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Abstract

Empirical Essays on Natural Resource Exploitation

by

Aaron Gabriel Englander

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor Maximilian Auffhammer, Chair

Failures to conserve wildlife do not typically arise from an absence of conservation policies;
they occur when existing policies are ineffective. From national laws prohibiting the killing
of African elephants to international agreements governing the exploitation of marine ani-
mals, behavioral responses and enforcement capacity shape the extent to which conservation
policies improve or worsen conservation outcomes. Causal estimates of the effects of conser-
vation policies and their underlying mechanisms are largely unavailable, limiting the extent
to which declines in wildlife abundance and biodiversity can be reduced and reversed. In this
dissertation, I use causal inference econometrics, high-resolution data, and economic theory
to begin to fill this knowledge gap. In its three chapters, I uncover how a conservation policy
backfires when it implicitly communicates valuable information to firms, how deterrence is
possible even when enforcement is difficult, and how exogenous shocks can increase illegal
behavior.

First, I establish that regulations aimed at mitigating common-pool extraction externalities
in the world’s largest fishery backfire substantially and exacerbate inefficiencies. The most
important biological externality in Peru’s anchoveta fishery is the harvesting of juvenile
anchoveta. To reduce juvenile catch, the regulator temporarily closes areas where the share
of juvenile catch is high. By combining administrative microdata with biologically richer
data from fishing firms, I isolate variation in closures that is due to the regulator’s lower
resolution data. I estimate substantial temporal and spatial spillovers from closures. Closures
increase total juvenile catch by 50% because closure announcements implicitly signal that
fishing before, just outside, and after closures is high productivity.

Second, managing global marine resources by assigning property rights could align economic
and conservation incentives, but only if unauthorized resource use is deterred. Exclusive
Economic Zones (EEZs) are country-level property rights to marine resources, covering ap-
proximately 39% of the ocean’s surface and accounting for more than 95% of global marine
fish catch. However, EEZs might not be respected by unauthorized resource users because
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the cost of monitoring and enforcing such large areas may be prohibitive. Here I provide
the first evidence that EEZs are in fact respected by unauthorized resource users. Using
global, high-resolution fishing effort datasets and the ecologically arbitrary boundaries be-
tween EEZs and the high seas, I find that unauthorized foreign fishing is 81% lower just inside
EEZs compared to just outside. Consistent with the high cost of enforcing EEZ boundaries,
this deterrence effect is concentrated in EEZs that are most valuable near their boundaries.
These results suggest that property rights institutions can enable effective governance of
global marine resource use.

Finally, poaching is the greatest threat to the survival of elephants and other commercially
valuable species. There are many hypothesized drivers of wildlife poaching, but few empirical
estimates of their causal effects on poaching levels. In this paper, I provide the first causal
estimates of a spatially-varying driver of wildlife poaching. Using elephant poaching and
armed conflict data spanning 13 years and 77 sites in 39 countries across Africa and Asia, I
find that the onset of a new conflict near elephant populations significantly increases contem-
poraneous elephant poaching levels by 12-22%. I leverage a variety of econometric methods
to show that these estimates are plausibly causal and robust to alternative specifications and
different measures of conflict and poaching. I estimate that conflict accounts for the illegal
killing of 80,000 elephants between 2002 and 2014. To protect elephants, governments and
NGOs should increase support to affected areas when conflicts begin.
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Chapter 1

Information and spillovers from
targeting policy in Peru’s anchoveta
fishery

1.1 Introduction

Managing common-pool resource extraction is complicated because extraction causes multi-
ple externalities (Smith, 1969). The most well-known is the stock externality: extraction by
one agent harms other agents by reducing the amount of resource available to them (Gor-
don, 1954). Some regulators have been able to mitigate this market failure by setting a cap
on total extraction and assigning quasi-property rights to the resource by dividing the cap
among agents (Costello et al., 2008; Isaksen & Richter, 2019). But there are many other
production externalities that property rights-like instruments do not address, including ex-
ternalities related to the timing of extraction, the location of extraction, and biological and
environmental characteristics of the resource (Smith, 2012).

I study the effects of a policy that is targeted to reduce the most important biological
externality in the world’s largest fishery: the capture of juvenile anchoveta in Peru (Paredes,
2014; Salvatteci & Mendo, 2005). I find that the policy reduces juvenile catch in the areas
and time periods to which it applies (direct effect). But the policy also has the unintended
consequence of increasing juvenile catch in nearby areas and during time periods in which
the policy does not apply. These spatial and temporal spillovers more than offset the direct
effect of the policy. The policy backfires, increasing juvenile catch by 50% on net, because
the policy implicitly reveals that nearby areas and time periods are high-productivity fishing
grounds. These information spillovers are valuable because finding quality fishing locations
is a key challenge for fishermen (Asriyan et al., 2017; Joo et al., 2015).

Peru’s anchoveta fishery is the world’s largest, accounting for 8% of global marine fish
catch, and it contributes nearly $2 billion dollars in export revenues for Peru each year (FAO,
2018; PRODUCE, 2018a). The regulator restricts fishing to allow the anchoveta stock to
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grow quickly, enabling large, sustainable harvests (Pikitch et al., 2012). One important vari-
able for the growth of the anchoveta stock is the level of juvenile catch. Catching juvenile
anchoveta reduces the future anchoveta stock more than catching adult anchoveta, in part
because juveniles have lower reproductive capacity than adults (Salvatteci & Mendo, 2005).
Fishermen do not account for this biological externality because they are paid according to
the tons they catch and the international price of fishmeal, not the composition of juveniles
and adults they catch (Fréon et al., 2014; Hansman et al., 2020; SUPNEP, 2017). Taxing
juvenile catch is the first-best solution, but the fishing industry opposes such a policy (In-
stituto Humboldt et al., 2018). Instead, the regulator attempts to reduce juvenile catch by
implementing temporary spatial closures in areas where it believes juveniles are abundant.

I analyze the regulator’s temporary spatial closures policy in this paper, accounting
for other regulations that also affect fishing behavior. I use administrative microdata and
data from fishing firms, which together contain the location, time, and number of juvenile
anchoveta each vessel catches each time it sets its net in the water. These data comprise
hundreds of thousands of vessel-level fishing operations. Fishermen report the percentage
juvenile they catch to the regulator in real-time.1 When percentage juvenile values in an
area are high, the regulator temporarily bans fishing in that area for three to five days.
Fishermen are not allowed to fish inside actively closed areas. But they are allowed to fish
inside closed areas between the announcement and the beginning of closure periods, just
outside closed areas during closure periods, and inside closed areas after the end of closure
periods. Between 2017 and 2019, the regulator implemented 410 temporary spatial closures,
each covering a different area of ocean and time period.

Due to other regulations in the fishery, reducing search costs is the primary margin
by which fishermen can increase profits within a fishing season. Vessels spend more than
20% of their time on fishing trips searching for anchoveta, and fuel comprises one-third
of variable costs (Joo et al., 2015; Kroetz et al., 2016). Closures might help fishermen
reduce search costs because closures implicitly signal high-productivity fishing locations: the
regulator implements closures in response to real-time anchoveta catch data from all vessels,
and there is only anchoveta catch in an area if anchoveta are sufficiently abundant. This
information is potentially valuable because there is zero anchoveta catch in most areas, but
strong correlations in anchoveta catch over time and space.2 I develop a simple game theoretic
model to show that total juvenile catch can increase as a result of the closures policy given
two conditions: (1) closures announcements are a sufficiently large positive signal of fishing
productivity near closures (before, just outside, and after closures) and (2) productivity and

1In my regressions, I correct for misreporting to the regulator by matching fishermen-reported data
to percentage juvenile measured by third-party inspectors. Third-party inspector data is not used by the
regulator to determine closures.

2The daily probability any vessel catches anchoveta in a given .1◦ grid cell (∼11 by 11 km) during
the fishing season is 0.5%. However, conditional on at least one vessel catching anchoveta in a .1◦ grid
cell yesterday, the probability of positive anchoveta catch today in the same grid cell is 31% (temporal
correlation). Conditional on at least one vessel catching anchoveta in a .1◦ grid cell today, the probability
of positive anchoveta catch in at least one adjacent grid cell on the same day is 92% (spatial correlation).
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relative juvenile abundance near closures are sufficiently high.
Estimating the causal effect of the temporary spatial closures policy requires counterfac-

tual areas and times that could have been closed and are comparable to closures declared
by the regulator. To address this challenge, I generate “potential closures” by creating an
algorithm that mimics the regulator’s closure rule and takes as its input the same data the
regulator uses to determine closures. I intersect potential closures with the closures declared
by the regulator, yielding treatment units (potential closures that get closed) and control
units (potential closures that do not get closed). I estimate whether juvenile catch is differ-
ent inside treated potential closures compared to control potential closures—the direct effect
of the policy—as well as whether juvenile catch is different before, just outside, and after
treated potential closures compared to control potential closures—the temporal and spatial
spillover effects of the policy.

Treatment variation occurs because the regulator declares closures based on one sample
statistic: the percentage juvenile measured by fishermen. I obtained biologically richer data
from fishing firms which contains the distributions that percentage juvenile values are drawn
from.3 This data is not available to the regulator when it is making closure decisions. By
controlling for this distribution (rather than the percentage juvenile values themselves), the
identifying variation comes from comparing potential closures that by chance had higher
percentage juvenile draws (so were declared actual closures by the regulator) to potential
closures that by chance had lower percentage juvenile draws (so were not declared closures
by the regulator). I also flexibly control for location, time, and fishing productivity. Identi-
fication occurs from comparing potential closures that are equally desirable fishing locations
and contain similar concentrations of juveniles, but which the regulator believes are different
because the data available to the regulator are lower resolution.

I test three hypotheses. The first concerns measuring the causal effect of the policy
and the second and third relate to testing a potential mechanism. First, do temporary
spatial closures reduce total juvenile catch when accounting for temporal spillovers, spatial
spillovers, and other regulations that affect fishing? Second, does the policy communicate
information about the value of fishing before, just outside, and after closures? Third, does
this information mechanism increase spillovers?

To test the first hypothesis I empirically estimate direct, temporal spillover, and spatial
spillover effects of the policy. I find that the policy reduces juvenile catch inside closed areas
during closure periods (direct effect). But the policy also causes large spillovers that more

3To estimate percentage juvenile, fishermen measure the length of 200 anchoveta out of the several
million individual anchoveta caught per set of the fishing net (an individual fishing operation). Fishermen
record the length distribution of these 200 anchoveta—the number of measured anchoveta in each half-cm
length interval—and report this data to their firm but not to the regulator. My regressions control for the
average length distribution of the sets that generate each potential closure. Percentage juvenile from each
set is one sample statistic from this distribution: the percentage of measured individuals that are less than
12 cm (juveniles are anchoveta less than 12 cm). Each percentage juvenile value reported to the regulator
is a “draw” from this distribution because sets that generate the same potential closure are fishing from the
same local anchoveta population. I account for misreporting to the regulator or to fishing firms with an
additional dataset from third-party inspectors.
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than offset the direct effect of the policy. I estimate that the policy increases juvenile catch
inside closed areas between the announcement and the beginning of closure periods (temporal
spillover), it increases juvenile catch just outside closed areas during closure periods (spatial
spillover), and it increases juvenile catch inside closed areas after the end of closure periods
(temporal spillover). These areas and time periods are not targeted by the policy; the
regulator only intends to change juvenile catch inside closed areas during closure periods.
Summing the direct, temporal spillover, and spatial spillover effects, I estimate that the
policy increases total juvenile catch by 50% despite a second regulation which sets binding
limits on total catch (juveniles and adults). The closures policy backfires—worsening its
target outcome on net—because closures cause vessels to reallocate fishing to areas where
the share of juveniles is higher.

Second, I posit that closures backfire because they implicitly provide information about
the value of fishing near closures. If information is the key mechanism, then it must be
the case that fishing near closures is more productive than fishing elsewhere, absent vessels’
responses to the information. However, this need not be true in equilibrium because of
congestion: the more vessels that fish in the same location, the less each vessel catches per
unit of fishing effort (Huang & Smith, 2014; Smith, 1969). I support these predictions from
my game theoretic model with the following empirical evidence. I estimate that vessels
that fish near potential closures (before, just outside, or after potential closures) catch 9%
more tons of anchoveta per unit of fishing effort than if they fished elsewhere. However,
I also estimate that vessels that fish near actual closures declared by the regulator do not
catch more tons of anchoveta per unit of fishing effort. Indeed, the policy increases total
tons caught near closures by 35%, but this increase is shared across a larger number of
vessels and a higher degree of fishing effort (congestion). Together, the result using potential
closures suggests that closures do provide valuable information, but the result using actual
closures suggests that the ex post value of this information is competed away by vessels in
the equilibrium. These results illustrate one benefit of the identification strategy in this
paper. The component of information that is valuable in closures declared by the regulator
is also contained in potential closures; they are both correlated with anchoveta abundance.
But because potential closures are unobservable to fishermen, the value of this information
cannot be competed away, making it observable econometrically.

Finally, I estimate whether the information provided by closures increases spillovers. If
information is a mechanism underlying the policy’s spillover effects, then vessels that receive
larger information shocks from closure announcements should have larger treatment effects. I
test this model prediction by dividing vessels into those that did or did not fish inside a given
potential closure the day before closure announcement would occur (if the potential closure is
declared an actual closure by the regulator). Juvenile catch increases by 87% for vessels that
did not fish inside a given potential closure the day before closure announcement. But for
vessels that already had information about the productivity of fishing near a potential closure
because they fished there the day before closure announcement, there is no treatment effect.
This information mechanism also operates at the firm-level. Among firms that own multiple
fishing vessels, the response to closures is driven by vessels in firms with less information
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about an area before closure announcement. Juvenile catch increases by 78% for vessels
that had no other member of their firm fish inside a given potential closure the day before
closure announcement would occur. But for vessels that already had information about the
productivity of fishing near a potential closure because a different vessel in their firm fished
there the day before closure announcement, the increase in juvenile catch because of the
policy is only 19%.

The primary contributions of this paper are to the literature on targeted policies. Because
governments have finite capacity to solve market failures, policymakers often attempt to
reduce an externality by targeting only the highest marginal damage places, time periods,
or firms (Gray & Shimshack, 2011; Greenstone & Jack, 2015). Whether targeted policies
succeed in reducing externalities depends on their direct effects on targeted units and their
spillover effects on non-targeted units. Previous papers have estimated spatial or temporal
spillovers from a targeted policy (in addition to the direct effect), such as spatial spillovers
from a hot-spot policing intervention in Colombia (Blattman et al., 2019), temporal spillover
from the US Endangered Species Act’s critical habitat provision (List et al., 2006), and
spatial spillovers from blacklisting high-deforestation municipalities in Brazil (Assunção et
al., 2019). However, estimating the total effect of a targeted policy (direct, temporal spillover,
and spatial spillover effects) is rare.4 Additionally, while previous papers have estimated
spillovers that partially offset or augment the direct effect of a targeted policy, it is uncommon
to find spillovers so large they reverse the sign of the policy’s effect. Finally, I provide
evidence for an information mechanism underlying the large spillovers I estimate. Because
the direction and magnitude of spillovers are context-dependent, identifying the mechanisms
through which targeting causes spillovers is necessary for yielding generalizable lessons for
targeted policy design (Pfaff & Robalino, 2017).

The information mechanism I uncover in this paper is most similar to the concept of “in-
formation spillovers” in financial economics. In Asriyan et al. (2017), information spillovers
occur because sellers’ private asset values are correlated, so a trade by one agent is a sig-
nal of the value of other agents’ assets. In this paper, information spillovers occur through
the policy, which communicates information about non-targeted units (the value of fishing
near closures), which in turn changes the outcomes of non-targeted units. Policy-induced
information spillovers likely operate in a range of other contexts as well. For example, ra-
tioning the consumption of some goods to reduce stockpiling could increase stockpiling of
non-rationed goods if the policy causes consumers to believe shortages of non-rationed goods
are more likely (Erdem et al., 2003; Keane & Neal, 2020). Alternatively, targeting infectious
disease tests to priority groups could increase social activity and disease transmission among
non-targeted people if the policy causes them to lower their subjective probability of infec-
tion (Acemoglu et al., 2020). Though policy-induced information spillovers are probably

4Estimating direct, temporal spillover, and spatial spillover effects requires substantial treatment vari-
ation. Two other papers that estimate these effects are Ladino et al. (2019), which studies Colombia’s
illegal crop substitution program, and Gibson and Carnovale (2015), which evaluates driver responses to
road pricing.
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common, I know of no prior research that empirically shows that information spillovers can
undermine the intended goals of a second-best externality mitigation policy.

Most economics research on common-pool resources since the seminal works of Gordon
(1954) and Scott (1955) has focused on alleviating the stock externality by assigning quasi-
property rights to the resource. But rights-based instruments defined in terms of tons, as in
Peru and in the vast majority of fisheries with rights-based instruments, do not account for
age-specific differences in reproduction, growth, and mortality (Quaas et al., 2013; Smith,
2012). I contribute to the literature on common-pool resource extraction by estimating the
extent to which a new type of place-based policy, known as “dynamic ocean management”,
succeeds in reducing the most important biological externality in the world’s largest fishery
(Dunn et al., 2016; Hazen et al., 2018).

In Section 1.2 I describe fishermen’s economic incentives, the temporary spatial closures
policy, and the structure of the anchoveta industry. I present my game theoretic model
in Section 1.3, data in Section 1.4, and empirical strategy in Section 1.5. I test my three
hypotheses in Sections 1.6, 1.7, and 1.8 and discuss policy alternatives in Section 1.9.

1.2 Institutional context

Fishermen’s economic incentives and the temporary spatial closures policy and broader regu-
latory environment inform my game theoretic model and empirical strategy. This contextual
information is also necessary for understanding the data I use and my empirical results.

Globally, capture fisheries generate revenues of $130 billion per year, provide 17% of
animal protein directly consumed by humans, and directly employ 40.3 million people (FAO,
2018). Of these, the Peruvian anchoveta fishery is the largest, accounting for 8% of tons
caught between 2005 and 2016 (FAO, 2018). Peruvian anchoveta (Engraulis ringens) are a
species of anchovy. 97% of anchoveta tons are processed into fishmeal and fish oil, which
are primarily used for aquaculture and livestock feed (PRODUCE, 2018a). There are two
Peruvian anchoveta stocks (populations): the North-Central stock, which occurs entirely
within Peruvian jurisdiction, and the Southern stock, which is shared with Chile. I limit
my analysis to the North-Central stock, which accounts for 95% of tons landed during my
study period, the six fishing seasons of 2017, 2018, and 2019. “Landing” refers to the point
of landing, when a vessel transfers its catch to a processing plant.

Fishermen incentives

In most industries, firms choose output and input quantities to maximize profits. Depending
on market structure, firms’ choices may also affect output and input prices. In the Peruvian
anchoveta fishery, policy and contracts constrain fishermen’s ability to adjust most of these
variables. First, as described in the immediately following subsection, individual vessel
quotas limit the tons of anchoveta that vessels can land each season. This constraint on
output quantity is typically binding. Second, output price is exogenous because fishermen
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are paid a fixed percentage of the international price of fishmeal for each ton of anchoveta
they land.5 Individual fishermen or fishing vessels cannot affect the international price of
fishmeal. Input prices are also not affected by fishermen’s decisions. The price of fuel is
exogenous and wages equal a fixed percentage of the international price of fishmeal.

Given these constraints on output quantity, output price, and input prices, input quanti-
ties are the main margin fishermen can adjust to increase profits within a fishing season. In
particular, fishermen can increase profits by reducing the quantities of labor and fuel they
spend searching for anchoveta. Examining the potential effects of temporary spatial closures
on search costs can therefore guide predictions of how the policy might change fishermen
behavior.

Vessels spend more than 20% of their time on fishing trips searching for anchoveta; fuel
comprises about one-third of variable costs; and maintenance is about one-fifth of total costs
(Joo et al., 2015; Kroetz et al., 2016). Fishermen who do not pay fuel costs or maintenance
costs directly (because they work for a large fishing company) still incur an opportunity
cost of their time that could be reduced by finding anchoveta more quickly. Closures might
help fishermen reduce search costs because closures implicitly signal high-productivity fishing
locations: the regulator implements closures in response to real-time anchoveta catch data
from all vessels, and there is only anchoveta catch in an area if anchoveta are sufficiently
abundant.6

This information is potentially valuable because there is zero anchoveta catch in most
areas; the daily probability any vessel catches anchoveta in a given .1◦ grid cell (∼11 by
11 km) during the fishing season is 0.5%. However, anchoveta catch is highly correlated
over time and space. Conditional on at least one vessel catching anchoveta in a .1◦ grid
cell yesterday, the probability of positive anchoveta catch today in the same grid cell is 31%
(temporal correlation). Conditional on at least one vessel catching anchoveta in a .1◦ grid
cell today, the probability of positive anchoveta catch in at least one adjacent grid cell on
the same day is 92% (spatial correlation).

Fishing near closures (just before, outside, or after closures) could also reduce costs by
increasing average tons caught per set of the fishing net (an individual fishing operation).

5Fishermen are paid per ton of anchoveta they land. The price per ton is a fixed percentage of the
average monthly free-on-board (FOB) price of fishmeal in Hamburg (Fréon et al., 2014). According to
a collective bargaining agreement with companies that account for more than 33% of landings, fishermen
that land anchoveta that will be processed into fishmeal and fish oil receive 1.792% of the FOB price per
ton of anchoveta (SUPNEP, 2017). Under this agreement, crews divide revenue amongst themselves in
fixed proportions: the captain receives “two parts” (twice as much as a regular fisherman), the second-in-
command and first engineer receive one and a half parts, and regular fishermen recieve one part (SUPNEP,
2017). Interviews and analysis conducted by Hansman et al. (2020) indicate that fishermen not covered by
this agreement are also paid a fixed percentage of the FOB price of fishmeal.

6There is also a positive correlation between percentage juvenile reported to the regulator and tons
caught: a one percentage point increase in percentage juvenile predicts 1.8% more tons caught. While my
game theoretic model and main empirical result can accommodate both explanations of why vessels fish
more near closures—because of information on anchoveta presence or because high percentage juvenile areas
are especially desirable fishing grounds—the results in Section 1.7 support the former explanation.
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Tons caught per set is a measure of fishing productivity conditional on finding anchoveta
because fishermen only perform a set when they see anchoveta in the water.7 The average
fishing trip lasts 20.3 hours and features 2.2 sets (medians are 17.2 and 2). An increase in
tons caught per set would be valuable to fishermen because each set requires about one and
a half hours of physically demanding labor and increases the cost of maintaining the net
(e.g. by causing wear and tear). Moreover, an increase in tons per set would be indirect
evidence that closures reduce search costs. In this case, vessels need fewer sets to reach their
quota for the season, which suggests lower time and fuel costs from searching for anchoveta
in order to perform sets.

The percentage or number of juveniles that fishermen catch does not affect profits during
my study period.8 Fishermen are paid per ton, not by the composition of juveniles and
adults they catch. Moreover, the regulator eliminated penalties for catching juveniles in
2016 (PRODUCE, 2016a).9 Though juvenile anchoveta are relatively more abundant near
closures, as one would expect given that the regulator closes areas where the share of juve-
nile catch is high, fishermen do not have an economic incentive to avoid catching juvenile
anchoveta. If fishing near closures reduces search costs or increases tons caught per set,
profit-maximizing fishermen will fish more near closures, potentially increasing total juvenile
catch.

Temporary spatial closures and other relevant regulations

The anchoveta fishery is subject to a suite of regulations designed to promote economically
profitable and biologically sustainable fishing. For this paper, the three most important
regulations are an industry-wide catch limit for each fishing season, individual vessel quotas,
and the temporary spatial closures policy.

The regulator (PRODUCE) sets an industry-wide limit on the total tons that can be
landed during each fishing season, called the Total Allowable Catch (TAC). Population
estimates before the beginning of the fishing season from IMARPE, Peru’s marine science
agency, guide this decision (IMARPE, 2019). The regulator sets the TAC such that the
remaining biomass of adult (sexually mature) anchoveta at the end of the fishing season
will exceed 4 to 5 million tons, depending on environmental conditions. The regulator and
scientific agency do not want adult biomass to fall below 4 million tons because when this
occurred in the past the stock grew more slowly than usual, reducing the tons of anchoveta
that could be caught in the next season and in future seasons (Pikitch et al., 2012). While

7For example, an executive at a large fishing company told me in an interview that tons per set is the
primary performance metric his company uses to evaluate the captains of their fishing vessels.

8Very small juveniles can get stuck in the holes in the net, increasing the time fishermen need to spend
cleaning the net before they can resume fishing. But these events are rare (Instituto Humboldt et al., 2018).

9This regulatory change was motivated by concerns that fishermen were discarding catch with a high
percentage of juveniles at sea to avoid being penalized, as well as complaints from the fishing industry
that fishermen have limited control over juvenile catch because fishermen cannot predict percentage juvenile
before performing a set (Instituto Humboldt et al., 2018; Paredes, 2014). Discarding juveniles is wasteful
because juveniles can be processed into fishmeal and fish oil.
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TAC prevents biological overexploitation, it does not by itself prevent the dissipation of
economic rents if new vessels can enter the fishery, existing vessels can upgrade their capacity,
or fishermen “race to fish” before the TAC is reached (Homans & Wilen, 1997, 2005; Huang &
Smith, 2014; Reimer & Wilen, 2013; Smith, 1969). There are two fishing seasons per year in
the North-Central zone. The first season is typically between April and July and the second
season is typically between November and January. The season ends at the scheduled end
date or when the TAC is reached, whichever comes first. The season can also be cancelled
preemptively due to biological or oceanographic conditions. In the second season of 2017
and 2019, the season was cancelled when only 44% and 36% of the TAC had been reached.10

In the second season of 2018 and the first season of 2017, 2018, and 2019, tons landed were
99%, 85%, 98%, and 96% of the TAC.

The second important regulation is individual vessel quotas (IVQs). The regulator as-
signed IVQs in 2009 and they are defined as a percentage of the TAC (Kroetz et al., 2019;
Tveteras et al., 2011). Vessels have the same IVQ each season. For example, the IVQ for
the vessel with the unique identifier CE-4122-PM is 0.22858% of each season’s TAC. In the
first season of 2017, when the TAC was 2.8 million tons, this vessel was entitled to land
v6,400 tons. IVQs are only transferrable within-firm. To transfer an IVQ across firms, the
vessel itself must be sold (Natividad, 2016). By limiting entry and reducing the race to
fish, the implementation of IVQs in the Peruvian anchoveta fishery increased firms’ profits
(Kroetz et al., 2019; Natividad, 2016; Tveteras et al., 2011). IVQs belong to a larger class
of (property) “rights-based instruments”.11 In addition to improving economic outcomes,
rights-based instruments increase biomass (size of a stock in tons) and reduce the proba-
bility of fisheries “collapse” (Costello et al., 2008; Costello et al., 2016; Isaksen & Richter,
2019). But rights-based instruments defined in terms of tons, as in Peru and in the vast ma-
jority of fisheries with rights-based instruments, do not account for age-specific differences
in reproduction, growth, and mortality (Quaas et al., 2013; Smith, 2012).

The third important regulation, temporary spatial closures, attempts to address this age
externality. The regulator’s goal in implementing temporary spatial closures is to reduce the
capture of juvenile anchoveta. The purpose of this paper is to analyze the extent to which
temporary spatial closures achieve this objective.

The excess capture of juvenile fish was a leading explanation for decreased catch in many
European fisheries in the late 1800s. The debate over the effects of juvenile catch was partly
responsible for the beginnings of fish biology research (Smith, 1994, p. 70-76). If fish are not
allowed to reach maturity and reproduce, the stock will diminish. Larger fish also tend to be

10The second season of 2017 was cancelled because IMARPE detected significant spawning activity
(IMARPE, 2018). The second season of 2019 was cancelled because oceanographic conditions led schools of
juveniles to inhabit the same areas as schools of adults (PRODUCE, 2020b). The co-occurrence of juveniles
and adults led to high rates of juvenile catch because fishermen have limited ability to predict whether
anchoveta in the water are juveniles or adults (IMARPE, 2019; Paredes, 2014).

11IVQs and other rights-based instruments are not formal property rights because they entitle fishermen
to a flow from the resource (e.g., a percentage of the TAC), but do not typically confer ownership of the
stock itself (the state retains ownership of the stock) (Reimer & Wilen, 2013)
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more valuable. These two consequences of excessive juvenile catch are known as “recruitment
overfishing” and “growth overfishing”, respectively (Quaas et al., 2013). It is now a common
goal of fisheries management to allow most fish in a stock to spawn at least once in their life
(Paredes, 2014; Wallace & Fletcher, 1997).

The regulator began implementing temporary spatial closures, called Suspensiones Pre-
ventivas, in the first fishing season of 2014.12 The regulator can temporarily close an area of
ocean when the percentage of individuals caught in that area that are juvenile exceeds 10%.
The 10% juvenile threshold is not strictly applied in practice; many instances of percentage
juvenile greater than 10% do not lead to closures. Juvenile anchoveta are anchoveta smaller
than 12 cm. Percentage juvenile therefore refers to the percentage of individual anchoveta
that are less than 12 cm long.

Between 2014 and 2016, the data used to determine closures came from third-party
inspectors sampling anchoveta at the point of landing. When a vessel landed anchoveta with
a high percentage of juveniles, the regulator could determine where the vessel had fished by
asking the captain and reviewing the vessel’s locations and movement patterns. Each vessel’s
location, heading, and speed is transmitted live to the regulator through an on-board GPS
transponder, referred to as a “vessel monitoring system” (VMS).13 In the first year of the
policy, the regulator was required to announce closures at least 24 hours before the start
of closure periods. In August 2015, the announcement period was shortened to its current
form (PRODUCE, 2015). Closures that begin at midnight (93% of all closures) must be
announced by 3 PM (9 hours in advance). Closures announced between 3 and 6 PM begin
at 6 AM the next day (announcement is at least 12 hours in advance).

I analyze the effects of the policy during the six fishing seasons of 2017, 2018, and 2019,
when the use of “electronic logbooks” further enhanced the regulator’s ability to target high-
juvenile areas. Electronic logbooks refer to software fishermen use to record (“log”) their
catch at sea. Beginning with the first fishing season of 2017, the regulator required vessels
to report to the regulator the location, estimated tons caught, and estimated percentage
juvenile caught immediately after each set (an individual fishing operation). Since estimating
percentage juvenile at point of landing typically measures anchoveta from several sets, hours
after they were caught at sea, electronic logbook data are both higher-resolution and timelier.
For my empirical analysis, I calculate juvenile catch by matching electronic logbook data
with third-party inspector landings data, which preserves the resolution of the electronic
logbook data while eliminating the bias that would occur if I only used the fishermen-
reported electronic logbook data (Section 1.4).

The regulator determines closures as follows.14 An official monitors the electronic logbook
data in real-time, which appear as points on a digital map. Each point is a set and the color
of each point is the set’s percentage juvenile value. When the official decides that the

12The regulation allowing the regulator to declare temporary spatial closures was published in 2012
(PRODUCE, 2012).

13The acronym used in Peru is SISESAT.
14The government officials tasked with determining closures demonstrated their process to me in a De-

cember 2019 interview in their Lima office.
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percentage juvenile values for a group of sets are too high, he selects that group of sets
by drawing a rectangle around them with his mouse. Based on the points selected by the
official, a computer algorithm calculates the boundary and number of days for the resulting
closure. The computer algorithm is not publicly available, but government officials have
described it in workshops and personal conversations. Closure area increases in the total
tons caught by the group of sets (Instituto Humboldt & SNP, 2017; Instituto Humboldt
et al., 2018). Closures last three, four, or five days.15 Higher percentage juvenile values
result in longer closures. The official can make manual adjustments to the closure generated
by the computer algorithm, for example to ensure the closure covers all the sets selected by
the official (Instituto Humboldt & SNP, 2017; Instituto Humboldt et al., 2018).

Vessels are not allowed to fish inside active closures (inside closed areas during the three-
to-five-day closure periods). However, vessels are allowed to fish inside closed areas after
the announcement but before the beginning of closure periods, outside closed areas during
closure periods, and inside closed areas after the end of closure periods.

The regulator uses real-time VMS data to monitor fishing inside active closures. The
regulator defines fishing as moving slower than two knots at a non-constant heading for
more than one hour and penalizes vessels that move in this way inside an active closure
(PRODUCE, 2016a).16 VMS transponders can be physically disabled but not manipulated;
the transponder is inside a closed, metal box and it transmits data to the regulator auto-
matically every 10 minutes. The vessel owner is penalized if the vessel’s transponder does
not transmit data to the regulator for more than two hours for any reason (e.g., PRODUCE,
2017b). To the extent that vessels are able to conceal fishing inside active closures, this
detection avoidance would accentuate my main result that the policy increases total juvenile
catch.

The regulator announces closures on their website and by sending emails and WhatsApp
messages to firms (PRODUCE, 2020c). Firms then communicate closures to vessels at sea
using radio, and fishermen enter the coordinates of closed areas into their on-board electronic
navigation systems. Some fishing companies also monitor the locations of their vessels in
relation to active closed areas and call vessels on the radio when they are near an active
closure. 43% of closure announcements create multiple closures; the average announcement
creates 1.58 closures.

I downloaded all temporary spatial closures announcements from the regulator’s website.
The regulator declared 410 closures in the North-Central zone during my study period (Figure
1.1). The smallest and largest closures are 170 and 12,512 km2. The mean and median
closures are 1,328 and 1,211 km2 (about twice as large as New York City). The share of
closures that last three, four, and five days is 48%, 15%, and 36%. There are 0.73 active

15I estimate the effects of closures declared by the regulator, PRODUCE. The scientific agency, IMARPE,
can declare closures of up to 10 days. These closures can apply to all fishing grounds (i.e., Peru’s entire
Exclusive Economic Zone). IMARPE also has the power to end a fishing season before the scheduled end
date and before vessels have reached the TAC.

16All fishing in the Peruvian anchoveta fishery is “purse seine fishing”, which involves dragging a net in
a circle around a group of anchoveta.
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Figure 1.1: Temporary spatial closures in the North-Central zone by fishing season

Notes: Each red polygon represents a closure. Closures last three, four, or five days. The average
closure is 1,328 km2. The regulator declared 410 closures in the North-Central zone during the six
fishing seasons of 2017, 2018, and 2019. There are 0.73 active closures on an average day during
the fishing season. The inset map in the top, left panel shows South America (light grey), Peru
(dark grey), and the North-Central zone (black rectangle).

closures on an average day during the fishing season. Closures are spatially correlated: 26%
of closures border or intersect a closure created by the regulator’s next closure announcement.
On average, the minimum distance between closures created by successive announcements
is 178 km.

Temporary spatial closures are a type of “dynamic ocean management” in that they vary
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over space and time and are updated by the regulator in response to real-time data (Lewi-
son et al., 2015; Maxwell et al., 2015). Dynamic ocean management is different from more
traditional management approaches, like marine protected areas, which are time-invariant,
and seasonal closures of an entire fishery, which are space-invariant. Dynamic ocean man-
agement is designed to reduce fishing in the areas and times where fishing is likely to cause
ecologically undesirable outcomes. But it does not need to cover as much space-time as
more traditional management approaches because it only targets relevant areas and times.
For these reasons, simulations of dynamic ocean management find it can achieve the same
ecological objectives as more traditional management approaches at a lower economic cost
(Dunn et al., 2016; Hazen et al., 2018). The same win-win idea motivates temporary spatial
closures. By allowing fishing to continue in most places, temporary spatial closures could
reduce total juvenile catch while minimizing the cost of the policy to fishermen.

Temporary spatial closures could reduce total juvenile catch by causing fishermen to
search for new fishing grounds. In this case, closures would reduce total juvenile catch if
the share of juveniles is lower in the new fishing grounds. There is substantial variation in
relative juvenile abundance across space because schools of fish tend to be age-segregated
(i.e., each school of anchoveta contains mostly juveniles or mostly adults).

The fishing industry opposes penalties on juvenile catch because of fishermen’s limited
ability to predict percentage juvenile before performing a set (Instituto Humboldt et al.,
2018). In interviews I conducted in Peru in December 2019, fishing industry employees and
stakeholders argued that a tax on juvenile catch would be “unfair” for this reason. Temporary
spatial closures do not suffer from this political economy constraint because fishermen are
able to entirely control their compliance with closures (Paredes, 2014).

The regulator believes the temporary spatial closures policy reduces total juvenile catch.
For example, they calculated that the 174 closures during the first and second season of 2017
and the first season of 2018 protected 1,049,411 tons of juvenile anchoveta (PRODUCE,
2017a, 2018b, 2018c). The regulator does not describe how they calculate this number, nor
do they define the meaning of “protected” in this context. The regulator also implements
temporary spatial closures to protect juvenile horse mackerel and may expand the policy to
cover additional fish species in the future (PRODUCE, 2020a).

Industry structure

There is an average of 730 vessels active each fishing season. IVQs preclude entry of new
vessels into the fishery. Vessels are made of steel or wood (40% and 60%). On average,
steel vessels are longer than wood vessels (37.5 m compared to 17.5 m), have greater storage
capacity (354 m3 compared to 72.5 m3), and have more powerful engines (797 horsepower
compared to 339 horsepower). Steel vessels also have larger crews than wood vessels (about
20 people compared to 12 people on wood vessels) and are more likely to belong to a firm
that owns multiple fishing vessels (92% compared to 41% of wood vessels).

All vessels are privately owned. Seven large firms own at least 19 vessels each, which
together account for 60.3% of landings (Table A.4). All seven large firms are vertically
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integrated in that they also own fishmeal processing plants (Hansman et al., 2020). 271
vessels are “singletons”: they belong to a firm that owns only one vessel. Singleton vessels
account for 12.8% of landings. Finally, there are medium firms that each own 2 to 10
vessels. Vessels that belong to medium firms account for 26.8% of landings. The level of
market concentration in Peru’s anchoveta fishery is similar to other fisheries with rights-
based instruments. For example, the top 10 largest firms in Iceland own quotas equal to
50.5% of annual landings (Agnarsson et al., 2016).

1.3 Model

I present a simple game theoretic model to interpret my empirical result that the tem-
porary spatial closures policy increases total juvenile catch. The proposed mechanism is
that closure announcements are a positive signal of fishing productivity near closures. This
mechanism implies an auxiliary prediction regarding treatment effect heterogeneity, which I
also test empirically. Namely, vessels that receive a positive information shock from closure
announcements will have larger treatment effects than vessels who already had the signal.

I vessels simultaneously choose where to fish in order to maximize expected profits, which
depend on the state variable C.17 When C = 0, there is no closure and vessels choose from
two possible fishing locations: g and k. Each vessel i chooses exactly one of the two available
fishing locations. When C = 1, part of location g is closed to fishing, but h ⊂ g remains
open to fishing (Figure 1.2). Vessels choose whether to fish in h or k when C = 1.18 Location
h represents areas and times that are near closures, such as before, just outside, and after
closures. I derive testable predictions from this model by comparing outcomes across the
two values of the state variable C, such as whether the closures policy reduces total juvenile
catch (i.e., whether total juvenile catch is lower when C = 1 than when C = 0).

Let ` denote a generic fishing location. Profit π decreases in the number of other vessels
who make the same location choice, I−i,`, due to congestion (Huang & Smith, 2014; Smith,
1969). Profit increases in the productivity (e.g. tons per set) of the fishing location, which is
summarized by the scalar µ`. Vessels know that draws of µ` are independent across locations
conditional on C. But vessels do not observe the vector of true productivity ~µ in the possible
fishing locations before making their location choice. For the base case suppose that vessels
are identical and that they have the same beliefs ~̃µ regarding mean productivity of each
location (e.g., the value of µ̃k is the same across vessels).

There are two differences when C = 1 compared to when C = 0. First, the closure
announcement is a positive signal to vessels: µ̃h > µ̃g. The closure announcement does not
change vessels’ beliefs regarding mean productivity of location k (µ̃k|C=1 = µ̃k|C=0). Second,

17This model abstracts away from important institutional details, such as heterogeneity among vessels
and dynamic decision-making. Its purpose is to provide a simple, single framework for understanding the
three main empirical results of this paper.

18Suppose the expected fine from fishing in the closed part of location g is sufficiently large such that
expected profit from fishing in h or k is always greater.
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Figure 1.2: Illustration of model

Notes: When C = 0 (no closure), vessels choose to fish in location g or in location k. When C = 1,
part of location g is closed to fishing. Vessels choose to fish in location h (the part of g that remains
open to fishing) or in location k.

since location h covers less area than g, marginal congestion costs are higher in h than in g
(|πi,h(·)I−i,h| > |πi,g(·)I−i,g|).

When there is no closure, vessel i’s objective is

max E[πi,`(µ`, I−i,`)|µ̃g, µ̃k, C = 0].
` ∈ {g, k}

Vessel i chooses to fish in g if the expected profit from doing so exceeds the expected profit
from fishing in k; E[πi,g(µg, I−i,g)|µ̃g, µ̃k, C = 0] > E[πi,k(µk, I−i,k)|µ̃g, µ̃k, C = 0]. When part
of location g is closed (C = 1), vessels choose between h and k to maximize their expected
profit, yielding a similar decision rule. Let I` denote the number of vessels who choose
location ` and let TotJuv(C) denote total juvenile catch given the value of C. Suppose
total juvenile catch is the product of the number of vessels who fish in each location, pro-
ductivity, and percentage juvenile, summed over locations.19 Then TotJuv(C = 0) equals
γ(Igµgρg + Ikµkρk) and TotJuv(C = 1) equals γ(Ihµhρh + Ikµkρk), where γ is a constant
and ρ` is percentage juvenile.

There exists unique Bayes-Nash equilibria (I∗g , I
∗
k) and (I∗h, I

∗
k) such that:

19In reality, I calculate the number of juvenile anchoveta caught by each set in Section 1.4, which forms
the main outcome variable of interest in my regressions (Section 1.5).
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Proposition 1. If (1) the closure announcement is a sufficiently large positive signal relative
to congestion costs and (2) productivity and percentage juvenile are sufficiently high in
location h relative to locations g and k, then the closures policy increases total juvenile
catch; TotJuv(C = 1) > TotJuv(C = 0).

Proposition 2a. When there is no closure, the expected profit from fishing in location g
equals the expected profit from fishing in location k; E[πi,g(µg, I−i,g)|µ̃g, µ̃k, C = 0] =
E[πi,k(µk, I−i,k)|µ̃g, µ̃k, C = 0] ∀i. The same is true when C = 1;
E[πi,h(µh, I−i,h)|µ̃h, µ̃k, C = 1] = E[πi,k(µk, I−i,k)|µ̃h, µ̃k, C = 1] ∀i.

Proposition 2b. However, profit from fishing in g exceeds profit from fishing in k if
true, unobservable productivity is higher in g than in k (µg > µk) and vessels believe
mean productivity is the same in both locations (µ̃g = µ̃k); πi,g(µg, I−i,g) > πi,k(µk, I−i,k) ∀i.

The proofs are in Appendix A.4. Figure 1.3 displays the equilibria when E[πi,`(µ`, I−i,`)|~̃µ, C] =
µ̃` − α`I−i,`, where α` is the cost to vessel i from one additional vessel fishing in location `.
Vessel i’s expected profit (y-axis) depends on its choice (lines) and the choices of the other
I−i vessels (x-axis). Consider Proposition 2a first. When C = 0, the equilibrium (I∗g , I

∗
k) is

given by the intersection of the two black lines, which represent vessel i’s expected profit from
fishing in g and expected profit from fishing in k. At this point, no vessel can increase their
expected profit by changing their location choice. Similarly, when C = 1 the equilibrium
(I∗h, I

∗
k) is given by the intersection of the red line (expected profit from fishing in location

h) and the upward-sloping black line (expected profit from fishing in location k).
Now consider Proposition 1 as illustrated in Figure 1.3. Expected profit from fishing in

h has a higher intercept than for g, because the closure announcement is a positive signal
of productivity, but it also has a steeper slope, because marginal congestion costs are higher
(αh > αg). Figure 1.3 displays the case where the positive signal is sufficiently large relative
to congestion costs, such that more vessels choose to fish in h in equilibrium than in g
(I∗h > I∗g ), even though h is a subset of g. In order for this increase in fishing near closures to
translate into an increase in total juvenile catch, it must also be the case that productivity
and percentage juvenile in h are sufficiently high relative to productivity and percentage
juvenile in g and k. Because I is fixed, I∗h > I∗g ⇒ I∗k|C=1 < I∗k|C=0. If productivity and
percentage juvenile are the same across locations, the closures policy will not increase total
juvenile catch because the vessels who switch from k to h catch the same quantity of juveniles
in both locations.20 Whether the temporary spatial closures policy increases total juvenile
catch is therefore an empirical question. This outcome is possible, but only if (1) closure
announcements are a sufficiently large positive signal relative to congestion costs and (2)
productivity and percentage juvenile near closures are sufficiently high.

For Proposition 2b, note that fishing location decisions depend on vessels’ beliefs re-

20Fixed I in the model is similar to the role that the total allowable catch limit plays in mediating the
effect of the closures policy: if the closures policy increases tons caught near closures, then tons caught
elsewhere in the same season must fall by an offsetting amount (Section 1.6).
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Figure 1.3: Illustration of Propositions 1 and 2a

Notes: The y-axis is vessel i’s expected profit when E[πi,`(µ`, I−i,`)|~̃µ, C] = µ̃`−α`I−i,`. The x-axis
is the number of other vessels who choose g when C = 0 and the number of other vessels who
choose h when C = 1. The black and red lines indicate vessel i’s expected profit from fishing in a
given location. The black point is the Nash equilibrium when C = 0 and the red point is the Nash
equilibrium when C = 1. In this parametric example, I∗h > I∗g because the closure announcement is
a sufficiently large positive signal (difference in intercepts) relative to congestion costs (difference
in slopes of lines).

garding mean productivity in each location (~̃µ), but not true productivity ~µ because ~µ is
unobserved. Then πi,g(µg, I−i,g) > πi,k(µk, I−i,k) ∀i because vessels are identical and profit
is increasing in true productivity. If the closure announcement contains valuable information
in that it informs vessels that the true productivity of g is higher than k, then vessels that
happen to fish in g when C = 0 have higher profits because there is no closure announcement
that vessels can use to change their fishing location decisions.

The information mechanism proposed in this model also implies a prediction regarding
treatment effect heterogeneity. Instead of assuming identical vessels, now suppose there are
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two types of vessels. When C = 0, type a vessels already have the signal regarding location
g, but type −a vessels do not: ˜µg,a > ˜µg,−a. When C = 1, both types receive the positive
signal from the closure announcement, so ˜µh,a = ˜µh,−a. The closures policy treatment effect
τ equals TotJuv(C = 1) − TotJuv(C = 0) and the treatment effect as a percentage of
the number of type a vessels is τa

Ia
. Because type −a vessels receive a positive information

shock from the closure announcement and type a vessels do not, the percentage treatment
effect for type −a vessels will be larger than the percentage treatment effect for type a vessels.

Proposition 3. Consider two types of vessels, indicated by the subscript a. Suppose
˜µg,a > ˜µg,−a when C = 0, ˜µh,a = ˜µh,−a when C = 1, juvenile catch per vessel is higher in

location g than in location k (µgρg > µkρk), and an interior Bayes-Nash equilibrium when
C = 0 (I∗g , I

∗
k > 0) and when C = 1 (I∗h, I

∗
k > 0). Then type −a vessels have a larger

percentage treatment effect than type a vessels; τ−a

I−a
> τa

Ia
.

The proof is in Appendix A.4. If some vessels receive a positive information shock from
the closure announcement and others do not, total juvenile catch will increase by a larger
percentage among vessels that receive the information shock.

1.4 Data

The recent emergence of vessel-level GPS data has enabled researchers to predict when
and where vessels are fishing at a global scale (Kroodsma et al., 2018). These new data,
made publicly available by the organization Global Fishing Watch, have expanded the set of
answerable research questions (Englander, 2019; Sala et al., 2018), but they do not measure
the most important outcomes caused by fishing: the quantities and types of fish that vessels
catch. As a result of fieldwork I conducted in Peru, I obtained two administrative datasets
that contain these variables from Peru’s Ministry of Production (PRODUCE) in March 2020.
Both datasets contain the tons of anchoveta and the percentage juvenile caught by all vessels
in the North-Central zone during the six fishing seasons of 2017, 2018, and 2019. However,
they differ in important ways which allow me to accurately calculate the number of juvenile
anchoveta each vessel catches each time it sets its net (an individual fishing operation).

The first dataset is electronic logbook data. Fishermen report to the regulator when a
fishing trip begins, when a fishing trip ends, and the location, time, tons caught, and percent-
age juvenile caught from each set during a fishing trip. Fishermen record this information
on a smartphone or tablet application, which transmits data in real-time to the regulator
through the vessel’s on-board GPS transponder. Fishermen perform sets once they have lo-
cated anchoveta in the water. They encircle the anchoveta with a large net (a “purse seine”),
close the net, and transfer the anchoveta from the net into the vessel’s hold. As fishermen
transfer anchoveta from the net into the hold, a trained fisherman estimates the percentage
of juveniles by taking three samples using a standardized bucket: once during the first 30%
of transference and two more times during the remaining 70% (PRODUCE, 2016b). The
fisherman measures each fish in the sample in half-cm intervals, producing data on the length
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distribution of anchoveta caught by that set (e.g., 10 individuals between 11 and 11.5 cm, 17
individuals between 11.5 and 12 cm, etc.). Out of the several million individual anchoveta
caught in a typical set, approximately 200 are measured. The percentage juvenile for the set
is the percentage of measured individuals that are less than 12 cm long. Percentage juvenile
is reported to the regulator but the length distribution is not. I obtained a supplementary
electronic logbook dataset for a group of vessels that report length distribution data to their
owners. These vessels represent 56% of tons landed and I imputed the length distribution
for sets by other vessels given sets’ location, time, and percentage juvenile (see Appendix
A.3).

The second dataset is landings data. When vessels finish fishing, they return to shore and
transfer (“land”) the anchoveta they caught on their trip to a fishmeal and fish oil processing
plant. Each time a vessel lands its catch at a processing plant, a third-party inspector
measures percentage juvenile and tons landed and reports this data to the regulator. The
third-party inspector follows the same procedure described above, taking three samples and
measuring approximately 200 individuals in total. The landings data are lower resolution
than the electronic logbook data because third-party inspectors measure percentage juvenile
from the sum of anchoveta caught by all sets on a fishing trip (average number of sets per
trip is 2.2), whereas fishermen measure percentage juvenile after each set in the electronic
logbook data. However, unlike fishermen in the electronic logbook data, the closures policy
does not give third-party inspectors an incentive to misreport percentage juvenile because the
regulator does not use landings data to determine closures during my study period. Third-
party inspectors are from one of three international firms and tend to have more rigorous
technical training in measurement and sampling than fishermen (PRODUCE, 2018d).

I match sets in the electronic logbook data to landings in the landings data at the vessel-
trip level and use the percentage juvenile measured by third-party inspectors and length
distribution data to calculate the number of juvenile anchoveta caught by each set in the
electronic logbook data (Appendix A.3). I also use the percentage juvenile measured by
third-party inspectors to calculate corrected length distribution for each set. If I did not
have landings data, I would mismeasure juvenile catch because fishermen seem to underreport
percentage juvenile in the electronic logbook data. The weighted average percentage juvenile
is 40% lower in the electronic logbook data than in the landings data (11% compared to
18.3%).21 Fishermen might underreport percentage juvenile to avoid triggering a closure in
the area they are fishing.22 This phenomen also occurs in other settings where agents may
be regulated as a consequence of the data they report, such as industrial plants in India and
car owners in Mexico (Duflo et al., 2013; Oliva, 2015). Matching the electronic logbook and
landings data preserves the resolution of the electronic logbook data while ensuring that the
outcome variable in my main regression—juvenile catch at a given location and time—is not
systematically manipulated.

21Weights are the number of individual anchoveta caught by each set or landed in each landing event.
22Closures provide valuable information to fishermen regarding the location of anchoveta, but only to

fishermen who did not recently fish in that area (Section 1.8).
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Figure 1.4: Electronic logbook data, 2017 to 2019

Notes: Each point is a set (vessel-level fishing operation). The color of each point is the number
of juvenile anchoveta caught by that set, which I calculate by matching sets to landing events and
using the percentage juvenile measured by third-party inspectors at landing. There are 246,914
sets reported by 806 unique vessels in the electronic logbook data. All vessels are prohibited from
fishing within 5 nautical miles (9.3 km) of the coast. There are 572 sets per day on average during
a fishing season. The average set catches 570,103 juvenile anchoveta. The inset map in the top,
right panel magnifies the sets that occur inside the orange rectangle.



CHAPTER 1. INFORMATION AND SPILLOVERS FROM TARGETING POLICY IN
PERU’S ANCHOVETA FISHERY 21

There are 246,914 sets reported by 806 unique vessels in the electronic logbook data.
95% of sets occur within 80 km of the coast (Figure 1.4). During a fishing season there
are 572 sets per day on average. The average set catches 570,103 juvenile anchoveta and
2,508,788 adult anchoveta, which together weigh 50.2 tons. Fishermen do not underestimate
tons caught in the electronic logbook data, perhaps because this variable has little effect on
whether a closure is declared (Section 1.2).23 The median anchoveta caught is between 13
and 13.5 cm long (Figure A.14).

As discussed in Section 1.2, I downloaded all closures announcements from the regulator’s
website. Closure announcements are pdf documents containing the areas and time periods
vessels are not allowed to fish. I geo-coded closure boundaries and recorded the time each
closure begins and ends, creating a complete digital record of the 410 temporary spatial
closures during my study period. In the next section, I will detail how I use the electronic
logbook data to construct “potential closures”. I use potential closures to identify the effect of
the temporary spatial closures policy on juvenile catch, to test whether the policy implicitly
provides valuable information to fishermen, and to estimate whether this information is a
mechanism underlying the policy’s effects on juvenile catch.

1.5 Empirical strategy

This paper first seeks to quantity the total effect of the temporary spatial closures policy on
juvenile catch, including the policy’s direct, temporal spillover, and spatial spillover effects.
After doing so in Section 1.6, I explore a mechanism underlying the policy’s effects in Sections
1.7 and 1.8.

As a consequence of the data processing described in the previous section, I observe
juvenile catch inside and near closures declared by the regulator, but I do not observe what
juvenile catch would have been in those same places and times in the absence of closures
(Holland, 1986). If the regulator randomly assigned closures, I could estimate the effect of the
policy by comparing juvenile catch in treated areas to control areas. In reality, the variables
that affect the probability of closure—percentage juvenile caught by vessels before closure
announcements—are correlated with the main outcome variable of interest—the number
of juveniles caught after closure announcements. I solve this causal inference challenge by
creating a “potential closures” algorithm that mimics the regulator’s closure rule and takes as
its input the same data the regulator uses to determine closures. I intersect potential closures
with the closures declared by the regulator, yielding treatment units (potential closures that
get closed) and control units (potential closures that do not get closed). Potential closures

238% more tons are reported in the electronic logbook data than are measured at landing. This difference
is within the range at which fish can degrade or be lost between being caught at sea and landed (Getu et al.,
2015). Fishermen have little incentive to bias their estimates of tons caught in the electronic logbook data.
Tons measured at landing, rather than tons estimated by fishermen in the electronic logbook data, are the
data used by processing plants to pay fishermen and by the regulator to determine when a vessel has reached
its quota for the season.
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are the unit of observation. I estimate whether juvenile catch is different inside treated
potential closures compared to control potential closures—the direct effect of the policy—as
well as whether juvenile catch is different before, just outside, and after treated potential
closures compared to control potential closures—the temporal and spatial spillover effects of
the policy.

The unconditional difference in juvenile catch from comparing treated potential closures
to control potential closures is likely biased upward relative to the causal effect of the policy
because potential closures that would have had high juvenile catch independent of treatment
are more likely to be treated. For example, pre-period juvenile catch is 26% higher inside
treated potential closures compared to control potential closures. As discussed below, I adjust
for the systematic differences between treated and control potential closures by including
potential closure-level control variables and flexible fixed effects in my regressions, which
balance treated and control potential closures on pre-period juvenile catch levels, pre-period
juvenile catch trends, and observable measures of fishing productivity. Identification occurs
from comparing potential closures that are equally desirable fishing locations and contain
similar concentrations of juveniles, but which the regulator believes are different because the
data available to the regulator is lower resolution.

I also estimate the effect of the closures policy with a more standard approach, where the
unit of observation is a .05◦ grid cell by three-hour period of time (Appendix A.1). In this
model, any .05◦ grid cell by three-hour period of time has the potential to be treated. The
results from this regression using rasterized data display the same pattern of treatment effects
as my estimates using potential closures, but potential closures offer three advantages. First,
potential closures make the valuable information provided by closures observable economet-
rically (Section 1.7). In the regression using rasterized data, vessels can compete away the ex
post value of information provided by public closure announcements. This limitation applies
to any estimation approach that does not explicitly include counterfactual closures (areas
that could have been but were not declared closures by the regulator). Second, potential
closures collapse the data to the policy-relevant unit of observation; the regulator is choosing
to close an area of ocean for three to five days, not an individual grid cell. Finally, collapsing
the data eases data processing and analysis because the rasterized data contain nearly 100
million observations.

Potential closures

As detailed in Section 1.2, the regulator uses real-time electronic logbook data to determine
closures. When a government official wants to create a closure, they draw a rectangle around
a group of sets that occurred near each other during the same time period. A computer
algorithm then calculates the exact boundaries and number of days the resulting closure will
last. The first step of my empirical strategy is to develop an algorithm that mimics the
first stage of the closure rule, when the official selects a group of sets (vessel-level fishing
observations) on their computer. I cluster sets in the electronic logbook data that occur
near each other and record the bounding box around each cluster. The resulting rectangles
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are “potential closures”. Unlike the regulator, I create potential closures from every cluster
of sets. I do not attempt to reproduce the second stage of the closure rule, when the
computer algorithm determines the exact boundaries and time length of a closure, because
this algorithm depends on variables endogenous to my outcome of interest, such as the
percentage juvenile values in the cluster of sets reported to the regulator.

First, I use the single-linkage clustering algorithm to group sets that occur within 5 nau-
tical miles of each other on the same day between midnight and 3 PM (R Core Team, 2019).
I choose this time period because closures that begin at midnight (91% of closures during
my study period) must be announced by 3 PM (9 hours in advance). The remaining 9%
of closures begin at 6 AM and must be announced by 6 PM of the previous day. I use a
5 nautical mile threshold in the single-linkage clustering algorithm because the regulator’s
second-stage algorithm rounds the boundaries of rectangular closures to the nearest 5 nauti-
cal mile interval (Instituto Humboldt & SNP, 2017). Then for each cluster containing more
than three sets, I draw a rectangle to cover its convex hull (the smallest convex polygon that
encloses the cluster), rounded up to the nearest 5 nautical mile interval. I drop all potential
closures that are smaller than the smallest closure declared by the regulator that season.

As an illustrative example, Figure 1.5 displays sets from the electronic logbook data in
one region of the fishery between midnight and 3 pm on April 28, 2019. The single-linkage
clustering algorithm creates two clusters from these sets (Figure 1.5a). Figure 1.5b displays
the potential closures that result from these clusters.

I assume all potential closures last for three days, which is the modal length of closures
declared by the regulator (the regulator can also declare closures that last four or five days).
Since a closure cannot be declared in the same place and time as an already-existing closure,
I loop forward in time and subtract areas of potential closures that overlap with already-
existing potential closures. I drop potential closures that have become non-convex or smaller
than that season’s smallest closure after this procedure.

My potential closures algorithm generates 970 potential closures in total, compared to
410 actual closures declared by the regulator during my study period. 89 percent of actual
closures have positive overlap with a potential closure (intersect in space at the same time).
The average potential closure is smaller than the average actual closure (957 km2 compared
to 1,328 km2). Figure 1.6 displays the potential closures in each fishing season. My results
are robust to a variety of alternative specifications, such as assuming potential closures
last for four days instead of three days, assuming potential closures last for five days, and
making potential closures 40% larger so that they are the same average size as actual closures
(Appendix A.1). My results are also robust to estimating the effect of the policy via synthetic
controls, where actual closures (treatment units) are matched to potential closures (control
units) (Appendix A.1).

Outcome, treatment, control variables, and identifying variation

The main outcome of interest is juvenile catch inside potential closures. In Figure 1.5,
juvenile catch is the number of juvenile anchoveta that are caught inside each blue rectangle
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Figure 1.5: Creation of potential closures example

Notes: (a) Sets that occur between midnight and 3 pm on April 28, 2019 in one region of the North-
Central zone are displayed as points. The single-linkage clustering algorithm groups these sets into
two clusters. The red polygons enclosing each cluster are the clusters’ convex hulls. (b) Potential
closures are rectangles covering clusters’ convex hulls, rounded up to the nearest 5 nautical mile
interval. Rectangular closures declared by the regulator are also rounded to the nearest 5 nautical
mile interval. These potential closures begin at midnight on April 29, 2019 and last for three days.
The inset map in the upper right corner shows Peru (grey) and the region these potential closures
occur in (black rectangle).

from midnight on April 29, 2019 until 11:59 PM on May 1, 2019. I filter sets to those that
occur inside a potential closure during these three days. Then I sum juvenile catch over
sets that occur inside the same potential closure. For example, suppose there are two sets
that each catch 1 million juveniles inside Potential Closure 1 between midnight on April 29,
2019 and 11:59 PM on May 1, 2019. Then juvenile catch for Potential Closure 1 is 2 million
juveniles. Note that the three days of Potential Closure 1 occur after the sets that generated
Potential Closure 1 (midnight to 3 PM on April 28, 2019). They represent the time period
that Potential Closure 1 would be closed if the regulator decides to create an actual closure
based on the sets that occurred between midnight and 3 PM on April 28, 2019.

I define treatment by the intersection of potential closures with actual closures declared
by the regulator. Specifically, I compute the average spatial and temporal overlap between
potential closures and actual closures. For example, a potential closure that shares 60%
of its area and is active for two of the three same days as an actual closure would have
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Figure 1.6: Potential closures in the North-Central zone by fishing season

Notes: Blue polygons are potential closures. Potential closures last three days by assumption.
The average potential closure is 957 km2. My potential closures algorithm generates 970 potential
closures in the North-Central zone during the six fishing seasons of 2017, 2018, and 2019, compared
with 410 actual closures declared by the regulator (Figure 1.1). There are 1.72 active potential
closures on an average day during the fishing season. The inset map in the top, left panel shows
South America (light grey), Peru (dark grey), and the North-Central zone (black rectangle).

a treatment fraction of .4 (60% spatial overlap × two-thirds temporal overlap = .4). If a
potential closure intersects multiple actual closures, I compute the treatment fraction with
each actual closure and record the sum of treatment fractions. The average treatment fraction
for potential closures is 0.2.
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The most important control variables in my regressions are the length distribution of
anchoveta caught by the sets that generate potential closures (e.g. 1% of individuals caught
were between 10 and 10.5 cm, 1.4% caught were between 10.5 and 11 cm, etc.). Controlling
for the length distribution is akin to controlling for the probability distribution function
from which percentage juvenile values for those sets are drawn because percentage juvenile
is a statistic of the length distribution (fraction of individuals smaller than 12 cm). Sets
that generate the same potential closure are “drawing” percentage juvenile values from the
same length distribution because they occur near each other during the same 15 hour time
period; they are fishing from the same local anchoveta population. The percentage juve-
nile values reported to the regulator affect the probability a potential closure is declared an
actual closure; length distribution does not because fishermen do not report length distri-
bution to the regulator (Section 1.4). I do not control for the percentage juvenile values
reported to the regulator in order to preserve treatment variation. By instead controlling for
length distribution, the identifying variation comes from comparing potential closures that
by chance had higher percentage juvenile draws (so were declared closures by the regulator)
to potential closures that by chance had lower percentage juvenile draws (so were not de-
clared closures by the regulator). There is variation in percentage juvenile draws conditional
on potential closure-level length distribution because of the sampling procedure discussed in
Section 1.4, wherein fishermen estimate percentage juvenile by measuring 200 anchoveta out
of the several million anchoveta caught in a typical set. One way to quantify this variation
is by regressing set-level percentage juvenile values reported to the regulator on potential
closure-level length distribution, for the subset of sets that generate potential closures. The
R2 from this regression is 0.24, indicating ample identifying variation.

I control for length distribution by calculating the weighted-average proportion of an-
choveta individuals in each half-cm length interval among the sets that generate potential
closures, where the weights are the total number of anchoveta individuals caught by each
set. Recall that these sets occur before potential closures begin. For example, the weighted-
average proportion of anchoveta in each length interval for potential closures in Figure 1.5b
is calculated from sets that occur between midnight and 3 pm on April 28, 2019 (Figure
1.5a).

In Appendix A.3 I detail how given sets’ location, time, and percentage juvenile, I impute
the length distribution for sets from vessels that do not report length distribution to their
owners. I use percentage juvenile measured by third-party inspectors to calculate corrected
length distributions for all sets. I control for corrected length distributions in my regressions
so that potential misreporting to vessel owners does not bias my results.24 My regressions
thus compare potential closures whose true anchoveta populations are similar, but which
the regulator believes are different because the regulator does not use length distribution or
third-party inspector data when making closure decisions.

Controlling for the length distribution adjusts for differences in the size-structure of an-

24I also use the corrected number of individuals caught by each set in calculating the average length
distribution for each potential closure.
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choveta populations across potential closures, but not for differences in fishing productivity
or fishing costs across potential closures. If treated potential closures are more desirable
fishing locations, either because anchoveta are more abundant or because fishing costs are
lower, juvenile catch would be higher (all else equal) in treated potential closures indepen-
dent of treatment because total catch would be higher. I avoid bias due to differences in
fishing productivity and fishing costs by controlling for the number of sets that generate
each potential closure, the total tons caught by the sets that generate each potential closure,
the size of each potential closure in km2, the distance of each potential closure’s centroid to
Peru’s coast in km, tons caught per set among the sets that generate each potential closure,
and tons caught per km2 among the sets that generate each potential closure. The number of
sets, tons caught, and potential closure area are measures of anchoveta abundance, distance
to the coast is a proxy for fishing costs, and tons per set and tons per km2 are proxies for
fishing productivity.

Finally, I include in my regressions two-week-of-sample by two-degree grid cell fixed
effects and day-of-sample fixed effects (defined by the centroid or date a potential closure
begins). The first set of fixed effects ensure identification comes from comparing potential
closures that occur near each other during a similar time period. On average, there are 4.4
potential closures per two-week-of-sample by two-degree grid cell. The day-of-sample fixed
effects control for the following possible confounders: the number of actual closures that are
active that day and the area they cover; aggregate juvenile catch and fishing productivity
that day; and the international price of fishmeal.

The fixed effects and control variables described in this section balance treated and control
potential closures on pre-period juvenile catch levels, pre-period juvenile catch trends, and
observable measures of fishing productivity (Appendix A.1).

Spatial and temporal spillover bins

The temporary spatial closures policy may reduce juvenile catch inside closed areas during
the active closure period (direct effect). But it could also cause spillovers over space or time:
changes in juvenile catch because of the policy outside the closed area or outside the closure
period. Estimating these spatial and temporal spillovers in addition to the direct effect of
the policy is critical because both vessels and anchoveta move. Instead of fishing inside
active closures, vessels could fish inside closed areas after closure announcements but before
the beginning of closure periods, just outside closed areas during closure periods, or inside
closed areas after closure periods have ended. All of these types of fishing reallocation do
not violate the policy. Moreover, closures need not merely reallocate fishing. If closures are
a sufficiently large positive signal of fishing productivity, they could also increase the total
quantity of fishing that occurs near closures (Section 1.3).

The “treatment window” over which I allow the policy to affect juvenile catch is from
nine hours before a potential closure begins until four days after a potential closure has
ended, within 50 km of the potential closure. I chose this treatment window empirically:
it is large enough to observe the effect of the closures policy dissipate over both space and
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Figure 1.7: Treatment window over which the closures policy can affect juvenile catch

Announcement Closure period 1 day after 2 days after 3 days after 4 days after

Notes: The original potential closure is the closure period, inside the potential closure treatment
bin (blue). The other 35 treatment bins in the treatment window are white.

time (Section 1.6). There are six time periods of interest for each potential closure: nine
hours before the potential closure begins (“Announcement” in Figure 1.7), the three-day
period in which the potential closure is active (“Closure period”), and one, two, three, and
four days after the potential closure has ended. For each time period, there are 6 spatial
units of interest: inside the potential closure, 0 to 10 km outside the potential closure, 10
to 20 km outside the potential closure, 20 to 30 km outside the potential closure, 30 to 40
km outside the potential closure, and 40 to 50 km outside the potential closure. There are
thus 36 “treatment bins” of interest (6 time periods × 6 spatial units). Since there are 970
potential closures, there are 34,920 potential closure-treatment bin observations. Figure 1.7
visualizes the 36 treatment bins in the treatment window. I refer to the spatial units outside
the potential closure as “rings”. For example, the 10 km ring is the 0 to 10 km outside the
potential closure unit.

The original potential closure is the three-day closure period, inside the potential closure
treatment bin. I calculate treatment fraction and juvenile catch for the other 35 treatment
bins in the same way that I calculate them for this treatment bin (see immediately preceding
subsection). To calculate treatment fraction, I create the same spatial and temporal leads and
lags for each actual closure declared by the regulator. Then I compute the treatment fraction
of each potential closure-treatment bin with the same treatment bin of actual closures.25 I
calculate juvenile catch inside each potential closure-treatment bin by summing juvenile

25Some potential closure-treatment bins partially overlap with each other (cover the same area during the
same time period). However, this overlap is uncorrelated with treatment fraction, both unconditionally and
conditional on the control variables and fixed effects in Equation 3.1. This non-correlation indicates that
overlap between potential closure-treatment bins does not bias my estimated treatment effects.
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catch over sets that occur inside the same potential closure-treatment bin.26 Finally, the
control variables are defined at the level of a potential closure; their values are the same for
all treatment bins for a given potential closure.27

Estimating equation

I estimate the effect of the temporary spatial closures policy on juvenile catch with the
following ordinary least squares regression:

JuvenileCatchist = αst + βstTreatFractionist +

[18.5,19)∑
`=[3,3.5)

ξ`Propi`

+ γ1Setsi + γ2Tonsi + γ3Areai + γ4DistToCoasti

+ γ5TonsPerSeti + γ6TonsPerAreai + σwg + δd + εist

(1.1)

where i = potential closure, s = spatial unit, t = time period, ` = half-cm length interval,
w = two-week-of-sample, g = two-degree grid cell, and d = day-of-sample. I defined the
construction of the data and all variables in this equation in the immediately preceding
subsections.

The outcome variable is the inverse hyperbolic sine of millions of juveniles caught in each
potential closure-treatment bin. The inverse hyperbolic sine transformation allows coeffi-
cients to be interpreted in elasticity terms, but unlike a logarithmic transformation allows
zero values (Bellemare & Wichman, 2020). The Propi` terms are the proportion of anchoveta
individuals in each half-cm length interval ` that are caught by the sets that generate po-
tential closure i. Recall that these sets, from which Setsi, Tonsi, Areai, DistToCoasti,
TonsPerSeti, and TonsPerAreai are also defined, occur before the treatment window for
potential closure i begins.

The coefficients of interest are βst, which measure the effects of the closures policy on ju-
venile catch. The identifying variation is across potential closures, within the same treatment
bin and conditional on the fixed effects and potential closure-level controls. For example,
comparing 10 km-wide rings around potential closures that begin on the same day within the
same two-week-of-sample by two-degree grid cell and conditional on potential-level controls,
βs=10,t=closure period captures the change in juvenile catch 10 km outside closures during the
closure period that is due to treatment. Potential closures are balanced on pre-period juve-
nile catch (levels and trends) and on observable measures of fishing productivity, conditional
on fixed effects and potential closure-level controls (Appendix A.1). Identification occurs
from comparing potential closures that are equally desirable fishing locations and contain
similar concentrations of juveniles, but which the regulator believes are different because the
data available to the regulator are lower resolution.

26Some sets occur inside multiple potential closure-treatment bins. I correct for this “double-counting”
when estimating the effect of the closures policy on juvenile catch (detailed in Footnote 28).

27However, the fixed effects are specific to each potential closure-treatment bin.
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I cluster standard errors at the level of two-week-of-sample by two-degree grid cell. I
cluster at this level because it is greater than the level at which treatment is assigned: the
50 km ring around the largest closure (potential or actual) is smaller than a two-degree
grid cell and the maximum temporal window over which closures affect juvenile catch is less
than two weeks (Abadie et al., 2017). I drop 21 potential closures that do not have length
distribution data because there were no sets from vessels that report length distribution
data to their owner in the same two-week-of-sample by two-degree grid cell (Appendix A.3).
There are 255 clusters and 34,164 observations when I estimate Equation 3.1 (949 potential
closures × 36 treatment bins).

1.6 Do closures reduce total juvenile catch?

I estimate the effect of the temporary spatial closures policy on juvenile catch with Equation 3.1,
convert the treatment coefficients into levels, and compute standard errors using the delta
method.28 Figure 1.8 shows the main result of this paper. The y-axis is the change in the
number of juveniles caught because of the policy and the x-axis is the treatment bin. I es-
timate the effect of the policy with a single regression (Equation 3.1) but plot the results in
six separate subfigures, with one subfigure for each of the six time periods in my treatment
window.

After the announcement of closures but before the beginning of closure periods (Fig-
ure 1.8a), juvenile catch increases by 1.2 billion inside soon-to-be closed areas (temporal
spillover). There is no change in juvenile catch outside closed areas before the beginning
of closure periods. Vessels catch more juveniles in the places where fishing will soon be
temporarily banned (inside closed areas), but they do not catch more juveniles in the places
where fishing will be allowed to continue (outside closed areas).

During closure periods, juvenile catch decreases by 2.2 billion inside closed areas. This
effect is not statistically significant. Outside closed areas during closure periods, there are
large, statistically significant increases in juvenile catch. In total, spatial spillovers during
the closure period sum to a 44.5 billion increase in juvenile catch.

The hollow, red triangles in Figure 1.8 are the level estimates (black points) normalized
by the area inside potential closures. This area normalization accounts for the fact that each
subsequent spatial ring covers a larger area (see Figure 1.7 for a representative illustration).

28Figure A.2 displays the treatment coefficients (the βst terms in Equation 3.1). I convert
the treatment coefficients into levels as follows. First, I convert the treatment coefficients into
percent changes with the transformation exp(βst) – 1. The percentage change in juvenile catch
in treatment bin st equals (ObservedJuvenileCatchst – CounterfactualJuvenileCatchst) divided by
CounterfactualJuvenileCatchst. ObservedJuvenileCatchst is the total juvenile catch that occurs in the
data in bin st, multiplied by the ratio of total juvenile catch observed anywhere to ObservedJuvenileCatchst
summed over all treatment bins. This ratio is .394; many potential closure-bins are overlapping so I rescale
ObservedJuvenileCatchst to avoid artificially inflating observed juvenile catch. Then I re-arrange terms
and calculate CounterfactualJuvenileCatchst = ObservedJuvenileCatchst

exp(βst)
. Then the change in juvenile catch

in bin st in levels is ObservedJuvenileCatchst – CounterfactualJuvenileCatchst.
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Figure 1.8: Change in billions of juveniles caught because of the closures policy

Notes: The six subfigures (a to f) correspond to the six time periods in my treatment window. In
each time period, there are six spatial units of interest (x-axis). The black points are the treatment
effects in levels and the black whiskers are 95% confidence intervals. The hollow, red triangles
are normalized by the area inside potential closures because larger spatial rings cover more area.
N = 34,164. Standard errors clustered at level of two-week-of-sample by two-degree grid cell.
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There is a mechanical increase in the level estimates in larger spatial rings for this reason.
The area-normalized estimates reveal intuitive spatial decay. The increase in juvenile catch
because of the policy during closure periods is largest just outside closed areas, and the effect
of the policy diminishes farther from closed areas.

The policy also increases juvenile catch in the first two days after the end of closure
periods (Figures 1.8c and 1.8d). Juvenile catch increases by 2.3 billion inside closed areas
in the first 24 hours after the end of closure periods (temporal spillover). Juvenile catch is
also significantly higher 10 and 20 km outside closed areas, but the effect of the policy is
insignificant in the 30, 40, and 50 km rings. This pattern also occurs in the second day after
the end of closure periods. However, by the third and fourth day after the end of closure
periods, the effect of the policy on juvenile catch attenuates to 0, both inside and outside
closed areas.

Summing the level estimates over treatment bins implies that the total effect of the
temporary spatial closures policy is an increase in the number of juveniles caught by 60
billion, or 75%. However, this approach is näıve because it ignores the total allowable catch
limit the regulator sets each season (Section 1.2). When I use tons as the dependent variable
in Equation 3.1, I estimate that the closures policy increases tons caught by 35% on average
across the 36 treatment bins. But total tons caught cannot increase in the four (of six)
fishing seasons during my study period in which the total allowable catch limit was binding.
In those seasons, though there was an increase in tons caught within the treatment window,
tons caught necessarily decreased by the same amount outside the treatment window. When
I account for this mechanical re-allocation, the total effect of the closures policy is an increase
in the number of juveniles caught by 47 billion, or 50% (delta method standard errors are 5.1
billion and 5.5%). This 50% increase in juvenile catch is my preferred estimate of the total
effect of the closures policy. This result is robust to alternative specifications and estimation
approaches (Appendix A.1).

The regulator’s total allowable catch limit, enforced through individual vessel quotas,
reduces the backfire caused by the closures policy because without it, closures would in-
crease juvenile catch by an even greater amount. The increase in juvenile catch because of
closures remains substantial even after accounting for the reallocation in tons caught due
to the total allowable catch limit because relative juvenile abundance is much higher near
closures declared by the regulator (the second condition in Proposition 1 from Section 1.3).
Average percentage juvenile among sets within the treatment window of actual closures is
25%, compared to 9% outside the treatment window (Figure A.15).

1.7 Do closures provide valuable information?

Why does the temporary spatial closures policy increase total juvenile catch? Closures
might provide valuable information regarding the location of anchoveta because the regulator
declares closures in response to real-time anchoveta catch data from all vessels, and there
is only anchoveta catch in an area if anchoveta are sufficiently abundant in the area. If
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vessels respond to closures because closures provide valuable information, one might expect
vessels who fish near closures to reap the value of that information by catching more tons of
anchoveta per set (Section 1.2). On the other hand, since closures are publicly announced,
the ex post value of this information might be competed away due to congestion; there
are diminishing marginal returns when more vessels fish from the same local, exhaustible
anchoveta population (Huang & Smith, 2014; Smith, 1969). It is even possible that vessels
could overreact to closures, such that tons per set near closures is lower.

Proposition 2a in Section 1.3 states that in the Bayes-Nash equilibrium, vessels fish near
closures until the profit from doing so equals the profit from fishing elsewhere. Using the
electronic logbook data, I test whether observed vessel response to closures is consistent with
the Bayes-Nash equilibrium by estimating the difference in tons caught per set near closures
compared to tons caught per set elsewhere, conditional on the distance of the set to the
coast, vessel by season fixed effects, day-of-sample fixed effects, and two-degree grid cell by
season fixed effects. I estimate the following ordinary least squares regression in Column 2
of Table 1.1:

Tonsvjk = β11{Near}vjk + β2DistToCoastvjk + δvj + γd + αjg + εvjk (1.2)

where v = vessel, j = season, k = set, d = day-of-sample, and g = two-degree grid cell.
The outcome variable is the inverse hyperbolic sine of the tons caught by a given set.29

The explanatory variable 1{Near}vjk equals 1 for sets that occurred inside a treatment bin
in which there was a statistically significant change in juvenile catch (see Figure 1.8) and
equals 0 otherwise. I define 1{Near}vjk in this way because I am interested in whether
the large spillover effects I estimated in Section 1.6 can be explained by the closures policy
communicating information about the value of fishing in those places and times. In this
regression, treatment bins are defined relative to closures declared by the regulator. The
coefficient of interest is β1, which measures the difference in tons caught by sets near closures
declared by the regulator. I include fixed effects and the distance of each set to the coast in
order to partially control for differences in the cost of each set (e.g., sets farther from shore
require more fuel, all else equal). Day-of-sample fixed effects also control for the international
price of fishmeal, which determines the price fishermen receive per ton of anchoveta they land.
Therefore, the change in tons per set captured by β1 represents the change in revenue per
set from fishing near closures declared by the regulator. To the extent that the fixed effects
and the distance of each set to the coast control for cost per set, β1 can also be interpreted
as the change in profit per set from fishing near closures declared by the regulator.

Without fixed effects, sets near closures declared by the regulator catch 36% more tons
(Column 1 in Table 1.1). However, including fixed effects reduces β1 by an order of magnitude
and makes it statistically insignificant: sets near closures declared by the regulator do not
catch more tons of anchoveta (Column 2). While this null result suggests that vessels’
response to closures is consistent with the Bayes-Nash equilibrium, the same null result
would also occur if closures do not provide valuable information.

29Fishermen report catching 0 tons for 11% of sets in the electronic logbook data.



CHAPTER 1. INFORMATION AND SPILLOVERS FROM TARGETING POLICY IN
PERU’S ANCHOVETA FISHERY 34

Table 1.1: Closures provide valuable information, but the value of this information is competed
away

Dependent variable: asinh(tons)

Actual closures Potential closures
(1) (2) (3) (4)

1{Near} 0.310 -0.022 0.177 0.082
(0.080) (0.033) (0.073) (0.026)

Distance to shore (km) 0.011 0.004 0.011 0.004
(0.002) (0.001) (0.002) (0.001)

Constant 3.306 3.289
(0.082) (0.101)

Fixed effects X X

All regressions have 246,914 observations. 1{Near} is an indicator
for whether the set occurred inside a treatment bin in which there
is a significant change in juvenile catch because of the temporary
spatial closures policy. In Columns 1 and 2, Near is defined
relative to actual closures declared by the regulator (mean of this
indicator equals .391). In Columns 3 and 4, Near is defined
relative to potential closures (mean of this indicator is .799).
Electronic logbook data is for all vessels from April 2017 to
January 2020. Regressions in Columns 2 and 4 include vessel by
season fixed effects, day-of-sample fixed effects, and two-degree
grid cell by season fixed effects. Standard errors clustered at level
of two-week-of-sample by two-degree grid cell.

I use potential closures to test whether actual closures declared by the regulator provide
valuable information. In Section 1.5, I described how I generate potential closures from the
same electronic logbook data the regulator uses to determine actual closures. If they were
announced, potential closures would communicate similar information to fishermen as actual
closures: fishing occurred recently in the area, so anchoveta are likely abundant nearby. But
because potential closures and the electronic logbook data they are based on are not public,
potential closures enable a test of whether actual closures provide valuable information that
is unconfounded by vessels’ response to this information (Proposition 2b in Section 1.3).

I now estimate the same regression as Equation 3.2, except the Near indicator is defined
relative to potential closures rather than actual closures. Without fixed effects, sets near
potential closures catch 19% more tons (Column 3 in Table 1.1). Including fixed effects
in Column 4 reduces β1 by half, but the difference in tons caught per set near potential
closures remains statistically significant (t-statistic > 3). Sets near potential closures catch
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9% more tons on average. Taken together, these results suggest closures do provide valuable
information (second testable hypothesis from introduction), but the ex post value of this
information is competed away.

1.8 Does the information provided by closures

increase spillovers?

In Section 1.7, I presented evidence that closures implicitly provide information to fishermen
about the value of fishing before, just outside, and after closures. I now test explicitly
whether the information provided by closures is a mechanism underlying the policy’s large
spillover effects.

Proposition 3 in Section 1.3 states that vessels that receive a larger positive information
shock from closure announcements will have larger treatment effects. Vessels experience a
larger information shock from closure announcements if they have less information about an
area before closure announcement. I test Proposition 3 using the same potential closures I
generated to estimate the effect of the policy on juvenile catch, except I now calculate juvenile
catch inside a potential closure-treatment bin separately for two types of vessels: vessels with
more information about a potential closure and vessels with less information about a potential
closure. I consider two ways in which vessels can acquire information about a potential
closure before closure announcement would occur (if the potential closure is declared an
actual closure by the regulator). First, vessels have more information about a potential
closure if they fished inside the potential closure the day before closure announcement would
occur. Second, vessels have more information about a potential closure if another vessel
in their firm fished inside the potential closure the day before closure announcement would
occur. I estimate the following equation by ordinary least squares regression:

JuvenileCatchisth =αsth + βsthTreatFractionist +

[18.5,19)∑
`=[3,3.5)

ξ`Propi`+

γ1Setsi + γ2Tonsi + γ3Areai + γ4DistToCoasti+

γ5TonsPerSeti + γ6TonsPerAreai + σwg + δd + εisth

(1.3)

where h indicates heterogeneity (in information) category and all other variables and sub-
scripts are as defined for Equation 3.1.

Note that Equation 1.3 is identical to Equation 3.1 except there are now twice as many
treatment coefficients of interest (two heterogeneity categories for each treatment bin). There
are also twice as many observations in this regression because I calculate juvenile catch in the
potential closure-treatment bin among vessels with less information and among vessels with
more information. Figure 1.9 presents the result when I categorize vessels by whether they
personally fished inside the potential closure the day before closure announcement would
occur, and Figure 1.10 displays the result when I categorize vessels by whether a vessel in
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their firm fished inside the potential closure the day before closure announcement would
occur.30 Unlike in Figure 1.8, I present the results in percent changes rather than changes
in levels because more vessels belong to the lower information group.

Vessels that fished inside a potential closure the day before closure announcement have
a much smaller total treatment effect (0.7% increase in total juvenile catch) than vessels
that did not (87.5% increase in total juvenile catch).31 The treatment effect for vessels that
fished inside a potential closure the day before closure announcement is not different from
zero (delta method standard error is 3.2%), whereas the treatment effect for vessels that did
not fish inside a potential closure the day before closure announcement is highly statistically
significant (standard error is 5.5%). The difference in treatment effects between the two
information groups is also statistically significant (difference is 86.8% with a standard error
of 6.4%).32

The information mechanism also operates at the firm-level. Vessels who had a different
member of their firm fish inside a potential closure the day before closure announcement
would occur have a much smaller treatment effect (19.1% increase in juvenile catch) than
vessels who did not (77.9% increase in juvenile catch). Both treatment effects are different
from zero (standard errors are 3.7% and 5.1%), as is the difference in treatment effects
(difference is 58.8% with a standard error of 6.3%).

The results in this section support Proposition 3 that vessels that receive a larger in-
formation shock from closures have larger treatment effects. The information provided by
closures is a mechanism underlying the policy’s large spillover effects. The vessel-level result
in Figure 1.9 also provides an explanation of why fishermen underreport percentage juvenile
in the raw electronic logbook data (Section 1.4) even though closures provide valuable infor-
mation (Section 1.7). Closures only provide information to fishermen who were not already
fishing in the area, so fishermen might underreport percentage juvenile to avoid triggering a
closure in the area they are already fishing.33

1.9 Discussion

Peru’s temporary spatial closures policy is targeted to reduce juvenile catch by temporarily
banning fishing in the places with the highest relative abundance of juvenile anchoveta.

30I leave out own-fishing in the firm-level categorization, so that vessels are coded as having had a member
of their firm fish inside a potential closure the day before closure announcement would occur only if a different
vessel in their firm did so.

31I calculate the percentage change in total juvenile catch for both groups and both categorizations in
the same way as in Section 1.6, converting the treatment coefficients into changes in levels and accounting
for the reallocation in tons caught in the four fishing seasons the total allowable catch limit was binding.

32Note that this result does not reflect mean reversion because estimation is across potential closures.
The treatment effect for vessels that fished inside a potential closure the day before closure announcement
would occur is estimated by comparing juvenile catch by these vessels near potential closures that get closed
to juvenile catch by this same group of vessels near potential closures that do not get closed.

33Recall that underreporting by fishermen does not bias my estimates because I calculate my regressions’
outcome variable and control variables using third-party inspector data.
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Figure 1.9: Percent change in juvenile catch because of the closures policy by whether vessels fished
in the potential closure the day before closure announcement

Notes: The six subfigures (a to f) correspond to the six time periods in my treatment window.
In each time period, there are six spatial units of interest (x-axis). The points are the treatment
effects in percentages and the whiskers are 95% confidence intervals. N = 68,328. Standard errors
clustered at level of two-week-of-sample by two-degree grid cell.
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Figure 1.10: Percent change in juvenile catch because of the closures policy by whether vessels had
a different member of their firm fish in the potential closure the day before closure announcement

Notes: The six subfigures (a to f) correspond to the six time periods in my treatment window.
In each time period, there are six spatial units of interest (x-axis). The points are the treatment
effects in percentages and the whiskers are 95% confidence intervals. N = 68,328. Standard errors
clustered at level of two-week-of-sample by two-degree grid cell.
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While there is a (noisy) decrease in juvenile catch inside closed areas during closure periods,
there are large increases in juvenile catch inside closed areas between the announcement and
the beginning of closures, just outside closed areas during closures periods, and inside closed
areas one and two days after closures end. On net, this policy worsens the target outcome,
increasing total juvenile catch by 50%.

The failure of this policy to achieve its objective is not due to a failure of targeting. The
regulator is closing the right areas; in the 9 to 12 hours before the beginning of a closure, 47%
of individuals caught inside the soon-to-be closed area are juveniles, higher than in any other
treatment bin and much higher than the 9% juvenile caught outside the treatment window
(Figure A.15). Within the support of the data, longer closures offer no improvement and
larger closures perform even worse than smaller closures (Appendix A.2).34 A conservative
estimate implies that the policy reduces exports by $38 million per year (2017 USD).35

Despite the sophistication of the temporary spatial closures policy, the empirical results in
this paper support a new approach to reduce juvenile catch.

The information design literature studies the relationship between a Sender of information
and a Receiver who acts based on this information (Kamenica, 2019; Kamenica & Gentzkow,
2011). The Sender’s problem is to choose the decision rule that induces the Receiver to act
in a way that maximizes the Sender’s utility. Here, the regulator (Sender) wants fishermen
(Receivers) to catch fewer juveniles, but the signal conveyed by closure announcements di-
rects fishing to the places with the most juveniles. Instead, the regulator could tell fishermen
where high percentages of adults are being caught. Because fishermen are paid by the ton,
they are not fishing more near closures because they specifically want to catch juveniles.
They fish more near closures because they want to reduce their search costs and increase the
tons of anchoveta they catch per set. The regulator could use the electronic logbook data
to calculate locations with high percentages of adult catch. Fishermen might react to this
information in the same way they react to closures, except they would now be reallocating
their fishing to places with few juveniles.

I perform a back-of-the-envelope calculation to explore the effect of replacing the cur-
rent closures policy with an alternative policy that reveals the locations with the highest
percentages of adult catch. I identify the 410 potential closures with the highest weighted-

34Larger closures could cause larger increases in juvenile catch because congestion costs are lower or if
larger closures are a larger positive signal of fishing productivity.

35I reproduce the method of Salvatteci and Mendo (2005), who estimate the cost of juvenile catch by
comparing status quo landings to a counterfactual where juveniles make up a smaller fraction of individuals
landed. I similarly project forward the length distribution of individuals caught during my study period
until counterfactual juvenile catch is 33% lower than status quo juvenile catch (equivalently, until status quo
juvenile catch is 50% higher than counterfactual juvenile catch). Status quo tons landed are 2.1% lower than
in my counterfactual projection because anchoveta growth exceeds natural mortality within the support of
the data (i.e., the closures policy causes “growth overfishing”). In the most recent year of data (2017), FOB
export revenues were $1.79 billion (PRODUCE, 2018a). Then the closures policy reduces exports by $38
million ($1.79 billion × -2.1%). This projection is conservative because it does not account for the lower
reproductive capacity of juveniles, known as “recruitment overfishing”. Recruitment overfishing reduces
future spawning, which likely reduces the size of the future stock (Quaas et al., 2013).
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average percentage of adult catch.36 I assume that the 35% increase in tons caught near
the 410 closures declared by the regulator instead occur within the treatment window of the
410 potential closures with the highest percentage of adult catch. Juvenile catch changes
in three ways in this scenario. First, fishermen catch 47 billion fewer juveniles due to the
elimination of the closures policy (fewer tons in high percentage juvenile areas). Second,
they catch 5 billion more juveniles near the 410 high-adult potential closures (more tons
in low percentage juvenile areas). Third, they catch 38 billion fewer juveniles due to the
compensating decrease in tons caught outside the treatment window of the 410 high-adult
potential closures in the four of six fishing seasons in which the total allowable catch limit
binds (fewer tons in areas with above-average percentage juvenile). On net, juvenile catch
is 56% lower in this counterfactual scenario compared to the status quo level of juvenile
catch (61 billion juveniles are caught compared to 141 billion). By attracting fishing to the
places with the lowest percentage juvenile, the regulator could help fishermen reduce search
costs while also reducing the capture of juvenile anchoveta, the most important biological
externality in the world’s largest fishery.

This calculation illustrates that policy-induced information spillovers need not cause tar-
geted policies to backfire. When carefully designed, targeted policies that convey information
about non-targeted units could simultaneously increase economic profits and mitigate the
externality. Achieving such a win-win outcome requires understanding how the policy’s
information spillovers relate to agents’ economic incentives.

36Calculated from the sets that generate each potential closure and weighted by the number of individuals
caught by each set.
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Chapter 2

Property rights and the protection of
global marine resources

2.1 Introduction

Governing1 global marine resource use is challenging in part because enforcing international
agreements is costly (Barrett, 2005). There are many possible institutional structures by
which global resource use can be managed, but institutions that lack credible enforcement
mechanisms are unlikely to improve ecosystem conservation or economic profits. Assigning
property rights to countries incentivizes those countries to protect the resources they own
because the more unauthorized use the country prevents, the more resource is available for
the country to use. However, countries could fail to deter unauthorized resource use if the
costs of enforcement are too high relative to the benefits countries obtain from enforcement.

I estimate whether countries deter unauthorized foreign vessels from fishing in their
Exclusive Economic Zones (EEZs), which cover approximately 39% of the ocean’s surface
and account for more than 95% of global marine fish catch (Pauly & Zeller, 2015). Codified
between 1973 and 1982 at the third UN Conference on the Law of the Sea, EEZs are country-
level property rights to all resources within a country’s EEZ, including fish, minerals, oil,
and natural gas (Hannesson, 2013; Wilen, 2000). Countries can prohibit foreign vessels from
fishing in their EEZs or they can negotiate access agreements, specifying the allowable target
species, quantities, and fishing methods, as well as access fee to be paid by foreign vessels
or governments (Belhabib et al., 2015; Cabral et al., 2018). However, the size of EEZs and
the remoteness of their boundaries require substantial enforcement capacity and surveillance
effort to deter unauthorized foreign fishing. Surveys of fisheries experts and government
officials indicate that many countries exhibit limited enforcement capacity and enforcement
effort (Melnychuk et al., 2017; Mora et al., 2009).

The maximum width of EEZs with respect to fisheries—200 nautical miles (nm) from
a country’s coast—is a historical accident (Hollick, 1977) (see Section B.4). Because this

1The material from this chapter is a published paper in Nature Sustainability (Englander, 2019).
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Figure 2.1: Data processing example

-2

Notes: a, Argentina’s EEZ (dark blue) and high seas boundary (red). Other countries’ EEZs are
light blue. I only analyze fishing within 50 km of an EEZ-high seas boundary (dashed regions).
b, Total AIS fishing hours per km2 within 50 km of the northern portion of Argentina’s EEZ-high
seas boundary between 2012 and 2016. c, Total nighttime lit fishing vessel count in the same region
in 2017.

boundary is ecologically arbitrary, fishing vessels close to the boundary face identical fishing
opportunities on either side except that on one side, all natural resources belong to a single
nation (EEZs), and on the other side they do not (the high seas). For example, there is no
difference in ocean depth, sea surface temperature, or net primary productivity just inside
EEZs compared to just outside EEZs (Figure B.1). Consequently, the effect of EEZs on
fishing effort is the difference in fishing effort just inside EEZs compared to just outside
EEZs (see Section B.2). This “regression discontinuity” research design differs from prior
research in that other fisheries policies, such as catch shares, marine protected areas, and
input restrictions, are often created or modified in response to fish stock levels, making it
difficult to estimate the causal effects of these policies on fishing or fish stocks (Costello &
Grainger, 2018; Homans & Wilen, 1997; Imbens & Lemieux, 2008; Smith et al., 2010).

Until recently, research has also been limited by fishing effort data that are low-resolution,
from heterogeneous sources, or limited in geographic scope (Anticamara et al., 2011; Watson
et al., 2013). I use two global, high-resolution fishing effort datasets. First, I use fishing
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activity inferred from Automatic Identification System (AIS) vessel movements between
2012 and 2016 (Kroodsma et al., 2018). The second dataset contains the nighttime locations
in 2017 of individual fishing vessels that use bright lights to attract catch (Elvidge et al.,
2015). While the nighttime locations data mainly includes vessels fishing for squid, the AIS
data captures the majority of total fishing effort that occurs near EEZ-high seas boundaries
(Kroodsma et al., 2018). I filter both datasets to fishing that occurs within 50 km of an
EEZ-high seas boundary (Figure 2.1 and B.2).

2.2 Results

I estimate that total AIS fishing effort and total nighttime fishing effort are 75% lower
just inside EEZs compared to just outside EEZs (Figure 2.2a,b and Table B.1). For the AIS
dataset, I use EEZ access agreements data to separate fishing into three vessel type categories
based on the EEZ nearest to where each vessel is fishing: unauthorized foreign, authorized
foreign, and domestic (Lam et al., 2016) (see Section 2.4). I find that unauthorized foreign
fishing is 81% lower just inside EEZs compared to just outside EEZs (Figure 2.2c). The
EEZ effect sizes in Figs. 2.2a-c are similar because 80% of fishing hours within 50 km of an
EEZ-high seas boundary is unauthorized foreign fishing (Table B.2).

I also estimate that fishing by domestic and authorized foreign vessels is 43% and 25%
higher just inside EEZs (Figure 2.2d). Unauthorized foreign vessels fishing within 50 km
of an EEZ-high seas boundary tend to be larger and more powerful than domestic and
authorized foreign vessels fishing in the same area (Table B.3).

I refer to the effect of EEZs on unauthorized foreign fishing as the “deterrence effect”.
This deterrence effect is not driven by unauthorized foreign fishers turning off their AIS
transponders to avoid detection or by potential spillovers in unauthorized foreign fishing
effort (see Section B.3, Figures B.3 and B.4, and Table B.4). My results are also robust to
estimating deterrence effects separately for fishing vessels from countries with and without
public EEZ access agreements (see Section B.3 and Figure B.5). I find that larger vessels have
larger deterrence effects (see Section B.3 and Figure B.6), and estimate separate deterrence
effects for each type of fishing activity (“gear type”) and for the top three fishing countries
in each gear type (Figures B.7 and B.8).

The total deterrence effect in Figure 2.2c implies that some countries enforce their EEZs.
Otherwise, I would not observe a deterrence effect because fishing opportunities for unau-
thorized foreign vessels would be identical just inside EEZs compared to just outside EEZs.
Given the dearth of comprehensive, standardized data on enforcement capacity and en-
forcement effort across countries (Melnychuk et al., 2017; Mora et al., 2009), inferring the
existence of enforcement from unauthorized foreign fishing behavior is a contribution of this
paper. To understand which specific countries enforce their EEZs and deter unauthorized
foreign fishing, I estimate an individual deterrence effect for each EEZ-sea region in Figure
2.3a (see Section 2.4). EEZs that occur in multiple oceans or seas, such as the part of the



CHAPTER 2. PROPERTY RIGHTS AND THE PROTECTION OF GLOBAL MARINE
RESOURCES 44

Figure 2.2: Effect of EEZs on fishing effort
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Notes: Total fishing effort per million km2 within 50 km of any EEZ-high seas boundary in 1 km
wide intervals as measured by (a) hours of all AIS fishing, (b) nighttime lit fishing vessel count, (c)
hours of AIS unauthorized foreign fishing and (d) hours of AIS authorized foreign and domestic
fishing (see Section 2.4). Points are data. Lines are ordinary least squares third-order polynomial
fits in distance to the boundary. 95% confidence intervals (shaded) are estimated using standard
errors that account for heteroscedasticity and serial correlation (Newey & West, 1987).

United States’ EEZ in the Atlantic Ocean and the part in the Pacific Ocean, are analyzed
separately to avoid comparing fishing in different ecosystems (VLIZ, 2012).
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Figure 2.3: Unauthorized foreign fishing by EEZ-sea region

1 7 55 400 3,000 20,000

Deterrence effect (hours per thousand km2)

a

.1 1 15 180 2,500

Unauthorized foreign fishing hours per thousand km2 within 50 km of boundary

b

Notes: 50 km buffers around each EEZ-sea region’s high seas boundary are filled. a, EEZ-sea region
deterrence effects. I estimate an individual deterrence effect for all EEZ-sea regions, but only fill
the buffers of EEZ-sea regions that deter unauthorized foreign fishing (see Section 2.4). b, Total
hours of unauthorized foreign fishing effort between 2012 and 2016 within 50 km of each EEZ-sea
region’s high seas boundary, divided by the total surface area in thousands of km2 within 50 km of
each EEZ-sea region’s high seas boundary.
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I find that 10 EEZ-sea regions account for 97% of the total deterrence effect. These EEZ-
sea regions belong to Argentina, Iceland, Norway, the Faroe Islands, the Falkland Islands,
Canada, the Marshall Islands, and Peru. Vulnerable species that occur in these EEZ-sea
regions, such as Argentine Angelshark, Greenland Shark, and Atlantic Halibut, are being
protected by the existence of EEZs (Cuevas et al., 2019; Kyne et al., 2006; Sobel, 1996).
However, the remaining EEZ-sea regions either have small deterrence effects (56 EEZ-sea
regions) or do not deter unauthorized foreign fishing at all (112 EEZ-sea regions). The
latter group of EEZ-sea regions are unfilled in Figure 2.3a. 83 of these 112 EEZ-sea regions
have enough unauthorized foreign fishing effort near their high seas boundaries to estimate
a deterrence effect (see Section 2.4 and Figure B.9). I find no deterrence effect for these
83 EEZ-sea regions because I estimate that they have slightly higher unauthorized foreign
fishing effort just inside their EEZ boundary.

Economic theory predicts that more valuable EEZs could deter more unauthorized foreign
fishing because enforcement effort is more profitable for property rights holders of more
valuable resources (Arnason, 2013; Demsetz, 1967; Kaffine, 2009; Sutinen & Ande, 1985)
(see Section B.5). I use average net primary productivity (NPP) within 50 km of each EEZ-
sea region’s high seas boundary as a proxy for “fishery value” near the boundary. I chose
NPP as my proxy measure for fishery value for three reasons. First, regions with higher
NPP can support a more abundant fishery, all else equal (Watson et al., 2014). Second,
NPP primarily depends on sunlight, nutrients and temperature, as opposed to fishing effort
or fisheries management (Behrenfeld & Falkowski, 1997; Cullen, 2001). NPP can therefore
be thought of as an exogenous measure of fishery value near the boundary. Finally, NPP
can be measured from satellites at a high spatial resolution (see Section B.1), enabling us
to compute average NPP between 2012 and 2016 for each of the EEZ-sea regions using only
NPP observations that fall within 50 km of each EEZ-sea region’s high seas boundary.

I divide all EEZ-sea regions into groups according to their average NPP and estimate the
average deterrence effect for EEZ-sea regions in each group. The EEZ-sea regions that deter
unauthorized foreign fishing are those that are most valuable near their high seas boundaries
(Figure 2.4). These results are consistent with countries choosing enforcement levels by
comparing the benefits of enforcement (e.g., more fish for domestic and authorized foreign
fishers to catch) with the costs (e.g., spending on patrol vessels and aircraft).

Future research could examine whether other policies or variables, such as Regional Fish-
eries Management Organizations or availability of fishing capital, also help explain hetero-
geneity in deterrence effects. I find no relationship between deterrence effects and fish stock
movement patterns (Figure B.10).
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Figure 2.4: EEZ-sea regions that are more valuable near their high seas boundaries deter more
unauthorized foreign fishing
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Notes: a, Contribution of each EEZ value group to the total deterrence effect. EEZ-sea regions
were divided into 20 groups of equal size based on each EEZ-sea region’s average net primary
productivity (NPP) within 50 km of its high seas boundary (see Section 2.4). I estimate a deterrence
effect for each EEZ value group, and divide each group’s effect by the sum of all groups’ deterrence
effects. EEZ value groups that contribute a positive percentage (green) deter unauthorized foreign
fishing. Hours per million km2 of AIS (b) unauthorized foreign fishing for all gear types, (c)
unauthorized foreign drifting longline fishing, and (d) unauthorized foreign non-drifting longline
fishing in EEZ-sea regions with above median (purple) and below median (blue) average NPP.
Points are data. Lines are ordinary least squares third-order polynomial fits in distance to the
boundary. 95% confidence intervals (shaded) are estimated using standard errors that account for
heteroscedasticity and serial correlation (Newey & West, 1987).
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2.3 Discussion

If enforcement levels depend on the benefits and costs enforcement entities yield from enforce-
ment, my results could have implications for the recently convened UN Intergovernmental
Conference on Marine Biodiversity of Areas Beyond National Jurisdiction (BBNJ). One of
the primary goals of the conference is to create new marine protected areas (MPAs) on the
high seas (United National General Assembly, 2018). These MPAs could have even higher
enforcement costs than EEZs because of their remoteness and would offer fewer direct ben-
efits to enforcing entities because catch would be restricted. Consequently, they might not
incentivize enough enforcement to deter illegal fishing, limiting their ecological and economic
benefits. BBNJ negotiators could also consider extending property rights to high seas regions
as an alternative or complement to high seas MPAs (Hannesson, 2011).

Previous research has shown that assigning property rights to individuals within a country
reduces fishery overexploitation (Arnason, 2013; Costello et al., 2008). In this paper, I am
the first to show that assigning property rights across countries leads to the protection of
fisheries from unauthorized fishing. My results suggest property rights institutions can enable
effective governance of global marine resource use, particularly for resources that are valuable
enough to justify enforcement costs. Future research could further analyze this relationship
and directly connect deterrence effects to fish stocks and other ecological outcomes. Just as
economic incentives matter for individual fishers, the incentives faced by resource managers
shape enforcement decisions and conservation outcomes.

2.4 Methods

Data processing

First, I filter EEZ-sea polygons to those that are 200 nm wide and share a boundary with the
high seas (Figure B.2). Nations with fewer than 400 nm of ocean separating them typically
divide the available ocean area equally. I only use EEZ boundaries that are 200 nm from
shore and border the high seas in the analysis.

I create buffer regions along each EEZ-sea polygon’s high seas boundary. I create 50
outer buffers for each EEZ-sea polygon and 50 inner buffers. Each buffer is 1 km wider than
the previous, and the buffers range from 1 km to 50 km wide. Outer buffers are cropped to
the high seas and inner buffers are immediately adjacent to outer buffers. Figure 2.1a shows
the union of Argentina’s 50 km outer buffer and 50 km inner buffer.

I use grid cell centers to calculate the distance of fishing effort, vessel presence, NPP,
ocean depth, and sea surface temperature (SST) observations to an EEZ-high seas boundary.
Specifically, I record the buffers each grid cell center intersects, define the distance of the
grid cell to the boundary as the minimum width buffer the grid cell intersects, and subtract
.5 km. For example, a grid cell center that intersects the 48 km, 49 km, and 50 km inner
buffer of an EEZ-sea region would be classified as being 47.5 km inside the EEZ-sea region
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(intersecting the 48 km buffer means the grid cell center is between 47 and 48 km from the
boundary). I refer to data that have been processed in this way as being in “integer bins”.
This procedure of grouping grid cells into integer bins is identical to (but computationally
faster than) calculating the distance of each grid cell to the nearest EEZ-high seas boundary,
rounding up to the nearest integer, and subtracting .5.

Grid cell centers that occur on the high seas are matched to the nearest EEZ-sea region.
For example, a fishing observation in the 13-14 km integer bin outside Argentina’s EEZ on
the high seas and in the 19-20 km integer bin outside the Falkland Islands’ EEZ on the high
seas would be matched to Argentina’s EEZ. Ties are randomly assigned to a single EEZ-sea
region.

I use the vessel’s flag state, the date of fishing activity, EEZ access agreements data,
and the nearest EEZ-sea region to the vessel to separate AIS fishing into three vessel type
categories: unauthorized foreign fishing, authorized foreign fishing, and domestic fishing. For
example, a Spanish-flagged vessel fishing in the 30-31 km integer bin outside Sierra Leone’s
EEZ on the high seas on December 4, 2015 would be classified as unauthorized foreign fishing
if no access agreement exists between the EU and Sierra Leone for this time period. If there
is an access agreement in effect for this time period, this fishing activity would be classified
as authorized foreign fishing. Finally, a Sierra Leonean-flagged vessel fishing in the 30-31 km
integer bin outside Sierra Leone’s EEZ on any day would be classified as domestic fishing.
The same classification scheme applies to fishing that occurs inside EEZ-sea regions.

I drop all observations in a given integer bin if some or all grid cells in this integer bin
overlap an EEZ-high seas boundary. The number of integer bins dropped depends on the
spatial resolution of each dataset. I drop AIS fishing observations that are between 0 and
1 km inside or outside an EEZ-sea region because some grid cells whose centers are inside
a 0-1 km inner integer bin or 0-1 km outer integer bin overlap a high seas boundary (at
the equator, grid cells in this dataset are approximately 1.1 by 1.1 km). Similarly, I drop
nighttime vessel observations within 1 km of an EEZ-high seas boundary because the pixel
size of the satellite imagery used to create this data is 742 by 742 m (Elvidge et al., 2015).
To create the data used for Figure B.1, I drop NPP data within 5 km of an EEZ-high seas
boundary, ocean depth data within 1 km of a boundary, and SST data within 3 km of a
boundary.

I divide the raw amount of fishing effort in each integer bin by the surface area of ocean
in that integer bin to account for potentially different surface areas in each integer bin. For
example, there is slightly less surface area between 1 and 2 km inside an EEZ than there is
surface area between 1 and 2 km outside an EEZ. I choose the magnitude of the denominator
(e.g. thousand km2 or million km2) so that the normalized fishing effort (e.g. hours of fishing
per thousand km2) is the same order of magnitude as the raw amount of fishing effort.

Empirical strategy

I use the 200 nm boundary between EEZs and the high seas as a regression discontinuity
(RD) to estimate the effect of EEZs on fishing effort (Imbens & Lemieux, 2008). RD designs
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are a commonly used statistical model in social science research (Cattaneo et al., 2019).
RD designs can be applied when the researcher has institutional knowledge that treatment
assignment partially or completely depends on whether a unit is above a known cutoff value.
The discontinuous change in treatment assignment at the cutoff value is used to estimate the
effect of treatment by comparing units that are just below the cutoff value to units that are
just above the cutoff value. For example, RD designs have been used to estimate the effect
of parents’ unauthorized immigration status on the health of their children by comparing
the children of mothers with birthdates close to the Deferred Action for Childhood Arrivals
(DACA) eligibility cutoff (Hainmueller et al., 2017); the effect of harsher punishments on
driving under the influence (DUI) by comparing drivers with Blood Alcohol Content levels
close to legal thresholds at which DUI penalties become discontinuously more severe (Hansen,
2015); and the effect of Superfund-sponsored cleanups of hazardous waste sites on local
housing markets by comparing housing markets with hazardous waste sites whose Hazardous
Ranking System score was close to a Superfund-eligibility cutoff (Greenstone & Gallagher,
2008). Section B.2 contains a formal description of the RD design.

Figure 2.2 data processing and estimation details

To create the data used in Figure 2.2, I summed fishing effort over all EEZ-sea regions and
over all days to obtain total fishing effort by distance to any EEZ-high seas boundary. Then
I divided total fishing effort in each integer bin by the integer bin’s total surface area in
millions of km2. For example, the leftmost point in Figure 2.2a is the total hours of AIS
fishing effort per million km2 that occurred between 49 and 50 km outside any EEZ between
2012 and 2016. Similarly, the rightmost point in Figure 2.2b is the total count of nighttime
lit fishing vessels per million km2 that occurred in any EEZs’ 49-50 km inner integer bin in
2017.

After summing the data, I estimate the following equation via ordinary least squares
regression:

Yi = α + τDi +
3∑

k=1

βkX
k
i +Di

3∑
k=1

γkX
k
i + ui (2.1)

where Yi denotes fishing effort in a given integer bin, Di is an indicator variable that equals
1 for observations inside an EEZ and equals 0 for observations outside an EEZ, Greek letters
denote coefficients, k denotes polynomial order, and ui denotes the error term. The parame-
ter of interest is τ , the treatment effect of EEZs on fishing effort. If τ is estimated to be less
than 0, then fishing effort is discontinuously lower just inside EEZs compared to just outside
EEZs. I control for third-order polynomials in distance to an EEZ-high seas boundary that
are allowed to differ for observations inside an EEZ and for observations outside an EEZ. My
results are robust to alternative polynomial orders and to local linear specifications (available
upon request). My confidence intervals account for heteroscedasticity and serial correlation
(Newey & West, 1987). The optimal lag for these confidence intervals was calculated using
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the procedure in Newey and West (1994). Table B.1 contains numeric estimates of the effects
of EEZs corresponding to Figures 2.2a-d.

Figure 2.3 data processing and estimation details

There are 178 EEZ-sea regions with more than zero AIS fishing hours within 50 km of
their high seas boundary. In Figure 2.3a, I estimate Equation 2.1 separately for each EEZ-
sea region using hours of unauthorized foreign fishing per thousand km2 as the dependent
variable. There are 98 observations for each EEZ-sea region (one for each integer bin; recall
that AIS integer bins within 1 km of an EEZ-high seas boundary are dropped in the data
processing stage). The dependent variable is calculated by summing hours of unauthorized
foreign fishing in a given EEZ-sea region’s integer bin over days (2012-2016) and dividing
by the surface area of that integer bin in thousands of km2. I plot each EEZ-sea region’s
estimated deterrence effect (τ̂) in Figure 2.3a. For both Figures 2.3a and 2.3b, the area filled
is the union of each EEZ-sea region’s 50 km inner buffer and 50 km outer buffer.

In Figure 2.3a, 83 EEZ-sea regions are unfilled because they have no deterrence effect
(τ̂ > 0). The extent to which unauthorized foreign fishing is slightly higher just inside
these EEZs is not informative—the meaningful information content is that they are not
deterring unauthorized foreign fishing. These 83 EEZ-sea regions are displayed in Figure
B.9. 29 additional EEZ-sea regions are unfilled in Figure 3a because these EEZ-sea regions
have fewer than 10 total hours of unauthorized foreign fishing within 50 km of their high
seas boundary. 17 of these 29 EEZ-sea regions have zero unauthorized foreign fishing hours
within 50 km of their high seas boundaries.

Figure 2.4 data processing and estimation details

I calculate average NPP within 50 km of each EEZ-sea region’s high seas boundary as a
proxy for “fishery value” near the boundary. For each EEZ-sea region, I record the grid cell
centers that fall within 50 km of the high seas boundary. In this case, I do not drop grid cells
that overlap the boundary. I calculate average NPP for each EEZ-sea region between 2012
and 2016, weighting grid cell values by their surface area and by the number of days each
NPP composite represents (the last composite in each year represents fewer than 8 days).
In creating the data for Figure 2.4, grid cell centers that intersect multiple EEZ-sea regions’
outer buffers are not assigned to only one EEZ-sea region. They contribute to the average
NPP for all EEZ-sea regions they intersect because my goal for Figure 2.4 is to calculate
average NPP within 50 km of each EEZ-sea region’s high seas boundary.

For Figure 4a, I grouped the 178 EEZ-sea regions with more than zero AIS fishing hours
into 20 quantiles according to their average NPP value (8 or 9 EEZ-sea regions in each
group). I estimated the following equation via ordinary least squares regression:

Yij = αj + τjDij +
3∑

k=1

βjkX
k
ij +Dij

3∑
k=1

γjkX
k
ij + uij (2.2)
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where the subscript j represents an observation’s NPP group and all other terms are as
defined in Equation 2.1. The dependent variable is hours of unauthorized foreign fishing per
thousand km2 for a given EEZ-sea region and integer bin (same dependent variable as Figure
2.3a). There are 17,444 observations in this regression (178 EEZ-sea regions × 98 integer
bins). I estimate one deterrence effect for all EEZ-sea regions in a given NPP group (20
estimated deterrence effects), controlling for third-order polynomials in distance to an EEZ-
high seas boundary that are different for observations inside an EEZ and for observations
outside an EEZ, and different for each NPP group (2 third-order polynomials for each NPP
group × 20 NPP groups). I plot each NPP group’s deterrence effect divided by the sum of
all NPP groups’ deterrence effects. The bars in Figure 2.4a add up to 1.

In Figures 2.4b-d, I categorize the 178 EEZ-sea regions with more than zero AIS fishing
hours into those that are above and below median average NPP. Then I sum hours of AIS
unauthorized foreign fishing over all EEZs that are above or below median average NPP,
and divide by the surface area of each applicable integer bin in millions of km2. Figure 2.4b
is equivalent to Figure 2.2c, except that unauthorized foreign fishing has been divided into
these two NPP groups. In Figure 2.4c, I filter the data to unauthorized foreign drifting
longline fishing (47% of unauthorized foreign fishing hours within 50 km of an EEZ-high
seas boundary; see Table B.2). In Figure 2.4d, I filter the data to all other unauthorized
foreign fishing (all gear types other than drifting longline fishing). EEZ-sea regions with
below median NPP have discontinuously higher non-drifting longline unauthorized foreign
fishing just inside their EEZs (Figure 4d). In all cases, EEZ-sea regions with higher NPP
(more valuable near the boundary) have larger deterrence effects.

Data availability

All data used in the analysis are publicly available. In Section B.1, I describe the data used
in the analysis in detail and specify how all data can be downloaded or obtained.

Code availability

Replication code is available at https://github.com/englander/replication eez.

https://github.com/englander/replication_eez
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Chapter 3

Armed conflict increases elephant
poaching

3.1 Introduction

Between 2002 and 2014, more than 100 armed, intergroup conflicts began near elephant
habitat in Africa and Asia. In the same period, many elephant populations have been
decimated by poaching (Chase et al., 2016; Thouless et al., 2016; Wittemyer et al., 2014).
In this paper, I exploit variation over space and time in conflict onset to estimate the effect
of conflict on elephant poaching.

Existing research has built strong suggestive evidence that conflict increases poaching.
For example, poaching effort has been shown to increase during conflict when combatants
use ivory to fund their operations (Beyers et al., 2011; Hatton et al., 2001). Researchers
have also shown that anti-poaching enforcement decreases when park rangers are targeted
by combatants or when international organizations withdraw from the conflict zone (Beyers
et al., 2011; Dudley et al., 2002; Hanson et al., 2009; Yamagiwa, 2003). Most recently,
Daskin and Pringle (Daskin & Pringle, 2018) find an association between years of conflict
and declining large wild herbivore populations in African protected areas.

One limitation of existing research is that both conflict and poaching are likely caused
by factors that are unobservable or difficult to measure accurately, such as institutional
quality (Blattman & Miguel, 2010; Dudley et al., 2002; Gaynor et al., 2016; Hanson et al.,
2009). Omitting such variables from analysis biases estimates of the effect of conflict on
poaching (Angrist & Pischke, 2008). Given that funding for anti-poaching enforcement is
limited, understanding the causal effect of conflict on poaching would enable policymakers
and conservation practitioners to better allocate funding among conservation priorities and
respond when conflict occurs.

My regression models control for all time-invariant site characteristics, all location-
invariant temporal effects, and flexible functions of temperature and precipitation. After
controlling for these variables, the estimates are causal as long as the remaining variation in
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Figure 3.1: MIKE sites and data processing example

Notes: A, MIKE site boundaries (black) and 100 km buffers (red). Some MIKE sites have multiple
boundary polygons associated with them. The 100 km buffers were drawn around each boundary
polygon, and then unioned by MIKE site. B, Conflict onset calculation for Waza National Park,
Cameroon, in 2004. The conflict between the Government of Nigeria and Ahlul Sunnah Jamaa
began in 2004 because there were fewer than 25 battle deaths associated with this conflict in 2003
and more than 25 battle deaths associated with this conflict in 2004. Conflict onset occurs for
Waza National Park in 2004 because at least one of the battles in the Government of Nigeria-Ahlul
Sunnah Jamaa conflict in 2004 occurred within 100 km of Waza National Park.

omitted variables is not correlated with both conflict onset and poaching (see Section 3.4).
I relax this assumption and test it indirectly using several different methods. Overall, this
empirical approach—the best available given the nature of conflict and poaching—seems to
yield estimates that are plausibly causal.

The Monitoring the Illegal Killing of Elephants (MIKE) program has operated since
2002 and includes data from 77 sites in 39 countries across Africa and Asia (Figure 3.1A).
MIKE’s data collection methodology allows for a measure of poaching called the Propor-
tion of Illegally Killed Elephants (PIKE). Each year, each site’s PIKE equals the number
of observed poached elephant carcasses divided by the total number of observed elephant
carcasses. PIKE is a relatively reliable measure of poaching because it is independent of
surveyor effort and elephant population stock under an assumption discussed below. Inten-
sive studies of a small number of MIKE sites find that PIKE accurately represents mortality
patterns (Jachmann, 2012; Kahindi et al., 2010). Table C.1 provides summary statistics of
the MIKE data.

Conflict onset is a commonly used measure of conflict (Bazzi & Blattman, 2014; Blattman
& Miguel, 2010; Miguel et al., 2004), and is the preferred measure in this paper for several
reasons. As opposed to measures of conflict intensity, such as number of human deaths,
conflict onset’s implementation in a regression framework requires no assumptions on the
structure of its relationship with poaching. Onset events are discrete shocks to the incentives
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and resources available to potential poachers and anti-poaching authorities. This character-
istic makes onset events arguably more exogenous with respect to poaching than measures
of conflict intensity. It also gives conflict onset more statistical power to identify changes in
poaching levels. For example, a new conflict beginning will tend to induce greater variation
in the behavior of park rangers than would a change in conflict intensity.

A conflict, defined by a unique pair of actors (e.g. Government of Nigeria vs. Ahlul
Sunnah Jamaa), is active in a given year if 25 or more battle deaths were associated with
it that year (Sundberg & Melander, 2013). I define a conflict to begin this year if last year
there were fewer than 25 battle deaths, and this year there were 25 or more battle deaths.
My results are robust to using different battle death thresholds to define onset events (Figure
C.1).

I connect conflict onset events to MIKE sites by drawing a buffer around each MIKE site,
and checking for each site-year whether a battle occurred within the buffer that belongs to
a conflict that began that year. Figure 3.1B displays an example of this procedure for one
site-year. Compared to all other conflict onset events in Africa and Asia between 2002 and
2014, onset events that occur close to MIKE sites are more likely to involve non-state actors
killing civilians (Table C.2). This difference is consistent with rebel groups and terrorists
exploiting local populations, in part by poaching their elephants (Christy & Stirton, August
12, 2015).

3.2 Results

Contemporaneous effect

I find that the onset of a new conflict within 100 km of a MIKE site significantly increases
contemporaneous PIKE in that MIKE site by .057 to .103 (Table 3.1). Relative to the
average PIKE for the entire data (.467), these estimates represent an increase in poaching
of 12-22%. This result persists even when additionally controlling for site-specific trends
(Column 2), or country-by-year indicator variables (Column 3). These results are robust to
using different buffer distances to link onset events to MIKE sites, using different measures
of poaching and different estimation procedures, using different measures of conflict, and
using MIKE data between 2002 and 2017 without weather control variables (Figure C.2 and
Tables C.3 to C.5, respectively). The estimate from the preferred specification in Table 1,
Column 1 is more than 2.5 times larger than the estimated upper bound on bias from omitted
variables (Altonji et al., 2005), indicating that unobservables correlated with conflict onset
and poaching are not driving these results (see Section 3.4).

Temporal dynamics

Conflict onset has both an immediate and a persistent effect on poaching levels, exacerbating
its negative impact (Figure 3.2). In the years before conflict onset, poaching levels are
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Table 3.1: Conflict onset increases contemporaneous poaching

Site and year With site With country-by-year
fixed effects trends fixed effects

Conflict onset 0.103*** 0.057** 0.082*
(0.031) (0.025) (0.042)

R-squared 0.567 0.714 0.848

Notes: Coefficients represent the effect of conflict onset on contemporaneous poaching,
where poaching is measured by PIKE. All regressions are estimated by ordinary least
squares with 631 observations, and include MIKE site fixed effects, year fixed effects, and
third-order polynomials in temperature and precipitation as control variables (see
Methods). Column 2 adds MIKE site-specific trends to the base specification. Column 3
adds country-by-year fixed effects to the base specification (which subsume the year fixed
effects). Clustered standard errors at the country-level are displayed in parentheses and are
estimated by bootstrapping with replacement at the country-level (1,000 replications).
***P < 0.01; **P < 0.05; *P < 0.1.

relatively constant, indicating that fighters already present in the area are not increasing
poaching to fund an anticipated conflict (no reverse causality). At conflict onset, there is a
spike in poaching. Relative to poaching in the year before onset, PIKE increases by .25, a
more than 50% increase relative to its mean value. Poaching then slowly declines to baseline
levels in the years following the onset event. These sensible temporal dynamics provide
further evidence that conflict onset has a causal effect on poaching.

PIKE assumption and reliability of PIKE data

PIKE is independent of population stock and surveyor effort if, conditional on the number
of poached and non-poached carcasses available to discover, the probability of finding a
poached carcass equals the probability of finding a non-poached carcass (Burn et al., 2011;
Hsiang & Sekar, 2016). Violations of this assumption that are uncorrelated with conflict
onset induce classical measurement error, which would attenuate my estimates but not cause
bias. However, my estimates would be biased if this assumption is systematically violated
at conflict onset. For example, if fighters occupy part of a MIKE site and prevent rangers
from surveying the area, the probability of detecting poached carcasses may decrease. In this
case, my estimates are biased downward and conflict onset actually has an even larger effect
on poaching. If instead conflict onset leads to improved intelligence gathering and poached
carcass detection increases, I would overestimate the effect of conflict onset on poaching.
Reassuringly, even if the probability of detecting a poached carcass becomes up to 35%
higher at conflict onset (and is unchanged for all other observations in which conflict onset
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Figure 3.2: Temporal dynamics of poaching with respect to conflict onset

Notes: Each point estimate represents the change in PIKE relative to the year before conflict
onset (the omitted category). Regressors used as controls: site fixed effects, year fixed effects, and
third-order polynomials in temperature and precipitation. Standard errors are estimated by cluster
bootstrapping with replacement at the country-level (1,000 replications). 95% confidence intervals
are displayed. N = 631.

does not occur), the effect of conflict onset on PIKE would still be statistically significant
at the 95% level after “correcting” for this bias and re-estimating the Table 1, Column 1
regression (Figure C.3).

Conflict onset also does not seem to affect the availability of poaching data (no selective
attrition). While poaching data only exists for 631 out of 1,078 possible site-year combina-
tions, the conflict data is comprehensive. The proportion of site-years missing poaching data
if conflict onset occurs is 39.4% and is 36.5% if conflict onset does not occur (p-value from
a two-sided t-test equals .52). Further, I find that conflict onset does not affect elephant
natural mortality, providing indirect evidence that carcasses are classified accurately (Table
C.6). To the extent that natural mortality carcass count is an indicator of surveyor effort
(conditional on control variables), this null result also suggests that conflict onset does not
affect surveyor effort.

3.3 Discussion

As poaching continues to threaten the survival of elephants in the wild, causal estimates of
the drivers of poaching can help better allocate limited anti-poaching effort and funds. In
this paper, I find that conflict onset causes a substantial increase in poaching. This evidence
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supports previous appeals to governments and international conservation organizations to
increase support for park rangers during periods of conflict, as rangers and associated law
enforcement personnel can help to mitigate the negative effects of conflict on wildlife (Beyers
et al., 2011; Dudley et al., 2002; Yamagiwa, 2003).

By using a similar approach as in Figure 3.2, I estimate that ∼30% of poached carcasses in
the MIKE data set are attributable to the contemporaneous and persistent effects of conflict
(see Section 3.4). By extrapolation, I calculate that conflict is responsible for the illegal killing
of about 80,000 elephants in Africa and Asia between 2002 and 2014. For comparison, there
are about 600,000 elephants remaining in the wild (Sukumar, 2006; Thouless et al., 2016).

Elephant poaching–and wildlife and habit conservation as a whole–are emotional, salient,
and complex problems that could be better addressed with more empirical evidence on
the causes of negative outcomes. While I cannot distinguish between the various channels
through which conflict affects poaching, this paper is nevertheless the first to present plau-
sibly causal estimates of a driver of site-level poaching dynamics for any species. The wide
spatial and temporal range of the data used to obtain these estimates supports their external
validity. Future work on identifying channels through which conflict affects poaching will
need to balance the use of micro-level data without limiting analysis to a small subset of
locations and years.

3.4 Methods

Poaching Data

I use publicly available data on the numbers of carcasses found for each MIKE site and year
(Convention on International Trade in Engangered Species, Accessed Feb. 6, 2017). During
the course of regular patrols, rangers and associated personnel record each elephant carcass
observed and attempt to determine whether the elephant was poached (Burn et al., 2011).
Thus for each site-year, two values are recorded: the number of poached carcasses and the
total number of carcasses, from which the number of non-poached carcasses (i.e. natural
mortality) can be inferred. MIKE sites contain 30-40% of wild elephants (Convention on
International Trade in Engangered Species, 2016). In constructing the poaching data I use
in the regressions, I dropped three MIKE sites with only one observation. Because I include
a separate indicator variable for each site in all regressions (“site fixed effects”), these three
sites would not have contributed to my estimates.

Conflict Data

I use the publicly available Uppsala Conflict Data Program (UCDP) Georeferenced Event
Dataset (Croicu & Sundberg, Accessed Feb. 6, 2017; Sundberg & Melander, 2013). Each
row of this dataset corresponds to an armed battle event and contains the day the battle
occurred, GPS coordinates, estimated number of battle deaths, a news source, and the actors
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involved. The dataset uses conflict identifiers to group events by unique actor pairs. For
example, Lord’s Resistance Army vs. Government of Uganda is one conflict, and Lord’s
Resistance Army vs. civilians is a different conflict. In constructing the conflict data I use
in the analysis, I excluded battles where only the country in which the battle took place
was known. Battles that occur within MIKE site boundaries are included when connecting
onset events to MIKE sites. Conflicts with battles occurring outside MIKE site buffers may
still assign onset status to a given MIKE site as long as at least one battle occurs within the
MIKE site buffer.

Importance of controlling for temperature and precipitation

As MIKE sites and their surrounding areas are primarily rural, variation in agricultural
yields and wages could affect both poaching and the probability of conflict onset. Even
if such data was available for all site-years, controlling for agricultural yields, for example,
would be a “bad control” because conflict onset likely affects yields (Angrist & Pischke, 2008).
Therefore, flexibly controlling for temperature and precipitation, which are not affected by
conflict onset and poaching, is the best available approach. It is also important to control for
precipitation because low precipitation levels can cause elephant mortality, which reduces
PIKE by inflating its denominator (Dudley et al., 2001). As low precipitation levels also
increase conflict onset (Miguel et al., 2004), not controlling for precipitation would bias
my estimates downward. None of my regression specifications yield statistically significant
relationships between poaching and temperature or between poaching and precipitation.
Nevertheless, it is important to control for temperature and precipitation because of their
theoretical importance as potential determinants of both conflict onset and poaching.

Weather data

I use publicly available data from the University of Delaware to control for third-order
polynomials in temperature and precipitation (Matsuura & Willmott, 2015). This data
provides cumulative monthly precipitation and mean monthly temperature data at a .5
degree resolution until 2014. I first calculate squared and cubed terms for each grid cell. Then
I spatially aggregate grid cells to the site-level by weighting cell values by the proportion of
area they make up of a MIKE site and its buffer. Finally, I sum over months in the same
year to obtain a third-order polynomial in cumulative annual precipitation for each site-year,
and weight monthly mean temperature by the days in a year each month makes up to obtain
a third-order polynomial in mean temperature for each site-year.
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Regression estimation

In my preferred specification in Table 3.1, Column 1, I estimate the following multivariate
panel regression using ordinary least squares:

PIKEsct =βOnsetsct + γs + δt+
3∑

k=1

αktemp
k
sct +

3∑
k=1

θkprecip
k
sct + εsct

(3.1)

where s indexes site, c indexes country, t indexes year, γs are site fixed effects (separate
indicator variable for each site), δt are year fixed effects (separate indicator variable for
each year), and k indicates the term of the third-order polynomial in temperature and
precipitation. The distribution of residuals from estimating this equation is approximately
normal (Figure C.4). The coefficient on conflict onset (β) is causally identified if Onsetsct is
uncorrelated in expectation with εsct (time-varying, within-site unobservable determinants
of PIKEsct).

Unobservable changes over time at particular sites that affect both poaching and conflict
onset, such as a deterioration in local institutions, could violate this assumption. The Table
1, Column 2 regression adds site-specific trends (γst) to the controls in Equation 1. The
estimated effect in this specification is slightly smaller than in the preferred specification,
but its statistical significance implies that these types of unobservable changes are not driving
my results.

Time-varying, country-level shocks are another threat to the above assumption. For ex-
ample, changes in political or economic conditions, such as a coup or export price shock, or
changes in national anti-poaching policy, could simultaneously affect poaching and the prob-
ability of conflict onset. The Table 1, Column 3 regression controls for all such confounders
by replacing the year fixed effects in Equation 1 with country-by-year fixed effects (δct). This
specification yields a similar estimate as Equation 1, indicating that my results are not due
to time-varying, country-level confounders.

MIKE sites in the same country may have serially correlated errors. I therefore estimate
standard errors in all ordinary least squares regressions by cluster bootstrapping with re-
placement at the country-level (1,000 replications). Clustering at the country-level allows
the errors of sites in the same country to be arbitrarily correlated across all time periods,
but assumes the errors of sites in different countries are uncorrelated. I bootstrap instead
of using the standard clustering formula because the small number of countries in my data
(39) may make standard errors calculated by the formula too small (Cameron et al., 2008).

Upper bound on omitted variables bias

In case the assumption necessary for Equation 3.1 to estimate a causal effect is violated, it is
important to assess the extent to which my estimates are confounded by omitted variables.
Altonji et al. (Altonji et al., 2005) provide a proof and method for estimating an upper
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bound on omitted variables bias given the following assumption: the relationship between
conflict onset and observable determinants of PIKE (control variables) is at least as strong
as the relationship between conflict onset and unobservable determinants of PIKE. This
assumption is reasonable because of the strong predictive power of my control variables.
The site fixed effects are especially relevant because some sites are more prone to conflict
than others, for reasons that vary little over the study period. For example, 61% of sites
have no conflict onset events in years with poaching data, and Virunga National Park has an
onset event every year (results are robust to dropping these sites and re-estimating Equation
3.1).

I estimate the upper bound on omitted variables bias to be .041. My coefficient estimate
is .103 (Table 3.1, Column 1), or 2.5 times greater than this upper bound. Therefore, my
finding that conflict onset increases poaching is not driven by omitted variables bias.

Estimating temporal dynamics

An event study maps temporal dynamics of the dependent variable relative to the date of
treatment (Jacobson et al., 1993). Figure 3.2 presents results from estimating the following
regression by ordinary least squares:

PIKEsct =

4\{−1}∑
y=−4

βyOnsety,sct + γs + δt+

3∑
k=1

αktemp
k
sct +

3∑
k=1

θkprecip
k
sct + εsct

(3.2)

where subscript y indexes time relative to the year of conflict onset. All other variables and
subscripts are as defined for Equation 3.1. For y < 0 (y > 0), Onsety,sct = 1 if conflict onset
occurs in y years (occurred y years ago), and equals 0 otherwise. Onset0,sct = 1 for site-years
with onset events and equals 0 otherwise.

For each observation, I calculate the number of years until the next conflict onset, and
the number of years since the most recent conflict onset (within the same MIKE site). This
calculation is not affected by missing poaching data because the conflict data is comprehen-
sive. I include indicator variables (the Onsety,sct terms) for observations that occur three
years before conflict onset, two years before onset, year of onset, and one, two, and three
years after onset. I group observations that occur four or more years before the next conflict
onset into an additional indicator variable, and do the same for observations that occur four
or more years after the most recent conflict onset. Sites that never have a conflict begin are
not included in any of these indicator variables by definition. The year before conflict onset
is the omitted category (including it would cause collinearity with site fixed effects).
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Extrapolation

I first estimate a modified version of Equation 3.2. Because I want to calculate the number of
poached elephants attributable to conflict onset, I use poached carcass count as the dependent
variable, add ln(natural mortality count + 1) as an additional control variable, and estimate
Equation 3.2 using a negative binomial regression with a log link function. I chose a negative
binomial model instead of a Poisson model because of overdispersion in poached carcass
counts (Table C.1). Figure C.5 plots the Onsety,sct coefficients and standard errors from this
regression. I use this model to predict the number of poached carcasses in the data, and to
predict the number of poached carcasses if conflict onset did not occur (set Onsety,sct = 0 if
y ≥ 0, then predict). The difference in these two predictions is 2,092 (equal to 30% of total
poached carcasses in the MIKE data between 2002 and 2014). The interpretation of this
difference is that there would have been 2,092 fewer poached carcasses in the MIKE data if
no conflict onset events occurred.

I rely on estimates of the number of African elephants poached between 2010 and 2012 in
order to extrapolate from the MIKE data to the total number of elephants poached in Africa
and Asia between 2002 and 2014 (Wittemyer et al., 2014). Wittemyer et al. (Wittemyer
et al., 2014) estimate that 100,891 African elephants were poached between 2010 and 2012
(average of empirical and model-based method in Table 1 of that paper). These estimates
are the best available because there are no peer-reviewed, global estimates of the number of
elephants poached each year.

There were 2,743 poached carcasses discovered in MIKE’s African sites between 2010 and
2012. Compared to (Wittemyer et al., 2014), a poached carcass discovered at an African
MIKE site in this period represents 36.8 poached carcasses (= 100,891

2,743
). Given the strong

assumption that this ratio is constant between 2002 and 2014 and holds for Asia as well,
conflict onset is responsible for the illegal killing of 76,963 elephants between 2002 and 2014
(= 2, 092×36.8). This rough extrapolation is meant to emphasize the important contribution
of conflict to overall poaching levels.

Data availability

All data required to reproduce this analysis is publicly available and detailed in Section 3.4.

Code availability

All data processing and analysis was completed in R. All R code will be published on GitHub
upon publication of this chapter.
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and Sociedad Nacional de Pesqueŕıa (SNP)].
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Desarrollo y Pesca Sustentable (CeDePesca)].

Isaksen, E. T., & Richter, A. (2019). Tragedy, Property Rights, and the Commons: Investi-
gating the Causal Relationship from Institutions to Ecosystem Collapse. Journal of
the Association of Environmental and Resource Economists, 6 (4), 741–781.

Jachmann, H. (2012). Pilot study to validate PIKE-based inferences at site level. Pachyderm,
52, 72–87.

Jacobson, L. S., LaLonde, R. J., & Sullivan, D. G. (1993). Earnings Losses of Displaced
Workers. Am Econ Rev, 83 (4), 685–709.

Joo, R., Salcedo, O., Gutierrez, M., Fablet, R., & Bertrand, S. (2015). Defining fishing spatial
strategies from VMS data: Insights from the world’s largest monospecific fishery.
Fisheries Research, 164, 223–230.

Kaffine, D. T. (2009). Quality and the commons: The surf gangs of california. The Journal
of Law & Economics, 52 (4), 727–743. https://doi.org/10.1086/605293

Kahindi, O., Wittemyer, G., King, J., Ihwagi, F., Omondi, P., & Douglas-Hamilton, I. (2010).
Employing participatory surveys to monitor the illegal killing of elephants across
diverse land uses in Laikipia-Samburu, Kenya. Afr J Ecol, 48 (4), 972–983.

Kamenica, E. (2019). Bayesian Persuasion and Information Design. Annual Review of Eco-
nomics, 11, 249–272.

Kamenica, E., & Gentzkow, M. (2011). Bayesian Persuasion. American Economic Review,
101 (6), 2590–2615.

Keane, M. P., & Neal, T. (2020). Consumer Panic in the COVID-19 Pandemic (No. 2020-06).
UNSW Economics Working Paper.

https://doi.org/10.1016/j.jeconom.2007.05.001
https://doi.org/10.1016/j.jeconom.2007.05.001
https://doi.org/10.1086/605293


BIBLIOGRAPHY 69

Kroetz, K., Sanchirico, J. N., Contreras, E. G., Novoa, D. C., Collado, N., & Swiedler, E. W.
(2016). Examination of the Peruvian anchovy Individual Vessel Quota (IVQ) System
(Working Paper No. 749). Inter-American Development Bank.

Kroetz, K., Sanchirico, J. N., Contreras, E. G., Novoa, D. C., Collado, N., & Swiedler, E. W.
(2019). Examination of the Peruvian Anchovy Individual Vessel Quota (IVQ) System.
Marine Policy, 101, 15–24.

Kroodsma, D. A., Mayorga, J., Hochberg, T., Miller, N. A., Boerder, K., Ferretti, F., Wilson,
A., Bergman, B., White, T. D., Block, B. A., et al. (2018). Tracking the global
footprint of fisheries. Science, 359 (6378), 904–908.

Kyne, P. M., Sherrill-Mix, S. A., & Burgess, G. H. (2006). Somniosus microcephalus. Inter-
national Union for Conservation of Nature.

Ladino, J. F., Saavedra, S., & Wiesner, D. (2019). One Step Ahead of the Law: The Net
Effect of Anticipation and Implementation of Colombia’s Illegal Crops Substitution
Program (Documentos de Trabajo No. 017581). Universidad del Rosario.

Lam, V., Tavakolie, A., Zeller, D., & Pauly, D. (2016). The sea around us catch database and
its spatial expression. In D. Pauly & D. Zeller (Eds.), Global atlas of marine fisheries:
A critical appraisal of catches and ecosystem impacts (pp. 59–67). Island Press.

Lewison, R., Hobday, A. J., Maxwell, S., Hazen, E., Hartog, J. R., Dunn, D. C., Briscoe,
D., Fossette, S., O’Keefe, C. E., Barnes, M., et al. (2015). Dynamic Ocean Manage-
ment: Identifying the Critical Ingredients of Dynamic Approaches to Ocean Resource
Management. BioScience, 65 (5), 486–498.

List, J. A., Margolis, M., & Osgood, D. E. (2006). Is the Endangered Species Act Endangering
Species? (Working Paper No. 12777). National Bureau of Economic Research.

Matsuura, K., & Willmott, C. J. (2015). Terrestrial Air Temperature: 1900–2014 Gridded
Monthly Time Series. Version 4.01. [Available at http://climate.geog.udel.edu/∼cli
mate/html pages/Global2014/README.GlobalTsT2014.html. Accessed January 8,
2017].

Maxwell, S. M., Hazen, E. L., Lewison, R. L., Dunn, D. C., Bailey, H., Bograd, S. J., Briscoe,
D. K., Fossette, S., Hobday, A. J., Bennett, M., et al. (2015). Dynamic ocean man-
agement: Defining and conceptualizing real-time management of the ocean. Marine
Policy, 58, 42–50.

Melnychuk, M. C., Peterson, E., Elliott, M., & Hilborn, R. (2017). Fisheries management
impacts on target species status. Proceedings of the National Academy of Sciences,
114 (1), 178–183. https://doi.org/10.1073/pnas.1609915114

Miguel, E., Satyanath, S., & Sergenti, E. (2004). Economic Shocks and Civil Conflict: An
Instrumental Variables Approach. J Polit Econ, 112 (4), 725–753.

Mora, C., Myers, R. A., Coll, M., Libralato, S., Pitcher, T. J., Sumaila, R. U., Zeller, D.,
Watson, R., Gaston, K. J., & Worm, B. (2009). Management effectiveness of the
world’s marine fisheries. PLOS Biology, 7 (6), e1000131. https://doi.org/10.1371/jou
rnal.pbio.1000131

Natividad, G. (2016). Quotas, productivity, and prices: The case of anchovy fishing. Journal
of Economics & Management Strategy, 25 (1), 220–257.

http://climate.geog.udel.edu/~climate/html_pages/Global2014/README.GlobalTsT2014.html
http://climate.geog.udel.edu/~climate/html_pages/Global2014/README.GlobalTsT2014.html
https://doi.org/10.1073/pnas.1609915114
https://doi.org/10.1371/journal.pbio.1000131
https://doi.org/10.1371/journal.pbio.1000131


BIBLIOGRAPHY 70

Newey, W. K., & West, K. D. (1987). A simple, positive semi-definite, heteroskedasticity
and autocorrelation consistent covariance matrix. Econometrica, 55 (3), 703–708. htt
ps://doi.org/10.2307/1913610

Newey, W. K., & West, K. D. (1994). Automatic lag selection in covariance matrix estimation.
The Review of Economic Studies, 61 (4), 631–653. https://doi.org/10.2307/2297912

OBPG. (2015). MODIS aqua level 3 SST thermal IR 8 day 4km daytime v2014.0 [type:
dataset]. https://doi.org/10.5067/MODSA-8D4D4

Oliva, P. (2015). Environmental Regulations and Corruption: Automobile Emissions in Mex-
ico City. Journal of Political Economy, 123 (3), 686–724.

Paredes, C. E. (2014). La anchoveta: Pesca y descarte de juveniles. Análisis de la regulación
pesquera y propuestas para su perfeccionamiento (Cuadernos de Investigación Edición
N◦ 20). Universidad de San Mart́ın de Porres.

Pauly, D., & Zeller, D. (2015). Sea around us concepts, design and data. seaaroundus.org
Peraltilla, S., & Bertrand, S. (2014). IN SITU MEASUREMENTS OF THE SPEED OF

PERUVIAN ANCHOVY SCHOOLS. Fisheries Research, 149, 92–94.
Pfaff, A., & Robalino, J. (2017). Spillovers from conservation programs. Annual Review of

Resource Economics, 9, 299–315.
Pikitch, E., Boersma, P. D., Boyd, I., Conover, D., Cury, P., Essington, T., Heppell, S.,

Houde, E., Mangel, M., Pauly, D., et al. (2012). Little fish, big impact: Managing a
crucial link in ocean food webs. Lenfest Ocean Program.

PRODUCE. (2012). Decreto Supremo N◦ 008-2012: Decreto Supremo que establece medidas
para la conservacion del recurso hidrobiologico [Ministerio de la Producción (PRO-
DUCE)].

PRODUCE. (2015). Resolución Directoral N◦ 035-2015-PRODUCE/DGSF [Ministerio de la
Producción (PRODUCE)].

PRODUCE. (2016a). Decreto Supremo N◦ 024-2016: Decreto Supremo que establece medidas
para fortalecer el control y vigilancia de la actividad extractiva para la conservación y
aprovechamiento sostenible del recurso anchoveta [Ministerio de la Producción (PRO-
DUCE)].

PRODUCE. (2016b). Resolución Directoral N◦ 014-2016-PRODUCE/DGSF [Ministerio de
la Producción (PRODUCE)].

PRODUCE. (2017a). I temporada de pesca – 2017 Zona Norte-Centro: Resumen Ejecutivo
de Seguimiento y Control [Ministerio de la Producción (PRODUCE)].

PRODUCE. (2017b). Resolución Directoral N◦ 687-2017-PRODUCE/DS-PA [Ministerio de
la Producción (PRODUCE)].

PRODUCE. (2018a). Anuario Estad́ıstico Pesquero y Acúıcola 2017 [Ministerio de la Pro-
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Appendix A

Information and spillovers from
targeting policy in Peru’s anchoveta
fishery

A.1 Robustness checks

Balance tests: Pre-period juvenile catch levels and trends and
observable measures of fishing productivity

In this section, I test whether treatment and control potential closures are balanced in their
level of pre-period juvenile catch, trend in pre-period juvenile catch, and observable measures
of fishing productivity.

First, I calculate juvenile catch and treatment fraction for inside potential closures on
the day before sets would generate an actual closure.1 I calculate treatment fraction for this
inside, day-before bin in the same way as for the other bins (overlap with inside, day-before
bin of actual closures declared by the regulator). I add these rows to my main dataset and
estimate versions of Equation 3.1 in Table A.1. I estimate treatment effects for all treatment
bins (now 37 instead of 36), but only report the coefficient on the inside, day-before treatment
bin.

1This time period is 48 to 72 hours before the beginning of the closure period, rather than 24 to 48 hours
before the beginning of the closure period, because in some instances sets influence the probability of actual
closures up to 48 hours before the beginning of the closure period. Therefore, there might be a mechanical
correlation between juvenile catch 24 to 48 hours before the beginning of the closure period due to reverse
causality. In the cases when a cluster of sets 24 to 48 hours before the closure period affect the probability
of an actual closure, the treatment fraction for the potential closure generated by that cluster of sets could
be up to one-third smaller than the true treatment fraction (because the potential closure could end one
day before the actual closure, and the closure period for potential closures is three days). This occasional
measurement error in treatment fraction does not affect my results, which exhibit the same pattern when
I replace treatment fraction in Equation 3.1 with an indicator that equals 1 if the treatment fraction for a
potential closure-bin is greater than 0 (Figure A.5).
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Table A.1: Test for difference in pre-period juvenile catch

Dependent variable: asinh(juvenile catch)

(1) (2) (3) (4) (5)

Treatment fraction 0.235 -0.056 -0.033 -0.074 -0.061
(0.143) (0.175) (0.152) (0.152) (0.176)

Fixed effects X X
Length distribution X X X
Other controls X X

Notes: All regressions have 35,113 observations. Dependent
variable is the inverse hyperbolic sine of millions of juveniles
caught. All regressions estimate treatment effects for all 37
treatment bins, but only the coefficent on treatment fraction for
the inside, day-before bin is displayed in this table. Standard
errors clustered at level of two-week-of-sample by two-degree grid
cell.

Without control variables or fixed effects, there is a marginally significant correlation
between treatment and juvenile catch in the inside, day-before treatment bin (Column 1).
Potential closures that will eventually be closed (treatment fraction = 1) have 26% higher
juvenile catch than potential closures that will not be declared actual closures by the regu-
lator (treatment fraction = 0). In Columns 2 to 5 of Table A.1, I test whether the control
variables and fixed effects in Equation 3.1 eliminate this difference in pre-period juvenile
catch, which would support the identifying assumption that treatment and control potential
closures are comparable conditional on control variables and fixed effects.

I include day-of-sample and two-week-of-sample by two-degree grid cell fixed effects in
Column 2, length distribution controls in Column 3 (excluding fixed effects and the six
other control variables in Equation 3.1), all potential closure-level controls from Equation
3.1 in Column 4 (excluding fixed effects), and the full set of potential closure-level controls
and fixed effects from Equation 3.1 in Column 5. In all four specifications, these control
variables and fixed effects are sufficient to balance treatment and control potential closures
on pre-period juvenile catch. They reduce the treatment coefficient by an order of magnitude
without meaningfully increasing the standard error, emphasizing their importance for the
validity of the identifying assumption.

To examine trends in pre-period juvenile catch, I also calculate juvenile catch and treat-
ment fraction for inside potential closures up to six days before the period in which sets
would generate an actual closure. I add these rows to my main dataset, so that there are
now 42 treatment bins of interest (the original 36 plus the six new pre-period bins). I es-
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timate treatment effects for all treatment bins (now 42 instead of 36), but only display the
treatment coefficients for the inside potential closure treatment bins in Figure A.1.

Without control variables or fixed effects, pre-period juvenile catch is consistently higher
in the potential closures that will eventually be closed, though the trend is not different
from zero (Figure A.1a). But when I include the full set of control variables and fixed
effects in Equation 3.1, the difference in pre-period juvenile catch levels is eliminated and
the trend remains indistinguishable from zero (Figure A.1b). The treatment coefficients
after closures would be announced mirror my main result: an increase in juvenile catch
after closure announcements but before the beginning of closure periods, a noisy decrease
in juvenile catch during closure periods, increases in juvenile catch one and two days after
closures end, and a dissipation of effects three and four days after closures end. The absence
of a trend in pre-period juvenile catch lends further credence to the primary identification
strategy I use in this paper.

To test whether potential closures are balanced on observables, I focus on three of the
control variables in Equation 3.1 that are likely correlated with fishing productivity: distance
to the coast, tons per set, and tons per area (km2).2 If treated potential closures are more
desirable to fish near, juvenile catch inside the treatment window will be mechanically higher
for treated potential closures than for control potential closures, all else equal, because there
will be more fishing near treated potential closures. Indeed, in Table A.2 I find positive,
significant correlations between juvenile catch inside potential closure-treatment bins and
each of these three variables (Columns 1 to 3). When I regress juvenile catch on all three
variables together in Column 4, all three coefficients remain positive, though tons per area
is no longer significantly correlated with juvenile catch. I record these fitted values and also
use them to test for balance in Table A.3.

In Table A.3, I test whether potential closures are balanced on each variable and on
the fitted values, conditional on the length distribution caught by the sets that generate the
potential closure and the fixed effects in Equation 3.1. I find a significant correlation between
treatment fraction and tons per area, but not between treatment fraction and distance to
the coast, tons per set, or the fitted values. The non-correlations between treatment fraction
and tons per set and between treatment fraction and distance to the coast are more relevant
than the correlation between treatment fraction and tons per area because tons per area
is not a significant predictor of juvenile catch when juvenile catch is regressed on all three
variables (Column 4 of Table A.2). The lack of a correlation between treatment fraction and
the fitted values is also reassuring because the fitted values are based on all three variables.
These results should therefore be interpreted as evidence that treatment and control potential
closures would offer similar fishing opportunities to vessels if not for treatment.

2In addition to being a proxy for fishing costs, distance to the coast is a proxy for fishing productivity
because anchoveta are more abundant closer to the coast (Castillo et al., 2019).
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Figure A.1: Test for pre-trend in juvenile catch inside potential closures

Notes: N=39,858 for both regressions. The dependent variable is the inverse hyperbolic sine of
millions of juveniles caught. Both regressions estimate treatment effects for all 42 treatment bins,
but only the treatment fraction coefficients for inside potential closures treatment bins are displayed
in this figure. In the second regression (b), I include the control variables and fixed effects in
Equation 3.1. The red line is the linear trend in pre-period treatment coefficients. Points are
coefficients and whiskers are 95% confidence intervals. Standard errors clustered at level of two-
week-of-sample by two-degree grid cell.
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Table A.2: Correlation between juvenile catch and measures of fishing productivity

Dependent variable: asinh(juvenile catch)
(1) (2) (3) (4)

DistToCoast 0.0052 0.0028
(0.0017) (0.0015)

TonsPerSet 0.0073 0.0068
(0.0007) (0.0009)

TonsPerArea 0.0142 0.0023
(0.0039) (0.0034)

Intercept 0.6394 0.3985 0.7029 0.3284
(0.0663) (0.0535) (0.0515) (0.0570)

All regressions have 34,164 observations. Dependent
variable is inverse hyperbolic sine of millions of juveniles
caught in a potential closure-treatment bin. Standard
errors clustered at level of two-week-of-sample by
two-degree grid cell.

Table A.3: Test for balance on measures of fishing productivity

DistToCoast TonsPerSet TonsPerArea FittedVals
(1) (2) (3) (4)

Treatment -1.091 3.578 3.377 0.029
fraction (1.824) (4.368) (1.190) (0.033)

All regressions have 34,164 observations and control for
two-week-of-sample by two-degree-grid-cell fixed effects,
day-of-sample fixed effects, and potential closure-level length
distribution. Standard errors clustered at level of
two-week-of-sample by two-degree grid cell.

Treatment coefficients from Estimating Equation 3.1 and variants
of Equation 3.1

Figure A.2 displays the treatment coefficients from estimating Equation 3.1. My results
exhibit the same pattern if I drop zero values and use a logarithmic transformation on the
dependent variable instead of an inverse hyperbolic sine transformation (Figure A.3). They
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also hold if I replace the dependent variable in Equation 3.1 with a binary indicator for
positive juvenile catch (Figure A.4) or if I replace treatment fraction with a binary indicator
for positive treatment fraction (Figure A.5).

My results are also robust to replacing the outcome variable with the inverse hyperbolic
sine of tons of juveniles caught (Figure A.6). Juvenile catch in tons is the number of in-
dividuals in each length interval times the weight of an individual in each length interval,
summed over length intervals less than 12 cm.3 When I convert these treatment coefficients
into changes in levels and account for the reallocation in tons (of juveniles and adults) caught
due to the total allowable catch limit, I estimate that the temporary spatial closures policy
increases juvenile catch by 332 thousand tons of juveniles, or 44% (delta method standard
errors are 70 thousand tons and 9.3%). For comparison, the regulator calculates that the
temporary spatial closures policy “protected” 1,049,411 tons of juvenile anchoveta in the
first and second season of 2017 and the first season of 2018 (PRODUCE, 2017a, 2018b,
2018c). The regulator does not describe how they calculate this number, nor do they define
the meaning of “protected” in this context.

Finally, my results are robust to assuming potential closures last for four or five days
(instead of three days) and to making my potential closures 40% larger (so that they are
the same average size as actual closures). I display the treatment coefficients for these three
alternative specifications in Figures A.7 to A.9. When I convert the treatment coefficients
from each of the three specifications into changes in levels and account for the reallocation
in tons caught due to the total allowable catch limit, I find that the closures policy increases
total juvenile catch by 49%, 66% and 52%, respectively (delta method standard errors are
4.7%, 4.5%, and 5.8%, respectively).

If closures shift juvenile catch forward in time during a fishing season, then my treatment
effects would be upward biased because some of the increase in juvenile catch due to closures
would have occurred later in the season, even if the closures policy did not exist. This
“harvesting” concern also occurs in studies on human mortality (e.g., some of the people
killed by heat waves would have died soon anyway). I re-estimate Equation 3.1 with one
change: I interact treatment fraction with an indicator for whether potential closure i occurs
in the first or second half of a fishing season (defined relative to the start of potential closure
i’s closure period). I find no evidence of heterogeneity along this dimension and display the
treatment coefficients from this regression in Figure A.10. When I convert the treatment
coefficients into changes in levels and account for the reallocation in tons caught due to the
total allowable catch limit, I find that 56% of the increase in juvenile catch due to the closures
policy occurs in the first half of fishing seasons. For reference, 59% of tons are landed during
the first half of fishing seasons. This result indicates that closures do not cause significant
“harvesting” of juveniles that would have been caught even in the absence of closures (i.e.,
in the second-half of fishing seasons).

3For a given set, tons of juveniles caught equals
∑[11.5,12)
`=[3,3.5) w`N`, where w` is the weight of an individual

in length interval ` and N` is the number of individuals in length interval ` that the set caught.
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Figure A.2: Treatment coefficients from estimating Equation 3.1

Notes: N = 34,164. Points are coefficients and whiskers are 95% confidence intervals. Standard
errors clustered at level of two-week-of-sample by two-degree grid cell.
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Figure A.3: Treatment coefficients from dropping observations with zero juvenile catch and re-
estimating Equation 3.1 with a logarithmic transformation instead of an inverse hyperbolic sine
transformation

Notes: N = 12,220. Points are coefficients and whiskers are 95% confidence intervals. Standard
errors clustered at level of two-week-of-sample by two-degree grid cell.
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Figure A.4: Treatment coefficients from re-estimating Equation 3.1 with a binary indicator for
positive juvenile catch as the dependent variable

Notes: N = 34,164. Points are coefficients and whiskers are 95% confidence intervals. Standard
errors clustered at level of two-week-of-sample by two-degree grid cell.
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Figure A.5: Treatment coefficients from re-estimating Equation 3.1 with a binary indicator for
positive treatment fraction, rather than defining treatment fraction as a continuous variable

Notes: N = 34,164. Points are coefficients and whiskers are 95% confidence intervals. Standard
errors clustered at level of two-week-of-sample by two-degree grid cell.
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Figure A.6: Treatment coefficients from re-estimating Equation 3.1 with tons of juveniles caught
as the dependent variable

Notes: The dependent variable is the inverse hyperbolic sine of tons of juveniles caught in each
potential closure-treatment bin. N = 34,164. Points are coefficients and whiskers are 95% confidence
intervals. Standard errors clustered at level of two-week-of-sample by two-degree grid cell.
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Figure A.7: Treatment coefficients from re-estimating Equation 3.1 with potential closures that
last four days

Notes: N = 31,608. Points are coefficients and whiskers are 95% confidence intervals. Standard
errors clustered at level of two-week-of-sample by two-degree grid cell.
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Figure A.8: Treatment coefficients from re-estimating Equation 3.1 with potential closures that
last five days

Notes: N = 29,664. Points are coefficients and whiskers are 95% confidence intervals. Standard
errors clustered at level of two-week-of-sample by two-degree grid cell.
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Figure A.9: Treatment coefficients from re-estimating Equation 3.1 with potential closures 40%
larger

Notes: N = 34,164. Points are coefficients and whiskers are 95% confidence intervals. Standard
errors clustered at level of two-week-of-sample by two-degree grid cell.
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Figure A.10: Treatment coefficients from re-estimating Equation 3.1 with time-of-season interac-
tions

Notes: N = 34,164. I re-estimate Equation 3.1 with one change: I interact treatment fraction with
an indicator for whether potential closure i occurs in the first- or second-half of a fishing season
(defined relative to the start of potential closure i’s closure period). Points are coefficients and
whiskers are 95% confidence intervals. Standard errors clustered at level of two-week-of-sample by
two-degree grid cell.
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Re-estimating the effect of the policy on juvenile catch with
gridded, balanced panel data

As an alternative estimation approach, I create a regular grid of .05◦ cells covering the North-
Central zone and calculate the millions of juveniles caught in each cell each three-hour period
during a fishing season. I rasterize the data at this resolution to match the resolution of
treatment assignment as closely as possible without exceeding my server’s memory capacity.
This procedure yields 95,416,620 observations, or 21,346 grid cells × 4,470 three-hour time
periods. I regress juvenile catch in a grid cell-time period on indicators for whether the
centroid of the grid cell-time period is inside each of the 36 treatment bins in the treatment
window of actual closures, .05◦ grid cell fixed effects, three-hour time period fixed effects,
and two-week-of-sample by two-degree grid cell fixed effects:

JuvenileCatchjk = βst1{jk ∈ st}+ αj + δk + σwg + εjk (A.1)

where j = .05◦ cell, k = three-hour time period, s = spatial unit, t = (treatment bin) time
period, w = two-week-of-sample, and g = two-degree grid cell. For a given cell-period jk
and treatment bin st, 1{jk ∈ st} equals 1 if the centroid of jk is inside treatment bin st of
an actual closure and equals 0 otherwise. I cluster standard errors at the level of two-week-
of-sample by two-degree grid cell. The dependent variable is the inverse hyperbolic sine of
millions of juveniles caught, as in Equation 3.1.

I plot the coefficients of interest, βst, in Figure A.11. The coefficient magnitudes are
smaller than in Figure A.2, possibly due to the large number of zeros in the rasterized data
(99.96% of observations have 0 juvenile catch). However, the treatment effects are precisely
estimated and the pattern of treatment effects is the same as in my preferred specification
(Figure A.2). My finding that closures cause temporal and spatial spillovers and increase
total juvenile catch is robust to this alternative estimation strategy.
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Figure A.11: Treatment coefficients from estimating Equation A.1

Notes: N = 95,416,620. Points are coefficients and whiskers are 95% confidence intervals. Standard
errors clustered at level of two-week-of-sample by two-degree grid cell.
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Re-estimating the effect of the policy on juvenile catch with actual
closures as treated units and potential closures as control units

In my preferred specification, I estimate the effect of the temporary spatial closures policy
across potential closures, where actual closures declared by the regulator are only used to
calculate the treatment fraction for each potential closure-treatment bin. An alternative
estimation approach is to use actual closures declared by the regulator as the treated units
and potential closures whose treatment fraction equals 0 as the control units. I estimate the
effect of the closures policy with this alternative approach here.

In my preferred specification in Equation 3.1, I control for characteristics of the sets
that generate potential closures, such as the length distribution of anchoveta caught by the
sets that generate potential closures. For each actual closure declared by the regulator, I
now also construct these same control variables from the sets that occur inside the closure
in the 9 to 24 hours before the closure begins.4 8 of the 410 actual closures declared by
the regulator do not have sets inside them with non-missing length distribution values (see
Footnote 7). I drop these 8 actual closures from this analysis because I cannot construct
length distribution control variables for them. I create the same spatial and temporal leads
and lags as for potential closures, yielding 14,472 observations (36 treatment bins × 402 =
14,472). I construct the same fixed effects as in Equation 3.1 and calculate juvenile catch
inside each actual closure-treatment bin by summing juvenile catch over sets that occur
inside the same actual closure-treatment bin.

The control units are potential closure-treatment bin observations whose treatment frac-
tion equals 0. I re-estimate Equation 3.1 with 39,334 observations: 14,472 treated obser-
vations and 24,862 control observations. Figure A.12 displays the treatment coefficients.
The treatment coefficients display the same pattern as in my preferred specification except
that there is a small decrease in juvenile catch four days after closures end. When I con-
vert the treatment coefficients into changes in the number of juveniles caught because of
the policy, accounting for the reallocation in tons caught due to the total allowable catch
limit, I estimate that the policy increases total juvenile catch by 34 billion juveniles, or 32%
(delta method standard errors are 2.9 billion and 2.7%, respectively). My finding that clo-
sures cause temporal and spatial spillovers and increase total juvenile catch is robust to this
alternative estimation strategy.

I also re-estimate the effect of the policy using synthetic controls (Abadie et al., 2010;
Abadie & Gardeazabal, 2003). For each actual closure declared by the regulator, I construct
a synthetic control group from the potential closures whose treatment fraction equals 0. I
include as predictors all of the control variables in Equation 3.1 (excluding fixed effects) as
well as pre-period juvenile catch up to 8 days before the beginning of closure periods. I use
the Synth package in R, which returns an error for 115 out of 410 actual closures (Abadie et

4For the 9% of closures during my study period that begin at 6 AM instead of midnight, I construct
control variables from the sets that occur inside the closure in the 12 to 27 hours before the closure begins,
because closures that begin at 6 AM must be announced by 6 PM the previous day.
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al., 2011).5 However, I am able to obtain a synthetic control group for each of the remaining
295 actual closures.

Figure A.13 displays the synthetic control results. The y-axis is the average juvenile
catch for treated observations (actual closures) minus the average juvenile catch for control
observations (weighted average of potential closures). As in my preferred specification, ju-
venile catch is the inverse hyperbolic sine of millions of juveniles caught. I do not provide
confidence intervals in Figure A.13 because the synthetic control procedure of computing
weights on potential closures for each actual closure is computationally intensive (the single
run I performed took several hundred CPU hours). When I convert the difference in average
juvenile catch in each treatment bin into changes in the number of juveniles caught because
of the policy, accounting for the reallocation in tons caught due to the total allowable catch
limit, I estimate that the policy increases total juvenile catch by 40 billion juveniles, or 40%.
This result is similar to my preferred estimate of the effect of the temporary spatial closures
policy—an increase in juvenile catch of 47 billion juveniles, or 50%—even though it was
obtained with a different identification strategy.

58 of these error instances are due to the absence of length distribution control variables described above.
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Figure A.12: Treatment coefficients from re-estimating Equation 3.1 with actual closures as treated
units and potential closures as control units

Notes: Actual closure-treatment bins are the treated units. Potential closure-treatment bins whose
treatment fraction equals 0 are the control units. N = 39,422. Points are coefficients and whiskers
are 95% confidence intervals. Standard errors clustered at level of two-week-of-sample by two-degree
grid cell.
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Figure A.13: Synthetic control estimates of the effect of closures

Notes: Points are average juvenile catch for treated observations (actual closures) minus the average
juvenile catch for control observations (weighted average of potential closures) in a given treatment
bin, where juvenile catch is the inverse hyperbolic sine of millions of juveniles caught.
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A.2 Additional results

Heterogeneity by size of closure and length of closure period

Perhaps the temporary spatial closures policy does not reduce juvenile catch because the
closures are not large enough or do not last long enough. The average size of a closure
declared by the regulator is 1,328 km2, or 36 by 36 km for a square closure. A school
of anchoveta can swim 20 to 30 km in a day (Peraltilla & Bertrand, 2014). If juvenile
anchoveta swim outside the closed area during the closure period, then closures might not
be large enough to prevent them from being caught. With respect to the length of the closure
period, the closures policy is intended to reduce juvenile catch by encouraging fishermen to
find new places to fish (Section 1.2). The regulator can declare closures that last three to
five days, which might not be enough time for this process to occur.

I test for treatment effect heterogeneity by size of closure and by the length of the closure
period. I estimate the following regression:

JuvenileCatchist =αsth + βsthTreatFractionisth +

[18.5,19)∑
`=[3,3.5)

ξ`Propi` +

γ1Setsi + γ2Tonsi + γ3Areai + γ4DistToCoasti +

γ5TonsPerSeti + γ6TonsPerAreai + σwg + δd + εisth

(A.2)

where h indicates heterogeneity category and all other variables and subscripts are as defined
for Equation 3.1.

The outcome variable, control variables, and the number of observations are the same as
in Equation 3.1. The only difference is there are now twice as many treatment coefficients (72,
instead of 36). In the test for heterogeneity by size of closure, h denotes treatment fraction
overlap with actual closures that are either above-median size or below-median size. For
example, to estimate Equation 3.1 I estimated treatment fraction overlap between potential
closure-treatment bin ist and actual closure-treatment bin ist. Now I calculate treatment
fraction overlap between potential closure-treatment bin ist and actual closure-treatment
bin ist for actual closures that are above-median size, and also calculate treatment fraction
overlap between potential closure-treatment bin ist and actual closure-treatment bin ist for
actual closures that are below-median size.

In the test for heterogeneity by length of closure, h indicates treatment fraction overlap
with actual closures that last either three days or five days. I do not estimate treatment
effect heterogeneity for actual closures that last 4 days because only 15% of actual closures
are 4 days long. I compute treatment fraction overlap with 3- and 5-day actual closures
separately, creating 72 treatment bins of interest. I do not include bins that are four days
after the closure period in my regression because the treatment effect estimates for these
bins for five-day closures are very large and noisy. As Figure 1.8 shows, these bins are not
important for understanding the effect of the policy, and including them in this test for
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heterogeneity by length of closure distorts the total percentage change I calculate for 5-day
closures.

I convert the treatment coefficients from these two regressions into total percentage
changes in juvenile catch because of the policy in the same manner as in Section 1.6. Larger
closures seem to perform even worse than smaller closures. Above-median-size closures in-
crease juvenile catch by 58%, while below-median-size closures increase juvenile catch by 34%
(p-value on this difference is .048). Larger closures could cause larger increases in juvenile
catch because congestion costs are lower or if larger closures are a larger positive signal of
fishing productivity. There does not appear to be treatment effect heterogeneity by length of
closure. 3-day closures increase juvenile catch by 48%, while 5-day closures increase juvenile
catch by 50% (p-value on this difference is .95). Within the support of the data, it does not
seem that making closures larger or longer improves the performance of the policy.

Heterogeneity by firm size and vessel size

Certain types of vessels may respond to closures more than others. I test for treatment effect
heterogeneity along two related dimensions: firm size, measured by the number of vessels a
firm owns that are authorized to fish in the North-Central zone, and vessel size, measured by
vessel length in meters. These dimensions are related because large firms tend to own large
vessels (see Table A.4). I test for treatment effect heterogeneity by re-estimating Equation
1.3 from Section 1.8, with subscript h now denoting firm size category in the first regression
and vessel size category in the second regression. I convert the treatment coefficients from
these two regressions into total percentage changes in juvenile catch because of the policy in
the same manner as in Section 1.6.

First, I find that vessels belonging to large firms have larger treatment effects than vessels
belonging to smaller firms. The increase in total juvenile catch because of the closures policy
is 60% for the vessels that belong to the seven largest firms, which each own at least 19 vessels.
The increase in total juvenile catch is 44% for vessels that belong to medium-sized firms,
who own between 2 and 10 vessels, and is 11% for vessels that belong to firms that own only
one vessel. Large-firm vessels account for 77% of the closures policy treatment effect, which
is greater than their share of total juvenile catch in the fishery (70%).

Second, I find that above-median-length vessels have larger treatment effects than below-
median-length vessels. The increase in juvenile catch because of the closures policy is 59%
for above-median vessels, compared to 24% for below-median vessels. Above-median vessels
account for 90% of the closures policy treatment effect, which is greater than their share of
total juvenile catch in the fishery (83%).

It is difficult to determine whether above-median-length vessels respond more to closures
because they are large, so have more flexibility in the length of their fishing trips, or because
they belong to larger firms. 96% of large-firm vessels are above-median length, but among
medium firms it is possible to examine heterogeneity by vessel length because 75% are
below-median length and 25% are above-median length. I re-estimate equation 1.3 using
only juvenile catch among medium firms to calculate the outcome variable. In contrast to
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Table A.4: Vessel characteristics in the six fishing seasons of 2017, 2018, and 2019

All vessels Large-firm vessels Medium-firm vessels Singleton vessels
(1) (2) (3) (4)

A. Average tons landed per season
Minimum 3.11 105.45 14.64 3.11
Mean 2607.41 6311.44 1842.81 903.56
Median 1324.49 6004.34 1303.62 722.86
Max 22261.65 22261.65 10852.99 9389.83

B. Average number of active vessels per season
Minimum 708 178 263 256
Mean 730.17 182 276.67 271.5
Median 731 182 278.5 269
Maximum 750 185 283 288

C. Vessel length (m)
Minimum 11.23 15.85 11.3 11.23
Mean 26.05 41.64 24.06 17.62
Median 20.9 40.48 21.72 17.05
Max 77 77 53.75 42.57

Large-firm vessels are vessels that belong to one of the seven largest firms,
which each own at least 19 vessels. Medium-firm vessels belong to firms that
own 2 to 10 vessels. Singleton vessels belong to a firm that owns only one
vessel. Data is for the North-Central zone only. Landings data is used to
calculate the number of active vessels each season. Landings and vessel
length data are from PRODUCE.

the result using all vessels, I find the that increase in juvenile catch because of the closures
policy is smaller for above-median-length vessels (25%) than for below-median-length vessels
(47%). This difference is statistically significant and could indicate that firm size is the more
relevant dimension of heterogeneity. Larger firms may be more able to aggregate information
from closures and dispatch vessels accordingly.

A.3 Data Appendix

The main outcome variable of interest in this paper is juvenile catch: the number of individual
anchoveta that are caught that are less than 12 cm. There are two challenges in calculating
juvenile catch in an unbiased and accurate manner.
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First, fishermen may underreport percentage juvenile in the electronic logbook data in
order to avoid triggering a closure in the area they are fishing. If I only used raw electronic
logbook data to calculate juvenile catch and underreporting is correlated with closures de-
clared by the regulator, my treatment effect estimates would be biased.

Second, even if percentage juvenile reported by fishermen in the electronic logbook data
is unbiased, percentage juvenile and tons caught are not sufficient for calculating juvenile
catch because the number of individuals caught depends on the length distribution of those
individuals. For example, consider two sets that both catch 40 tons of anchoveta that are
20% juvenile. In the first set, 20% of individuals are between 11.5 and 12 cm and 80% of
individuals are between 12 and 12.5 cm (actual length distributions are much more diffuse;
see Figure A.14). In the second set, 20% of individuals are between 10 and 10.5 cm and
80% of individuals are between 14 and 14.5 cm. The weight of an anchoveta in grams equals
.0036length3.238 (IMARPE, 2019). Therefore, 683,137 juvenile anchoveta are caught by the
first set and 469,685 are caught by the second set, even though both sets caught the same
tons and percentage juvenile.6

Recall from Section 1.4 that fishermen report percentage juvenile to the regulator in the
electronic logbook data, but not the length distribution from which percentage juvenile is
calculated (percentage juvenile is the percentage of measured individuals that are less than
12 cm). I obtained a supplementary electronic logbook dataset for a group of vessels that
report length distribution data to their owners. These vessels represent 56% of landings and
their data was provided by Sociedad Nacional de Pesqueŕıa (SNP), a consortium of fishing
companies, in January 2020.

To calculate juvenile catch for each set, I first use the length distribution values from sets
in the SNP electronic logbook data to impute length distributions for non-SNP sets, based on
the location, time, and percentage juvenile caught by non-SNP sets. After obtaining length
distributions for all sets in the electronic logbook data, I match sets to landings events. I
then use the percentage juvenile measured by third-party inspectors at landing to update
length distributions in the electronic logbook data and calculate juvenile catch for each set.

Specifically, I first identify sets in the full electronic logbook data (reported to the regu-
lator) that are also in the SNP data based on unique vessel identifiers and the time each set
occurred. I calculate the number of individual anchoveta (both juveniles and adults) caught
by these sets based on their length distribution and tons caught. When percentage juvenile
for a set in the SNP data does not match its counterpart in the full electronic logbook data
(i.e., the vessel reported a different percentage juvenile to its owner than to the regulator),
I shift the length distribution up or down in half-cm increments until the absolute differ-
ence between the implied percentage juvenile (percentage of individuals that are less than
12 cm, as implied by the updated length distribution) and the percentage juvenile reported
to the regulator is minimized (i.e., a one unit shift of the length distribution in either di-
rection would result in a larger absolute difference between implied and reported percentage
juvenile).

6My results are robust to measuring juvenile catch in terms of tons of juveniles caught (Figure A.6).
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I then impute length distributions for non-SNP sets as follows. For each two-week-
of-sample by two-degree grid cell, I calculate the individuals-weighted average proportion
of individuals in each half-cm length interval. Given the percentage juvenile value for each
non-SNP set, I adjust the length distribution for that set’s two-week-of-sample by two-degree
grid cell to match the set’s percentage juvenile value. For sets with percentage juvenile above
(below) the individuals-weighted average percentage juvenile for their two-week-of-sample by
two-degree grid cell, I inflate (deflate) the proportion of individuals below 12 cm and deflate
(inflate) the proportion of individuals above 12 cm so that the imputed length distribution
for each set implies a percentage juvenile equal to the percentage juvenile reported for that
set.7 I use the resulting length distribution and tons caught to calculate the number of
individuals caught by non-SNP sets.

For example, suppose the reported percentage juvenile for a non-SNP set is 20%, the
individuals-weighted average percentage juvenile among SNP sets in the two-week-of-sample
by two-degree grid cell is 10%, and the average length distribution for the two-week-of-sample
by two-degree grid cell is as follows: 2% of individuals are between 11 and 11.5 cm, 8% of
individuals are between 11.5 and 12 cm, 60% of individuals are between 12 and 12.5 cm, and
30% of individuals are between 12.5 and 13 cm. Then the imputed length distribution for
the set is: 4% of individuals are between 11 and 11.5 cm, 16% of individuals are between 11.5
and 12 cm, 53.33% of individuals are between 12 and 12.5 cm, and 26.67% of individuals
are between 12.5 and 13 cm. This length distribution implies that the average weight of
individuals caught by this set is 12.1 grams. If the set caught 50 tons of anchoveta, then it
caught 4,132,685 individual anchoveta, of which 826,537 are juvenile.8

Next, I match sets to landing events in order to correct the length distribution, percentage
juvenile, and number of individuals caught by each set. Unlike fishermen in the electronic
logbook data, the closures policy does not give third-party inspectors an incentive to mis-
report percentage juvenile because the regulator does not use landings data to determine
closures during my study period.

Fishermen report when each fishing trip begins and ends in the electronic logbook data.
For each landing event by a vessel, I record the vessel’s most recent preceding electronic
logbook fishing trip and the sets that occurred on the trip. I matched 93.1% of sets to landing
events. When the individuals-weighted average percentage juvenile across sets on a trip does
not equal the percentage juvenile measured by third-party inspectors at landing, I multiply
each set-level percentage juvenile value by the ratio of landing-level percentage juvenile to
average set-level percentage juvenile. For the 6.9% of sets I was unable to match to landing
events, I multiply percentage juvenile by the ratio of average landing-level percentage juvenile
to average set-level percentage juvenile, where averages are calculated among matched sets in

796.5% of non-SNP sets occur in a two-week-of-sample by two-degree grid cell that also contains SNP
sets. For the remaining 3.5% of non-SNP sets, I use the average length distribution at the two-week-of-sample
level in the above procedure. 58 non-SNP sets (.04%) occur during a two week period without any SNP
sets. I record the length distribution values, number of individuals caught, and number of juveniles caught
as missing for these 58 sets.

8Recall from Section 1.4 that fishermen do not underreport tons caught.
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the same two-week-of-sample by two-degree grid cell and weighted by number of individuals
caught.

For example, suppose there are two sets on a trip, the first set caught 1 million individuals
of which 10% are reported juvenile, the second set caught 4 million individuals of which 5%
are reported juvenile, and 12% juvenile is measured at landing, when the fishing trip ends.
The “corrected” percentage juvenile values are 20% and 10% for the first and second set
and the weighted average percentage juvenile across sets is now 12%. I make additional
adjustments when this procedure results in set-level percentage juvenile values that are
undefined or greater than 100%. After this procedure, percentage juvenile averaged across
sets in a trip equals landing-level percentage juvenile.

Finally, I shift the length distribution of each set up or down in half-cm increments un-
til the absolute difference between the implied percentage juvenile (updated percentage of
individuals that are less than 12 cm) and the corrected percentage juvenile is minimized. I
use the resulting length distribution to calculate the corrected number of individuals caught
by each set. The number of juveniles caught by each set is the corrected number of in-
dividuals times the corrected percentage juvenile. The procedure described in this section
preserves the resolution of the electronic logbook data while ensuring that my main outcome
of interest—juvenile catch at a given location and time—is not systematically manipulated.
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Figure A.14: Corrected length distribution of anchoveta caught in the North-Central zone, 2017 to
2019 fishing seasons

Notes: The y-axis indicates the average proportion of anchoveta caught in each half-cm length
interval, weighted by the number of individuals caught by each set. I calculated these values
from the corrected electronic logbook data. There are 246,914 sets (observations) in the corrected
electronic logbook data. 18.3% of individuals caught during my study period are juvenile.
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Figure A.15: Individuals-weighted average percentage juvenile in each treatment bin, for actual
closures declared by the regulator

Notes: Percentage juvenile values are from the corrected electronic logbook data. Average percent-
age juvenile outside the treatment window is 9%.
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A.4 Proofs of Propositions 1 to 3

I prove Proposition 2 first because the proof of Proposition 1 relies on the proof of Proposition
2a.

Proof of Proposition 2a. To prove the equality of expected profit in locations g and
k, suppose the contradiction that ∃j s.t. E[πj,g(µg, I−j,g)|µ̃g, µ̃k, C = 0] 6=
E[πj,k(µk, I−j,k)|µ̃g, µ̃k, C = 0]. Suppose without loss of generality that
E[πj,g(µg, I−j,g)|µ̃g, µ̃k, C = 0] > E[πj,k(µk, I−j,k)|µ̃g, µ̃k, C = 0]. If j ∈ Ik, then vessel j could
increase expected profit by choosing g instead. If j ∈ Ig, ∃r ∈ Ik s.t. vessel r could increase
their expected profit by choosing g instead (because vessels are identical). To satisfy the
definition of a Bayes-Nash equilibrium, expected profit from fishing in location g must equal
expected profit from fishing in location k. The same argument proves the claim for when
C = 1 as well.

Uniqueness. Suppose there exists Bayes-Nash equilibria (Î∗g , Î
∗
k) and (Î∗h, Î

∗
k) such that

(Î∗g , Î
∗
k) 6= (I∗g , I

∗
k) and (Î∗h, Î

∗
k) 6= (I∗h, I

∗
k). Without loss of generality, suppose Î∗g > I∗g . Then

Î∗k < I∗k since I is fixed. Since profit is decreasing in the number of vessels who fish in

the same location (
∂πi,`(µ`,I−i,`)

∂I−i,`
< 0), expected profit from fishing in location g is lower in

the (Î∗g , Î
∗
k) equilibrium than in the (I∗g , I

∗
k) equilibrium (E[πi,g(µg, Î∗−i,g)|µ̃g, µ̃k, C = 0] <

E[πi,g(µg, I
∗
−i,g)|µ̃g, µ̃k, C = 0] ∀i). Similarly, expected profit from fishing in location k is

higher in the (Î∗g , Î
∗
k) equilibrium than in the (I∗g , I

∗
k) equilibrium (E[πi,k(µk, Î∗−i,k)|µ̃g, µ̃k, C =

0] > E[πi,k(µk, I
∗
−i,k)|µ̃g, µ̃k, C = 0] ∀i). By the proof of Proposition 2a, E[πi,g(µg, I

∗
−i,g)|µ̃g, µ̃k, C =

0] = E[πi,k(µk, I
∗
−i,k)|µ̃g, µ̃k, C = 0] ∀i. Then (Î∗g , Î

∗
k) cannot be a Bayes-Nash equilibrium

because E[πi,g(µg, Î∗−i,g)|µ̃g, µ̃k, C = 0] < E[πi,k(µk, Î∗−i,k)|µ̃g, µ̃k, C = 0] ∀i. (Î∗h, Î
∗
k) cannot

be a Bayes-Nash equilibrium by the same argument. Therefore the Bayes-Nash equilibria
(I∗g , I

∗
k) and (I∗h, I

∗
k) are unique.

Proof of Proposition 2b. Note that ∂I`
∂µ`

= 0; fishing location decisions I` depend on µ̃`,

but not true productivity µ` because µ` is unobserved. Then πi,g(µg, I−i,g) > πi,k(µk, I−i,k)

∀i because vessels are identical and
∂πi,`(µ`,I−i,`)

∂µ`
> 0. If the closure announcement contains

valuable information in that it informs vessels that the true productivity of location g is
higher than location k, then vessels that happen to fish in location g when C = 0 have
higher profits because there is no closure announcement that vessels can use to change their
fishing location decisions.

Proof of Proposition 1. I will first prove ∂I`
∂µ̃`

> 0 in the case where congestion costs
are the same across locations, then use this fact to complete the proof. Because marginal
congestion costs are in fact higher in location h than in locations g and k, the positive signal
from the closure announcement must be sufficiently large in order for there to be an increase
in the number of vessels fishing in h when C = 1 relative to the number of vessels fishing in
g when C = 0 (µ̃h >> µ̃k in order for I∗h > I∗g ). If this condition is met, total juvenile catch
will be higher with the closure than without it as long as percentage juvenile is sufficiently
high in location h relative to locations g and k.
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To prove ∂I`
∂µ̃`

> 0 when congestion costs are the same across locations, I suppress some

of the arguments of expected profit for notational compactness. For example, let E[i, g]
denote E[πi,g(µg, I−i,g)|µ̃g, µ̃k, C = 0]. Suppose the contradiction, that the number of vessels
who choose location ` is not increasing in µ̃` ( ∂I`

∂µ̃`
≤ 0). Since profit is decreasing in the

number of vessels who fish in the same location (
∂πi,`(µ`,I−i,`)

∂I−i,`
< 0), expected profit from

fishing in location h is higher than in g (E[i, h∗] > E[i, g∗] ∀i), because marginal congestion
costs are the same in h and g and the number of vessels who choose h is not higher by
assumption (I∗h ≤ I∗g ). Because the total number of vessels is fixed, the number of vessels
who choose location k when C = 1 is greater than or equal to the number of vessels who
choose location k when C = 0 (I∗k|C=1 ≥ I∗k|C=0). Since vessels have the same beliefs about
k’s productivity in both states of the world, expected profit from fishing in location k when
C = 0 is at least as great as expected profit from fishing in k when C = 1 (E[i, k∗|C = 0] ≥
E[i, k∗|C = 1] ∀i). Since (I∗g , I

∗
k) is a Bayes-Nash equilibrium, E[i, g∗] = E[i, k∗|C = 0] by

the proof of Proposition 2a. Then E[i, h∗] > E[i, k∗|C = 1] ∀i because E[i, h∗] > E[i, g∗] =
E[i, k∗|C = 0] ≥ E[i, k∗|C = 1]. Then (I∗h, I

∗
k) cannot be a Bayes-Nash equilibrium by the

proof of Proposition 2a. Contradiction. Therefore, ∂I`
∂µ̃`

> 0 when congestion costs are the
same across locations.

However, marginal congestion costs are in fact higher in location h (because h covers less
area than g and k). Though vessels believe mean productivity is higher in h than in g and k,
the higher marginal congestion cost in h counteracts the effect of higher mean productivity
on the number of vessels who choose h. For this reason, it is not necessarily the case that
the closures policy increases fishing near closures (I∗h > I∗g ).

To see how higher marginal congestion costs in h reduce the number of vessels who choose
h, consider the case when µ̃h = µ̃g and suppose the contradiction that I∗h ≥ I∗g . Expected
profits are lower in h than in g because marginal congestion costs are higher in h (E[i, h∗] <
E[i, g∗] ∀i). Since µ̃k is the same in both states of the world and I∗k|C=0 ≥ I∗k|C=1 (because

I∗g ≤ I∗h), expected profit in k when C = 0 is less than or equal to expected profit in k when
C = 1 (E[i, k∗|C = 0] ≤ E [i, k∗|C = 1] ∀i). Since (I∗g , I

∗
k) is a Bayes-Nash equilibrium,

E[i, g∗] = E[i, k∗|C = 0] by the proof of Proposition 2a. Then E[i, h∗] < E[i, k|C = 1] ∀i
because E[i, h∗] < E[i, g∗] = E[i, k|C = 0] ≤ E[i, k|C = 1]. Then (I∗h, I

∗
k) cannot be a Bayes-

Nash equilibrium by the proof of Proposition 2a. Contradiction. Therefore, the higher
marginal congestion costs in h reduce the number of vessels who fish in location h when
µ̃h = µ̃g (I∗h < I∗g ).

Together, the fact that vessels believe mean productivity in h is higher but know that
marginal congestion costs are also higher in h means that the effect of the closures policy on
fishing location choice is ambiguous. The closure announcement must be a sufficiently large
positive signal relative to congestion costs in order to increase the number of vessels who
choose to fish near closures (location h). In this case, there is a second condition necessary
for the closures policy to increase total juvenile catch: productivity and percentage juvenile
must be sufficiently high in location h relative to locations g and k.
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The treatment effect τ of the closures policy on total juvenile catch is

τ = TotJuv∗(C = 1)− TotJuv∗(C = 0)

= γ(I∗hµhρh + I∗k|C=1µkρk − (I∗gµgρg + I∗k|C=0µkρk))

= γ(I∗hµhρh − I∗gµgρg + µkρk(I
∗
k|C=1 − I∗k|C=0))

(A.3)

If I∗h > I∗g , the third term in the expression, µkρk(I
∗
k|C=1 − I∗k|C=0), is negative because

I∗k|C=1 < I∗k|C=0. In order for the closures policy to increase total juvenile catch (τ > 0),
the number of vessels fishing, productivity, and percentage juvenile in location h must be
sufficiently high relative to location g when there is no closure (I∗hµhρh >> I∗gµgρg), as well
as sufficiently high relative to productivity and percentage juvenile in location k.

Parametric example of Propositions 1 and 2a. Figure 1.3 displays the Bayes-Nash
equilibria when E[πi,`(µ`, I−i,`)|~̃µ, C] = µ̃` − α`I−i,`, where α` is the cost to vessel i from one
additional vessel fishing in location `. The equilibrium when C = 0 results from setting
µ̃g −αgI−i,g = µ̃k−αkI−i,k and the equilibrium when C = 1 is similarly defined. Recall that
marginal congestion costs are only different for h; αg = αk and let α represent this value.

The equilibrium when C = 0, (I∗g , I
∗
k), is ( µ̃g−µ̃k

2α
+ 1

2
I, µ̃k−µ̃g

2α
+ 1

2
I). The equilibrium when

C = 1, (I∗h, I
∗
k), is ( µ̃h−µ̃k

αh+α
+ α

αh+α
I, µ̃k−µ̃h

αh+α
+ αh

αh+α
I). Substituting these values into Equation

A.3 gives the change in total juvenile catch due to the policy.
Proof of Proposition 3. Since ˜µg,a > ˜µg,−a and congestion costs are the same in

locations g and k, the proof of Proposition 1 implies that type −a vessels will only choose g

after all type a vessels have chosen g (
I∗g,−a

I−a
> 0 only when

I∗g,a
Ia

= 1). Since the Bayes-Nash

equilibria are interior by assumption,
I∗g,−a

I−a
< 1 (if

I∗g,−a

I−a
= 1, then I∗k = 0). Then a greater

percentage of type a vessels choose g than type −a vessels:
I∗g,a
Ia

>
I∗g,−a

I−a
. Conversely, a lower

percentage of type a vessels choose k than type −a vessels:
I∗k,a
Ia

<
I∗k,−a

I−a
.

Since type a and type −a vessels are identical when C = 1 ( ˜µh,a = ˜µh,−a), the same

percentage of each type choose locations h and k (
I∗h,a
Ia

=
I∗h,−a

I−a
and

I∗k,a
Ia

=
I∗k,−a

I−a
). Since both

types of vessels catch the same number of juveniles when they fish in the same location,
TotJuv(C=1)∗−a

I−a
= TotJuv(C=1)∗a

Ia
. Then the percentage difference in treatment effects between
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the two types of vessels can be written as

τ−a
I−a
− τa
Ia

=
TotJuv(C = 1)∗−a − TotJuv(C = 0)∗−a

I−a
− TotJuv(C = 1)∗a − TotJuv(C = 0)∗a

Ia

=
TotJuv(C = 0)∗a

Ia
−
TotJuv(C = 0)∗−a

I−a

= γ(
I∗g,aµgρg + I∗k,aµkρk

Ia
−
I∗g,−aµgρg + I∗k,−aµkρk

I−a
)

= γ(µgρg(
I∗g,a
Ia
−
I∗g,−a
I−a

) + µkρk(
I∗k,a
Ia
−
I∗k,−a
I−a

))

= γ(µgρg(
I∗g,a
Ia
−
I∗g,−a
I−a

) + µkρk(
Ia − I∗g,a

Ia
−
I−a − I∗g,−a

I−a
))

= γ((µgρg − µkρk)(
I∗g,a
Ia
−
I∗g,−a
I−a

))

> 0

because µgρg > µkρk and
I∗g,a
Ia

>
I∗g,−a

I−a
.
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Appendix B

Property rights and the protection of
global marine resources

B.1 Data description and availability

The primary AIS dataset in my analysis contains global, daily hours of fishing by gear type
and flag state from 2012 to 2016 at a .01 degree resolution (Kroodsma et al., 2018). Gear type
is the type of fishing activity (e.g. drifting longline fishing). Flag state is the country in which
a vessel is registered. Vessels in this data have transponders that send identifying information
and their location, speed and course to satellites and terrestrial receivers every 2 to 30
seconds. Convolutional neural networks were applied to this vessel movement data to identify
fishing vessels and fishing activity. The creators of this dataset estimate that it captures 50-
70% of total fishing effort that occurs more than 100 nautical miles (nm) from shore1. This
dataset is publicly available at https://globalfishingwatch.force.com/gfw/s/data-download
under the heading “Daily Fishing Effort and Vessel Presence at 100th Degree Resolution by
Flag State and GearType, 2012-2016.”

I used individual fishing vessel characteristics and hours of fishing by individual vessels
to construct Figure B.6 and Table B.3. These two datasets are publicly available at the
same url as above under the headings “Fishing Vessels Included in Fishing Effort Data” and
“Daily Fishing Effort at 10th Degree Resolution by MMSI, 2012-2016”, respectively.

Finally, Global Fishing Watch (GFW) provided us with the data used to construct Figure
B.3. This data contains the last location and date of all instances in which a vessel with
a class A AIS transponder stopped transmitting for more than 24 hours. This data can be
obtained from GFW upon request.

Daily nighttime locations of individual lit fishing vessels are publicly available at https:
//data.ngdc.noaa.gov/instruments/remote-sensing/passive/spectrometers-radiometers/im
aging/viirs/vbd/v23/global-saa/daily/. This data was created by applying spike detection
algorithms to daily nighttime satellite imagery (Elvidge et al., 2015). Vessels in this dataset
use bright lights to attract catch. I used data for each day in 2017, as this is the first year

https://globalfishingwatch.force.com/gfw/s/data-download
https://data.ngdc.noaa.gov/instruments/remote-sensing/passive/spectrometers-radiometers/imaging/viirs/vbd/v23/global-saa/daily/
https://data.ngdc.noaa.gov/instruments/remote-sensing/passive/spectrometers-radiometers/imaging/viirs/vbd/v23/global-saa/daily/
https://data.ngdc.noaa.gov/instruments/remote-sensing/passive/spectrometers-radiometers/imaging/viirs/vbd/v23/global-saa/daily/
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in which global data is consistently available.
EEZ access agreements data were provided by the Sea Around Us (Lam et al., 2016).

This data contains the start and end year of access agreements between countries in which
one country pays another country to fish in that country’s EEZ. Access agreements can
also be multilateral. This data can be requested from the Sea Around Us, or by visiting
http://www.seaaroundus.org/data/#/eez, choosing an EEZ, and clicking “Internal Fishing
Access Agreements”. This data only includes access agreements that began on or before
2014. I added European Union (EU) access agreements that began after 2014 to this data
(the EU is the paying entity). EU access agreements are available at https://ec.europa.eu/f
isheries/cfp/international/agreements en.

EEZ-sea shapefiles are publicly available at http://marineregions.org/download file.
php?name=Intersect IHO EEZ v2 2012.zip (VLIZ, 2012). Global, gridded net primary
productivity (NPP) data are publicly available at http://www.science.oregonstate.edu/oc
ean.productivity/standard.product.php5 (Behrenfeld & Falkowski, 1997). I downloaded
8-day NPP composites from 2012 to 2016 at a .083 degree resolution. Global, gridded ocean
depth data at a .0167 degree resolution are publicly available at https://www.ngdc.noaa.go
v/mgg/global/relief/ETOPO1/data/bedrock/grid registered/georeferenced tiff/ETOPO1
Bed g geotiff.zip (Amante, 2009). Global, gridded sea surface temperature (SST) data are

available at https://podaac.jpl.nasa.gov/dataset/MODIS AQUA L3 SST THERMAL 8DA
Y 4KM DAYTIME V2014.0?ids=Measurement:Platform:Sensor:TemporalResolution&val
ues=Ocean%20Temperature:AQUA:MODIS:Weekly. I downloaded 8-day SST composites
from 2012 to 2016 at a .041 degree resolution (OBPG, 2015). I downloaded annual, taxon-
level catch data for each EEZ-sea region in my analysis from 2012 to 2014 (the most recent
year available) from the Sea Around Us using the seaaroundus R package (Chamberlain &
Reis, 2017; Pauly & Zeller, 2015). I obtained life history data for taxa caught in the EEZ-
sea regions in my analysis from FishBase and SeaLifeBase using the rfishbase R package
(Boettiger et al., 2012). Finally, global, gridded ocean surface currents data are available at
ftp://podaac-ftp.jpl.nasa.gov/allData/oscar/preview/L4/oscar third deg. I downloaded
annual files for 2012 to 2016 that contain surface current velocity at the 5-day, .33 degree
resolution (ESR, 2009).

B.2 Empirical strategy

I use the 200 nautical mile (nm) boundary between EEZs and the high seas as a regression
discontinuity to estimate the causal effect of EEZs on fishing effort. In a regression discon-
tinuity, treatment assignment for observation i, Di, is partially or completely determined
by whether a predictor variable, Xi, is above or below a certain cutoff value, c (Imbens &
Lemieux, 2008). Let Yi(1) denote the potential outcome if i is assigned to treatment and
Yi(0) denote the potential outcome if i is assigned to the control group (Rubin, 1974). The
assumption in a regression discontinuity design is that Yi(1) and Yi(0) are continuous in Xi;
they depend on Xi but do not change discontinuously as Xi changes. In other words, if

http://www.seaaroundus.org/data/#/eez
https://ec.europa.eu/fisheries/cfp/international/agreements_en
https://ec.europa.eu/fisheries/cfp/international/agreements_en
http://marineregions.org/download_file.php?name=Intersect_IHO_EEZ_v2_2012.zip
http://marineregions.org/download_file.php?name=Intersect_IHO_EEZ_v2_2012.zip
http://www.science.oregonstate.edu/ocean.productivity/standard.product.php5
http://www.science.oregonstate.edu/ocean.productivity/standard.product.php5
https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/data/bedrock/grid_registered/georeferenced_tiff/ETOPO1_Bed_g_geotiff.zip
https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/data/bedrock/grid_registered/georeferenced_tiff/ETOPO1_Bed_g_geotiff.zip
https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/data/bedrock/grid_registered/georeferenced_tiff/ETOPO1_Bed_g_geotiff.zip
https://podaac.jpl.nasa.gov/dataset/MODIS_AQUA_L3_SST_THERMAL_8DAY_4KM_DAYTIME_V2014.0?ids=Measurement:Platform:Sensor:TemporalResolution&values=Ocean%20Temperature:AQUA:MODIS:Weekly
https://podaac.jpl.nasa.gov/dataset/MODIS_AQUA_L3_SST_THERMAL_8DAY_4KM_DAYTIME_V2014.0?ids=Measurement:Platform:Sensor:TemporalResolution&values=Ocean%20Temperature:AQUA:MODIS:Weekly
https://podaac.jpl.nasa.gov/dataset/MODIS_AQUA_L3_SST_THERMAL_8DAY_4KM_DAYTIME_V2014.0?ids=Measurement:Platform:Sensor:TemporalResolution&values=Ocean%20Temperature:AQUA:MODIS:Weekly
ftp://podaac-ftp.jpl.nasa.gov/allData/oscar/preview/L4/oscar_third_deg
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not for the change in treatment assignment at the cutoff value, the outcome variable would
change smoothly across the cutoff value. Given this assumption, any discontinuous change
in Yi as Xi crosses the cutoff value is the causal effect of the treatment.

In this paper, after controlling for distance (Xi) to an EEZ-high seas boundary (c), the
discontinuous change in fishing effort (Yi) at the boundary is the causal effect of EEZs (Di)
on fishing effort. I have normalized EEZ-high seas boundaries to be distance 0 (c = 0).
Observations inside EEZs have positive distance values (Xi > 0) and observations on the
high seas have negative distance values (Xi < 0). If Xi > 0, observations are treated and
Di = 1. If Xi < 0, Di = 0.

I estimate equations of the following general form via ordinary least squares regression:

Yi = α + τDi +
3∑

k=1

βkX
k
i +Di

3∑
k=1

γkX
k
i + ui (B.1)

where Yi denotes an outcome variable (usually fishing effort), Greek letters denote coeffi-
cients, k denotes polynomial order, and ui denotes the error term. The parameter of interest
is τ , the treatment effect of EEZs on the outcome variable. If τ̂ < 0, there is a discontinuous
decrease in the outcome variable at the boundary (e.g., fishing effort is lower just inside
EEZs compared to just outside EEZs). I typically set K = 3, which controls for third-order
polynomials in distance to the boundary that are allowed to differ for observations inside an
EEZ and for observations outside an EEZ.

I provide estimation details for specific figures and tables in Section 2.4, in Section B.3,
and in figure and table captions. Replication code for all figures and tables is available at
https://github.com/englander/replication eez (except for Tables B.2 and B.3, which are
summary statistics tables). All analysis was performed in R, except for the calculation of
the confidence intervals in Figures 2.2, 2.4, B.1 and B.3-8, which were computed in Stata.
My confidence intervals account for heteroscedasticity and serial correlation (Newey & West,
1987). The lag used in calculating each confidence interval was chosen using an optimal lag
selection procedure (Newey & West, 1994).

B.3 Data processing, analysis, and interpretation of

specific figures and tables

Figure B.3 information

AIS transponders can be turned off on purpose or can randomly fail to transmit. To account
for the latter possibility, I normalized the count of off events for a given vessel type by the
hours of vessel presence (i.e. vessel density) for vessels of the same vessel type (see Section
B.1 for descriptions of these two datasets). I processed observations of off instances and vessel
presence hours into integer bins, summed over all EEZ-sea regions and all days, divided the

https://github.com/englander/replication_eez


APPENDIX B. PROPERTY RIGHTS AND THE PROTECTION OF GLOBAL
MARINE RESOURCES 109

number of off instances by the number of vessel hours, and multiplied by 10,000 (to get the
number of off instances per 10,000 vessel hours).

There is no significant discontinuity in off events at the EEZ-high seas boundary for
unauthorized foreign fishing vessels, nor is there a precise trend in off events on either
side of the boundary (Figure B.3a). Additionally, the frequency of off instances is too
low to meaningfully alter estimates of the effect of EEZs on fishing effort. Finally, the
nighttime lit vessels dataset provides further evidence that AIS transponder manipulation
is not significantly biasing my deterrence effect estimates. Vessels in this dataset use bright
lights at night to attract catch. If they are fishing, they appear in the data regardless of
whether they are fishing inside an EEZ or fishing on the high seas. The similarity of Figure
2.2c (AIS unauthorized foreign fishing) to Figure 2.2b (nighttime lit vessel count) therefore
provides additional evidence that AIS transponder manipulation is not driving estimated
deterrence effects.

There are several reasons why unauthorized foreign vessels would not strategically turn
off their AIS transponders in order to avoid detection. The expected benefit of reduced
collision risk (from not turning off transponders) could exceed the expected cost of being
caught illegally fishing in another nation’s EEZ if the probability of being caught is low.
Additionally, enforcement agencies may use monitoring systems other than AIS, such as
radar.

Figure B.4 and Table B.4 information

In Figure B.4a-e, I test whether my total deterrence effect estimate in Figure 2.2c is sensi-
tive to excluding the unauthorized foreign fishing effort observations that are closest to an
EEZ-high seas boundary. This test is motivated in part by the concern that my deterrence
effect estimates would be too large if enforcement inside EEZs increases unauthorized for-
eign fishing effort just outside EEZs (Ferraro et al., 2018). This scenario would lead us to
overestimate the total deterrence effect of EEZs because my measure of unauthorized foreign
fishing effort for the control group (unauthorized foreign fishing effort outside EEZs on the
high seas) would be higher than the true counterfactual unauthorized foreign fishing effort
if EEZs did not exist. On the other hand, my deterrence effect estimates would be too small
if unauthorized foreign vessels reduce high seas fishing effort in advance of EEZ boundaries
in order to ensure that they do not accidentally fish inside EEZs (e.g., as drifting longline
and purse seine vessels seem to do in Figure B.7b,d).

In both of these cases, bias in the total deterrence effect estimate is most likely to occur
from unauthorized foreign fishing effort observations that are closest to an EEZ-high seas
boundary. By excluding these observations and re-estimating the total deterrence effect, I
can get a sense for whether the total deterrence effect estimated reported in Figure 2.2c is
too large, too small, or robust to these concerns. This type of robustness check is referred to
as a “donut regression discontinuity” (donut RD) (Barreca et al., 2011). I also test in Figure
B.4 whether my total deterrence effect estimate in Figure 2.2c is sensitive to my choice of
only analyzing fishing effort that occurs within 50 km of an EEZ-high seas boundary.
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Figure B.4b-e include unauthorized foreign fishing effort that occurs within 50 km or 100
km of an EEZ-high seas boundary, and exclude observations within 10 km or 25 km of an
EEZ-high seas boundary. The range of observations that are included is referred to as the
“bandwidth” and the range of observations that are excluded is referred to as the “donut
hole”. For example, Figure B.4c uses unauthorized foreign fishing effort within 100 km of
an EEZ-high seas boundary (bandwidth is 100 km), but drops observations within 10 km of
an EEZ-high seas boundary (donut hole is 10 km). I control for a linear trend in distance to
an EEZ-high seas boundary instead of a third-order polynomial because donut RDs require
extrapolating through the donut hole to the discontinuity cutoff value (see Figure B.4b-e).
Figure B.4a replicates Figure 2.2c with a linear trend. When assessing how my various donut
RD specifications change the total deterrence effect estimate, I always compare my donut
RD estimates to the estimate in Figure B.4a.

Every combination of different bandwidths and donut holes yields deterrence effect esti-
mates that are .3 to 2 percentage points larger than my baseline estimate in Figure B.4a (see
Table B.4 for numeric estimates corresponding to Figure B.4a-e). This exercise suggests that
the total deterrence effect estimate displayed in Figure 2.2c is not biased by the potential
spillover concerns described above.

Figure B.4f displays an additional test for whether enforcement inside EEZs causes
spillovers of unauthorized foreign fishing into control regions (high seas regions within 50
km of an EEZ). As discussed above, this type of spillover would make my deterrence effect
estimates upward biased. The intuition for the test in Figure B.4f is that EEZs whose con-
trol regions have a greater degree of overlap with the control regions of other EEZs should
have larger deterrence effects, all else equal, if this type of spillover is causing upward bias
in my deterrence effect estimates. The reason that EEZs with more control region overlap
would have greater deterrence effect estimates is that their control regions would be receiv-
ing enforcement-induced spillovers from other EEZs in addition to own-EEZ spillovers. For
example, the control region corresponding to Iceland’s EEZ in the Norwegian Sea would
be receiving spillovers from other EEZs that surround the high seas of the Norwegian Sea
(Norway, Denmark, Greenland, and the Faroe Islands) in addition to receiving own-spillovers
(from enforcement of Iceland’s EEZ).

For each EEZ-sea region, I calculate the fraction of its control region that is overlapping
with the control regions of other EEZ-sea regions (minimum value = 0, 25th percentile = .07,
median = .16, 75th percentile = .40, maximum = 2.17). An EEZ-sea region’s overlap fraction
exceeds 1 when the area of overlap with every other control region is larger than the area
of the EEZ-sea region’s control region. Following the same procedure used to create Figure
2.4a, I first grouped the 178 EEZ-sea regions with more than zero AIS fishing hours into 20
quantiles according to their control region’s overlap fraction. Then I estimated Equation 2.2
(in Section 2.4) via ordinary least squares regression, obtaining a separate deterrence effect
for each quantile group. Recall that the dependent variable in this regression is hours of
unauthorized foreign fishing per thousand km2 for a given EEZ-sea region and integer bin.

In Figure B.4f, overlap fraction groups farther to the right on the x-axis contain EEZ-
sea regions with larger overlap fractions. If spillovers cause upward bias in my estimates,
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deterrence effects should be increasing to the right along the x-axis. In fact, deterrence effects
are slightly decreasing in overlap fraction, though the trend is not statistically significant
(p-value from regressing overlap fraction group deterrence effect on a constant and a linear
trend in overlap fraction group number is .34; N=20). Figure B.4f therefore provides further
evidence that my deterrence effect estimates are not biased by potential spillovers.

Figure B.5 information

Some countries, such as China and Taiwan, do not make their EEZ access agreements pub-
licly available. Vessels from these countries are therefore always classified as unauthorized
foreign when they are fishing closest to any EEZ other than their home country. As a
consequence, I may be underestimating deterrence effects by misclassifying vessels that are
actually authorized foreign. This misclassification would lead to underestimated deterrence
effects because unlike unauthorized foreign vessels, authorized foreign vessels are more likely
to fish just inside EEZs (Figure 2.2d). Figure B.5a plots unauthorized foreign fishing by
vessels from (flagged to) countries with at least one public access agreement. Figure B.5b
plots unauthorized foreign fishing by vessels from countries with no public access agreements
(e.g. Chinese vessels). The deterrence effect in both figures is about 80%, suggesting that
incomplete access agreements data is not significantly affecting my results.

Figure B.6 and Table B.3 information

GFW provides two global, daily fishing hours datasets: .01 degree resolution data at the flag
state-gear type level (the primary dataset used in this paper) and .1 degree resolution data
at the individual vessel level. The latter data contains vessels’ MMSI, a unique identifier,
which I joined to a third GFW dataset containing estimated vessel gear type, gross tonnage,
length, and engine power (Kroodsma et al., 2018). I matched .01 degree resolution fishing
observations to .1 degree resolution observations in order to add vessel characteristics to the
.01 degree resolution dataset. I uniquely matched 79.4% of .01 degree resolution fishing hours
observations to .1 degree resolution fishing hours observations. I used the variables these
two datasets have in common to match observations across them: the location, date, gear
type, flag state, and quantity of fishing hours. I calculated fishing hours-weighted average
vessel characteristics for the .01 degree resolution observations that matched to multiple .1
degree resolution observations. I use the dataset created at this stage to create Table B.3.

For Figure B.6, I then calculated fishing hours-weighted median gross tonnage, length,
and engine power for each vessel type and for each gear type. I used these median values
to classify fishing hours observations as belonging to above or below median vessels. I then
summed fishing hours observations over all EEZ-sea regions and over all days, and divided
by the surface area in each integer bin in millions of km2.

Figure B.6 shows that larger vessels (in terms of gross tonnage) have larger discontinuities
at the boundary, suggesting they are more able to choose their fishing locations strategically
(e.g. because of superior technology). Larger unauthorized foreign vessels are more able to
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“fish the line” just outside EEZs on the high seas, and larger authorized foreign and domestic
vessels are more able to avoid competing with unauthorized foreign vessels on the high seas
by fishing just inside EEZs. Larger unauthorized foreign vessels also account for a larger
proportion of unauthorized fishing inside EEZs. These results are unchanged when vessel
length or engine power are used to divide vessels into above and below median size (available
upon request).

Figure B.10 information

EEZ-sea regions with fish stocks that move more frequently across their high seas boundaries
could have larger deterrence effects if unauthorized foreign vessels are more likely to fish just
outside these EEZs (e.g., in order to catch fish as they swim from the EEZ into the high seas).
I use two measures of fish mobility to test this hypothesis. First, I compute the fraction of
an EEZ-sea region’s catch that is from oceanodromous species. Oceanodromous fish are
migratory fish that spend their entire life in the ocean. Second, I compute the average ocean
surface current direction at the EEZ-high seas boundary for each EEZ-sea region. EEZ-sea
regions in which the current typically flows out of the EEZ toward the high seas might have
more unauthorized foreign vessels fishing just outside the EEZ on the high seas (and thus
have larger deterrence effects). After computing these two values for each EEZ-sea region,
I follow the same procedure used to generate Figure 2.4a in order to non-parametrically
estimate a relationship between deterrence effects and these two measures of fish mobility.

I computed the fraction of an EEZ-sea region’s catch that is from oceanodromous species
as follows. First, I downloaded annual, taxon-level catch data for each EEZ-sea region
in my analysis from 2012 to 2014 (the most recent year available) from the Sea Around
Us using the seaaroundus R package (Chamberlain & Reis, 2017; Pauly & Zeller, 2015).
I dropped observations that contained “Miscellaneous” or “fishes not identified” in the
“taxon scientific name” column (e.g., “Miscellaneous marine crustaceans” and “Marine fishes
not identified”). For each EEZ-sea region-taxon pair, I queried FishBase and SeaLifeBase for
the taxon’s migration patterns using the rfishbase package (Boettiger et al., 2012). Species
migration patterns are recorded in the “AnaCat” variable in the Species Table in FishBase
and SeaLifeBase and can take the following values: anadromous, catadromous, amphidro-
mous, potamodromous, limnodromous, oceanodromous, non-migratory, and missing. In
cases without an initial match between a Sea Around Us taxon name and scientific name(s)
in FishBase or SeaLifeBase, I iteratively queried FishBase and SeaLifeBase at higher tax-
onomic classifications until I found a match. For example, if the Sea Around Us taxon
name was “Gadiformes” (an order), I obtained the AnaCat variable of all species in the
Gadiformes order. In all cases, I filtered FishBase/SeaLifeBase observations to those in the
same FAO region as the EEZ-sea region and dropped FishBase/SeaLifeBase observations
that were missing an AnaCat value. If I obtained migration patterns for the same species
from both FishBase and SeaLifeBase, I used the migration pattern value from FishBase.
I computed the fraction of species that are oceanodromous for EEZ-sea region-taxon pairs
that had multiple FishBase/SeaLifeBase matches. For example, I calculated that 71% of
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Gadiformes species that are likely present in the Irish part of the North Atlantic Ocean are
oceanodromous.

After determining whether each EEZ-sea region-taxon pair is oceanodromous (or the
fraction that is oceanodromous), I computed the weighted fraction of an EEZ-sea region’s
catch that is oceanodromous, using the tons caught of each taxon in the EEZ-sea region
between 2012 and 2014 as weights. I thus obtained a value between 0 and 1 for each EEZ-
sea region (minimum value = 0, 25th percentile = .70, median = .92, 75th percentile = .99,
maximum = 1). I was unable to compute this value for the South Georgian part of the
Southern Ocean because all of its Sea Around Us taxa were “Miscellaneous”, “fishes not
identified”, or had missing AnaCat values in FishBase and SeaLifeBase. However, I was
able to compute this value for all other EEZ-sea regions in my analysis. I also computed
the fraction of an EEZ-sea region’s catch that are not non-migratory, but found that this
variable had less variation across EEZ-sea regions (minimum value = .29, 25th percentile =
.72, median = .99, 75th percentile = .998, maximum = 1).

I computed average ocean surface current direction at each EEZ-sea region’s high seas
boundary as follows. I downloaded surface current velocity data from 2012 to 2016 from
NASA’s Earth Space Research group (ESR, 2009). The data contain surface current velocity
at the 5-day, .33 degree resolution. For each observation intersecting a given EEZ-sea region’s
high seas boundary, I calculated whether the current was moving away from the centroid of
the EEZ-sea region. I recorded a value of 1 if it was, and recorded a value of 0 otherwise. I
then calculated the average current direction over all grid cells and all 5-day periods for each
EEZ-sea region. I thus obtained a value between 0 and 1 for each EEZ-sea region (minimum
value = .11, 25th percentile = .45, median = .52, 75th percentile = .57, maximum = .85).
A value of 0 would indicate that the current is always flowing into the EEZ-sea region at
the EEZ-sea region’s high seas boundary, and a value of 1 would indicate that the current is
always flowing out of the EEZ-sea region at the EEZ-sea region’s high seas boundary.

I created Figure B.10a,b using the same procedure I implemented to create Figure 2.4a
(see Section 2.4). I first grouped the EEZ-sea regions with more than zero AIS fishing hours
into 20 quantiles according to their fraction of catch from oceanodromous species (Figure
B.10a) and average surface current direction (Figure B.10b). There are 8 or 9 EEZ-sea
regions in each quantile group. Then I estimated Equation 2.2 (in Section 2.4) via ordinary
least squares regression, obtaining a separate deterrence effect for each quantile group.

In both parts of Figure B.10, quantile groups farther to the right on the x-axis are
expected to contain EEZ-sea regions with fish stocks that move more frequently from EEZs
into the high seas. If unauthorized foreign vessels are more likely to locate themselves just
outside these EEZs in order to catch fish as they swim from these EEZs into the high seas,
then deterrence effects should be increasing to the right along the x-axis. However, neither
Figure B.10a nor Figure B.10b exhibit a trend in deterrence effects. p-values from regressing
quantile group-specific deterrence effects on a constant and a linear trend in quantile group
number are .21 and .89, respectively (N=20). By contrast, deterrence effects clearly increase
in average NPP. The p-value from regressing the NPP quantile group-specific deterrence
effect estimates in Figure 2.4a on a constant and a linear trend in quantile group number
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is .01 (N = 20). The two proxies for fish mobility I have examined in this section seem to
be less important for understanding deterrence effect heterogeneity than NPP, a proxy for
fishery value (see Sections 2.2 and 2.4).

B.4 The historical origins of 200 nautical mile-wide

EEZs

In 1947, Chile became the first nation to declare a 200 nm exclusive zone. The lawyer in
charge of finding a legal precedent for this unilateral declaration chose 200 nm to match his
imprecise map of a neutrality zone around Chile that was declared by the United States in
1939. The width of the neutrality zone was actually 300 nm (Hollick, 1977). In the ensuing
decades, other countries followed Chile’s precedent, and the right of coastal nations to a 200
nm EEZ was finally codified at the third UN Conference on the Law of the Sea between 1973
and 1982 (Hannesson, 2013). Nations with fewer than 400 nm of ocean separating them
typically divide the available ocean area equally. I only use EEZ boundaries that are 200
nm from shore and border the high seas in my analysis.

This history supports the assumption that is necessary for my regression discontinuity
design to be valid (Section B.2), because it suggests that it is very unlikely that unobserv-
able variables that affect fishing change discontinuously at EEZ-high seas boundaries. The
200 nm maximum width for EEZs was not chosen because fishing opportunities change dis-
continuously at this distance from shore, so it is very likely that discontinuous changes in
fishing at EEZ-high seas boundaries are due to the discontinuous change in institutions at
these boundaries (EEZs on one side and not the other).

B.5 Theoretical models predicting that more valuable

EEZs have larger deterrence effects and more

enforcement effort

I develop two theoretical models in this section to show that (Claim 1) EEZs that are more
valuable near their high seas boundaries have larger deterrence effects and (Claim 2) countries
with EEZs that are more valuable near their high seas boundaries find it in their interest to
exert more enforcement effort. First, I demonstrate that my empirical result in Figure 2.4
can be supported by economic theory. Then, I show that my explanation for the empirical
result in Figure 2.4, that countries are incentivized to exert more enforcement effort if their
EEZs are more valuable, can also be supported by economic theory.
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Claim 1: Deterrence effects are increasing in EEZ value

Suppose a representative unauthorized foreign fishing vessel maximizes profit (π) by choosing
fishing effort just inside a given EEZ (i), fishing effort just outside the EEZ (o), and fishing
effort everywhere else (e). I develop a static model for simplicity and because my empirical
analysis is a spatial cross-section. Revenue from fishing just inside or just outside the EEZ
is R(i, o; v), where v is a fixed (exogenous) parameter representing the “value” or quality of
the fishery near the EEZ boundary. Revenue from fishing effort everywhere else is M(e).
Suppose the cost of a unit of fishing effort is c. Then fishing effort costs are linear in total
fishing effort and equal (i + o + e)c. Finally, fishing opportunities are identical just inside
and just outside the EEZ except that the vessel incurs an additional cost σ(i) from fishing
just inside the EEZ that reflects the probability of being punished for illegal fishing and the
magnitude of punishment (e.g. fine level) if punishment occurs. I refer to σ(i) as the vessel’s
expected punishment cost.

Let subscripts denote partial derivatives with respect to a function’s argument and let (·)
indicate that a function’s arguments have been suppressed. I make the following assumptions.
First, the vessel’s expected punishment cost from illegally fishing just inside the EEZ is
increasing and convex (σi(i) > 0 and σii(i) > 0). Second, both revenue functions are
increasing and concave in fishing effort (Ri(·), Ro(·), Me(e) > 0, and Rii(·), Roo(·), Mee(e) <
0). Third, the marginal increase in revenue from increasing fishing effort just inside or just
outside the EEZ is increasing in the value of the fishery near the EEZ boundary (Riv(·),
Rov(·) > 0). Because fishing revenue opportunities are identical just inside and just outside
the EEZ, I assume that these terms are equal (Riv(·) = Rov(·)), and also assume that
Rii(·) = Roo(·).

The vessel’s decision problem is:
maxπ = R(i, o; v) +M(e)− (i+ o+ e)c− σ(i)

i, o, e

The vessel’s first-order conditions (FOCs) with respect to i, o, and e are:
FOC i: Ri(·)− c− σi(i) = 0
FOC o: Ro(·)− c = 0
FOC e: Me(e)− c = 0
The deterrence effect, τ , for a given EEZ is total unauthorized foreign fishing effort

just inside the EEZ minus total unauthorized foreign fishing effort just outside the EEZ.
Let ∗ indicate the optimized value of a choice parameter (e.g., i∗). The difference in the
representative foreign vessel’s fishing effort just inside the EEZ and just outside the EEZ is
i∗ − o∗ and is given by the above three first-order conditions. In the context of this model,
since unauthorized foreign vessels are identical, τ = (i∗ − o∗)N , where N is the number
of unauthorized foreign fishing vessels. EEZs that deter unauthorized foreign fishing have
τ < 0. Claim 1 is that deterrence effects are increasing (becoming larger negative numbers)
as the value of the fishery near the EEZ boundary increases. Mathematically, this claim is
dτ
dv

= (di
∗

dv
− do∗

dv
)N < 0. We show this claim by totally differentiating the three FOCs with
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respect to i, o, e, and v, and applying Cramer’s Rule to derive di∗

dv
and do∗

dv
.Rii(·)− σii(·) Rio(·) 0

Roi(·) Roo(·) 0
0 0 Mee(·)

dido
de

 =

−Riv(·)
−Rov(·)

0

 dv
Applying Cramer’s rule to the above system of equations gives di∗

dv
> 0 and do∗

dv
> 0 as

long as Roo(·) < Rio(·) (equivalently, Rii(·) < Roi(·)). This conditions means that increasing
fishing effort in the same location causes a larger decrease in marginal revenue than increasing
fishing effort in the adjacent location.

Though fishing effort just inside and just outside the EEZ both increase in the value of
this fishery v, fishing effort just inside the EEZ increases by a relatively smaller amount.
Intuitively, the potential revenue from fishing just inside and just outside the EEZ increases
by the same amount, but less fishing effort is allocated to just inside the EEZ because of
the risk of being punished for illegally fishing inside the EEZ. To see this mathematically,
let A denote the above 3x3 matrix (the left-hand side matrix) and let det(A) denote the

determinant of A. Then dτ
dv

= (di
∗

dv
− do∗

dv
)N = −Riv(·)Mee(·)σii(·)

det(A)
N . Since Riv > 0, Mee < 0,

and σii(·) > 0, the numerator of dτ
dv

is positive. Since det(A) is negative by the second-order
condition for a maximum, dτ

dv
< 0. Deterrence effects are increasingly large (more negative)

as the value of the fishery near the EEZ boundary increases.

Claim 2: Enforcement effort is increasing in fishery value

Now consider a country choosing enforcement effort z to minimize the quantity of unau-
thorized foreign fishing effort inside its EEZ and the cost of enforcement effort, c(z). Let
I(z; v) denote total unauthorized foreign fishing effort inside the country’s EEZ, where v
represents the exogenous component of the fishery’s value. Other variables may affect unau-
thorized foreign fishing effort inside the EEZ, such as fishing opportunities in other locations,
but it is not necessary to model them explicitly in order to support Claim 2. As before, I
have developed a static model for simplicity and because my empirical analysis is a spatial
cross-section.

I assume that unauthorized foreign fishing effort inside the EEZ is decreasing in en-
forcement effort (Iz(z; v) < 0). I also assume that the marginal decrease in unauthorized
foreign fishing effort from increased enforcement effort is increasing (becoming less negative)
as fishery value increases (Izv(z; v) > 0). Intuitively, this assumption means that additional
enforcement effort “buys” less deterrence when the fishery is more valuable because unautho-
rized foreign vessels are more willing to risk punishment in order to access a more valuable
fishery.

The country solves:
maxz −I(z; v)− c(z)
The first-order condition with respect to z is:
−Iz(z; v)− cz(z) = 0
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Totally differentiating the first-order condition with respect to z and v and then re-
arranging terms gives dz

dv
= −Izv(z;v)

Izz(z;v)+czz(z)
. Since Izv > 0, the numerator is negative. The

denominator is also negative by the second-order condition for a maximum. Therefore,
enforcement effort is increasing in fishery value (dz

dv
> 0). Intuitively, if fishery value increases,

I(z; v) increases, all else equal. But the cost of enforcement effort for the country c(z) has not
changed. Enforcement effort increases with fishery value because the marginal benefit of an
additional unit of enforcement effort (in terms of a reduction of unauthorized foreign fishing
inside the EEZ) increases more than the marginal cost of an additional unit of enforcement
effort.
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B.6 Supplementary Figures

Figure B.1: No other discontinuities at EEZ-high seas boundaries

Notes: Average (a) ocean depth, (b) net primary productivity (NPP), and (c) sea surface temper-
ature (SST) with respect to an EEZ-high seas boundary. Grid cells are assigned to the minimum
integer bin (over all EEZ-sea regions) that their cell center intersects (see Section 2.4). Weighted
average values over all EEZ-sea regions are calculated using grid cell areas (all variables) and the
number of days each composite comprises (NPP and SST only) as weights. NPP and SST averages
are calculated using data between 2012 and 2016. Points are data. Lines are ordinary least squares
third-order polynomial fits in distance to the boundary. 95% confidence intervals (shaded) are
estimated using standard errors that account for heteroscedasticity and serial correlation (Newey
& West, 1987).
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Figure B.2: EEZ-sea regions in analysis

Notes: EEZ-sea regions that are 200 nm wide and border the high seas are filled orange. Note that
I have filled the entire area of these EEZ-sea regions for visibility, but only analyze fishing effort
that occurs within 50 km of an EEZ-high seas boundary. All other EEZ-sea regions are unfilled.
Antarctica is excluded from the analysis because its resources do not belong to a single nation.
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Figure B.3: AIS transponder off events by distance to an EEZ-high seas boundary

Notes: Off events per 10,000 hours of AIS vessel presence between 2012 and 2016 for (a) unautho-
rized foreign fishing vessels, (b) authorized foreign fishing vessels, and (c) domestic fishing vessels.
See Section B.3 for a discussion of this figure. Points are data. Lines are ordinary least squares
third-order polynomial fits in distance to the boundary. 95% confidence intervals (shaded) are
estimated using standard errors that account for heteroscedasticity and serial correlation (Newey
& West, 1987).
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Figure B.4: Robustness of deterrence effect estimates to potential spillovers

Notes: Deterrence effect estimate using (a) all observations within 50 km of an EEZ-high seas
boundary, (b) observations between 10 and 50 km from a boundary, (c) between 10 and 100 km,
(d) between 25 and 50 km, and (e) observations between 25 and 100 km from a boundary. See Table
B.4 for numerical point estimates corresponding to these figures. Points are data. I control for a
linear trend in distance to the boundary instead of a third-order polynomial because higher-order
polynomials are unsuitable for extrapolating to the boundary, as is required in a donut RD. 95%
confidence intervals (shaded) are estimated using standard errors that account for heteroscedasticity
and serial correlation (Newey & West, 1987). (f) Contribution of each overlap fraction group to the
total deterrence effect. I estimate a deterrence effect for each overlap fraction group, and divide each
group’s effect by the sum of all groups’ deterrence effects. Overlap fraction groups that contribute
a positive percentage (green) deter unauthorized foreign fishing. The black line is a linear trend.
See Section B.3 for a discussion of this figure.
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Figure B.5: Unauthorized foreign fishing by availability of EEZ access agreements

Notes: Unauthorized foreign fishing by vessels from countries that (a) make their access agreements
publicly available and (b) do not publish their access agreements. See Section B.3 for a discussion
of this figure. Points are data. Lines are ordinary least squares third-order polynomial fits in
distance to the boundary. 95% confidence intervals (shaded) are estimated using standard errors
that account for heteroscedasticity and serial correlation (Newey & West, 1987).
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Figure B.6: Larger fishing vessels have larger discontinuities

Notes: Fishing by above and below median gross tonnage (a) unauthorized foreign vessels, (b)
authorized foreign vessels, and (c) domestic fishing vessels. See Section B.3 for a discussion of this
figure. Points are data. Lines are ordinary least squares third-order polynomial fits in distance to
the boundary. 95% confidence intervals (shaded) are estimated using standard errors that account
for heteroscedasticity and serial correlation (Newey & West, 1987).
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Figure B.7: Deterrence effect by gear type

Notes: a, Hours of fishing by unauthorized foreign vessels for all gear types (equivalent to Figure
2.2c; reproduced here for reference). Hours of unauthorized foreign (b) drifting longline fishing, (c)
fixed gear fishing, (d) purse seine fishing, (e) squid jigger fishing, and (f) trawler fishing. Points are
data. Lines are ordinary least squares third-order polynomial fits in distance to the boundary. 95%
confidence intervals (shaded) are estimated using standard errors that account for heteroscedasticity
and serial correlation (Newey & West, 1987).
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Figure B.8: Unauthorized foreign fishing for the top three flag states (fishing countries) in each
gear type

Notes: a, All gear types, (b) drifting longline fishing, (c) fixed gear fishing, (d) purse seine fishing,
(e) squid jigger fishing, and (f) trawler fishing. I calculated the top three flag states for each gear
type in terms of total hours of unauthorized foreign fishing within 50 km of any EEZ-sea region in
my analysis between 2012 and 2016. Points are data. Lines are ordinary least squares third-order
polynomial fits in distance to the boundary. 95% confidence intervals (shaded) are estimated using
standard errors that account for heteroscedasticity and serial correlation (Newey & West, 1987).
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Figure B.9: EEZ-sea regions that do not deter unauthorized foreign fishing

Notes: These 83 EEZ-sea regions have enough unauthorized foreign fishing within 50 km of their
high seas boundary to estimate a deterrence effect (more than 10 hours), but they do not deter
unauthorized foreign fishing (unauthorized foreign fishing is higher just inside their EEZ than just
outside).
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Figure B.10: Deterrence effect heterogeneity by fish stock movement patterns

Notes: Contribution of each (a) oceanodromous fraction group and (b) ocean surface current di-
rection group to the total deterrence effect. The creation of these variables is described in Section
B.3. I estimate a deterrence effect for each quantile group, and divide each group’s effect by the
sum of all groups’ deterrence effects. Quantile groups that contribute a positive percentage (green)
deter unauthorized foreign fishing. The black lines are linear trends.

B.7 Supplementary Tables
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Table B.1: Effect of EEZs on fishing effort

Fig. 2.2a Fig. 2.2b Fig. 2.2c Fig. 2.2d
Total AIS VBD Unauth. For. Auth. For. Domestic

(1) (2) (3) (4) (5)

Levels -190,359 -5,496 -195,197 1,927 2,911
(23,570)*** (608)*** (20,887)*** (686)*** (2,013)

NW lag 2 6 4 4 7

Logs -1.37 -1.33 -1.66 0.22 0.36
(0.21)*** (0.10)*** (0.25)*** (0.09)** (0.10)***

NW lag 3 8 2 4 4

Percentage -74.6% -73.5% -81.0% 24.8% 43.0%

Notes: This table contains numeric estimates corresponding to Figures 2.2a-d. The “levels” row
displays the estimated effect of EEZs on the untransformed dependent variable. The “logs” row
displays the estimated effect of EEZs on the natural log of the dependent variable. Newey-West
(NW) standard errors are displayed in parentheses (Newey & West, 1987). The optimal NW lag
for each regression was chosen using the procedure described in Newey and West (1994). The
“percentage” row expresses the effect of EEZs as a percentage difference in fishing just inside EEZs
compared to just outside EEZs. This percentage difference uses the estimated effect from the
natural log specification and is computed using the formula 100(elogeffect−1). All regressions have
98 observations. ***p < 0.01, **p < 0.05, *p < 0.1.
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Table B.2: Gear type composition by vessel type

Unauthorized Foreign Authorized Foreign Domestic

Drifting Longlines 46.9% 58.5% 29.9%

Trawlers 22.8% 16.5% 55.1%

Squid Jiggers 26.2% 0.0% 2.0%

Fixed Gear 1.6% 10.8% 4.9%

Purse Seines 2% 13.9% 3.7%

Other 0.4% 0.2% 4.4%

Total Fishing Hours 3,318,382 276,947 561,728

Notes: Each column lists the percentage of AIS fishing hours between 2012 and 2016 from each gear
type for a given vessel type. Only fishing within 50 km of an EEZ-high seas boundary is included
in this table.
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Table B.3: Mean vessel characteristics by vessel type and gear type

Geartype Characteristic Unauthorized Foreign Authorized Foreign Domestic

Drifting Longlines
Gross Tonnage 379 [251] 264 [133] 311 [339]

Length (m) 42.8 [12] 33.2 [10.5] 30.9 [11.5]

Engine Power (kW) 828 [330] 421 [224] 587 [391]

Trawlers
Gross Tonnage 2,287 [1,961] 1,926 [2,341] 1,439 [1,318]

Length (m) 73.2 [17.7] 61.7 [27.6] 57.7 [19.5]

Engine Power (kW) 2,967 [1,527] 2,194 [1,822] 2,264 [1,465]

Squid Jiggers
Gross Tonnage 925 [313] NA [NA] 596 [220]

Length (m) 58.7 [6.7] NA [NA] 53.5 [4.7]

Engine Power (kW) 1,321 [356] NA [NA] 1,246 [243]

Fixed Gear
Gross Tonnage 697 [255] 297 [221] 456 [310]

Length (m) 51.2 [6.4] 32.6 [10.6] 38.4 [13.1]

Engine Power (kW) 1,097 [274] 556 [402] 693 [299]

Purse Seines
Gross Tonnage 1,399 [424] 1,355 [566] 1,402 [447]

Length (m) 69.3 [8.5] 64.6 [15] 64.9 [11.8]

Engine Power (kW) 2,728 [655] 2,402 [860] 2,757 [815]

Other
Gross Tonnage 574 [438] 265 [163] 740 [550]

Length (m) 51 [15.3] 37.5 [15.1] 45.3 [13.2]

Engine Power (kW) 1,354 [565] 694 [438] 1,219 [606]

All Geartypes
Gross Tonnage 984 [1,226] 694 [1,185] 1,004 [1,137]

Length (m) 54.6 [17.5] 42.2 [20.6] 48.3 [20.6]

Engine Power (kW) 1,490 [1,172] 1,005 [1,194] 1,637 [1,386]

Notes: Mean of a characteristic is weighted by AIS fishing hours within 50 km of an EEZ-high seas
boundary between 2012 and 2016. Hours-weighted standard deviations displayed in brackets.
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Table B.4: Deterrence effects excluding observations closest to an EEZ-high seas boundary and
using different bandwidths

(a) (b) (c) (d) (e)

Levels -201,861 -203,693 -195,512 -217,826 -189,830
(4,223)*** (3,762)*** (3,418)*** (9,819)*** (6,701)***

NW lag 6 6 8 5 7

Logs -2.11 -2.29 -2.20 -2.29 -2.14
(0.06)*** (0.02)*** (0.02)*** (0.06)*** (0.04)***

NW lag 6 6 7 5 6

Percentage -87.9% -89.9% -88.9% -89.9% -88.2%
Difference -2.0% -1.1% -2.0% -0.3%

Donut hole 0 km 10 km 10 km 25 km 25 km
Bandwidth 50 km 50 km 100 km 50 km 100 km
Observations 98 80 180 50 150

Notes: This table contains numeric estimates corresponding to Figure B.4a-e. The “levels” row
displays the estimated effect of EEZs on hours of unauthorized foreign fishing effort per million
km2. The “logs” row displays the estimated effect of EEZs on the natural log of hours of unau-
thorized foreign fishing effort per million km2. Newey-West (NW) standard errors are displayed in
parentheses (Newey & West, 1987). The optimal NW lag for each regression was chosen using the
procedure described in Newey and West (1994). The “percentage” row expresses the effect of EEZs
as a percentage difference in fishing just inside EEZs compared to just outside EEZs. This percent-
age difference uses the estimated effect from the natural log specification and is computed using the
formula 100(elogeffect − 1). The “difference” row is the percentage difference minus the percentage
difference in Figure B.4a. The “donut hole” row refers to the observations that are excluded from
the regression. The “bandwidth” row refers to the data used in the regression. For example, the
column (c) regression uses unauthorized foreign fishing effort within 100 km of an EEZ-high seas
boundary (bandwidth = 100 km), but excludes observations within 10 km of an EEZ-high seas
boundary (donut hole = 10 km). See Section B.3 for additional details and interpretation of these
results. ***p < 0.01, **p < 0.05, *p < 0.1.
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Appendix C

Armed conflict increases elephant
poaching

C.1 Supplementary Figures

Figure C.1: Effect of conflict onset on contemporaneous PIKE, using different battle death thresh-
olds to define conflict onset events

Notes: Each point represents the result of a separate regression. The regressions re-estimate Equa-
tion 1, but use the battle death threshold indicated by the x-axis to define onset events. All
regressions have 631 observations. Standard errors are estimated by cluster bootstrapping with
replacement at the country-level (1,000 replications). 95% confidence intervals are displayed.
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Figure C.2: Effect of conflict onset on contemporaneous PIKE, using different buffer distances to
connect onset events to MIKE sites.

Notes: Each point represents the result of a separate regression. The regressions re-estimate Equa-
tion 1, but use the buffer distance indicated by the x-axis to connect onset events to MIKE sites.
The third-order polynomials in temperature and precipitation are also recalculated using the new
buffer distance. All regressions have 631 observations. Standard errors are estimated by cluster
bootstrapping with replacement at the country-level (1,000 replications). 95% confidence intervals
are displayed.



APPENDIX C. ARMED CONFLICT INCREASES ELEPHANT POACHING 136

Figure C.3: Effect of conflict onset on contemporaneous PIKE, “correcting” for change in proba-
bility of detecting poached carcasses at conflict onset.

Notes: Each point represents the result of a separate regression. The regressions reproduce the
Equation 1 specification, but “correct” for a different change in the probability of poached carcass
detection at conflict onset. For example, if I assume that poached carcasses were 20% more likely to
be detected at conflict onset, I deflate the observed count of poached carcasses by 20% for all site-
years in which conflict onset occurred (divide the count by 1.2). I do not change carcass counts for
site-years in which conflict onset does not occur. After “correcting” carcass counts in this manner, I
recalculate PIKE and estimate Equation 1. All regressions have 631 observations. Standard errors
are estimated by cluster bootstrapping with replacement at the country-level (1,000 replications).
95% confidence intervals are displayed.
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Figure C.4: Distribution of residuals from estimating Equation 1.

Notes: This figure plots residuals from estimating Equation 1 by ordinary least squares regression.
A Shapiro-Wilk test fails to reject the null hypothesis that the residuals are normally distributed
(p-value equals .104; N = 631).
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Figure C.5: Temporal dynamics of poaching with respect to conflict onset, using illegal carcass
count as dependent variable and controlling for natural mortality carcass count.

Notes: This figure reproduces the event study displayed in Figure 3.2 in the main text, but estimates
a negative binomial regression with illegal carcass count as the dependent variable instead of PIKE,
and adds ln(natural mortality count + 1) as a control variable. Coefficients are interpretable in
log points. Standard errors are not used in the extrapolation, but are nevertheless displayed in the
figure as 95% confidence intervals. In the figure, standard errors are clustered at the country-level
and calculated analytically because a number of negative binomial model runs did not converge
when attempting the clustered bootstrap.
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C.2 Supplementary Tables

Table C.1: Poaching summary statistics, 2002-2014

N Mean Std. Dev. Min Median Max

PIKE 631 0.47 0.39 0 0.475 1
Poached Carcasses 631 11.04 24.94 0 2 225
Non-Poached Carcasses 631 13.01 31.87 0 2 323

Notes: This table summarizes all elephant mortality data reported to the MIKE program for the
years 2002-2014, excluding three MIKE sites that only reported data for one year (see Poaching
data subsection under Methods).
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Table C.2: Characteristics of conflict onset events, by proximity to MIKE sites.

<100 km >100 km p-value

Panel A. Intensity in year of onset

Battles (median) 8 5 0.016
Battle Deaths (median) 61 55 0.08

Panel B. Type of conflict (%)

Non-state–Civilians 32.1 17 0.001
Non-state–Non-State 43.1 64.4 0
Non-state–State 16.1 11.9 0.241
State–Civilians 8.8 5.4 0.213
State–State 0 1.3 0.025

Total number of conflict onsets 137 371

Notes: The unit of observation for this table is a conflict-year. p-values are from a two-sided t-test.
Conflicts that satisfy the 25 battle death threshold of conflict onset in multiple years are counted
as separate onset events. The 137 conflict onsets within 100 km of MIKE sites contain 112 unique
conflicts. Conflict onsets near MIKE sites in years without poaching data are included in this table.
Of the 631 MIKE site-years with poaching data, 86 have a conflict onset event (14%).
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Table C.3: Relationship between conflict onset and poaching, using different measures of poaching
and different estimation procedures.

(1) (2)

Conflict Onset 0.221* 0.294*
(0.115) (0.153)

Natural Mortality 0.165** 0.254***
(0.077) (0.083)

Notes: All regressions control for ln(natural mortality carcasses + 1) in addition to the control
variables in Equation 1. The conflict onset coefficient is interpretable in log points. Column 1
is estimated by ordinary least squares and the dependent variable is ln(poached carcasses + 1).
Column 2 is estimated by negative binomial regression with a log link function, and the dependent
variable is poached carcass count. A negative binomial model was used instead of a Poisson model
because of overdispersion in the count of poached carcasses (see Table C.1). All regressions have 631
observations. Standard errors in Column 1 are estimated by cluster bootstrapping with replacement
at the country-level (1,000 replications). Standard errors in Column 2 are clustered at the country-
level (39 countries) and are calculated analytically because a number of negative binomial model
runs did not converge when attempting the clustered bootstrap. ***P < 0.01; **P < 0.05; *P <
0.1
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Table C.4: Relationship between PIKE and alternate measures of conflict.

(1) (2) (3)

1{∆ Conflicts} 0.056
(0.044)

1{∆ Battles} 0.081**
(0.034)

1{∆ Battle Deaths} 0.084**
(0.043)

Obs. w/ intensity change 176 206 214

Notes: Each column re-estimates Equation 1, but replaces the conflict onset indicator with an
indicator for change in conflict intensity. Though there are many ways to measure conflict intensity,
I use an indicator for change in intensity to maximize statistical power and to facilitate comparison
with Table 1 in the main text. Each regression in this table uses a different measure of change in
conflict intensity: (1) number of unique conflicts, (2) number of battles, and (3) number of battle
deaths. Number of unique conflicts is calculated by considering all battles which occur within 100
km of each MIKE site-year, and counting the number of unique conflicts these battles represent
(defined by having unique actor pairs). Conflicts do not need to be “active” (more than 25 battle
deaths) to be included. The indicator for change in number of unique conflicts equals 1 if the
number of unique conflicts occurring near a given site is different this year compared to last year,
and equals 0 otherwise. The indicators for change in the number of battles and battle deaths are
defined similarly. All regressions have 631 observations. The final row in this table lists the number
of observations for which the change in intensity indicator equals 1. Standard errors are estimated
by cluster bootstrapping with replacement at the country-level (1,000 replications). ***P < 0.01;
**P < 0.05; *P < 0.1
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Table C.5: Effect of conflict onset on contemporaneous poaching, 2002-2017.

Site and year With site With country-by-year
fixed effects trends fixed effects

Conflict onset 0.099** 0.045 0.100**
(0.039) (0.030) (0.046)

R-squared 0.553 0.677 0.841

Notes: This table replicates Table 1 using poaching data between 2002 and 2017. The regressions
in this table do not control for temperature or precipitation because the weather dataset used
in this paper is only available until 2014. Coefficients represent the effect of conflict onset on
contemporaneous poaching, where poaching is measured by PIKE. All regressions are estimated
by ordinary least squares with 779 observations, and include MIKE site fixed effects and year
fixed effects. Column 2 adds MIKE site-specific trends to the base specification. Column 3 adds
country-by-year fixed effects to the base specification (which subsume the year fixed effects). The
MIKE data used in estimating the effects displayed in this table was downloaded on October 28,
2018 from https://fusiontables.google.com/DataSource?docid=1juiqNCOUwqperYcoq uCWaZ
5lEs8t09hfRry I37&usp=drive open#rows:id=4. The UCDP conflict data used in estimating
the effects displayed in this table was downloaded on October 28, 2018 from http://ucdp.uu.se
/downloads/ged/ged181-RData.zip. Clustered standard errors at the country-level are displayed
in parentheses and are estimated by bootstrapping with replacement at the country-level (1,000
replications). ***P < 0.01; **P < 0.05; *P < 0.1.

https://fusiontables.google.com/DataSource?docid=1juiqNCOUwqperYcoq_uCWaZ5lEs8t09hfRry_I37&usp=drive_open#rows:id=4
https://fusiontables.google.com/DataSource?docid=1juiqNCOUwqperYcoq_uCWaZ5lEs8t09hfRry_I37&usp=drive_open#rows:id=4
http://ucdp.uu.se/downloads/ged/ged181-RData.zip
http://ucdp.uu.se/downloads/ged/ged181-RData.zip
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Table C.6: Non-relationship between natural mortality and conflict onset.

(1) (2)

Conflict onset -0.085 -0.120
(0.098) (0.157)

Notes: All regressions include the same regressors that are used in Equation 1. The conflict onset
coefficient is interpretable in log points. Column 1 is estimated by ordinary least squares and the
dependent variable is ln(natural mortality count + 1). Column 2 is estimated by negative binomial
regression with a log link function, and the dependent variable is natural mortality count. A
negative binomial model was used instead of a Poisson model because of overdispersion in the count
of natural mortality carcasses (see Table C.1). All regressions have 631 observations. Standard
errors in Column 1 are estimated by cluster bootstrapping with replacement at the country-level
(1,000 replications). Standard errors in Column 2 are clustered at the country-level (39 countries)
and are calculated analytically because a number of negative binomial model runs did not converge
when attempting the clustered bootstrap. ***P < 0.01; **P < 0.05; *P < 0.1
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