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A B S T R A C T   

Thousands of chemicals are potentially contaminating the environment and food resources, covering a wide 
spectrum of molecular structures, physico-chemical properties, sources, environmental behavior and toxic pro-
files. Beyond the description of the individual chemicals, characterizing contaminant mixtures in related matrices 
has become a major challenge in ecological and human health risk assessments. Continuous analytical de-
velopments, in the fields of targeted (TA) and non-targeted analysis (NTA), have resulted in ever larger sets of 
data on associated chemical profiles. More than ever, the implementation of advanced data analysis strategies is 
essential to elucidate profiles and extract new knowledge from these large data sets. Specifically focusing on the 
data analysis step, this review summarizes the recent progress in integrating data analysis tools into TA and NTA 
workflows to address the challenging characterization of chemical mixtures in environmental and food matrices. 
As fish matrices are relevant in both aquatic pollution and consumer exposure perspectives, fish was chosen as 
the main theme to illustrate this review, although the present document is equally relevant to other food and 
environmental matrices. 

The key features of TA and NTA data sets were reviewed to illustrate the challenges associated with their 
analysis. Advanced filtering strategies to mine NTA data sets are presented, with a particular focus on chemical 
filters and discriminant analysis. Further, the applications of supervised and unsupervised multivariate analysis 
methods to characterize exposure to chemical mixtures, and their associated challenges, is discussed.   

1. Characterizing contaminant mixtures in fish: A complex issue 

The current inventories under the Registration, Evaluation, Autho-
rization and Restriction of Chemicals (REACH) legislation in European 
Union or under the Toxic Substances Control Act (TSCA) of the United- 
States Environmental Protection Agency (US-EPA) indicate that over 
one hundred thousand chemicals, covering a wide spectrum of molec-
ular structures and physical chemical properties, are produced globally. 
These chemicals may enter the environment as a consequence of their 
use in materials, consumer products, agriculture and industry, and the 
sound management of chemicals has been highlighted as one of the 17 
Goals of the 2030 Agenda for Sustainable Development (United Nations, 
2015). A growing evidence indicates that plants, animals and humans 
are continuously exposed to a multitude of chemicals over their lifetime, 
through various routes such as water or air (Hernández and Tsatsakis, 
2017). Many chemicals are harmless or even beneficial while some 
others are a threat to human health and to the environment (European 

Chemical Agency, 2021). Some individual substances for example, such 
persistent organic pollutants (POPs), have been identified as a threat due 
to their persistence, bioaccumulation, toxic (PBT) potential, and long- 
term exposure to these substances, even at low-levels may be harmful 
(Dórea, 2008). In addition, the simultaneous exposure to multiple 
chemical substances may lead to additive, synergic or antagonist toxic 
effects (“cocktail effects”) and the characterization of mixtures is now 
recognized as key for both environmental and human health risk as-
sessments (Pose-Juan et al., 2016). In this line, the European Food Safety 
Agency (EFSA) has initiated activities to study such combined exposures 
through the development of harmonized methodologies for combined 
exposure to multiple chemicals and recently published a guidance 
document (EFSA, 2019). The problem associated with exposure to 
chemical mixtures is global and is part of an environment-food-health 
continuum. In this context, sentinel species are commonly used since 
their observations may provide information about the presence, amount, 
type, and effect of environmental contaminants. Fish has been 
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recognized a relevant sentinel to monitor environmental contamination 
as well as suitable indicator of early contamination of the food chain 
(Sedeño-Díaz and López-López, 2012). 

The detection, identification and quantification of a wide range of 
contaminants in matrices such as fish remain challenging as (i) con-
taminants are mostly present at trace levels, (ii) they cover a wide range 
of physico-chemical properties, and (iii) environmental, food, and bio-
logical samples are relatively complex matrices to analyze. Many tar-
geted analysis (TA) methods have been developed for over half a century 
to detect and quantify known contaminants (metals, pesticides, POPs, 
etc.) in abiotic and biological matrices. While some contaminants of 
emerging concern (CECs) have been identified, the current surveillance 
framework based on TA often fails in efficiently detecting new chemical 
hazards, since it does not involve the treatment of unknown/unexpected 
signals. This is particularly alarming considering the increasing number 
of anthropogenic chemicals potentially reaching the environment, and a 
possibly even greater number of their derivatives (e.g. metabolites and 
degradation products), which remain to be described. To address such a 
challenge, methods relying on non-targeted analysis (NTA) provide a 
complementary and more comprehensive assessment of chemical 
contamination, and allow for the identification of emerging and new 
chemical hazards (Altenburger et al., 2019; Sobus et al., 2018). 

In this context, continuous analytical developments have resulted in 
ever larger sets of data acquired to characterize chemical mixtures in 
food and environmental matrices. Depending on the initial goal of the 
analysis, the number of contaminants considered, the experimental 
design (e.g. the number of samples) and the analytical strategy (TA or 
NTA), gigabits or even terabits of data may now be generated within a 
single study. The exploration and interpretation of these large and 
complex data sets has thus emerged as another challenging task, and the 
use of advanced data processing methods has become essential for 
extracting the relevant information and knowledge associated to these 
markers of chemical exposure. Key challenges associated with data 
processing strategies for NTA of foods were reviewed recently in the 
literature (Fischer et al., 2021). With regards to data analysis tools, 
several methods have been developed on the basis of statistics and al-
gorithms to describe cluster samples (e.g. according to contamination 
pattern) or interpret trends among variables and/or sample series. The 
selection of appropriate statistical tools and their use is therefore key to 
properly interpret the data. 

This document reviews the main data analysis tools reported for the 
characterization of contaminant mixtures from large and complex data 
sets in fish samples. The first section focuses on the current challenges 
associated to the analysis of data resulting from the integration of TA 
and NTA strategies to address chemical mixtures characterization. The 
second section reviews some data filtering strategies to highlight 
chemical mixtures and new contaminants in upon NTA. Finally, key 
applications of multivariate analysis methods (MAM) are presented for 
the exploration of large sets of data of chemicals’ occurrence and the 
interpretation of contamination profiles. The present review focuses on 
methods based on LC or GC–MS, as their potential for NTA is now well 
established for trace contaminants. The authors nonetheless acknowl-
edge that a range of analytical tools (e.g. FTIR, NMR, CE-MS) could be 
applied to NTA, with some emerging techniques (e.g. ion mobility) 
already anticipated to provide an additional characterization capability 
for the complex matrices (Mullin et al., 2020, Hernandez-Mesa et al., 
2017). 

While large data sets have been obtained using TA and NTA strate-
gies for a range of environmental and food matrices, a relatively large 
number of studies is available on the chemical contamination of fish for 
both approaches. Fish are studied in the context of both aquatic pollu-
tion and consumer exposure to chemicals. Some fish species are known 
to accumulate relatively high concentrations of various chemicals (e.g. 
organic halogenated contaminants) due to their position in trophic webs 
(Pérez et al., 2014; Törnkvist et al., 2011). Since they are an increasingly 
important part of the human diet, fish have been consequently identified 

as a major dietary source of contaminants for consumers (Rodríguez- 
Hernández et al., 2016). Therefore, studies on fish contamination were 
primarily selected to illustrate the present review. 

2. Integrating targeted and non-targeted analyses of 
contaminants 

Current monitoring programs and studies are acquiring a continu-
ously increasing amount of data related to chemical contaminations in 
environmental and food matrices. Acquired with TA or NTA methods, 
these data sets are often partially explored using common basic data 
analysis tools and critical information may be lost (Cariou et al., 2016). 
An in-depth interpretation of these data sets is nonetheless a challenging 
task and requires effective data analysis strategies. In order to better 
understand the associated issues, the present section introduces targeted 
and non-targeted analysis workflows. 

2.1. Terminology 

In an attempt to facilitate the discussion within the present article, a 
general workflow integrating various TA and NTA strategies is described 
in Fig. 1. Both approaches may be generally described as a sequence of 
steps including sample preparation, acquisition of the raw data (e.g. LC 
or GC–MS), data processing, data analysis and interpretation. Filters are 
applied at various stages of the data processing and analysis to obtain a 
list of key compounds for interpretation. The terminology in the field is 
not yet standardized (Hollender et al., 2019), and some terms may be 
defined differently in the current literature. In the present review, the 
following terminology will be used:  

● Data processing is used here as the generic term to designate all the 
post-acquisition steps from the transformation of raw data to 
extraction of relevant signal to be further analyzed (see data analysis 
step) in light of the research question (Pourchet et al., 2020).  

● Feature detection is a key step of the data processing which aims at 
converting raw data (e.g. LC/GC–MS data) into usable data and in-
cludes tasks such as denoising, peak picking, integration and align-
ment. The output of this step is a list of molecular features (retention 
time, m/z), identified or not, with varying signal intensities across 
the samples.  

● Data analysis is used to refer to transformation of usable and 
formatted data into added value and new knowledge, aiming at 
describe and interpret the ultimate data set. The strategy and the 
tools of data analysis depend on the dataset and the expected 
outcome. This step often involves methods based on statistics and 
algorithms. 

● Filtering consists of removing signals/data corresponding to com-
pounds which are not expected to contribute to the interpretation. It 
may be applied at different stages of the data processing/data 
analysis.  

● Data fusion: Various analytical instrumental platforms (e.g. LC or 
GC-HRMS, ICPMS…) may be applied to the analysis of chemical 
contamination. Data fusion, sometimes called data concatenation, is 
an approach combining data coming from different high-throughput 
platforms (Smolinska et al., 2014). Data fusion may be performed at 
different stages of the data processing/data analysis. 

2.2. Data acquisition and resulting data set 

Taking fish as an example, a description of TA and NTA acquisition 
techniques and of resulting data sets is discussed in this section to un-
derstand their associated challenges in the context of data analysis. 

2.2.1. Targeted analysis (TA) strategies 
Many TA methods have been designed for the analysis of fish con-

taminants such as trace metals (Kelly et al., 2018), organochlorine 
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pesticides (OCPs), polychlorinated biphenyls (PCBs) and other POPs 
(Bayen et al., 2005, Halloum et al., 2017, Abdel Malak et al., 2018), 
antibiotic residues (Dinh et al., 2020), synthetic musks (Zhang et al., 
2015). TAs are deployed in monitoring programs (e.g. European Union 
Marine Strategy Framework Directive, Great Lakes Fish Contaminants 
Surveillance Program), generating data sets, whose size is increasing as 
analytical methods improve in terms of analytical performances, 
throughput and multi-residue capacity (McGoldrick et al., 2010). For 
trace organic contaminants, sample preparation usually consists of 
several extraction and purification steps designed to remove interfering 
matrix compounds and/or to concentrate the target contaminants 
(Ingenbleek et al., 2021). The resulting extracts are analyzed by LC or 
GC–MS, e.g. using single or triple quadrupoles (selected or multiple 
reaction monitoring modes specific to the targets) or even high- 
resolution mass spectrometry (HRMS). High-purity analytical stan-
dards are commonly used as reference (chromatographic retention 
times, quantifier/qualifier ion ratios) and the addition of isotopic 
labeled compounds has become a standard practice for a confident 
quantification. For each compound and sample, signal intensities are 
commonly compared to the noise, corrected using procedural blanks or 
normalized to the original sample weight. Additional steps may also be 
carried out to improve the subsequent use of statistical tools for data 
analysis (e.g. conversion of non-detect values, log transformation, mean 
centering, variance scaling, etc). 

2.2.2. Non-targeted analysis (NTA) strategies 
NTA may be used to screen for the presence of new contaminants or 

to record a broad chemical fingerprint for fish species such as salmon, 
cod, pike (Tian et al., 2020, 2019). NTA does not imply the pre-selection 
of analytes nor the systematic analysis of their pure corresponding 
analytical standards (Ballin and Laursen, 2018, Schulze et al., 2020). 
NTA relies on sample preparation steps often compromising between an 
exhaustive extraction of the contaminants and the removal of interfering 
matrix endogenous molecules, e.g. lipids (Munaretto et al., 2016). 
Analytical techniques coupling LC and GC systems with HRMS are used 
to ensure the simultaneous detection of a large range of mass in a single 
scan (full-scan) with high mass accuracy (±0.001 Da) and high resolu-
tion of mass (≥20 000) providing excellent specificity and selectivity, 
but compromising the sensitivity performance somewhat (Krauss et al., 
2010; Lorenzo et al., 2018). 

The resulting raw data sets contain many signals, some corre-
sponding to possible molecules of interest (e.g. contaminants), whereas 
others are not relevant and sometimes undesired (e.g. interfering 
endogenous molecules). For each of these compounds, isotopologues, 
multi-chargers, adducts, neutral loss and fragment ions may be recor-
ded. As a result, several thousands of molecular features can be detected 
for each individual environmental (Hollender et al., 2017, Schulze et al., 
2020) or food (Fisher et al, 2021) sample (). Most critically, signals 
corresponding to trace contaminants of interest can be tiny compared to 
the bulk signal of the sample. As an example, the peak height for LC- 
QTOF signals corresponding to bisphenols was as low as 103 in pike 
tissue extracts where the total intensities in the Total Ion Chromatogram 
reached about 108 (Tian et al., 2019). Considering the above challenges, 
data processing workflows need to be optimized to effectively pick up 
trace contaminants (Tian et al., 2019). Additional filtering and data 
analysis tools for the detection and identification of contaminants in 
NTA data are presented in Section 3 of this paper. 

2.3. Integrating TA and NTA strategies through data analysis 

As discussed above, up to several hundreds of chemicals are now 
included in environmental or food surveillance programs (Kantiani 
et al., 2010). While the number of monitored contaminants has gone up 
in the last decades, occurrence data are still often interpreted separately, 
following a traditional chemical class-by-class data analysis strategy. 
Interpretations are generally limited to relatively simple descriptive 
statistics such as mean, median, standard deviation (or variance) values, 
each variable being interpreted independently of the others. Such an 
approach provides little information on the exposure to chemical mix-
tures, or on the interactions and relationships between contaminants. 

Instead, multivariate analysis should be applied more broadly to 
contaminant monitoring to explore more than two variables (i.e. more 
than two contaminants per sample sets) simultaneously and taking into 
account the effects of all variables on the response of interest (Olivieri, 
2008). Such approaches allow for a scientifically sound dimensionality 
reduction without relevant information loss. Besides, data visualization 
based on multivariate analysis tools often provides a simplified repre-
sentation of contamination and facilitates the interpretation. Thus, such 
data mining approaches are interesting approach to solve multi-variate 
and multi-response problems as expected when studying fish 

Fig. 1. Integrating TA and NTA strategies to characterize contaminant mixtures.  
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contamination. 
In the end, monitoring studies should aim at integrating data from 

both TA and NTA strategies. Indeed, the detection of an increasing 
number of chemicals in matrices such as fish has illustrated that con-
taminants cover an ever-increasing chemical space. Analytical work-
flows integrating both TA and NTA data appear as promising for a more 
comprehensive assessment of chemical mixtures. This can be achieved 
using data fusion at different stages of the analytical workflows (Fig. 1). 
Finally, the integration of metadata (biological, environmental or 
physical–chemical parameters, spatial and temporal information) can 
lead to some investigation of the target systems as described for some 
applications below. 

3. Data mining strategies to highlight contaminants in NTA 
workflows 

As described above, NTA produces large complex sets of raw data. A 
key task for chemical hazard surveillance is to detect and identify con-
taminants, which is particularly challenging when it comes to new or 

emerging contaminants. Several strategies have been reported in the 
literature, that may be used individually or in combination to refine a 
list of key contaminants of interest. Some tools can be used to screen for 
the presence of unexpected contaminants, while others are effective at 
identifying new contaminants (Table 1). This section describes these 
various strategies, and includes a discussion on the importance of 
selecting the right approach to limit the number of false positives and 
false negatives. 

3.1. Suspect screening using library database searching 

A common approach is the screening of unexpected contaminants 
using libraries of compounds which is part of the more global strategies 
known as suspect screening.. It is carried out against a database such as 
MassBank (Horai et al., 2010), GNPS (Wang, 2016), Metlin (Guijas et al., 
2018), MS suppliers’ commercial databases, etc… that contains, at least, 
information on empirical formula and accurate mass of a more or less 
long list of compounds and additionally, can also contain information on 
their retention time in a defined LC system and the “in silico” or 

Table 1 
Examples of filtering and data analysis strategies to detect and identify new contaminants in fish and other matrices via NTA.  

Expected outcome Matrix Analytical 
technique 

Data processing and mining/Software Reference 

Food safety assessment 
Identify unknown toxins, illegal 

additives or toxicants in food 
poisoning from fish 

Mussels and oysters C18 HSS T3 column 
HPLC-ESI-QTOF 

Case control study: pairwise comparison (T-test) and 
multivariate analysis (PCA and PCA-DA)/ 
MarkerViewTM software 1.2.1 

(Dom et al., 2018) 

4 fish samples including 1 control BEH C18 column 
UHPLC-Q-Orbitrap 

Case control study: differential analysis combining 
PLS-DA and t-test/ SIMCA-P 11.0 

(Fu et al., 2016, 2017) 

Eel, yellow croaker, and tilapia Supelco Ascentis 
Express C18 

UHPLC-Q-Orbitrap 

Suspect-screening: screening of veterinary drug 
residues in incurred fish and imported aquaculture 
samples. 

(Turnipseed et al., 
2018) 

Identify degradation products 
and metabolites in food 

Food matrices Zorbax Eclipse XDB- 
C8 

HPLC-CID-TOF 

MS fragmentation of homologues: identification of 
pesticide transformation products via “fragmentation- 
degradation” relationships. 

(Garcıa-Reyes et al., 
2007) 

Environmental risk assessment and management 
Identify emerging 

bioaccumulative 
contaminants in biota 

Lake Ontario trout DB-5HT column 
GC-TQFT 

Mass defect filtering: screening halogenated 
environmental contaminants 

(Jobst et al., 2013) 

European eel (Anguilla Anguilla) 
muscle 

Hypersil Gold 
analytical column 
UHPLC-Q-Orbitrap 

Mass defect filtering: screening halogenated 
environmental contaminants 

(Cariou et al., 2016) 

Pike (Esox lucius) muscle Poroshell Phenyl- 
Hexyl 
HPLC-ESI-QTOF 

Suspect-screening: screening plastic-related chemicals 
and other contaminants in samples from the St. 
Lawrence River, Canada 

(Tian et al., 2019) 

Freshwater organisms 
(Lumbriculus variegatus, Hexaenia 
spp, Pimephales promelas) 

DB-5HT GC column 
GC-FTICR 

Mass defect filtering: mass defect filtering on an H/Cl 
mass scale, H/Cl mass defect plot 

(Myers et al., 2014a) 

Fish livers (23 freshwater fish 
species) 

Poroshell Phenyl- 
Hexyl 
HPLC-ESI-QTOF 

Suspect screening + Differential analysis: 
Comparison of benthic and water-column foraging 
strategies group. Comparison upstream and 
downstream of wastewater treatment plants. 

(Baesu et al., 2021) 

Human blood as example of 
biological samples 

Acquity UPLC HSS 
C18 SB column 
UPLC-Q-ToF 
or UHPLC-Orbitrap 

Time-trend screening: to flag reoccurring peaks in a 
time series. Selection of peaks displaying an increasing 
trend using time trend ratios and Spearman’s rank 
correlation coefficient/ MATLAB and Microsoft Excel 

(Plassmann et al., 2016, 
2018) 

Lake trout and walleye 
bream bile from Great Lakes 

GC × GC-TOF HRT Mass defect filtering: mass defect filtering on an H/Cl 
mass scale, H/Cl mass defect plotting/ Leco, 
ChromaTOF v1.90.60 and Microsoft Excel 

(Fernando et al., 2018) 

Lake Michigan trout UPLC-QToF MS fragmentation of homologues: screening 
algorithm initialized using a candidate formula matrix 
based on mass spectral profiles and likely 
fragmentation pathway/ MATLAB 

(Baygi et al., 2016) 

Identify degradation products, 
metabolites, precursors in 
biota 

Chelonia mydas green sea turtles UHPLC-ESI-QTOF Case control study. multivariate analysis (PCA) to 
simultaneously detect biomarkers of exposure 
(xenobiotics) and biomarkers of effect (endogenous 
compounds) 

(Heffernan et al., 2017) 
and companion paper ( 
Gaus et al., 2019) 

Identification of toxic 
compounds 

Bream bile from Lake 
Bergumermeer, River Dommel, 
Amsterdam North Sea Canal 
(Netherlands) 

GC-MSD Effect-directed analysis: identification of endocrine 
disruptors (ER-CALUX-assay + HPLC fractionation +
GCMS analysis) 

(Houtman et al., 2004) 

Liver and blubber of high-trophic- 
level animals 

GC-MSD Effect-directed analysis: identification of dioxin-like 
and androgen receptor antagonist 

(Suzuki et al., 2011)  

C. Simonnet-Laprade et al.                                                                                                                                                                                                                    



Environment International 155 (2021) 106610

5

experimental MS/MS fragmentation compiled in libraries. Turnipseed 
et al. (2018) reported the use of a high-resolution mass spectrometry 
screening method for veterinary drug residues in incurred fish and im-
ported aquaculture samples. On top of detecting and identifying veter-
inary drugs including quinolones, fluoroquinolones, avermectins, dyes, 
and aminopenicillins at residue levels in fish, the approach allowed for 
the discovery of unexpected residues and drug metabolites in various 
fish samples. This approach was also reported to support the identifi-
cation of previously unreported contaminants in pike fish muscles (Tian 
et al. 2019) or to successfully extend targeted approach, revealing 
additional chemicals (i.e, plastic related products, pharmaceutical 
products, pesticides) in several samples of fish species intended for 
consumption (i.e, Merluccius australis, Sparus aurata, Dicentrarchus lab-
rax) (Musatadi et al., 2020). 

3.2. Chemical filters 

Many chemicals share the same fate in the environment because of 
similarities in terms of composition or physicochemical properties. 
Using the knowledge built in the fields of environmental and food sci-
ences in the last decades, strategies have been designed to identify 
contaminants which may be part of homologue series or who share some 
composition or structural similarities. 

3.2.1. Mass defect filters and isotopic profiles 
The majority of the PBT substances, notably covered by the Stock-

holm convention, are polyhalogenated (Scheringer et al., 2012), recent 
studies have thus focused on identifying halogenated compounds as a 
screening approach to detect new contaminants. Halogenated atoms, 
especially chlorine and bromine, exhibit a relatively higher mass-defect 
(MD) (difference between the exact mass and the nominal mass of an 
element) as compared to other common elements (C, H, O, N), and 
atypical MS isotopic profiles. These two distinct attributes make halo-
gens relatively straightforward to highlight in a mass spectrum, 

especially when accurate mass measurement are obtained using HRMS 
instruments (Kaufmann, 2012). As a result, feature filtering methods 
based on MD have been developed for the screening of halogenated 
contaminants (Sleno, 2012, Jobst et al., 2013). The principle of MD 
filtering is to remove all data outside a pre-defined and limited MD 
range. A relatively simple way to visualize and distinguish ions with a 
particular MD from other ions is to plot the fractional part of the m/z (i.e. 
MD) against the m/z. Originally based on an exact mass reference of 
12.0000 for 12C (International Union of Pure Applied Chemistry) or of 
14.0000 for 12CH2 (Kendrick, 1963), a modification of MD plot scale has 
been proposed for halogenated compounds based on the substitution of 
chlorine for hydrogen, thus using H/Cl mass scale of 34.0000 Da (− H/ 
+Cl). In the corresponding H/Cl-scale MD plots, chlorinated homologue 
series plot on horizontal lines (see example from Cariou et al., 2016 in 
Fig. 2). H/Cl and H/Br conversion factors being almost equal (1.001148 
versus 1.001149, respectively), MD plots can be also effective at visu-
alizing clusters of brominated compounds. The use of MD between the 
two natural and stable isotopes separated by 2 nominal atomic mass 
units, for both Cl and Br atoms (1.9971 for Cl and 1.9980 for Br) and ion 
ratio criteria is good combination to effectively identify chlorinated and 
brominated ion clusters. Filtration algorithms based on MD and isotopic 
profiles have been successfully applied to Fourier transform mass 
spectrometry for the screening of halogenated bioaccumulative com-
pounds in freshwater organisms (Lumbriculus variegatus, Hexagenia spp., 
and Pimephales promelas) exposed to contaminated soil from a recycling 
plant fire site (Myers et al., 2014b). Various bioaccumulative contami-
nants were identified including polychlorinated naphthalenes (PCNs), 
polychlorinated dibenzofurans (PCDFs), or chlorinated and mixed 
brominated/chlorinated anthracenes/phenanthrenes, and pyrenes/flu-
oranthenes. The same approach allowed the identification of 60 non- 
targeted halogenated species in lake trout from the Great Lakes (Fer-
nando et al., 2018) or hexabromocyclododecane and chlorinated par-
affins in muscles of the European eel (Anguilla anguilla) from the Loire 
river in France (Cariou et al., 2016). In each of these studies, the 

Fig. 2. Example of H/Cl-scale MD plot obtained for a muscle eel sample extract reproduced with permission from Cariou et al., 2016.  
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resulting thorough data filtering (from 9789 initial obtained features to 
589 clusters for instance in Cariou et al., 2016) allowed for the opti-
mization of the molecular formula assignment. In order to facilitate the 
wider application of this approach and accelerate the overall data pro-
cessing, Léon et al. (2019) proposed a user-friendly software named 
HaloSeeker. The software consists in an ergonomic web user interface 
facilitating peak picking, deconvolution, halogenated feature filtering, 
MD plot and chemical formula assignment. 

Mass defect filtering was also reported for the screening of bio-
accumulative fluorinated contaminants in aquatic biota, including fish 
(Myers et al., 2014a). The mass defect and isotopic profiles of fluorine 
atoms are however less specific than for Cl and Br, and their use may 
lead to a relatively high rate of false positives (Liu et al., 2019). A 
combination of CF2-scale MD plot and homologous series searching has 
been proposed to flag poly- and perfluoroalkyl contaminants in full-scan 
data sets using mass differences of 49.997 for CF2 units, 99.994 for 
CF2CF2 units, 64.012 for CH2CF2 units = 64.012 or 65.991 for CF2O 
units (Liu et al., 2019). This approach can be therefore extended to other 
large classes of homologues which could be manufactured or used as 
chemical mixtures. 

3.2.2. Other approaches for the identification of homologue series 
In addition, compounds part of a homologue series may share simi-

larities in terms of chromatographic or mass spectrometry behavior. 
Non-commercial software workflows, such as enviHomolog web (Loos 
and Singer, 2017), have been developed for the extraction of homologue 
series based on the identification of repeating patterns in the hyphen-
ated HRMS data. Neutral loss, i.e. fragments lost as neutral molecules, 
has also been proposed as a feature filtering tool to screen for the 
presence of series of homologue compounds. Baygi et al. (2016) devel-
oped a candidate list screening algorithm on the basis of: (1) a molecular 
formula matrix for the possible ions for fluorinated homologues 
(CcOoFfClclHhSs, with c = 4–10, o = 2 for carboxylic forms, = 3 for 
carboxylic ether and sulfonate forms, = 4 for ether sulfonate form, and 
the summation of f, cl and h set so that all carbon atoms were fully 
saturated and the compound was deprotonated) previously discovered 
from fluoropolymer discharged impacted compartments; and (2) a 
candidate compound spectra matrix developed using a statistical 
approach developed by Yergey (1983) (see details in Baygi et al., 2016) 
to calculate theoretical isotopic distribution of each candidate. This al-
gorithm allowed to reference 3570 possible compounds in Lake Michi-
gan trout data files, highlighting the presence of 30 polyfluorinated 
chemical formulas reported for the first time in environmental matrices. 

3.3. Differential analysis 

The differential analysis approach investigates NTA data profiles 
among groups of samples to isolate features of interest. This strategy, 
similar to that implemented in metabolomics - to the nuance that it is in 
this case to detect markers of exposure and not effect (Hernandez-Mesa 
et al., 2021) - consists in the comparison of signals between two or more 
groups of samples of interest. It is often guided by the experimental 
design and relies on the application of discriminant analysis (univariate 
or multivariate) tools to reveal the molecular features or the compounds 
of interest. 

3.3.1. Non-target time trend screening 
Non-target time trend screening consists in comparing MS profiles of 

samples collected over several periods. Using time-series data sets from 
samples analyzed at different time points, compounds that show a meaningful 
trend are studied (Peters et al., 2010). The principle of this filtering 
strategy relies on peak occurrence and intensity assuming that reoc-
curring peaks with increasing (or decreasing) intensity in the time series 
correspond to contaminants of interest, while reoccurring peaks with 
constant intensity more likely refer to endogenous substances. Peaks 
displaying an interesting trend may be filtered from randomly 

fluctuating peaks using time trend ratios and Spearman’s rank correla-
tion coefficients. This strategy allows for considerable reduction of the 
size of datasets (Plassmann et al., 2016); it was successfully applied in 
environmental matrices to highlight biooaccumulative contaminants 
such as POPs exhibiting increasing intensity in the time series (Miller 
et al., 2014, Nyberg et al., 2015), while it was also reported a successful 
approach to investigate time series of polar contaminants in abiotic 
matrices (Albergamo et al., 2019). Such long-term data is also key for 
assessing the efficiency of measures taken to reduce contamination (Ek 
et al., 2021). 

3.3.2. Comparison of samples of different origin 
Differential analysis can also be applied by comparing samples 

considered “contaminated” versus control samples. Fu et al. (2016) 
developed for example a data reduction strategy based on differential 
analysis to screen illegal additives in fish. An unsupervised partial-least 
square discriminant analysis (PLS-DA) was applied on UHPLC-HRMS 
features (m/z, tR and peak response (>1000 ions), after extraction sol-
vent blanks, internal standard calibration and ion fusion filtration, for 
comparing suspected fish samples versus a control fish sample. Ions with 
variable importance in the PLS-DA projection (values > 1.0) were 
selected for t-test analysis (required p-value < 0.01). Then, the retained 
ions were analysed by calculating the peak intensity ratio between the 
suspected sample and the control sample. Ions with a fold change of 10 
were considered to be high risk compounds. With such approach, 69 ions 
were retained for database searching. Other possible questions could be 
addressed in applying the same strategy. For instance, the differential 
analysis of HRMS profiling of packaged fish fillet sample vs. unpackaged 
fish fillet sample could be useful to assess the impact of food packaging 
on chemical contamination of edible fish (provided that the fish have the 
same origin) and possibly identify non-intentionally added substances 
(Sanchis et al., 2017). The comparison of fish samples from industrial 
zones and unexposed area would help for discover new bioaccumulative 
contaminants. This approach was recently reported for the comparison 
of contaminant profiles in fish sampled upstream and downstream of 
wastewater treatment plants (Baesu et al., 2021). Through the applica-
tion of differential analysis and data visualization tools such as volcano 
plots, erythrohydrobupropion was identified for the first time in fish 
livers, and was also found at higher concentrations in fish livers sampled 
downstream vs. upstream. 

Similarly, a methodology combining a non-target HRMS analysis 
with multivariate statistical analysis has been proposed to simulta-
neously detect biomarkers of exposure (i.e. xenobiotics) and endogenous 
metabolites in blood of green sea turtles (Chelonia mydas) on the Great 
Barrier Reef (Heffernan et al., 2017). The simultaneous detection of 
exogeneous and endogenous compounds through full-scan mode may be 
used to identify cause-effect relationships and thus indirectly highlight 
toxic contaminants (Hernandez-Mesa et al., 2021). In order to investi-
gate the potential influence of xenobiotics, HRMS profiling of case 
‘samples’ corresponding to turtles from two coastal sites impacted by 
urban/industrial or agricultural activities were compared with those of 
‘control’ sample corresponding to turtle from a remote offshore site. 
Prior to multivariate analysis, the number of spectral features was 
reduced from 4761 to less than 100 by two-to-two comparison of sites, in 
using several criteria: significance (p-value < 0.05), effect size (log fold- 
change > 0.05), monoisotopic mass (ignoring isotopes, adducts and ion 
products generated during the ionization process) and retention time 
(>1 min). This step wise data reduction strategy allowed to focus on the 
most significant spectral features for subsequent identification. Then 
PCA established on selected features enabled the discrimination of 
samples according to the three sites despite inter-individual variability. 
The spatial difference of xenobiotic profiling was key to validate the 
selection of features of concern. 
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3.4. False positives and negatives issues 

Filtering methods are critical in the identification of new contami-
nants in complex environmental and food matrices, such as fish tissues. 
However, several considerations need to be included when selecting and 
deploying data filtering. Inappropriate filtering parameters may be 
ineffective in eliminating irrelevant compounds (increasing the likeli-
hood of false positives) or may be too stringent (false negatives) (Schulze 
et al., 2020). 

The impact of sample preparation on the false discovery rate of 
contaminants is obvious, and experimental conditions are often opti-
mized to limit the number of false negatives in complex matrices such as 
fish (Du et al., 2017). Instrumental conditions, for example selecting 
data-independent or data-dependent acquisition in HRMS, can influence 
the success of library searching to identify non-targeted compounds or 
metabolites (Wu et al. 2020). However, the choice and the parametri-
zation of a filtering step should be also aligned with the experimental 
conditions (e.g. types of extraction, chromatography or ionization) and 

Table 2 
Applications of MAMs for the assessment of contaminant mixtures in fish.  

Types of contaminants Matrix MAM Interpretation Software Reference 

23 trace metals, 80 PCBs, 
chlorinated 
hydrocarbons, OCPs, 
BFRs 

3 species of Eurasian caviar HC 
Squared Euclidean 
distance 

Identify groups of caviar samples 
Determine within-group linkages  

Excel and SPSS, 
version 4 

(Wang et al., 
2008) 

23 OCPs, 18 PCBs Ten common aquatic product 
species from Northeast China 

PCA Assess species-specific bioaccumulation 
Identify groups of species according to contaminants 
concentrations 

not specified (Fu et al., 
2018) 

7 OCPs, 19 PCBs Muscle samples of 3 Cyprinidae 
species from Vransko Lake 
(Croatia) 

SOM   

DT 

Identify patterns among OCP and PCB congeners in 
freshwater fish searching for clustering based on 
different fish species and sampling months. 
Classify samples according to fish species or seasons 

MATLAB  

STATISTICA, 

(Romanić 
et al., 2018) 

PCBs, OCPs, PBDEs Whole fish and fillet of 5 
species from Charleston 
Harbor and tributaries (South 
Carolina, USA) 

Heat map +
complete linkage 
clustering 

Identify patterns of contaminant loads by fish species 
and location 

not specified (Fair et al., 
2018) 

PCDDs, PCDFs, PCBs Liver of coalfish and cod, eel, 
pike perch, farmed salmon 

PCA Investigate differences in congener profiles of marine 
fish, shellfish and farmed fish (salmon) 

not specified (Van Leeuwen 
et al., 2007) 

7 OCPs, 17 PCBs Fillet of edible marine fish 
species from Adriatic Sea 

SOM  

DT 

Identify OCP and PCB pattern in marine fish 
according to species, years and fishing zone 
Classify samples according to fish species and 
sampling seasons 

MATLAB  

STATISTICA 

(Vuković 
et al., 2018) 

PBDEs, PCBs, OCPs The patagonian silverside 
(O. hatcheri) collected along 
the Negro River 

PCA Reveal the relationship among sampling sites and the 
accumulation of contaminants in each fish tissues 

InfoStat 2008 (Ondarza 
et al., 2014) 

18 PCBs, 7 PBDEs, 17 
PFASs, BPA, 5 OH- 
PAHs, 4 Aps 

Muscle and bile of European 
eel Anguilla anguilla 

PCA Discriminate contaminant levels in the muscle and 
bile of eels from different sites and life stage, as well 
as their biometric parameters 

STATISCA, 
version 7 

(Couderc 
et al., 2015) 

58 PCBs, 6 PBDEs  Whole fish and eggs of fish 
(Chinook and salmon, brook 
trout, mottled sculpin) 

PERMANOVA, 
NMDS  

Compare and assess relationships between POP 
pattern of resident fish species of Great Lakes and 
with migratory salmon 

R version 3.0.3  (Gerig et al., 
2015) 

19 contaminants (OCPs, 
PCBs) 

Salmonids and cyprinids fish PCA Discriminate fish species according to 
organochlorine contaminant profiles and identify 
variables responsible of the variance. 

PLS Toolbox 
v3.5 

(Peré-Trepat 
et al., 2006) 

7 PCBs, 18 OCPs, 16 
PAHs 

Eel muscle tissues PCA  

DA 

Characterize the correlations between PCB, OCP, 
PAH concentrations and biological responses 
Classify the different sampling sites 

ADE (van der Oost 
et al., 1997) 

168 organic chemicals Fish tissues SOM, canonical 
correlation analysis 

Investigate deviations from linear relationships 
between log BMF and log Kow calculated from 
concentrations of contaminants in fish tissue and 
identify structure-related bioaccumulation patterns 

MATLAB 2014 (Grisoni et al., 
2018) 

OCPs, PCBs Muscle and liver of fish from 
European mountain lakes 

PCA, PLS Assess the dependence of compounds on 
geographical and temperature and physiological 
parameters 

MATLAB 6.5, 
PLS 3.5 Toolbox 

(Felipe-Sotelo 
et al., 2008) 

PCBs, α-HCH, HCB and 
trace metals 

Liver and muscle of Canadian 
Atlantic Cod 

PCA with ANCOVA 
and MANCOVA 

Investigate time trends of contaminant levels in fish 
tissue 

SYSTAT v 5.0 (Misra et al., 
1993) 

16 PAHs, 29 PCBs Liver and muscle of sharks 
from Galveston Bay 

PERMANOVA 
SIMPER analysis  

PCA  

partial redundancy 
analysis (pRDA), 

Compare liver and muscle congener profiles among 
the three species 
Determine the congeners contributing to the greatest 
differences between species 
Investigate and visualize correlation between 
contaminant concentrations in fish and biomarker 
activity 
Determine which congeners were correlated with 
EROD and GST activity 

R version 3.3.3 (Cullen et al., 
2019) 

21 PCBs, 28 OCPs Muscle tissues of fish from the 
Yadkin Pee Dee River 
(Caroline, USA) 

PCA,  

Linear mixed effect 
model 

Identify relationships between environmental 
contaminants and intersex occurrence and severity 
Predict intersex potential 

JMP Pro 12 (Grieshaber 
et al., 2018) 

28 PCBs, 5 OCPs, 2 
PBDEs, 4 trace metals 

Liver of flounder from two 
estuarine areas in the 
Netherlands 

PCA Visualize correlations between contaminant 
concentrations and biomarker responses 

not specified (Schipper 
et al., 2009) 

HC: hierarchical cluster analysis; PCA: Principal Component Analysis; SOM: self-organizing maps; DT: Decision Tree; PERMANOVA: Permutational multivariate 
analysis of variance; NMDS: non-metric multidimensional scaling; PLS: Partial least-square regression; (M)ANCOVA: (multivariate) analysis of covariance. 
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performances (e.g. mass measurement errors, retention time shifts). For 
example, homologue series searching and formula searching should be 
guided by a knowledge of chemical space covered by a specific type of 
sample preparation or mass spectrometry ionization mode. The 
parametrization of the data processing pipeline should also be consid-
ered, as each step may impact the success rate of the identification of 
contaminants. As an example, the type of imputation method for missing 
values can have major effect on the results of subsequent statistical data 
mining (comparison performed in Hrydziuszko and Viant, 2012; Wei 
et al., 2018). In that way, the selected NTA pipeline strategy should be 
assessed using spiked matrices or reference material on the model of 
what is being done in other fields of metabolomics (Ribbenstedt et al., 
2018). Spiking model contaminants at trace level has been reported for 
eel (Wu et al., 2020), pike fish (Tian et al., 2019), but reference materials 
are still lacking to assess NTA workflows. 

Hollender et al. (2017) pointed out the limitations related to sup-
pression of signals in matrix-rich samples and the biases that can 
generate samples comparison. For differential analysis, the definition of 
the control or reference group of samples is critical to dissociate con-
taminants from endogenous compounds. Homogeneity among the 
sample populations in terms of age, gender, species is often key to limit 
inter-individual and interspecies variability and better highlight, using 
discriminant analysis, the variability related to the “treatment” only 
(exposition to additives, exposition to industrial sources). 

4. Multivariate analysis to characterize contaminant mixtures 

The chemical contamination profile of fish may be impacted by 
several factors including contamination sources, physical and chemical 
environmental parameters and uptake of pollutants by fish, itself 
influenced by a variety of factors such as exposure pathways (e.g. 
through water or diet), elimination processes, growth rate, age, lipid 
contents, etc. (Wenning and Erickson, 1994). Besides, the environmental 
fate of chemicals and their trophic transfer obviously depend also on 
their own physico-chemical properties. Because of the multitude of 
possible combinations of influencing factors, the description and inter-
pretation of fish contamination profiles can be intricate task. As 
reviewed by Mas et al. (2010) and Wenning and Erickson (1994) for 
instance, various types of multivariate methods, or “chemometric 
multivariate methods”, have been developed and are now available in 
common statistical software packages (See examples in Table 2). How-
ever, the selection of efficient data analysis methods is not always 
straightforward since it is dependent on the goal of the study and key 
properties of the datasets. The present section provides a brief descrip-
tion of some multivariate analysis tools, their applications to contami-
nant mixtures in matrices such as fish, and some considerations to 
properly interpret their results. 

4.1. Categories of multivariate analysis methods (MAMs) 

Multivariate analysis methods have been applied for several decades 
in environmental studies to reduce dimensions, to classify variables or 
samples, to select variables or to predict phenomenon in order to 
simplify interpretation of environmental systems. MAMs may be cate-
gorized under two main categories: unsupervised multivariate analysis 
methods (UMAMs) and supervised multivariate analysis methods 
(SMAMs). The selection of a MAM is critical to provide an appropriate 
interpretation. Gibert et al., (2018) recently reviewed the differences 
between UMAMs and SMAMs, and proposed guidelines to select the 
appropriate methods according to the scientific question and the struc-
ture of data sets. Briefly, the main goal of UMAMs is to provide an in- 
depth understanding of the system and a general description of the 
global interactions. SMAMs aim to explain the specific behavior of a 
response variable (defined as variable of interest to be explained) by 
explanatory or independent variables. In the first case, all the variables 
are processed equivalently without a priori. In the latter case, a 

prediction is assumed for the response variable and predictor variables 
are used to explain it. 

There are two groups of UMAM techniques (Gibert et al., 2018): (i) 
associative methods which help to identifying relationships among 
variables (e.g. contaminant concentrations) and include for instance 
principal component analysis (PCA) and correspondence analysis (CA); 
and (ii) descriptive methods which are used to assess relationships 
among objects (e.g. samples, sampling locations, fish species, fish tis-
sues, etc.) and include self-organizing maps, statistical clustering, etc. 
SMAMs are seldom applied to only describe the system but may be used 
to build predictive methods (e.g. multiple linear regressions, analysis of 
variance such as ANOVA) or classifier/discriminant methods (e.g. 
decision-trees, discriminant analysis). Table 2 summarizes key applica-
tions of MAM to data sets in the context of contaminant mixtures in fish 
and their interest in environmental and health risk assessment. 

4.2. Applications of unsupervised multivariate analysis methods 
(UMAMs) 

Unsupervised descriptive and associative multivariate methods are 
commonly reported to explore data sets associated to the study of multi- 
contamination of fish since they do not require prior assumptions on the 
target system. The application of UMAMs allows reducing the 
complexity of a system by grouping homogeneous objects (e.g. fish 
samples having similar contamination profiles) or associated variables 
(e.g. identify relationships among contaminants or with environmental 
and biological parameters). 

4.2.1. Descriptive UMAMs 
The application of descriptive UMAMs to environmental/food sam-

ples such as fish allows for the description and the categorization of 
sample groups according to homologous contamination patterns. Cluster 
analysis is a widely used method to partition a set of objects into two or 
more clusters based on their similarities (Johnson and Wichern, 2002). 
Hierarchical cluster analysis indicates sample groupings by ranking 
inter-sample similarities (linkage clustering) and the resulting output 
data are represented on a dendrogram, i.e. a tree on which the more the 
link height between nodes (samples) decreases, the more the similarity 
between nodes is high. For instance, Wang et al. (2008) performed a 
hierarchical cluster analysis (HCA) to conduct a preliminary assessment 
of health risks associated with the consumption of caviar, and identified 
different groups of caviar samples according to the concentrations of a 
hundred contaminants including PCBs, chlorinated hydrocarbons, 
OCPs, BFRs and trace metals (reproduced in Fig. 3A). Using HCA, several 
groups were distinguished, first by species, and then origin, supporting a 
discussion based on trophic levels and/or contamination sources. A 
similar approach, using the combination of heat map and complete 
linkage clustering, allowed for the simultaneous visualization of the 
patterns of PCBs, OCPs and PBDEs across various fish species from 
multiple locations (Fair et al., 2018). Heat map colors allow for the 
visualization of the relative contaminant levels in each samples in 
comparison to the average in all the samples. 

Romanić et al. (2018) reported the application of Kohonen self- 
organizing maps (SOM) to identify pattern of OCP and PCB congeners 
in 3 freshwater Cyprinidae species collected at three different sampling 
periods in Vransko Lake (Croatia) (Fig. 3B). The SOM consists in a 
regular neuron network (usually a two-dimensional grid), where input 
data are distributed using a finite set of models with the following 
principle: more similar models become automatically associated with 
nodes that are adjacent in the grid, whereas less similar models are 
situated farther away from each other in the grid (Kohonen, 2013). Such 
an approach has proved particularly interesting for describing the 
contamination patterns of the three fish species and for identifying the 
main variables that explained the observed differences (Romanić et al., 
2018). 

C. Simonnet-Laprade et al.                                                                                                                                                                                                                    



Environment International 155 (2021) 106610

9

4.2.2. Associative UMAMs 
Another common approach for data reduction is to identify and 

combine correlated variables. Principal components analysis (PCA) is 
probably one of the most commonly used MAM (Table 2). PCA is of 
particular interest to highlight correlations between different variables 
and to visually discriminate groups of samples. PCA consists of a pro-
jection of variables as points in bi or tri-dimensional space in preserving 
most of the existing relations among samples and variables (Abdi and 
Williams, 2010). Dimensions of the new space are created by the asso-
ciations of correlated variables and are called principal components 
(PCs). PCA is often combined with clustering analysis to distinguish 
sample groups in a 2D new space. One of the first studies attesting the 
power of PCA modelling of multivariate data such as those encountered 
in complex chemical mixtures study in aquatic biota (Stalling et al., 
1985) was performed using poorly performing computer processes 

compared to those available today. Benefiting from computer advances, 
applications of PCA has generalized. Van der Oost et al., (1997) 
demonstrated for instance the importance of monitoring biota such as 
fish for the assessment of freshwater pollution since no clear discrimi-
nation between moderately and heavily polluted sites could be made 
using PCA on sediments only. In their study, the joint application of 
univariate analysis methods, PCA and discriminant analysis on a data set 
including PCBs, OCPs and PAHs concentrations in eels (Anguilla anguilla) 
from six Amsterdam freshwater sites, allowed for: (i) the classification of 
the environmental quality of the sites resulting from sample discrimi-
nation, (ii) the identification of contaminants responsible to this 
ranking, (iii) the examination of relationships between exposure to 
organic trace pollutants and biochemical responses in eel. The combi-
nation of univariate analysis and PCA has been also successfully applied 
to discriminate muscle and bile samples of European eel Anguilla anguilla 

Fig. 3. Examples of result representations from unsupervised and supervised data analysis methods: (A) dendogram from cluster analysis of Eurasian caviar samples 
according to organic (PCBs, OCPs, BFRs, OCs) and inorganic compounds (from Wang et al., 2008); (B) the Kohonen self-organizing maps (SOM) of OCP and PCB 
patterns in freshwater fish from Vransko Lake (from Romanić et al., 2018); (C) Principal Component Analysis (correlation loading on the left and sample repre-
sentation on the right) of biometric parameters and contaminants in the European eel tissues from the Loire Estuary (from Couderc et al., 2015); (D) Decision Tree 
classification of the organochlorine compounds found in edible fish species from different zones of Croatian Adriatic, according to sampling year (DT1) and coastal 
(DT4) and off coast fisheries zone (DT5), fish species sampled in 2014 (DT2) and fisheries zones (DT3) (from Vuković et al., 2018); (E) non-metric multidimensional 
scaling (NMDS) plots of PCB pattern for salmon spawners and resident fish in stream reaches with and without salmon from lakes Michigan, Huron and Superior 
(from Gerig et al., 2015). 
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collected along the Loire Estuary in France according to the pattern of an 
extended number of class of contaminants (PCBs, PBDEs, PFASs, BPA, 
OH-PAHs, APs) and biometric parameters (Couderc et al., 2015), 
reproduced in Fig. 3C). The variability among eels was mainly explained 
by the trophic level, body weight, lipid weight, and PBDE contents on 
the first component and PFAS and gonadosomatic index on the second 
component. Correlations between biometric parameters (body weight 
and trophic level) and concentrations of PCBs and PFAS were also 
identified through this MAM approach. This method allowed for the 
distinction between eel individuals from two sites, Bellevue and Haute 
Indre, the former presenting the highest PFAS and PCB levels. The 
additional consideration of biomarkers of effects (e.g. oxidative stress, 
biotransformation enzyme, genotoxic parameters) in PCA may provide 
insights on the possible cause-effect relationships as illustrated by 
Schipper et al. (2009) for instance. It should be noted though, as pointed 
by Bellavia et al. (2019), that PCA allows the identification of individual 
contribution to the mixture, but PCA is not a quantification method of 
the contribution of each component of the mixture on observed effects. 

4.3. Applications of supervised multivariate analysis methods (SMAMs) 

The choice of a SMAM rather than an UMAM depends on the pos-
sibility to perform an assumption on the target system (i.e., contami-
nation profiles of two groups of fish samples are differentiated by the 
concentration of one chemical substance and the question is what are 
the variables that may explain this difference). SMAMs allow for the 
statistical test of assumption using the entire dataset, and may be used to 
build predictive models. 

4.3.1. Discriminant SMAMs 
Fish contamination can be explored through supervised discriminant 

methods (Table 2). Among these approaches, decision tree (DT) analysis 
was recently reported to assess fish multi-contamination (Romanic et al., 
2018; Vukovic et al., 2018). DT analysis is a supervised learning algo-
rithm that can be used in both regression and classification problems 
(Debska and Guzowska-Swider, 2011). DT consists in a tree-shaped 
graphical representation of every possible outcome of a decision. Tree 
starts with a root node which represents all the samples and is further 
divided in homogeneous sub-nodes according to successive decision 
rules (values of single variables that best divide the data into two or 
more groups as homogeneous as possible). Romanic et al. (2018) applied 
DT models, in combination with SOM analysis (see section SDAM), to 
discriminate freshwater fish samples according to species and sampling 
seasons (2014 and 2016). Vukovic et al. (2018) reported the same 
approach (SOM combined with DT) to investigate POPs in edible fish 
species from different fishing zones of Croatian Adriatic. Results from 
DT (Fig. 3D) indicated that fish collected on two sampling dates (2014 
and 2016) could distinguished from each other based on PCB-74 levels 
(threshold at 0.066 ng.g− 1). In both these studies, DT models provided 
complementary results to the SOM approach, pointing at the levels of a 
specific variable that may discriminate fish samples. 

Discriminant SMAM may be also combined to UMAM. In a recent 
study, Cullen et al., (2019) combined PCA and a partial redundancy 
analysis (pRDA) to study POP contamination in shark species from the 
northwestern Gulf of Mexico. pRDA aims to summarize linear relation-
ship between components of response variables and explanatory vari-
ables in removing the effect of one or more explanatory variables with 
strong effect (Anderson, 2017). Cullen et al. (2019) evaluated, through 
pRDA, correlations between POP congeners and biomarker responses 
(ethoxyresorufin-O-deethlyase, EROD and glutathione S-transferase, 
GST) while limiting the effect of interspecific variability of POP con-
centrations between the 3 studied shark species (Carcharhinus leucas, 
Carcharhinus limbatus, Sphyrna tiburo). This method may be particularly 
useful to highlight weakly pronounced relationships, especially when 
the sample sets are heterogeneous. 

4.3.2. Predictive SMAMs 
Predictive SMAMs often involve establishing a regression model to 

explain a variable with others. The analysis of variance (ANOVA) is 
probably the most common statistical method for hypothesis testing on 
fish multi-contamination (Table 2). ANOVA is a type of general linear 
model which aims at testing if the means of two or more populations are 
equal, and assesses the effect of (and interactions between) various 
factors (dependent variable) on some variable response (Henson, 2015). 
The multivariate extension of ANOVA, MANOVA (for multivariate 
analysis of variance), simultaneously takes into account multiple 
response variables (Henson, 2015). Thus, MANOVA may be used to 
assess similarities/differences in contaminant patterns among different 
fish species and location for instance (e.g. Faira et al., 2019). 

Predictive SMAMs have also been recently applied to elucidate 
contaminant transport. For example, Gerig et al. (2015) applied a 
combination of Permutational multivariate analysis of variance (PER-
MANOVA) and non-metric multidimensional scaling (NMDS) to deter-
mine if the migratory Pacific salmon (Oncorhynchus tshawytscha, 
O. kisutch) could be a source of POP contaminants to stream-resident fish 
in Great Lakes tributaries. PERMANOVA is the non-parametric (based on 
permutation tests) version of MANOVA (based on sums of squared dis-
tances) that partitions variance in a distance matrix by calculating a 
distance based F-statistic (Anderson, 2017, 2001). As with PCA, NMDS 
aims at projecting input data of a target system into a new space with a 
reduced number of dimensions (example from Gerig et al., 2015 in 
Fig. 3E) in order to create a straightforward representation of relation-
ships between objects and descriptors (Agarwal et al., 2007). However, 
unlike PCA, NMDS relies on rank orders (distances) for ordination and 
does not require normal distribution of data (often the case when 
studying ecological systems) (Agarwal et al., 2007). In Gerig et al. 
(2015), the joint use of these both methods, less stringent than para-
metric methods, allowed the verification of hypothesis that (1) salmon 
PCB and PBDE congener patterns differed among Great Lakes basins and 
(2) resident consumer fish species from reaches with salmon have more 
similar POP patterns with salmon than resident consumer fish species 
from reaches without salmon. 

Partial least square (PLS) regression is another approach to assess 
simultaneously the effects of various factors on fish contamination. PLS 
regression is an extension of the multiple linear regression model that 
assess relationship between response variable and a set of predictor 
variables. PLS is relatively less reported, but was successfully applied to 
assess the relative importance of the geographical, temperature and 
physiological variables (predictor variables) affecting the accumulation 
of OCPs in different fish samples from European mountain and to find 
potential systematic patterns in these dependencies (Felipe-Sotelo et al., 
2008). In this study, PLS was deemed complementary to PCA, because 
PLS is not affected by correlation among predictor variables. This can be 
useful when dataset including geographical and physical–chemical 
variables for example, may be correlated. 

4.4. Considerations when applying MAMs 

MAMs generally facilitate the interpretation of complex systems, 
such as contaminant mixtures in fish, and provide simplified visualiza-
tion of the results. Interpretations of contamination profiles, relation-
ships between environmental variables and occurrence of contaminants, 
based on MAMs often provide a strong rationale for the implementation 
of a customized management approach of the food or environmental 
system. However, based on the present review, the applications of 
MAMs are still limited, and were mostly applied to the levels of regu-
lated contaminants (e.g. PCBs, dioxins, PBDEs) determined through 
targeted analysis. The limited number of MAM applications may be 
explained by the complexity of the data sets, and a lack of guidelines to 
select and apply appropriate MAM. But a deeper root for this issue re-
mains the relatively poor understanding of the impact of data process-
ing, data fusion and data filtering on the outcome of data analysis, 
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particularly for NTA data. 
As introduced in Section 2.2, data sets obtained using both TA and 

NTA approaches are often complex. First, unbalanced experimental 
design is common in food or environmental surveillance, as it is often 
difficult to obtain an equal number of samples for all tested groups (e.g. 
sites, species, age, etc.). The data may contain both quantitative and 
qualitative variables (e.g. metadata). Non-normal or multimodal data 
distributions are often encountered among fish contamination levels, 
environmental parameters (e.g. temperature, pH, turbidity) or biolog-
ical parameters (e.g., gender, age, lipid contents, biomarkers). 
Contaminant concentrations in fish can be extremely variable, even 
within the same study, because the fate of contaminants is multi-factor 
dependent. As an example, the sum of 25 PCBs in marine benthic fish 
from the Belgian North Sea and the Western Scheldt Estuary ranged 
20–3200 ng g− 1 ww (Voorspoels et al., 2004). Finally, missing values (e. 
g. non acquired data or non-detected value) are very common, especially 
for emerging contaminants. 

The selection of an appropriate MAM starts with the clear formula-
tion of the expected scientific outcome. Table 2 provides some clear 
examples of applications for each tool. Still, more systematic guidelines 
are needed for the selection and the parametrization of MAMs for spe-
cific food safety and environmental management applications. To ach-
ieve standardization in the field, software, scripts, and parameters 
should be first more systematically reported in the literature. The 
comparison of various tools should also be more frequently tested to 
explore the potential advantages and bias of different methods. In the 
end, and as noted by Gibert et al. (2018), statistical software could 
provide a greater intelligent assistance to support the selection or the 
parametrization of data analysis steps, which is currently uncommon. 

Finally, the impact of data processing, data fusion and filtering on the 
output of data analysis is still poorly understood. Hohrenk et al. (2020) 
recently compared the list of molecular features obtained from four data 
processing tools applied to the same initial raw data set (river water 
samples). Only about 10% overlap were observed among the features 
between all four programs, and between 40 and 55% of features for each 
software did not match with any other program. Tian et al. (2019) also 
described the influence of data processing on the detection and identi-
fication of model contaminants in pike muscle tissues using NTA, and 
parameters related to peak height showed a significant influence on the 
number of model compound identified. As concluded by Fischer et al. 
(2021) in a recent review on data processing, poor or unreliable results 
can be obtained if data processing parameters are not optimized for the 
dataset/application. Similarly, different strategies have been developed 
for the fusion of data from different instruments. The type of data fusion 
is known to impact data analysis in the field of metabolomics (Hendriks 
et al., 2011). Finally, as described in Section 4, data filtering influences 
the data input for analysis. 

Based on the above considerations, several but non-exhaustive rec-
ommendations can be made when selecting and applying MAM to study 
chemical mixtures:  

● Check the compatibility between the type of variables of the data set 
(categorical, discrete, continuous) and the statistical principles on 
which MAM are based. 

● Assess the normality of the data distribution. Skewed data distri-
butions are common, and 100-base normalization or log- 
transformation may be applied where necessary (Morris et al., 
2019). When data normality cannot be verified, non-parametric 
methods should be selected rather than parametric ones (Mas 
et al., 2010).  

● Check the comparability of data. The interpretation of MAM results 
has to consider possible bias obtained from heterogeneous datasets 
(i.e., including both single and average values).  

● Describe the approach for missing values. Multivariate methods rely 
on a sample covariance matrix of which estimators require complete 
data vectors on all subjects (Pesonen et al., 2015) and this 

requirement is often not met in context of contaminant monitoring as 
some chemicals may be present at too low levels in fish to be detected 
(<LOD). The question of non-detected data is key as it will also 
impact any reported means of the concentrations and standard de-
viations (Pesonen et al., 2015). While the general consensus is that 
statistical methods (e.g., maximum likelihood estimation (MLE), 
non-parametric Kaplan-Meier method, regression order statistics 
(ROS) approaches (Helsel, 2012) cause less bias than common and/ 
or recommended substitution methods (typically “zero”, LOD, half of 
LOD, upper, lower and middle bound) (EFSA, 2010; Arcella and 
Gómez Ruiz., 2018), none of them has been selected as the most 
suitable approach. Conclusions may vary according to the dataset, 
and the degree of censoring can have a large effect (EFSA, 2010; 
Helsel, 2010; Leith et al., 2010). 

● Similarly to what is commonly done for sample preparation and in-
strument analysis, assess the impact of data processing, data fusion 
and filtering steps and report experimental conditions (algorithms, 
scripts, parameters). Although standards are still lacking in the field, 
current best practices consist in testing the impact of data processing 
using procedural blanks, pooled samples and pooled QC samples, 
reference samples, replicates, or spiked samples (Gika et al., 2014). 
Tian et al. (2019) for example optimize the selection of the data 
processing parameters using spiked model contaminants in fish 
tissues. 

5. Conclusion 

Progresses in the analytical characterization of environmental 
contamination has resulted in the production of large datasets and 
consequently to the development of efficient data analysis strategies 
favored by machine learning advances. Chemical or statistical filtering 
of NTA datasets are effective, almost fundamental, strategies for iden-
tifying new chemicals in complex matrices, while keeping the number of 
false-positives and –negatives low. MAMs are an essential tool for 
describing and interpreting big data sets to extract unique insights on 
chemical mixtures in fish. These strategies can also be advantageously 
coupled with biological approaches, such as EDA, to characterize the 
effects associated with the exposure to chemical pollutants, in particular 
by considering the effects of mixtures (Houtman, 2004, Suzuki, 2011, 
Simon, 2015). Knowledge on sample or compound discriminations, as 
well as the identification of factors that may influence the environ-
mental behavior or the toxic potential of chemicals, are essential for risk 
assessment and the implementation of preventive or remedial measures. 
However, to date, the application of these tools is still limited, particu-
larly for biological matrices. Addressing the knowledge gaps summa-
rized in this paper may influence a more widespread implementation of 
data analysis strategies to interpret contaminant mixtures in food and 
environmental matrices. 
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Arcella, D., Gómez Ruiz, J.A., 2018. Use of cut-off values on the limits of quantification 
reported in datasets used to estimate dietary exposure to chemical contaminants. 
EFSA Support. Publ. 15 https://doi.org/10.2903/sp.efsa.2018.en-1452. 

Baesu, A., Ballash, G., Mollenkopf, D., Mažeika, P., Sullivan, S., Wittum, T., Bayen, S. 
2021. Suspect screening of pharmaceuticals in fish livers based on QuEChERS 
extraction coupled with high resolution mass spectrometry. Sci. Total Environ. 
Accepted for publication. 

Ballin, N.Z., Laursen, K.H., 2018. To target or not to target? Definitions and 
nomenclature for targeted versus non-targeted analytical food authentication. 
Trends Food Sci. Technol. https://doi.org/10.1016/j.tifs.2018.09.025. 

Bayen, S., Koroleva, E., Lee, H.K., Obbard, J.P., 2005. Persistent organic pollutants and 
heavy metals in typical seafoods consumed in Singapore. J. Toxicol. Environ. Heal. - 
Part A 68, 151–166. https://doi.org/10.1080/15287390590890437. 

Baygi, S.F., Crimmins, B.S., Hopke, P.K., Holsen, T.M., 2016. Comprehensive emerging 
chemical discovery: novel polyfluorinated compounds in lake Michigan trout. 
Environ. Sci. Technol. 50, 9460–9468. 

Bellavia, A., James-Todd, T., Williams, P.L., 2019. Approaches for incorporating 
environmental mixtures as mediators in mediation analysis. Environ. Int. 123, 
368–374. 
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