirmed that, while a few stations showed no/minor indications of 
non-homogeneity (e.g., Nadi and Suva), some stations either had a 
proportion of data missing—such as Lakeba (4.01%), Udu Point 
(17.83%), and/or exhibited a step jump late in the data series, e.g., 
Nabouwalu with six changepoints and start date within the 2017 TC 
season (Table 3). Therefore, to obtain a reliable time period that 
included quality daily rainfall records for the longest overlapping period 
possible (1983–2017), with the least number of changepoints, Nadi, 
Suva and Labasa stations were chosen for the remainder of this paper’s 
analyses. While Labasa station does contain 2.25% of missing data; it is 
one of the longest records (start date/season as 1978). In addition, these 
three stations largely represent the western (Nadi), northern (Labasa) 
and central/eastern (Suva) division or regions of Fiji, which are referred 
to throughout this paper. 

The timeseries of the quality checked daily rainfall records for each 
station within the TC seasonal months is shown in Fig. 3. There is a high 
degree of spatial and temporal variability observed in the timeseries of 
daily rainfall data across all three stations from 1983 until 2017. For 
instance, on average, Suva recorded ~1793 mm/TC season, which is 
greater than Nadi (~1520 mm/TC season) and Labasa (~1650 mm/TC 
season). The higher mean value observed for Suva is likely due to its 
location within the wet zone (eastern side of Fiji), where rainfall events 
are mostly influenced by a range of other climate features than TCs 

Table 3 
Summary of evaluated (i.e., after homogeneity analysis) daily rainfall data from the FMS. The table shows the number and years of changepoints, that is, the step jumps 
in the daily rainfall dataset. The start date and proportion of missing data (based on the TC season months) follows the most recent changepoint between each station’s 
identified time period until 30th April 2017.  

Station No. of changepoints Changepoint years Start Date % of missing data 

Nadi 0 – 1/01/1960 0.00% 
Suva 1 1982 1/11/1982 0.03% 

Labasa 1 1977 1/11/1977 2.25% 
Lakeba 2 1992, 1999 1/11/1999 4.01% 

Rakiraki 2 1982, 2013 1/11/2013 2.07% 
Nabouwalu 6 1970, 1987, 1999, 2002, 2007, 2016 8/12/2016 1.39% 
Udu Point 3 2001, 2003, 2014 1/11/2014 17.83%  
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(summarised in the Introduction). However, when the maximum daily 
rainfall values are evaluated (i.e., 24-hour rainfall), both Nadi (~356 
mm) and Labasa (~297 mm) experience higher maximum daily rainfall 
values compared to Suva (~284 mm). Notably, the daily peak values for 
Nadi and Labasa exceed the climatological average of their corre
sponding months (~253 and ~275 mm, respectively). This indicates 
much higher variability in the daily accumulated rainfall, as both Nadi 
and Labasa are located on the drier leeward zone (Fig. 1), where large 
proportions of rainfall or extreme rainfall are associated with TCs. 

Fig. 3 also shows the 95th percentile threshold used to identify the 
extreme daily rainfall events across each station. The 95th percentile 
rainfall thresholds used to define extreme rainfall are 42 mm for Nadi, 
46 mm for Labasa and 47 mm for Suva. The extreme rainfall events were 
also cross-checked with the SPEArTC dataset to explore the influence of 
TCs (Fig. 4). It was found that TCs account for approximately 14%, 16% 
and 18% of extreme (95th percentile) rainfall at Suva, Nadi and Labasa, 
respectively (Fig. 4, top row). Interestingly, the mean magnitude of 
rainfall is higher for TC related extreme events (average of 99 mm for 
Nadi, 105 mm for Suva and 87 mm for Labasa) than non-TC related 
events (74 mm for Nadi, 78 mm for Suva and 75 mm for Labasa) (Fig. 4, 
bottom row). The difference between extreme rainfall totals are statis
tically significant for Nadi and Suva, while for Labasa, the mean dif
ference is minimal. 

4.2. Evaluation of TC track attributes associated with extreme rainfall 
events 

A total of 104 TCs traversed the Fiji EEZ between 1983 and 2017 
season (Fig. 5). Of those, 35, 34 and 30 TCs were associated with 

extreme rainfall events over the northern (Labasa), western (Nadi), and 
central/eastern (Suva) regions of Fiji, respectively (Fig. 5, left panels). 
This is consistent with Terry (2007) who emphasised that the northern 
and western sides of high islands (within the South Pacific) are typically 
more vulnerable to the impacts of TCs. Density plots (where varying grid 
sizes were trialled, with the 1◦ × 1◦ providing the best resolution for this 
analysis) were constructed to examine in more detail the differences in 
TC activity for both extreme and non-extreme rainfall events (Fig. 5, 
right panels). The density plots demonstrate that TCs resulting in 
extreme rainfall events generally pass close to the mainland, as shown 
by positive density values (i.e., the number of TC tracks per 1◦ × 1◦ grid) 
concentrated near each station. In particular, positive values observed 
along the western-southern side of Fiji highlight that extreme rainfall TC 
events associated with Nadi and Suva usually track from the western 
side. Interestingly, positive values associated with Labasa station are 
also observed beyond the Fiji group, potentially resulting from TCs 
traversing from the northern and eastern side. 

TCs that did not result in extreme rainfall (classed as non-extreme 
rainfall TC events) in Fig. 5 (central panels) are clearly shown to be 
located farther away from each station (also shown by the density plots). 
These differences indicate that one of the key characteristics of TCs to 
influence extreme rainfall events could be their proximity to the station 
(or landmass in general). To investigate this further, the minimum dis
tance from each station to the TC tracks of both extreme rainfall TC 
events and non-extreme rainfall TC events was measured, as illustrated 
in Fig. 6 (left panels). The minimum distance needed for TC events to 
deliver extreme rainfall across all stations significantly differs from the 
non-extreme rainfall TC events (Table 4). The average minimum dis
tance of extreme rainfall TC events tends to vary with the lowest value 

Fig. 3. Timeseries of daily rainfall data (in mm) within TC seasonal months (November–April) for Nadi (top), Suva (middle), and Labasa (bottom) stations, based on 
the start dates summarised in Table 3. The horizontal scale is the same for all timeseries (1960–2017). The black line represents the 95th percentile threshold. 
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for Suva (~229 km), highest for Labasa (~274 km) and in-between for 
Nadi (~244 km). 

Fig. 6 (central panels) shows that TC duration also plays a critical role in 
influencing extreme rainfall events, especially over the central/eastern and 
northern regions (Table 4). The most common TC duration among all three 
stations is ~2–3 days (for extreme rainfall TC events), while the duration of 
non-extreme rainfall TC events is generally short (< 2 days). In fact, the 
distributions for non-extreme rainfall TC events are skewed, where the 
median values are close to the lower quartiles for all stations, yet demon
strate extended durations (greater than ~3 days) shown through the out
liers above the upper 95th percentiles (Fig. 6, central panels). Furthermore, 
the results displayed in the right panels of Fig. 6 reveal that extreme rainfall 
TC events have a lower average speed across all three stations, when 
compared to non-extreme rainfall TC events; however, this wasn’t statis
tically significant based on the Mann-Whitney U test results in Table 4. 
Also, in both cases, the most common speed of TCs within Fiji EEZ fluc
tuates between ~15 km/h and ~30 km/h. 

In line with the outcomes of SMV21 (also Fig. 2), the extreme rainfall 
TC events/non-extreme rainfall TC events for each station were also 
characterised and explored by cluster (column A), SI classification 
(column B) and seasonality (column C), shown in Fig. 7. This was to 
assess if variability in extreme rainfall events was related to the spatial 
location and geometry of the TCs and how often these events occurred 
within the TC season. The intensity (column D) of the TCs, based on their 
maximum wind speed within the Fiji EEZ and intensity scale outlined in 
Table 2, were also evaluated to see if TC category was related to their 
associated rainfall impacts. For all cases, a two-sample proportion test 

was performed by comparing the differences in the proportions of the 
two samples with the null hypothesis that the proportions are the same 
(Ashley et al., 2008; Rogerson, 2011). 

The cluster grouping analysis (Fig. 7, column A) showed that the 
majority of the extreme rainfall TCs are associated with Cluster 4 
(illustrated in Fig. 2). In particular, the impact of extreme rainfall TC 
events is statistically significant over the central/eastern region (Suva) 
when compared to the non-extreme rainfall TC events. In addition, the 
prevalence of sinuous type tracks for Suva (column B) is complementary 
to central SWP TCs (Cluster 4 type TCs as established in Figure 11 of 
SMV21). Furthermore, quasi-straight type tracks (column B) largely 
influence the extreme rainfall events, mainly on the drier side of Fiji, i.e., 
Nadi (significant at 95%) and Labasa (not statistically significant but 
noteworthy). 

The seasonality of both extreme rainfall TC events and non-extreme 
rainfall TC events (Fig. 7, column C) demonstrates that within the 
November–April TC season, Fiji experiences extreme rainfall events 
mostly from December to March. Extreme rainfall TC events signifi
cantly (at the 90% level based on a two-sample proportion test) impact 
Labasa early in the TC season (in December), while Nadi receives the 
majority of the extreme rainfall (> 30%) during the late TC season (in 
March). Further, the rainfall events influenced by both extreme rainfall 
TC events/non-extreme rainfall TC events are common (almost similar 
in proportion) during January and February (for Nadi and Suva), and 
March (for Suva and Labasa). 

Many of the extreme rainfall events across all three stations are 
associated with both non-severe (TD and Cat 1–2) and severe (Cat 3–5) 

Fig. 4. Top row: Proportions of extreme rainfall events that are TC related and TC unrelated for Nadi (left panels), Suva (central panels) and Labasa (right panels) 
stations between 1983 and 2017. Bottom row: Rainfall distributions for extreme events (above 95th percentile threshold) that are TC related and TC unrelated. The 
boxes show the 25th and 75th percentiles, the lines inside the box mark the median, dots mark the mean and crosses marks the outliers (lower 5th and upper 95th 

percentiles). The asterisks in panels d and e denote that differences in the TC related/TC unrelated rainfall distributions are statistically significant at the 95% level, 
as per Mann-Whitney U test. 
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TCs, illustrated in Fig. 7 (column D). For instance, the intensity range for 
extreme rainfall TC events across western and central/eastern regions 
includes Cat 1–2 and Cat 1, respectively, while those over the northern 
region correspond to Cat 2–3. In general, Cat 4 TCs significantly influ
ence extreme rainfall across all three regions (Nadi and Labasa signifi
cant at the 90% and Suva at the 95% level). Although in very small 
proportion, Cat 5 TCs are also seen to modulate extreme rainfall events 
across all three regions. TDs tend to occur more frequently over the Fiji 
group, but do not often produce extreme rainfall when compared to non- 
extreme rainfall TC events (significant at the 95% level). 

4.3. Climate mode influence on TCs that produce extreme rainfall 

The influence of climate drivers on extreme/non-extreme rainfall TC 
events across all three stations were also evaluated (Fig. 8 and Table 5). 
The results highlight that ENSO is a primary driver of TCs and associated 
rainfall; however, the relationship is not spatially consistent between 
stations. In particular, extreme rainfall TC events tend to occur more 
during the LN phase, evident over the western region (Fig. 8, row 1, left 
panel). Conversely, EN may have influenced many of the extreme 
rainfall TC events over the central/eastern region while those associated 
with Labasa generally correspond to ENSO neutral (not statistically 
significant). Although not as convincing as the observed ENSO response, 

Fig. 5. Distribution of TC tracks within Fiji EEZ that resulted in extreme (left panels) and non-extreme (central panels) rainfall events across Nadi (top row; green 
star), Suva (middle row; grey star) and Labasa (bottom row; red star) stations. The number of TC tracks (n) is shown on the top-right of left and central panels. Right 
panels: TC track density differences for each station between extreme rainfall TC events and non-extreme rainfall TC events at 1◦ × 1◦ grid. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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the analysis shows extreme rainfall TC events over the northern region 
occur more often during the negative Modoki phase, i.e., LNM (Fig. 8, 
row 2, right panel). The influence of Indian Ocean SST variability 
(represented by IOD E and II) was not found to be statistically significant 
(Table 5) for both extreme rainfall TC events and non-extreme rainfall 
TC events. However, extreme rainfall TC events across Fiji’s western 
region appear to be influenced by the positive phase of SAM (Fig. 8, row 
5, left panel). 

Fig. 6. Boxplots illustrating the distribution of extreme rainfall TC events (labelled as extreme) and non-extreme rainfall TC events (labelled as non-extreme) in terms 
of minimum distance from the land (left panels), TC duration (central panels) and average speed (right panels) across Nadi (top row), Suva (middle row) and Labasa 
(bottom row) stations. The boxes show the 25th and 75th percentiles, the lines inside the box mark the median, dots mark the mean and crosses marks the outliers 
(lower 5th and upper 95th percentiles). 

Table 4 
Mann-Whitney U test p-values comparing the track attributes (shown in Fig. 6) 
of extreme rainfall TC events and non-extreme rainfall TC events for each sta
tion. Bold values denote statistically significant results at the 95% level.  

TC track attributes Nadi Suva Labasa 

Minimum distance 0.00 0.00 0.00 
Duration 0.05 0.01 0.00 

Average speed 0.79 0.97 0.34  
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4.4. Classification of TC track attributes using C5.0 

The analysis presented so far has confirmed that extreme rainfall 
events across Fiji are modulated by varying TC track characteristics as 
well as by the surrounding climatic conditions, in particular ENSO and 
SAM. Therefore, to achieve the third objective of this paper (i.e., to 
develop a decision tree model to rank the importance of each predictor 
that can assist in modelling the potential risk impacts), a decision tree 
model was constructed using the C5.0 classification algorithm described 
in Section 3.4. The purpose of the decision tree model was to objectively 
classify whether a TC will result in an extreme rainfall event or not. For 
modelling purposes, all TC events resulting in extreme rainfall (from all 
three stations) were categorised collectively as “Extreme”. Similarly, all 
non-extreme rainfall TC events (that resulted in non-extreme rainfalls) 
were categorised collectively as “Non-extreme”. Such organisation of 
the TC data allowed the model to diagnose the input variables decisively 
as either “Extreme” or “Non-extreme”. An “Extreme” output refers to an 
extreme rainfall event, while “Non-extreme” refers to all other TCs. 
Altogether 312 effective cases were categorised including 99 “Extreme” 
and 213 “Non-extreme” cases. The TC track attributes (and climate 
indices) explored in this paper (across each station) were used as input 
variables to the model. 

4.4.1. Calibration and validation of the model 
The minimum number of cases (to be supplied at each node for splitting 

into two branches) determined through the retrospective pruning process 
was three. The results of 10-fold cross-validation, presented in Table 6, 
demonstrate the model’s overall stability and consistency in terms of ac
curacy, error, tree sizes, and attribute usage at each fold. The attribute 
usage demonstrates the relative importance of the predictors (input vari
ables) used in the construction of the tree model at each fold. Although 
some folds exhibit a broad range of tree sizes or error rates (e.g., in Folds 2 
and 3), their dependency on input attributes (i.e., the predictors) remains 
consistent in the majority of cases. 

4.4.2. Decision tree model 
The decision tree model generated using the C5.0 algorithm and 

based on 312 effective cases is illustrated in Fig. 9. The overall accuracy 
of the model is 81%, where 52 and 202 events were classified correctly 
as “Extreme” and “Non-extreme”, respectively (Table 7). This is 

supplemented by the sensitivity (53%), and specificity (95%) results in 
Table 7, which show the model’s ability to measure the proportions of 
correctly classified TCs that resulted in extreme and non-extreme rain
fall events, respectively. The model’s performance is also shown by the 
positive predictive value (83%) and negative predictive value (81%)—a 
performance indicator demonstrating the portion of “Extreme” and 
“Non-extreme” cases that were predicted correctly, respectively. 
Further, the error rate of the model is 19%, as 47 “Extreme”, and 11 
“Non-extreme” cases were classified incorrectly (Table 7). 

Fig. 9 presents the output process of the model. The first splitting 
criterion delivers all the TC tracks with a minimum distance > 217.13 
km to the end nodes classed as “Non-extreme”, while the remaining 
tracks (i.e., < 217.13 km) are evaluated further according to the clusters. 
TCs occurring from the Cluster 1 domain (western SWP, see Fig. 2) are 
linked directly to “Extreme”. Conversely, those associated with Clusters 
2 and 4 (central-to-eastern SWP; Fig. 2) are subsequently forwarded to 
the seasonality criteria. TCs of early season (November) and late season 
(April) generally result in non-extreme rainfall events, while those 
occurring during December, February, and March are more likely to 
produce extreme rainfall events. This also includes January, where 
(according to the decision tree model) TCs need to occur for less than 
three days while maintaining a minimum distance of at most 153.81 km. 

The relative importance of the predictors used in the tree model is 
shown in Table 8. The usage metric indicates that when an attribute is 
the most related variable to the target variable, the decision tree model 
frequently uses this attribute for classification (Nam et al., 2018). The 
usage statistics (in Table 8) indicate that the minimum distance attribute 
was used in 100% of the cases, followed by cluster groupings, season
ality, and duration as the least used attributes. This is also consistently 
shown across many folds (Table 6). These predictors correspond to the 
TC track attributes explored in Figs. 6 and 7 that showed significant 
distinctions between extreme and non-extreme rainfall events induced 
by TCs. The ‘split’ metric (Table 8) depicts the prevalence of minimum 
distance (as 40% – twice more than the other attributes), which is re
flected twice in Fig. 9. 

5. Discussion 

The objectives of this paper were to (1) quantify the contribution of 
TCs to extreme rainfall events across a number of stations across Fiji; (2) 

Fig. 7. Bar graphs illustrating the distribution of TCs that result in extreme and non-extreme rainfall events, grouped by clusters (column A), sinuosity (column B), 
seasonality (column C) and intensity/category (column D) for Nadi (top row), Suva (middle row) and Labasa (bottom row). Single (*) and double (**) asterisks 
indicate that the proportion of TCs associated with either event (extreme rainfall TC events/non-extreme rainfall TC events) for each attribute grouping is signif
icantly less at the 90% and 95% levels, respectively. 
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Fig. 8. Classification of TCs that result in extreme and non- 
extreme rainfall events according to the climate indices ONI, 
EMI, IOD E, II (in ◦C) and SAM across Nadi (left panels), Suva 
(central panels) and Labasa (right panels) stations. The 
horizontal dashed lines display the ±0.5 SD thresholds from 
the mean, where values above (below) represent positive 
(negative) phases of each climate mode. The values in- 
between represent the neutral phase. The boxes show the 
25th and 75th percentiles, the lines inside the box mark the 
median, dots mark the mean and crosses marks the outliers 
(lower 5th and upper 95th percentiles).   
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explore the relationship between TC characteristics, Indo-Pacific climate 
modes and occurrence of extreme rainfall events to identify potential 
predictors, and; (3) use these findings to rank the importance of each 
predictor through a tree-based model that could be used for risk impact 
analysis and decision making. A homogeneity test was performed across 
all stations (listed in Tables 1 and 3) to assess the FMS daily rainfall data 
quality. The results suggested that rainfall data from 1983-onwards were 
consistent across Nadi, Suva and Labasa stations with minimal missing 
data (Table 3 and Fig. 3). 

5.1. Characteristics of extreme rainfall TC events/non-extreme rainfall 
TC events 

The validated rainfall data were quantified into extreme and non- 
extreme rainfall events based on the 95th percentile threshold. The re
sults demonstrated that although the number of TCs associated with 
extreme rainfall events was less, compared to events not related to TCs, 
the magnitude of rainfall delivered was, on average, higher (Fig. 4). The 
large proportions of extreme rainfall events unrelated to TCs indicate 
that the Fiji region is influenced by other synoptic weather and climate 
features delivering large amounts of rainfall. For example, the Asian- 
Australian monsoon extends to the tropical SWP in summer, reaching 
as far east as Fiji and bringing additional rainfall (Stephens et al., 2018). 
Various studies have also reported on the existence of other surrounding 
climate features (e.g., SPCZ, southeast trade winds, and MJO) that in
fluence rainfall variability (Basher and Zheng, 1998; Folland et al., 
2002; Mataki et al., 2006; Chand et al., 2020; Deo et al., 2021). The MJO 
was not considered since intraseasonal phenomena were not the focus of 
this study; however, it could be an avenue for future research, along 
with the influences of other climate features. Also, the sub-daily rainfall 
could be considered which may enable quantification of sub-daily 
rainfall extremes or assessment of those events that were not cat
egorised as extreme rainfall (but had significant impacts). In this study, a 
simple binary approach was taken (i.e., extreme or non-extreme); 
however, this method could be expanded to additional categories that 
represent an increasing scale of rainfall amounts (e.g., 1–50th percentile, 
50–75th percentile, 75–95th percentile, 95–100th percentile). The choice 
of thresholds could be tailored to the application if a specific rainfall 
amount is of interest. 

For those TCs that did result in extreme rainfall across Fiji, it was 
established that track morphology plays a critical role. It was established 
in SMV21 that the Fiji region is mostly impacted by Cluster 4 TCs (those 
occurring within central SWP), which typically have quasi-straight track 
morphologies (as per Table 4 of SMV21). Our analyses demonstrated 
that the majority of extreme rainfall TC events (across all three stations) 
are typically longer and quasi-straight and have a slower average 
moving speed than non-extreme rainfall TC events. This is consistent 
with Chen et al. (2011) and Hernández Ayala and Matyas (2016), who 
also reported that slow moving TCs often cause heavy/extreme rainfall 
with extended duration. 

Additional factors that may influence TC related rainfall, including 
the minimum distance of the TC from land, average moving speed, 
seasonality and intensity were also explored in this paper. Several 
studies have reported that as a TC approaches a region, the amount of 

rainfall delivered also increases (Hernández Ayala and Matyas, 2016; 
Lonfat et al., 2004; Ng et al., 2015). We show that this is also the case for 
Fiji (Fig. 6, left panels). In addition, slower moving systems are more 
likely to be associated with extreme rainfall than faster moving systems. 
The possible link between TC intensity and rainfall has been explored by 
several researchers and, although there is some debate in the literature, 
it has been commonly reported that a linear relationship exists between 
TCs daily maximum wind speeds and daily total rainfall (Rao and 
Macarthur, 1994; Cerveny and Newman, 2000; Shepherd et al., 2007; 
Hernández Ayala and Matyas, 2016). However, our results suggest that 
this relationship does not hold true (for Fiji at least) since both Cat 1 and 
Cat 4 rated TCs influenced extreme rainfall events across Fiji. One of the 
factors that could account for this is the TC system’s size, which is based 
on the TC’s radius measured from its centre (Terry, 2007). This feature 
was not investigated in the present study since the required data was not 
available for all TC events analysed; however, future studies could 
explore it. 

Indo-Pacific climate variability was shown to influence the likeli
hood of extreme TC related rainfall under two primary conditions. That 
is, extreme rainfall TC events were found to be influenced mainly by LN 
and positive SAM for the western part of the country. This is comple
mentary to the typical influence of the LN phase, which modulates TC 
genesis southwestwards (Magee et al., 2017), and post-formation, TCs 
traverse Fiji from the western side (Chand and Walsh, 2009). 
Conversely, EN influenced extreme rainfall TC events are prevalent over 
Fiji’s eastern division, also demonstrated in Deo et al. (2021). 

Table 5 
p-values of Student’s t-test comparing climate mode indices (illustrated as 
boxplots in Fig. 8), associated with extreme rainfall TC events and climate mode 
indices during non-extreme rainfall TC events for each station. Asterisk (*) de
notes a statistically significant result at the 95% level.  

Climate modes Nadi Suva Labasa 

ENSO 0.02* 0.37 0.92 
EMI 0.39 0.34 0.86 

IOD E 0.47 0.45 0.90 
II 0.67 0.49 0.81 

SAM 0.18 0.54 0.17  

Table 6 
Results of 10-fold cross-validation based on 312 effective cases with all TC track 
attributes and climate indices as predictors.  

Model Tree 
size 

Accuracy 
(%) 

Error rate 
(%) 

Attribute usage (%) 

Fold 1 4 71 29 Minimum 
distance 

100 

Cluster 29 
Seasonality 25 

Fold 2 9 87 13 Minimum 
distance 

100 

Cluster 33 
Seasonality 29 
Duration 8 
SAM Index 6 

Fold 3 2 66 34 Minimum 
distance 

100 

Fold 4 7 77 23 Minimum 
distance 

100 

Category 30 
ENSO Index 3 
Duration 3 

Fold 5 2 61 39 Minimum 
distance 

100 

Fold 6 7 74 26 Minimum 
distance 

100 

Category 30 
Duration 3 
Cluster 3 

Fold 7 3 72 28 Minimum 
distance 

100 

Cluster 29 
Fold 8 6 81 19 Minimum 

distance 
100 

Seasonality 30 
Duration 8 

Fold 9 6 81 19 Minimum 
distance 

100 

Seasonality 31 
Duration 8 

Fold 10 4 71 29 Minimum 
distance 

100 

Cluster 29 
Seasonality 26  
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Fig. 9. Decision tree model for extreme and non-extreme 
rainfall occurrences generated using 312 cases (i.e., the sum 
of all the extreme rainfall TC events and non-extreme rainfall 
TC events across Nadi, Suva, and Labasa) and nine TC attri
butes (explored in Figs. 6–8) as predictors/input variables. 
The parallelogram (supplied with predictors) specifies the 
start of the C5.0 algorithm. Each split node follows a rhombus 
box which contains questions. The corresponding answers 
include Yes (purple), No (red) and listings for the cluster and 
seasonal months (in blue font). The final diagnosis boxes (end 
nodes or the leaf) indicate the decisive outcomes of TCs as 
extreme (green) or non-extreme (blue) rainfall events. 
Numbers on the top of each final diagnosis box correspond to 
the number of cases diagnosed at each node or mapped to the 
leaf. Statistics below (as fractions) represent the precision of 
the diagnosis where the numerator is the number of correctly 
classified cases. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version 
of this article.)   

Table 7 
Confusion matrix of the final model based on 312 cases and nine TC attributes. Note: “Extreme” and “Non-extreme” in this table refer to TCs that have either resulted in 
extreme or non-extreme rainfall events.    

Observation Sum of classification 

Extreme Non-extreme 

Prediction Extreme 52 11 63 
Non-extreme 47 202 249 

Sum of observation  99 213 312 
Accuracy  81%   
Error rate  19%   
Sensitivity (Hit Rate)  53%   
Specificity (Selectivity)  95%   
Positive Predictive Value  83%   
Negative Predictive Value  81%   
Tree size  7    
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5.2. Importance of TC track attributes in potential risk analysis 

The range of TC track attributes and climate conditions were used as 
model predictors to develop a decision tree with extreme rainfall as the 
desired output. The results demonstrated that the minimum distance of a 
TC from land is the most important factor when evaluating whether or 
not it will result in extreme/non-extreme rainfall for Fiji. Notably, the 
model identified two quantitative criteria for minimum distance (i.e., 
minimum distance < 153.81 km and minimum distance < 217.13 km) 
that can be applied on a broader scale to classify extreme and non- 
extreme rainfall events across Fiji. While the former criterion falls 
within the latter, seemingly, the former tends to be more decisive for 
January TCs, that are closer to the land with shorter durations. This 
distance range falls within the average size of TCs in the South Pacific, in 
terms of radius, which is usually 250–350 km on average that are classed 
as medium to average in size (Terry, 2007). Also, these thresholds (i.e., 
minimum distance) indicate that extreme rainfall events are mostly 
influenced by TCs that often pass by the Fiji group than those making 
landfalls. Indeed, Fiji has encountered some TCs in recent years that 
have caused substantial damage without making landfall (e.g., TC Evan 
in 2012 and TC Gita in 2018). 

The model output also confirmed that TC tracks cluster grouping 
(based on the outcomes of SMV21 and Fig. 2) and/or seasonality could 
be used to identify extreme and non-extreme rainfall events. Although 
TCs typically occur within the November–April season, the model 
distinctly identified in which months TCs that influence extreme rainfall 
could be expected. However, TCs occurring in January are not as 
definitive as other TC seasonal months because, as per the model, 
extreme rainfall events during this month are also modulated by TC 
duration and minimum distance. 

By applying the decision tree methodology in the context of filtering 
important TC parameters that impact extreme rainfall events, some 
important new insights were gained. The model output implies that 
while a range of TC attributes influences extreme rainfall events across 
Fiji, only a few could be used as potential indicators/predictors for risk 
impact analysis or decision making. For example, the TC intensity 
parameter was not selected in generating the tree model (Fig. 9), indi
cating that TC intensity is not always a useful guide for determining the 
rainfall-related impacts of TCs (in Fiji at least) – a misconception 
commonly adopted for preparedness during TC events (Terry, 2007). 
However, care should still be taken in dismissing attributes (i.e., that 
were not used by this model) particularly if applied to other regions, and 
further refinements of this process, such as the boosting application of 
C5.0 (Kuhn and Johnson, 2013) and the random forest model (Breiman, 
2001) may further improve the predictive capability. Also, with these 
additional tools, more variables such as sub-daily rainfall, location of the 
SPCZ, southeast trade winds, MJO, TC size (mentioned in the previous 
sections), wind speed as well as economic losses due to TCs could be 
considered as a scope for future investigation. 

6. Conclusions 

Extreme or heavy rainfall events are of great concern as they often 
lead to excessive river flows and severe flooding for Pacific Island na
tions. The severity of their impact on society has been mostly felt by the 
small island developing states (Gero et al., 2011) of the SWP that have 
limited adaptive capacity. Fiji is a prime example of a nation that 
regularly experiences extreme rainfall impacts, with close to 20% of 
these events associated with TCs. There is a clear need for improved 
prediction of TC impacts to increase the general public’s resilience to 
these events’ destructive impacts (specifically TC induced flooding). 
Indeed, a range of meteorological warnings are provided by the Regional 
Specialised Meteorological Centre Nadi once a TC has formed (or is 
approaching the group); these warnings include strong winds, heavy 
rainfall, flooding, and storm surges, and are intended to promote extra 
precaution and preparedness. However, refinement of the likely severity 
of the approaching TCs impact will no doubt improve the effectiveness 
of the response. In this study, we demonstrate the potential to use TC 
parameters and climate indices as predictive tools in potential impact 
assessment (in terms of extreme rainfall). Importantly, we show the 
advantages of generating tree-based models based on these predictor 
variables to assess potential TC impacts (in terms of extreme rainfall). 
On a broader scale, the application of this model could result in 
improved TC outlooks and risk evaluations, and similar models could be 
used by forecasters and decision-makers including environmental 
managers and city planners, to assist in mitigating TC impacts over the 
Fiji Islands. 
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Table 8 
Relative importance of the predictors (input variables) represented as splits at 
the nodes and attribute usage in the development of a decision tree model.  

Attributes Splits (%) Usage (%) 

Minimum distance 40 100 
Cluster 20 29 

Seasonality 20 26 
Duration 20 6  
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