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Abstract
Aim: To identify useful sources of species data and appropriate habitat variables for 
species distribution modelling on rare species, with seahorses as an example, deriv-
ing ecological knowledge and spatially explicit maps to advance global seahorse 
conservation.
Location: The shallow seas.
Methods: We applied a typical species distribution model (SDM), maximum entropy, 
to examine the utility of (1) two versions of habitat variables (habitat occurrences vs. 
proximity to habitats) and (2) three sources of species data: quality research-grade 
(RG) data, quality-unknown citizen science (CS) and museum-collection (MC) data. 
We used the best combinations of species data and habitat variables to predict dis-
tributions and estimate species–habitat relations and threatened status for seahorse 
species.
Results: We demonstrated that using “proximity to habitats” and integrating all spe-
cies datasets (RG, CS and MC) derived models with the highest accuracies among all 
dataset variations. Based on this finding, we derived reliable models for 33 species. 
Our models suggested that only 0.4% of potential seahorse range was suitable to 
more than three species together; seahorse biogeographic epicentres were mainly in 
the Philippines; and proximity to sponges was an important habitat variable. We 
found that 12 “Data Deficient” species might be threatened based on our predictions 
according to IUCN criteria.
Main conclusions: We highlight that using proper habitat variables (e.g., proximity to 
habitats) is critical to determine distributions and key habitats for low-mobility ani-
mals; collating and integrating quality-unknown occurrences (e.g., CS and MC) with 
quality research data are meaningful for building SDMs for rare species. We encour-
age the application of SDMs to estimate area of occupancy for rare organisms to fa-
cilitate their conservation status assessment.
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1  | INTRODUC TION

Understanding global distribution and habitat preference of rare ani-
mals is key to ecology and wildlife conservation (Brooks et al., 2002; 
Hanski, 2011). Over the past few centuries, anthropogenic activities 
have caused astonishing biodiversity loss, with a detrimental impact 
on human society (Hooper et al., 2012). Rare species, with low den-
sities or small ranges, are more sensitive to human disturbance and 
usually have higher extinction risks than common species (Reynolds, 
Dulvy, Goodwin, & Hutchings, 2005). Estimating threatened status of 
rare species usually requires a good knowledge about their geograph-
ical distributions (Gaston & Fuller, 2009). Their distribution maps are 
also helpful for identifying global biodiversity hotspots (high species-
richness sites that are threatened), where limited conservation re-
sources should be allocated (Mittermeier, Turner, Larsen, Brooks, & 
Gascon, 2011; Myers, Mittermeier, Mittermeier, Da Fonseca, & Kent, 
2000). In addition to distribution maps, habitat-preference knowledge 
is essential to find species at local scales, where conservation actions 
are usually taken (Harris, Jenkins, & Pimm, 2005).

Species distribution models (SDMs) are useful for analysing spe-
cies distributions and habitat preferences for rare species conser-
vation (Franklin, 2010; Marcer, Sáez, Molowny-Horas, Pons, & Pino, 
2013). These techniques are built on a variety of algorithms that cor-
relate species occurrences and ecological covariates (i.e., model pre-
dictors) based on the “ecological niche” concept (Whittaker, Levin, & 
Root, 1973). This concept suggests that species choose their habi-
tats based on their fitness to various surrounding factors. The model 
approach includes quantitative description of the relationship be-
tween species occurrences and ecological covariates. By modelling 
this relationship, biologists can predict species distributions in un-
surveyed regions and generate a global view of species distribution 
patterns (Franklin, 2010). Moreover, integrating habitat variables 
in the model allows identification of critical habitats based on the 
parameter estimation function. The spatially explicit maps derived 
from SDMs can be used to estimate area of occupancy (AOO), which 
is a critical measure for assessing threatened status (IUCN Standards 
and Petitions Subcommittee, 2017).

Identifying useful species data and habitat-related predictors is 
essential for building robust SDMs for rare species (Aubry, Raley, & 
McKelvey, 2017). Given the difficulty in studying rare organisms, sci-
entists usually need to collate distribution data from quality-unknown 
sources (e.g., citizen science) to supplement the limited high-accuracy 
data (e.g., research data). Applying unknown-quality data can be prob-
lematic and might, through errors, generate different results than 
quality data (Aubry et al., 2017; Graham, Ferrier, Huettman, Moritz, 
& Peterson, 2004). Studies comparing different data sources are rare 
in the literature (Jackson, Gergel, & Martin, 2015; Zhang & Vincent, 
2017). Furthermore, including appropriate habitat covariates in SDMs 
can be critical for rare species whose presences are correlated with 
important resources (e.g., food, shelters) within a particular habitat 
(Rainho & Palmeirim, 2011). These issues above can degrade model 
accuracy and distort species–habitat relationships if they are not ad-
dressed appropriately (Aubry et al., 2017).

Seahorses are rare animals, whose conservation is of global con-
cern (Vincent, Foster, & Koldewey, 2011). Seahorses are a genus 
(Hippocampus Rafinesque, 1810) of small, cryptic and sedentary 
marine fishes in the family Syngnathidae, well known for their male 
pregnancy and charismatic appearance. They are usually found at 
low population densities (0–0.51 individuals/m2; Foster & Vincent, 
2004). Because of this and other biological traits (e.g., low fecun-
dity, extensive paternal care and often, mate fidelity), seahorses 
are vulnerable to various human activities, especially poorly man-
aged fisheries and habitat degradation (Foster & Vincent, 2004). 
Wild seahorses are often caught in fisheries and traded worldwide, 
mainly for traditional medicines. In 2002, seahorses became the 
first marine fishes to be listed on Appendix II of the Convention 
on International Trade in Endangered Species (CITES). This listing 
mandates 183 Parties to CITES to ensure that their exports do not 
threaten wild seahorse populations. The recent estimate of annual 
seahorse catches in 22 countries, totalling at least 37 million individ-
uals (Lawson, Foster, & Vincent, 2017), emphasizes the importance 
of global actions to conserve these rare species.

Global distribution, habitat preference and conservation status 
are poorly known for seahorses. Studies of seahorse ecology have 
only centred on a small fraction of species (Cohen, Valenti, Planas, 
& Calado, 2017). Available species range maps are not spatially ex-
plicit enough to inform global and local conservation actions (Lourie, 
Pollom, & Foster, 2016). Comprehensive habitat knowledge is lack-
ing for most species, although site-level or regional-scale habitat 
studies are available for some populations (Aylesworth et al., 2015; 
Caldwell & Vincent, 2013; Harasti, Martin-Smith, & Gladstone, 2014; 
Zhang & Vincent, 2017). Currently, 14 species are considered as 
threatened (Endangered or Vulnerable), but 17 species are still “Data 
Deficient” according to the latest IUCN Red List assessment (IUCN, 
2017; Pollom et al., in preparation).

Our study aims to apply SDMs to advance global conservation 
for all seahorse species. We are interested in examining the utility 
of quality-unknown species data and identifying proper habitat 
variables to build robust SDMs for rare species. In undertaking this 
work, we collated species-level seahorse occurrences and ecological 
covariates including habitat variables. We then identified the best 
species datasets and habitat variables deriving the most accurate 
models. We used these models to predict seahorse distributions, to 
understand species-habitat preferences and to inform their conser-
vation status assessment.

2  | METHODS

2.1 | Species distribution model

We used maximum entropy (Maxent; Phillips et al., 2004) to build 
species distribution models. Maxent is one of the most powerful and 
popular SDMs (Hernandez, Graham, Master, & Albert, 2006; Phillips 
& Dudík, 2008). It estimates presence probability by finding a dis-
tribution with maximum entropy (i.e., closest to uniform), subject 
to constraints defined by conditions at known occurrence locations 
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(Phillips et al., 2004). Earlier research indicated that Maxent is robust 
to positional uncertainty/errors in species occurrences (Fernandez 
et al., 2009; Graham et al., 2008) and particularly suitable for rare 
species with limited occurrences (Pearson, Raxworthy, Nakamura, & 
Townsend Peterson, 2007). We developed our models with the lat-
est Maxent software (Version 3.4.1, Phillips et al., 2017).

2.2 | Study species

Our study focused on 42 valid species of the genus Hippocampus 
(Lourie et al., 2016; Zhang, Qin, Wang, & Lin, 2016). Seahorses 
were typically found in shallow waters (depth < 200 m) from tropic 
to temperate zones. They are cryptic, sedentary, small fishes (usu-
ally body height < 35 cm) that ambush zooplankton and benthic 
organisms (e.g., Crustacea and Amphipoda; Manning, 2017). Their 
predators are believed rare, although they were occasionally 
found in diets of various marine species such as larger fishes and 
birds (Kleiber, Blight, Caldwell, & Vincent, 2011). Identification of 
seahorses at the species level is sometimes challenging because of 
morphological similarity across species and individual phenotypic 

plasticity within species (Curtis, 2006; Roos, Van Wassenbergh, 
Aerts, Herrel, & Adriaens, 2011). We used work by Lourie et al. 
(2016), which clarified seahorse nomenclature and revealed many 
synonyms, as the basis for modelling species-level distributions in 
our study.

2.3 | Data collection

We gathered data for model predictors that have ecological rel-
evance and available information. We first derived data for 12 
variables related to seahorse physiological suitability and primary 
productivity (Foster & Vincent, 2004; Table 1). We selected seven 
variables from these twelve covariates to minimize collinearity based 
on Pearson correlation tests (|r| > 0.7, Dormann et al., 2013). The 
resulting seven predictors were depth, pH, salinity, sea surface tem-
perature mean and range, and chlorophyll a mean and range.

We then derived datasets of nine categories of potentially key 
habitats (e.g., coral reefs) from online biogeographic databases 
(Table 1, Table S1.1, Appendix S1) and generated a binary and a con-
tinuous variable for each habitat category. The binary variable was 

Categories Parameters
Resolutions 
(arc-degree) Data sources

Physiological 
suitability

depth* 0.00833 Weatherall et al. (2015)

pH* 0.0833 Tyberghein et al. (2012)

salinity* 0.0833 Tyberghein et al. (2012)

dissolved oxygen 0.0833 Tyberghein et al. (2012)

SST mean* 0.0833 Tyberghein et al. (2012)

SST range* 0.0833 Tyberghein et al. (2012)

SST maximum 0.0833 Tyberghein et al. (2012)

SST minimum 0.0833 Tyberghein et al. (2012)

Primary productivity Chlorophyll a 
(mean)*

0.0833 Tyberghein et al. (2012)

Chlorophyll a 
(range)*

0.0833 Tyberghein et al. (2012)

Chlorophyll a 
(maximum)

0.0833 Tyberghein et al. (2012)

Chlorophyll a 
(minimum)

0.0833 Tyberghein et al. (2012)

Habitat availability coral reefs 0.0003–0.01 UNEP-WCMC et al. (2010)

seagrass beds 0.0026 UNEP-WCMC and Short 
FT (2017)

mangroves 0.0003 Giri et al. (2011)

estuary – Alder 2003

soft corals – GBIF & OBIS

seaweed – GBIF & OBIS

sponge – GBIF & OBIS

sea pen – GBIF & OBIS

hydrozoa – GBIF & OBIS

GBIF, Global Biodiversity Information Facility; OBIS, Ocean Biogeographic Information System; SST, 
sea surface temperature.

TABLE  1 Original data resolutions and 
sources for seahorse ecological variables. 
“*” indicates the seven selected predictors 
from the original twelve covariates of 
physiological suitability and primary 
productivity
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habitat presence/absence (1/0), and the continuous variable was 
the distance to the nearest location of each habitat. We generate all 
these model predictors as global maps with a resolution of 1 km2 (cy-
lindrical equal-area projection), constrained within the 200-m depth 
range in ArcMap (version 10.2.2). We predicted that continuous hab-
itat variables could be more useful than binary ones, as the former 
would be resilient to some extent of mismatch between species oc-
currences and habitat locations.

We collected species-level (presence-only) locations of 
seahorses from multiple databases including online biogeographic 
databases, published peer-reviewed literature, unpublished research 
data (from Project Seahorse) and iSeahorse (www.iseahorse.org)—a 
global citizen-science platform for gathering seahorse occurrences. 
We collated the species location data by checking nomenclature 
and spatial errors. Based on the collated georeferenced species 
occurrences, we determined the potential geographical range (i.e., 
modelling envelope, Figure 1) for each species to constrain model 
prediction. We predicted that the quality of multiple sources of spe-
cies data might differ. Therefore, we divided all occurrences of each 
species into three commonly used categories: research grade, citizen 
science and museum collection.

A more detailed description of this section is in Appendix S1.

2.4 | Model description and evaluation

We executed two groups of model variations (Table 2) to examine 
our datasets. To do so, we created different predictor datasets and 
species datasets. First, we developed three different predictor data-
sets which represented the three methods of habitat data usage in 
the model (none, binary and continuous; Table 2): Dataset 1—seven 

selected predictors reflecting species’ physiological suitability and 
primary productivity (Table 1); Dataset 2—combination of Dataset 
1 and nine binary habitat variables (see Section 2.3); and Dataset 
3—combination of Dataset 1 and nine continuous habitat variables 
(see Section 2.3). Secondly, we generated seven different datasets 
of species occurrences (Table 2): (1) research grade (RG), (2) citizen 
science (CS), (3) museum collections (MC), (4) CS plus MC, (5) RG plus 
CS, (6) RG plus MC and (7) ALL (i.e., RG plus CS plus MC).

Model Group 1: To examine the utility of habitat variables, we built 
models for each species based on the species dataset ALL and each of 
the three predictor datasets (Datasets 1–3). We then compared the 
three models across species using three statistics: area under the curve 
of the receiver operating characteristic (AUC; Hanley & McNeil, 1982), 
habitat variable importance (HVI) and predicted area ratio (PAR). The 
AUC is a standard technique for measuring models’ omission and com-
mission errors, producing a score (0–1) for general predictive accuracy. 
Score “1” means no errors of commission or omission, and “AUC ≤ 0.5” 
means the model prediction is no better than random selection. We 
defined HVI as the cumulative permutation importance of all habitat 
variables and used it as an index of species-habitat dependency. The 
PAR is the proportion of the predicted area to the modelling envelope 
of each species (see Section 2.3). Both HVI and PAR can be easily de-
rived from Maxent’s summary file (i.e., “maxentResults.csv”).

Model Group 2: To examine the utility of different sources of spe-
cies data, we conducted models for each species based on the “best 
performing” predictor dataset (derived from Model Group 1) and each 
of the seven datasets of seahorse occurrences: RG, CS, MC, CS plus 
MC, RG plus CS, RG plus MC and ALL. We compared the accuracy in 
predicting presences (i.e., sensitivity; Altman & Bland, 1994) among 
the models and estimated prediction agreement between models of 

F IGURE  1 A map of the potential distribution ranges of all seahorse species combined that we used in the model to constrain model 
prediction. [Colour figure can be viewed at wileyonlinelibrary.com]

http://www.iseahorse.org
www.wileyonlinelibrary.com
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individual species-data sources (RG, CS and MC) based on I Similarity 
Statistic (Warren, Glor, & Turelli, 2008) and Presence Agreement 
(Zhang & Vincent, 2017). The former was used to estimate similarity 
between two presence-probability maps, while the latter evaluated 
overlapping rate between two predictive-presence maps.

To ensure robust statistical analyses, we only built models on 
species with a total sample size ≥ 50 in Group 1 and executed mod-
els on species with a sample size ≥30 from each source (i.e., RG, CS 
and MC) in Group 2. Detailed methods of Section 2.4 can be found 
in Appendix S2.

2.5 | Model prediction and interpretation

We applied Maxent to generate the presence-probability map for 
every species that had at least five occurrences (Pearson et al., 2007), 
based on the best predictor and species datasets identified above. 
To estimate species richness, we stacked the presence-probability 
maps of all species that had fair to excellent model performance (i.e., 
AUC ≥ 0.7; Calabrese, Certain, Kraan, & Dormann, 2014; Zhang & 
Vincent, 2017). For species that we were unable to derive accept-
able predictive maps or that had few occurrences (n < 5), we added 
their collated occurrences directly to corresponding pixels of the 
stacked map in ArcMap.

We applied Maxent’s variable permutation importance and 
marginal response curve to interpret species–habitat relationships 
(Searcy & Shaffer, 2016; Stirling, Boulcott, Scott, & Wright, 2016). 
To this end, we first converted permutation importance values into 
ranks, with rank 1 assigned to the largest value (Appendix S2). We 
then used the mean rank (of each variable across species) as an index 
of the general importance of that variable in determining seahorse 
distributions. We also calculated habitat variable importance (HVI) 
for each seahorse species. We identified habitats that were posi-
tively correlated with species presence probability through examin-
ing the marginal response curves and ranked them by permutation 

importance. This allowed us to determine the rank of importance of 
each habitat for each species.

2.6 | Identifying potentially threatened species

With the above distribution information, we calculated and com-
pared geographical metrics (extent of occurrence and area of oc-
cupancy) against the IUCN threatened thresholds for geographical 
range (Criteria B and D), and number of locations (Criterion D) to 
identify potentially threatened species, following the latest IUCN 
Red List Guidelines (IUCN Standards and Petitions Subcommittee, 
2017; Appendix S2).

3  | RESULTS

We obtained a total of 6,128 unique occurrences (collated from 
the original 6,316 occurrences) for 42 species, with a wide range of 
sample size (1–1,990 occurrences per species). The temporal range 
spanned from 1828 to 2016 (96% from 1950 to 2016). Most occur-
rences had no location-precision information, except 448 records 
(precision = 727 ± 609 m). Most seahorse occurrences were sourced 
from MC (75%), followed by RG (18%) and CS (7%). In general, sea-
horses were found in a very wide geographical range (46.73°S to 
54.75°N, 160.62°W to 179.12°E) and diverse environmental spaces 
(Table S3.1 in Appendix S3). According to the sample-size require-
ment to build robust models (see Section 2.4), a total of 16 species 
were used in Model Group 1, and two species (Hippocampus erectus 
and Hippocampus kuda) were examined in Model Group 2.

3.1 | Group 1: Utility of habitat predictors

Our results indicated that including habitat variables had statisti-
cally significant improvements on model predictive accuracy, with 

TABLE  2 Description of model variations used to test the utility of different types of macrohabitat variables (Group 1) and different 
sources of seahorse data (Group 2). Note that one type of model variation (based on all occurrences and predictor Dataset 3) was used in 
both groups

Model group Species dataset Predictor dataset Model statistics

Group1: Testing the utility of 
different habitat variables (3 
models per species).

All occurrences Each model uses one of the three 
types: 

Dataset 1: seven selected variables;
Dataset 2: Dataset 1 + nine binary 

macrohabitat variables;
Dataset 3: Dataset 1 + nine distance-

based macrohabitat variables

Area under the curve (AUC), 
Habitat variable importance (HVI), 
Predicted area ratio (PAR)

Group 2: Testing the utility of 
different sources of species 
data (seven models per 
species)

Each model uses one of the six 
types: 
Research grade (RG), citizen 
science (CS), museum 
collection (MC), CS + MC, 
RG + CS, RG + MC and all 
occurrences (ALL)

Dataset 3 as described above Sensitivity, I Similarity Statistic, 
Presence Agreement
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models using continuous habitat predictors (Dataset 3) having 
the best performance (Figure 2a). The AUC values (model per-
formance) of Dataset 3 and Dataset 2 were significantly higher 
than those of Dataset 1 (n = 16, paired Wilcoxon tests; Dataset 
3 vs. 1, p < .005; Dataset 2 vs. 1, p < .01), and Dataset 3 derived 
higher performance than Dataset 2 (n = 16, paired Wilcoxon test, 
p < .005).

We did not find statistically significant difference between 
predicted area ratios estimated from different predictor datasets 
(n = 16, paired Wilcoxon tests, p = .12, .12, .46). But models based 
on Dataset 3 consistently derived the smallest predicted areas 
(Figure 2b).

We found that Dataset 3 was more informative given it revealed 
the importance of habitats to seahorse distributions (Figure 2c). 
On average, models using Dataset 3 derived high values of habitat 
variable importance (46.2 ± 20.3), which were significantly larger 
than those using binary counterparts in Dataset 2 (9.2 ± 8.9; n = 16, 
paired Wilcoxon test, p < .001).

3.2 | Group 2: Utility of different sources of 
species data

Our comparisons indicated that CS and MC data derived less ac-
curate models than RG data did and integrating all three derive 
the best models (Figure 3a). We found that RG consistently de-
rived the most accurate models (0.55 on H. erectus and 0.83 on 
H. kuda) among the individual datasets (Figure 3a). When indi-
vidual datasets were combined, adding MC or CS to RG consist-
ently improved model performance (Figure 3a). Moreover, using 
all occurrences derived the most accurate models (0.69 and 0.94, 
respectively; Figure 3a). Interestingly, while “CS plus MC” derived 
a model with the 2nd highest accuracy on H. erectus (0.66), it re-
sulted in the lowest-accurate model on H. kuda. (0.27; Figure 3a), 
suggesting that the reliability of this type of combination varies 
between species.

There were moderate to high consistencies (I Similarity = 0.68–
0.95) in predicting presence probability, but low agreements in 
predictive presences (PA = 2%–34%) between different species-
data sources (Figure 3b,c). The I Similarity Statistics (i.e., presence-
probability similarity) suggested that the agreement between RG 
models and CS models (0.71 and 0.93, respectively) was slightly 
higher than those between RG models and MC models (0.68 and 
0.91, respectively; Figure 3b). This difference was more promi-
nent in the measure of Presence Agreement (i.e., overlapping rate, 
Figure 3c).

3.3 | Seahorse global distributions and 
biodiversity epicentres

Based on the above results, we chose Dataset 3 (the best predic-
tor dataset) and dataset ALL (the best species dataset) to construct 
models for the 34 species with a least five occurrences (Tables S3.2 
and S3.3). The remaining eight species with few occurrences were 

not modelled (Table S3.4). Finally, we derived acceptable models for 
33 species, with excellent performance (AUC = 0.90–1) for ten spe-
cies, good performance (AUC = 0.80–0.89) for twelve species and 
fair performance (AUC = 0.70–0.78) for eleven species (Table S3.3). 
The model was poor (AUC = 0.56) and rejected for one species (H. 
casscsio, endemic to China and only recently described by Zhang 
et al., 2016).

The predicted biodiversity map demonstrated that locations 
with high species richness (value = 4–9) of seahorses were largely 
concentrated in tropical shallow waters of the central Indo-Pacific, 
with the epicentres mainly in the Philippines (Figures 4 and 5, 
Figures S3.1–S3.13 in Appendix S3). Other biodiversity epicentres 
near the central Indo-Pacific were in southern India and Sri Lanka 
(Figure S3.3), Taiwan (China, Figure S3.4), subtropical Japan (Figure 
S3.4), and Sydney and Melbourne in Australia (Figure S3.6). We also 

F IGURE  2 Maxent models compared among three predictor 
datasets (Dataset 1, 2 and 3) across 16 species using AUC (model 
predictive accuracy), predicted area ratio (proportion of predictive 
presences to the potential range) and habitat variable importance 
(cumulative importance of all habitat variables used in the model)
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predicted moderate species richness (value = 3) in southern Florida 
(Figure S3.1), northern and central Red Sea (Figure S3.2), south-east 
Africa (Figure S3.2), Hawaii and Fiji (Figure S3.7).

In total, the predicted suitable area for seahorses was 9 million 
km2 (2.5% of the ocean’s surface), with large extents of geographical 
separation among species; 84% of the “potential range” (Figure 1) 

F IGURE  3 Comparisons among 
Maxent models based on three different 
sources of seahorse occurrences, 
that is research grade, citizen science, 
and museum collections, and their 
combinations. They were compared 
on two species (Hippocampus erectus, 
Hippocampus kuda) with sufficient 
sightings from each source

F IGURE  4 Global map of biodiversity distributions of seahorse species. [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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was either unsuitable to seahorses (40.8%) or suitable to one spe-
cies alone (43.2%); 15.5% of the potential range was suitable to two 
(13.3%) or three (2.3%) species together, and 0.4% was fit for more 
than three species together.

3.4 | Key predictors and habitats

The ranks of predictor importance suggested that all 16 predictors 
provided valuable information in our models, although the most im-
portant factors varied among species (Figure 6). Generally, depth, 
distance to the nearest sponge, distance to the nearest macroalgae, 
pH and ocean temperature (range and mean) were the most influen-
tial predictors (Figure 6, Table S3.5). The marginal response curves 
revealed that generally seahorses were more likely to live in shal-
lower waters (<50 m; Figure 7a); many species tended to live close 
to sponges but have divergent adaptations to other factors such as 
ocean temperature (Figure 7b,c). Habitat variable importance (HVI = 
3.9%–99%) and key habitat types differed largely among seahorse 
species (Table S3.2). Two pygmy seahorses specializing in gorgonian 
corals, H. denise and H. bargibanti, had the highest HVI values.

3.5 | Potentially threatened species based on 
IUCN Criteria

Our predicted results suggested that four species met the 
“Endangered” thresholds, and two met the “Vulnerable” thresholds 

based on geographical range alone (IUCN Criterion B; Table S3.3). 
Among the six species, four met the IUCN thresholds based on area 
of occupancy (AOO) but not extent of occurrence (EOO), and the 
other two met thresholds for both AOO and EOO. However, infor-
mation about population fragmentation, fluctuation or decline is re-
quired to fully justify these categories under Criterion B of IUCN. 
We also identified seven species with fewer than five known loca-
tions (Table S3.4) that might be considered as “Vulnerable” based on 
IUCN Criterion D2.

4  | DISCUSSION

Our study demonstrates that appropriate integration of multi-
ple sources of species occurrences and habitat datasets is vital 
to derive robust SDMs to inform rare species conservation. We 
provide global-scale, spatially explicit maps and conservation 
knowledge that are urgently needed for a group of rare and data-
poor marine fishes (i.e., seahorses). Our analyses highlight that 
proximity to habitats is more informative than habitat presence/
absence for improving model accuracy and detecting key habi-
tats. Meanwhile, we indicate that it is better to combine CS and/
or MC with RG, whenever available, to improve model accuracy. 
Our study also demonstrates that SDM-based predictive maps 
can help to identify potentially threatened species with small area 
of occupancy.

F IGURE  5 Separated maps of different levels of seahorse species richness. [Colour figure can be viewed at wileyonlinelibrary.com]
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4.1 | Global biogeographic pattern and habitat 
associations of seahorses

Our predicted biogeographic pattern of seahorse species is consist-
ent with a previous analysis of coastal fishes in general (Tittensor 
et al., 2010). The latitudinal gradient that generally more species live 
in the tropics may be largely shaped by temperature (Tittensor et al., 
2010). Temperature variables can influence food availability and 
climate suitability (Willig, Kaufman, & Stevens, 2003), and had high 
importance in our models. But like other shore fishes, more species 
of seahorses are predicted to occur in the central Indo-Pacific (espe-
cially the Philippines) versus other tropical regions (e.g., Caribbean; 
Tittensor et al., 2010). This longitudinal divergence matches well 
with the hypothesized footprints of seahorse origin (probably in 
north-eastern Australia), dispersal (by rafting), segregation (e.g., the 
closure of the Isthmus of Panama) and evolution over past 20–30 
million years (Boehm et al., 2013; Casey, Hall, Stanley, & Vincent, 
2004; Teske, Cherry, & Matthee, 2004). Higher availability and 
heterogeneity of shallow-water habitats in the central Indo-Pacific 
might facilitate species immigration and diversification (Sanciangco, 
Carpenter, Etnoyer, & Moretzsohn, 2013), as we find that seahorses 
tend to live in shallow depths and have diverse habitat preferences 
among species.

Our study provides comprehensive, global evidence to support 
the hypothesis that seahorse species have different levels of habitat 
reliance and species-specific habitat preferences (Curtis & Vincent, 
2005). We are the first to provide quantitative evidence that habi-
tat dependency varies largely among seahorse species. We demon-
strate global divergences on distributions and habitat associations 
among species, which has been observed in local studies (Curtis & 
Vincent, 2005; Lourie, Green, & Vincent, 2005; Zhang & Vincent, 
2017). Similar divergence patterns among congeneric species are 

F IGURE  6 Ranks of predictor importance across 33 seahorse species with acceptable models in our study. The box plots are shown with 
the rank on the x-axis and predictors on the y-axis ordered by the mean rank (not the median) from the highest to the lowest. Note that 
lower numbers indicate higher ranks
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F IGURE  7 Species response curves of depth, distance to the 
nearest sponge and mean sea surface temperature, with different 
colours and types of line for different species. [Colour figure can be 
viewed at wileyonlinelibrary.com]
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also common in pipefishes (Malavasi et al., 2007) and other fishes 
(Fairclough, Clarke, Valesini, & Potter, 2008; Lombarte, Recasens, 
González, & de Sola, 2000). Such segregation and difference may 
be important to minimize competition among closely related spe-
cies (Fairclough et al., 2008). Our evidence suggests that habitat-
forming sponges are important to many seahorse species at large 
spatial scales. These sponges may provide various functional roles 
(e.g., shelter and prey sources) in seahorse’s life (Bell, 2008). Further 
discussion about seahorse–habitat/environment relationships is 
presented in Appendix S4.

4.2 | Conservation implications for seahorses

The spatially explicit maps and habitat-preference knowledge de-
rived from our models may inform both global-scale and local-scale 
seahorse conservation. For instance, to minimize the impact of inter-
national trade, CITES Parties can use our maps to locate focus areas 
rich in those heavily traded species at the global scale (Vincent et al., 
2011). These maps can further be used with threat maps if avail-
able to determine global priority areas for seahorse conservation. 
Conservation programmes can use and validate our maps and habi-
tat knowledge to study and protect seahorse populations at local 
scales (Zhang & Vincent, 2017).

Our study provided new geographical information to assess 
conservation status for seahorses. IUCN requires assessors to 
evaluate species against all criteria (A–E) with available data 
and to assign the most severe category to the species (IUCN 
Standards and Petitions Subcommittee, 2017). Previous assess-
ments of seahorses largely applied Criterion A (i.e., population 
decline rate). Only one case (H. capensis) used Criterion B1 (Extent 
of Occurrence). We identified six species that met threatened 
thresholds of Criterion B2 (area of occupancy, AOO). Currently, 
one (H. capensis) has been evaluated as endangered, but other five 
were either “Least Concern” or “Data Deficient” (Table S3.3, IUCN, 
2017). Although the AOO is estimated based on predictive maps 
and thus contain uncertainties and require further improvement 
(Guisan et al., 2013), it is likely that we overestimated the AOO. If 
we include other constraint factors (e.g., anthropogenic impacts) 
in our models, the AOO might become smaller. Given that, these 
five species can still justify the IUCN “Vulnerable” threshold of 
AOO (<2,000 km2) for Criterion B2.

4.3 | Utility of distance-based habitat predictors 
in SDMs

We are the first to demonstrate that “proximity to habitats” is 
more informative than “habitat presence/absence” to predict 
distributions of low-mobility organisms. Proximity to habitats 
has been employed and proved useful in SDMs for high-mobility 
animals, including reef fishes (Shelton, Thorson, Ward, & Feist, 
2014), Bonelli’s eagles (Balbontín, 2005) and bats (Rainho & 
Palmeirim, 2011). One underlying assumption is that high-mobility 
animals choose to live close to important resource patches (e.g., 

feeding grounds). But this assumption might be questionable 
for low-mobility species, as they were believed unlikely able to 
select habitats at large spatial scales. Instead, site-level habitat 
characteristics (e.g., habitat presence/absence) were used in low-
mobility species including Madagascar geckos (Pearson et al., 
2007) and Juliana’s golden mole (Jackson & Robertson, 2011). 
Although a few studies have used proximity to habitats for low-
mobility species (Dillard, Russell, & Ford, 2008; Dorrough & Ash, 
1999), ours is the first to indicate that proximity to habitats can 
be more useful than habitat presence/absence for low-mobility 
animals.

The correlations between sedentary animals and the proximity 
to habitats may result from two factors: (1) behaviour and ecology 
of the animal and (2) coarse resolution of original data. First, low-
mobility organisms can disperse across large spatial scales through 
natural disturbance (e.g., ocean currents) and hitchhiking (Luiz, 
Allen, Robertson, Floeter, & Madin, 2015). They may then choose 
“stops” in preferred habitats or be “dropped” in unsuitable ones. 
In the second case, the animal may move over a distance longer 
than its home range to find suitable habitats (Caldwell & Vincent, 
2013; Matthews, 1990). Some sightings of the species might be 
recorded during this “habitat-finding” process and thus distorted 
the species-habitat spatial relations. Second, there might be spa-
tial mismatch between species occurrences and habitat locations 
due to coarse resolutions of the original records. As a result, some 
species occurrences might not overlap with suitable habitats, but 
they are still close in space.

4.4 | Utility of different sources of species data 
in SDMs

This study is among the first to demonstrate that adding citizen sci-
ence (CS) and museum collections (MC) to research-grade data (RG) 
can help to derive more accurate SDMs. We encourage the integra-
tion of MC and/or CS data with RG data as MC and CS can be more 
sufficient than RG and helpful for improving model accuracy. MC 
are usually the most data-rich source for many organisms (Ponder, 
Carter, Flemons, & Chapman, 2001), as is also shown in our sea-
horses. MC have been commonly used in SDM research (Newbold, 
2010), although we demonstrate, compared with RG, MC may derive 
lower quality models with quite different predictions (Aubry et al., 
2017). This is also true for citizen science. Our results suggest that 
combining quality-unknown data (MC and CS) without RG is risky, 
as this may accumulate errors and result in lower-accuracy models 
(Zhang & Vincent, 2017).

Additionally, compared with MC, CS might have some advan-
tages. First, CS provide more recent georeferenced information than 
historical collections to reflect the current distributions of species. 
Second, validating CS data might be easier than checking the his-
torical specimens from worldwide museums. These advantages may 
partly explain why CS derived more similar predictions to those of 
RG data than MC did in our study. A recent study on a rare snow quail 
species also indicated that CS data could derive similar predictions 
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to those based on RG data (Jackson et al., 2015), encouraging the 
use of citizen-science data sources.

4.5 | Applying SDMs to IUCN Red List assessment

Our study highlights that applying SDMs can derive useful geo-
graphical information for the assessment of conservation status 
for rare species (Aubry et al., 2017). Rare species (especially habi-
tat specialists) that have low population density are often patch-
ily distributed along with their key habitats (Marcer et al., 2013). 
Therefore, even though they may have large extent of occurrence 
(EOO, IUCN Criterion B1), their area of occupancy (AOO, IUCN 
Criterion B2) could be very small. For example, in our study, H. fish-
eri (a species endemic to Hawaii) has an EOO that does not meet 
a threatened threshold, but its AOO is small enough to pass the 
“Endangered” threshold of AOO according to IUCN Criterion B. 
Therefore, estimating AOO based on SDMs such as Maxent may 
add essential information to assess conservation status for rare 
species.
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