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Abstract 

Potential CO2 reservoirs in Belgium are poorly explored. Consequently, the estimated storage capacities are theoretical 

capacities. The total theoretical storage capacity for Belgium is conservatively estimated at about 1Gt, additional exploration and 

research are needed to make better capacity assessments. An onset towards prioritising such actions is given here. 

Deep saline aquifers and coal sequences have created the geological storage options for CO2 in Belgium. The main criteria for 

reservoir selection and evaluation are reservoir properties, sealing, depth and the occurrence of trapping structures. Aquifer 

storage opportunities are the Houthem and Maastricht Formations, the Buntsandstein Formation, the Neeroeteren Formation, the 

Carboniferous Limestone Group (Dinantian) and the Devonian, the latter two in both the north and the south of the country. Of 

these, the Buntsandstein and the Dinantian reservoirs appear the most promising. Unmined coal sequences have a relatively large 

capacity, but the low permeability will pose technical difficulties. Storage in abandoned coal mines is likely feasible but pressure 

and sealing issues will have to be solved.  

 

© 2010 Elsevier Ltd. All rights reserved 
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1. Introduction 

CO2 emissions in Belgium reached about 120Mt in 2006 [1]. Almost half of these emissions are produced by 

large industrial sources, emitting each more than 500kt CO2 per year. Most of these industrial sources are power 

generation installations. These numbers indicate a CO2 intensive industry, compatible with CO2 capture and 

geological storage (CCS).  

Depleted oil and gas reservoirs are the most obvious choice for geological CO2 storage since reservoir, sealing 

and trapping properties are proven. Since Belgium has no history in oil or gas production, other storage 

opportunities need to be considered. Laenen et al. [2] created a first inventory based on the known reservoir 

properties, structures and stratigraphy for northeastern Belgium. For the PSS-CCS projects [3] this list has been 

updated and complemented with other possible reservoirs, all which are discussed in this publication. 
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For geological storage of CO2 in Belgium, aquifers and coal deposits are viable options. Both in the Flemish 

region (north) and in the Walloon region (south) potential aquifer and coal reservoirs occur. 

2. Geological setting 

In the surroundings of the Caledonian London-Brabant Massif in Belgium sedimentary basins were formed in the 

Rhenohercynian Foreland (Fig. 1). It is in these basins that storage opportunities are located.  

South of the London-Brabant Massif, Devonian and Carboniferous sediments deposited during the complete 

cycle of the Variscan orogeny [4][5], North of the London-Brabant Massif this succession started later and is less 

complete [6]. Under influence of the northward progradation of the Variscan front, the sedimentary succession 

terminated with a thick pile of Coal Measures [7]. Tectonic deformation towards the end of the Variscan orogeny 

resulted in the actual configuration of sedimentary-tectonic basins, creating the Namur parautochtonous 

‘synclinorium’ of which the southern part is squeezed against the London-Brabant Massif and the folded Dinant 

synclinorium further south. The Campine Basin north of the London-Brabant Massif has only been affected by 

block faulting. Later Permian, Triassic and Jurassic sediments covered the area from the north at the southern 

margin of the Southern Permian Basin, until the Cimmerian tectonic phase caused an uplift of the London-Brabant 

Massif, effectively removing these sediments and monoclinally tilting the Campine Basin towards the Roer Valley 

Graben so that Permian to Jurassic sediments are only preserved in the deeper parts of the Campine Basin and 

adjoining graben [8]. The erosion as a result of this tilting movement caused an unconformity with the overlying 

subhorizontal Cretaceous to Cenozoic strata in the Campine Basin and Roer Valley Graben. Late Cretaceous sea 

level rise resulted in deposition of the Chalk Group, preserved over most of the London-Brabant Massif and 

reachting an average thickness of 250 m in the Campine Basin. During the Upper Cretaceous the Roer Valley 

Graben inverted but 30-70 m of Late Maastrichtian and Dinian (Lower Paleocene) strata were deposited during 

times of relaxation. From the Oligocene onwards the Roer Valley Graben became active again and rapidly filled 

with more than 1km of Neogene and Quaternary sediments [9][10][11]. During the Cretaceous, the Mons basin 

southwest of the London-Brabant Massif, rapidly but irregularly subsided, as a pull apart basin and/or due to 

halocinetic collapse of evaporates in the underlying Devono-Carboniferous [12]. 

 

Fig. 1. Belgium in northwest Europe. The major geological structures are indicated: the London-Brabant Massif; the coal-bearing Namur 
‘synclinorium’ and the Dinant synclinorium in the south; the Mons basin in the west; the Campine Basin and the Roer-Valley Graben in the 

northeast. 
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3. Reservoir properties 

In order to store CO2 in underground reservoirs, several criteria should be met. A minimum depth of 800 meters 

is required for the supercritical storage of CO2. Sealing should be present to prevent upwards migration to the 

surface and trapping structures are needed to minimise horizontal spreading. Injectivity and the total reservoir 

capacity should be high enough for injecting industrial amounts of CO2. Therefore the most important basic 

reservoir properties are the reservoir’s depth, horizontal extent and thickness, and the porosity and permeability. 
These parameters are discussed for the Belgian storage opportunities (Fig. 2, Table 1 & 2). Capacities per square 

kilometre (Table 2) are obtained from accessible pore space calculation and CO2 density at reservoir conditions [3]. 

3.1 Houthem and Maastricht calcarenites 

The Houthem and Maastricht Formations (Cretaceous to Palaeocene porous carbonates) occur at sufficient depth in 

the Roer Valley Graben and also in the north of the Campine Basin, with a thickness of around 60m. This reservoir 

just meets the 800 m depth criterium for supercritical storage in a limited area. Sealing may be present in the 

overlying Cenozoic clay layers. Average permeability and porosity are 29.3% and 2.5mD, and 14.5% and 65mD in 

the Campine Basin and the Roer Valley Graben respectively. Injectivity was calculated to be moderately high, with 

one well able to inject 1Mt CO2 per year. The capacity of this reservoir is 6.5Mt/km². However, no trapping 

structures are identified. [3][13] 

 

 

Fig. 2. Location of the storage opportunities in Belgium. A: the Houthem and Maastricht calcarenites; B: the Buntsandstein sandstones and the 
northern and southern Dinantian carbonates; C: the northern and southern coal sequences and deep coal mining areas; D: the Neeroeteren 

sandstones and northern and southern Devonian carbonates. 
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3.2 Buntsandstein sandstones 

The Buntsandstein sandstones (Lower Triassic) also occur in the Campine Basin and Roer Valley Graben. Porosity 

and permeability vary with an average of 13.4% and 37mD. In the eastern area, Upper Triassic to Jurassic sediments 

can provide sealing. In the western area Cretaceous sediments with possibly insufficient sealing properties lie 

directly on top of the Buntsandstein. The assumed updoming Verloren Kamp structure in the eastern part could be 

one of the most promising reservoir structures in the Buntsandstein Formation. It has a surface area of 7 km² and a 

height of about 100m. Storage capacity in this structure would be 15 to 40Mt CO2. Total storage capacity is 

calculated to be more than 880Mt [2] or 10.8Mt/km² for the whole of the Buntsandstein subcrop [3]. 

3.3 Neeroeteren coarse sandstones 

The Neeroeteren Formation (Upper Carboniferous, Westphalian D) is present in the northeastern Campine Basin; its 

occurrence in the Roer Valley Graben is inferred from paleogeographic setting as there are no deep boreholes in the 

graben. It consists of coarse-grained to conglomeratic sandstones, which have an average porosity of 15% and a 

permeability of 115mD for the coarse grained intervals which make up about half of the formation’s thickness. The 
Neeroeteren Formation is overlain by sealing Permian and Triassic sediments in the graben and by permeable 

Cretaceous sediments outside the graben. The estimated capacity of this reservoir is 11.8Mt/km². [3][13] 

3.4 Westphalian coals 

The most optimal depth range for adsorption of CO2 to coal is 700-1300m. Unmined coal sequences within this 

depth range can be found in both the Campine Basin and the Namur synclinorium. The amount of coal in these 

Westphalian sequences is relatively low, on average approaching 3%, contributing only 15% to the total storage 

capacity. Most of the CO2 will be adsorbed on coaly shales or stored in sandstone bodies, creating larger storage 

capacity (up to 1 Gton in the Campine Basin, up to 700Mt or 1.56Mt/km² in the Namur synclinorium). The coal 

sequences have an average porosity of 0.5% for the coal layers, 5% for the sandstone bodies and <0.1% for the shale 

layers. In the Campine Basin, average coal porosity is about 3% and average permeability 0.1mD. Porosity and 

permeability also depend on coal rank and burial history [14]. Due to the low permeabilities, it remains to be 

demonstrated whether industrial amounts of CO2 can be injected in the coal layers. A CBM (CoalBed Methane) test 

well showed strong stress-dependent variations in permeability and affinity to swelling [15]. For economical and 

practical reasons, CO2 storage in coals is most likely in areas with high coal-bed methane potential. [3][13] 

The deep abandoned mining galleries in the coal strata are also a possible reservoir for CO2 storage [16]. CO2 

injection in such a low-pressure reservoir poses technical difficulties, and abandoned coal mines should be 

investigated on the proper sealing of mine shafts and the natural seals, especially with respect to the mining induced 

fracture pattern. Piessens & Dusar [16] estimate 30Mt CO2 can be stored in coal mines in the Campine Basin, and 

nearly similar amounts in the south [3]. 

3.5 Dinantian carbonates 

The carbonate aquifers of the Carboniferous Limestone Group, regionally also known as the Dinantian, in both the 

Campine Basin and the Mons Basin consist of two stratigraphic parts: a lower dolomitised and an upper karstified 

part. The karstified horizons within the Dinantian aquifer in the Campine Basin have low porosities (2.4%) but high 

fracture permeabilities (100-1000 mD). Sealing is provided by Namurian and Westphalian shales, trapping occurs in 

small faulted dome structures, identified by Dreesen et al. [17] for the western Campine Basin. The estimated 

injectivity of the limestone reservoirs is high, and although the total reservoir surface is large, and total storage 

capacity is about 115Mt (1Mt/km²), currently identified dome structure traps appear small, with a few million tonnes 

of storage capacity per structure. [3][13] 

The Dinantian aquifer in the Mons Basin is also large and covered by thick coal measures, creating a very good seal. 

This reservoir consists of two structural parts: a dipping and a tabular compartment. In total this reservoir has a 

capacity of 800 to 1300Mt CO2. Without the dipping compartment, which is more likely to leak towards the surface, 

and including only the area on Belgian territory, the storage capacity is estimated to be 180 to 270Mt. 
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Due to existing natural gas storage at Loenhout (Heibaart dome) and geothermal energy (e.g. Beerse-Merksplas and 

Saint-Ghislain wells) there might be conflicts of use in the Carboniferous Limestone Group, limiting storage 

capacity. [3] 

3.6 Devonian carbonates 

The Devonian carbonate aquifers in the Campine Basin and the Fagne-Famenne are the oldest and also the least 

known reservoirs. Porosity is created by fractures and secondary dolomitisation in the anticlinal ridges of the Fagne-

Famenne [13]. 

The probably karstified and partly dolomitised Devonian limestone aquifer in the Campine Basin is only known 

from one borehole, but Devonian analogues in the North Sea are good (oil)reservoirs (18). This reservoir possibly 

has a high injectivity [13]. 

4. Techno-economic resource pyramid 

The capacities given here are calculated using accessible pore space, surface area and reservoir thickness. Sealing 

is also considered, but only to a limited extent because of uncertainty regarding the presence and the sealing 

properties of these layers. In the techno-economic resource pyramid for CO2 reservoirs by Bachu et al. [19], these 

capacities are therefore located in the bottom most layer, the theoretical capacity, defined as the “physical limits of 
what the geological system can accept”. Upgrading the Belgian reservoirs to the status of effective storage capacity 

or higher would firstly require additional raw data to verify the reservoir limits, sealing and the uniformity of the 

reservoir properties throughout the reservoir. This means storage capacities are likely to become smaller if more 

data becomes available. Another implication of this ranking is that it becomes apparent that at this moment, no 

reservoir in Belgium is ready to be used in a CCS project. 

A method has been developed within the PSS-CCS projects [3] for upgrading this theoretical capacity first to the 

practical, and in a second step to the matched capacity [20]. 

 
Table1: Stratigraphical information of the storage options and comparison of basic reservoir properties, used for capacity calculations: reservoir 

thickness, average porosity and average permeability. (n/av: not available; n/ap: not applicable, CB: Campine Basin; RVG: Roer Valley Graben) 

Reservoir name Strat. age Lithology Thickness Porosity Permeability Type 
Houthem and 

Maastricht 

Formations 

Maastrichtian - 

Danian 

Calcarenite 65m CB 

60m RVG 

29.3% CB 

14.5%  RVG 

2.5mD CB 

65mD RVG 

Aquifer 

Buntsandstein 

Formation 

Lower Triassic Sandstone 200m 13.4% 37mD Aquifer 

Neeroeteren 

Formation 

Late Carboniferous 

(Westphalian) 

Sandstone 200m 15.0% 115mD Aquifer 

Coal sequences 

north 

Late Carboniferous 

(Westphalian) 

Coal, shales, 

sandstones 

up to 3000 m 3% (coal) 0.1mD (coal) Coal 

Coal sequences 

south 

Late Carboniferous 

(Westphalian) 

Coal, shales, 

sandstones 

600m effective 

sequence 

Coal: 0.5% 

Sandst: 5% 

Shale: <0.1% 

n/av Coal 

Coal mines 

north 

Late Carboniferous 

(Westphalian) 

Coal, shales, 

sandstones 

400 m n/ap n/ap Cavity 

Coal mines 

south 

Late Carboniferous 

(Westphalian) 

Coal, shales, 

sandstones 

1000 m n/ap n/ap Cavity 

Dinantian north Visean & Tournasian Limestone & 

dolomite 

350-1200m 2.4% avg <0.1-3000mD Aquifer 

Dinantian south Tournaisian & Visean Limestone & 

dolomite 

500-2500m 4-6% n/av Aquifer 

Devonian north Devonian Limestone & 

dolomite 

n/av n/av n/av Aquifer 

Devonian south Devonian Limestone & 

dolomite 

n/av n/av n/av Aquifer 
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Table 2: Comparison of reservoir capacities, injectivity, sealing and trapping structures. (n/av: not available; n/ap: not applicable) 

Reservoir name Capacity Capacity/km² Injectivity Sealing Trapping 
Houthem and 

Maastricht 

Formations 

n/av 6.5 Mt Moderate Tertiary clays Sheet 

Buntsandstein 

Fm. 

880 Mt 10 Mt Low East: Triassic-Jurassic 

shales 

West: no sealing 

Dome structures 

Neeroeteren Fm. n/av 11.8 Mt Low Partly Permian shales, 

partly no sealing 

Angular unconformity 

Coal sequences 

north 

1000 Mt n/av Low Westphalian shales Coal layers 

Coal sequences 

south 

700 Mt 1.56 Mt Low Westphalian shales Coal layers 

Coal mines 

north 

30 Mt n/av High Westphalian shales Mined out zone 

Coal mines 

south 

Few 10’s of Mt n/av High Westphalian shales & 

Cretaceous marl 

Mined out zone 

Dinantian north 115 Mt 1 Mt High Namurian shales Small dome structures 

Dinantian south 180-270 Mt n/av n/av Namurian shalesl Tabular structure 

Devonian north n/av n/av n/av Upper Devonian shales Small dome structures 

Devonian south n/av n/av High Upper Devonian shales Anticlines 

5. Discussion & conclusions 

The Houthem and Maastricht Formations have rather poor reservoir characteristics, reaching sufficient depth in 

only a limited area, and lacking efficient trapping structures. The Neeroeteren Formation appears more promising, 

having good reservoir characteristics, although primary sealing is not always present outside the Roer Valley 

Graben. The Buntsandstein Formation has a relatively large theoretical capacity, adequate sealing in a large area and 

fault dome trapping structures are present. This reservoir therefore appears one of the better storage options at this 

moment but effectiveness of sealing has to be verified. 

The unmined coal sequences have a relatively large theoretical capacity, but low injectivity. Most storage 

capacity will be provided by the intercalated shale and sandstone layers. Advanced drilling techniques will be 

required for injection in the coal sequences. Abandoned underground coal mines on the other hand have a very high 

injectivity. Pressure and sealing issues will be the main concern here. 

The Dinantian reservoirs in both the Campine Basin and the Mons Basin have good reservoir characteristics, 

although their capacity is rather small compared to the surface area (only 1/10
th

 of the capacity per km² of the 

Buntsandstein Formation). Sealing and trapping structures are present, and injectivity is high. CO2 geological 

storage projects may however lead to conflicts of use because these reservoirs are also known for geothermal energy 

and natural gas storage. 

The Devonian reservoirs are poorly known at this moment, although if comparable to the North Sea analogues, 

this might also become a viable storage option. 

The overview presented here attempts to compare geological storage options for Belgium in an equal manner. 

Storage capacity is potentially available, however due to the poor exploration of the aquifer reservoirs and the 

technical uncertainties surrounding the coal-related reservoirs, all capacity estimates have a status of theoretical 

capacity according to the techno-economic pyramid ranking of CO2 reservoirs [19]. The total of this theoretical 

capacity for Belgium is estimated to be about 3Gt maximum. This number is in general conservatively lowered to 

1Gt. Additional exploration is needed to successfully develop any of these potential reservoirs. Capacity numbers 

will most likely be lowered while upgrading the capacity status. With the current knowledge, the Buntsandstein and 

the Dinantian reservoirs appear the most promising for geological CO2 storage. Storage in coal could deliver 

substantial capacity when technical difficulties are overcome.  
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