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Marine ecosystems are influenced by multiple stressors in both linear and non-linear ways. Using generalized additive models (GAMs) fitted
to outputs from a multi-ecosystem, multi-model simulation experiment, we investigated 14 major ecological indicators across ten marine eco-
systems about their responses to fishing pressure under: (i) three different fishing strategies (focusing on low-, high-, or all-trophic-level taxa);
and (ii) four different scenarios of directional or random primary productivity change, a proxy for environmental change. From this work, we
draw four major conclusions: (i) responses of indicators to fishing mortality in shapes, directions, and thresholds depend on the fishing strate-
gies considered; (ii) most of the indicators demonstrate decreasing trends with increasing fishing mortality, with a few exceptions depending
on the type of fishing strategy; (iii) most of the indicators respond to fishing mortality in a linear way, particularly for community and
biomass-based indicators; and (iv) occurrence of threshold for non-linear-mixed type (i.e. non-linear with inflection points) is not prevalent
within the fishing mortality rates explored. The conclusions drawn from the present study provide a knowledge base in indicators’ dynamics
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under different fishing and primary productivity levels, thereby facilitating the application of ecosystem-based fisheries management
worldwide.

Keywords: ecosystem-based fisheries management, generalized additive model, marine ecosystem model, non-linear response, primary
productivity

Introduction
Marine ecosystems are influenced by multiple stressors including

climatic, oceanographic, ecological, and anthropogenic (e.g. fish-

ing) changes. At the species level, these stressors may affect

survival, growth, and reproduction, which can influence the

structure and functioning of the entire ecosystem through

complex species interactions. Ecosystem responses to stressors

can be either linear or non-linear, depending, inter alia, on the

properties of individual stressors and the way stressors interact.

Particular attention needs to be paid to non-linear responses to

stressors, in which thresholds (i.e. tipping points), may exist,

beyond which large changes in ecosystem state or properties can

occur abruptly (also described as regime shifts; Scheffer et al.,

2001; Scheffer and Carpenter, 2003; Groffman et al., 2006;

Andersen et al., 2009; Kelly et al., 2015; Moore, 2018). Identifying

thresholds in non-linear responses to stressors can facilitate the

implementation of risk-based management targets, the avoidance

of detrimental ecosystem shifts and the optimization of socio-

economic returns from ecosystem exploitation (Foley et al., 2015;

Kelly et al., 2015).

In the present study, two ubiquitous stressors are considered:

fishing pressure and primary productivity change, where the lat-

ter serves as a proxy for environmental change. Fishing has been a

major stressor in exploited marine ecosystems around the globe

for the last several decades (Boldt et al., 2014), leading to substan-

tial changes in the state of ecosystems (e.g. Jackson et al., 2001).

In parallel, changes in ocean temperature, circulation patterns,

vertical mixing, and availability of nutrients have resulted in

changes in the primary productivity of marine ecosystems (e.g.

Brown et al., 2011; Hunt et al., 2011; Poloczanska et al., 2016;

Capuzzo et al., 2018). Fishing pressure and primary productivity

may work synergistically, affecting the structure and function of

marine ecosystems (Kirby et al., 2009; Möllmann et al., 2009) and

how they should be managed under future climate change condi-

tions (Serpetti et al., 2017; Baudron et al., 2019).

To explore how an ecosystem responds (e.g. linearly vs. non-

linearly) to fishing pressure and primary productivity change,

various ecological indicators that represent ecosystem state and

properties can be employed. Ecological indicators have been

extensively studied using empirical data about their trends (e.g.

Blanchard et al., 2010), relationships with fishing pressure and

environmental changes (e.g. Link et al., 2010; Shannon et al.,

2010; Shannon et al., 2014; Fu et al., 2015), and potential thresh-

olds (e.g. Large et al., 2013, 2015; Tam et al., 2017). Empirical

studies have suggested that past and present exploitation strate-

gies, mechanisms of productivity dynamics, and dominant eco-

logical and environmental traits are all likely to influence how

ecological indicators respond to various stressors (Shannon et al.,

2014). Consequently, it has long been a major challenge to draw

general conclusions about the response patterns of indicators to

fishing pressure and environmental changes.

To overcome this major challenge, we used a comparative

multi-ecosystem, multi-model simulation experiment to explore

the differential responses of ecological indicators to fishing mor-

tality and primary productivity change. We took advantage of the

work conducted by the IndiSeas working group (Shin et al., 2012)

in which researchers across different continents carried out uni-

fied simulation experiments for ten marine ecosystems around

the globe. Prior to the simulation experiments, each of the ten

ecosystems already had a working ecosystem simulation model

developed (Shin et al., 2018; Fu et al., 2018, 2019), thus having

overcome the time constraint and resource limitation of develop-

ing brand new ecosystem models. Relying on different ecosystem

modelling approaches applied to different marine ecosystems

allowed us to draw conclusions independent of the specific struc-

ture of ecosystems or the specific structure and assumptions of

ecosystem simulation models.

The present study primarily addresses the following questions:

(i) How do ecological indicators respond to fishing mortality in

trends and directions under different types of primary productiv-

ity change? (ii) How frequently do non-linear responses to fishing

mortality occur in different ecological indicators? (3) How fre-

quently do thresholds occur in non-linear indicators’ responses

to fishing mortality? Results from the present study will provide

insights on specific responses of indicators to fishing mortality;

the thresholds of non-linear responses that we identify can inform

the development of management strategies integrating environ-

mental considerations, thereby facilitating the move towards

ecosystem-based fisheries management worldwide.

Material and methods
Ecosystem models
In the present study, ten marine ecosystems are considered.

The structure and functioning of these ecosystems were simulated

using one of four different ecosystem simulation modelling

approaches: Ecopath with Ecosim (EwE; Christensen and

Walters, 2004), OSMOSE (Shin and Cury, 2004), Atlantis (Fulton

et al., 2004), or a multispecies size spectrum model (Blanchard

et al., 2014). Five of the ten ecosystems were modelled with EwE:

the Black Sea (Akoglu, 2013; Akoglu et al., 2014), the southern

Benguela (Shannon et al., 2004, 2008), the southern Catalan Sea

(Coll et al., 2006, 2013), the western Scotian Shelf (Araújo and

Bundy, 2011, 2012), and western Scotland (Alexander et al.,

2015). OSMOSE was employed to model three of ten ecosystems:

the West Coast of Canada (Fu et al., 2013), the West Florida Shelf

(Grüss et al., 2016a, 2016b), and the Gulf of Gabes, Tunisia

(Halouani et al., 2016). Finally, the Southeastern Australian eco-

system was modelled with Atlantis (Fulton et al., 2014), whereas

the North Sea was modelled with the size spectrum model

(Blanchard et al., 2014). All the ecosystem models used in the

present study have been published and validated against observed

or estimated abundance, biomass and/or catch data. Details on

the structure, assumptions, and species/taxa represented in the
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ten ecosystem models are provided in Supplementary Tables S1

and S2.

Fishing mortality
For each ecosystem, various levels of fishing mortality rate relative

to FMSY (the fishing mortality rate corresponding to the maxi-

mum sustainable yield of a specific species/taxon within a specific

ecosystem) were implemented to capture the impacts of different

fishing levels. The same design was carried out consistently across

all ecosystems for valid comparisons. Prior to running the experi-

mental simulation within each ecosystem, FMSY was estimated for

each exploited species/taxon, by constructing the yield to fishing

mortality curve (fisheries yield as a function of fishing mortality

rate) of that species/taxon while holding the fishing mortality rate

of all other species/taxa constant at their respective current fish-

ing mortality rates (Fcurr). Then, during the experimental simula-

tion runs, fishing mortality rates were incrementally increased

relative to FMSY for each species/taxon of interest through the use

of a multiplier k. In other words, fishing mortality rates Fi ¼
k� FMSY

i (year�1) were applied to each species/taxon of interest

i, where k2 {0.25, 0.5, 0.75, 1, 1.25, 1.5}. This range of fishing

mortality rates covers representative values for the yield to fishing

mortality curves (Fu et al., 2018; Shin et al., 2018).

For each ecosystem, we consider three different fishing strate-

gies: a “low-trophic-level” (F_ltl), a “high-trophic-level” (F_htl),

and an “all-trophic-level” (F_all) strategy. With the F_ltl fishing

strategy, fishing experiments focus on all forage species/taxa

retained in commercial or subsistence fisheries. Here, forage spe-

cies/taxa are defined as species/taxa whose adults mainly feed on

plankton (phyto-, zoo-, or ichthyoplankton) or similar low-

trophic level organisms (e.g. meiobenthos). With the F_htl fishing

strategy, fishing experiments focus on predatory taxa, which in-

clude large demersal and large pelagic taxa. Finally, the F_all fish-

ing strategy represents broad-scale exploitation, where the focus

taxa are all taxa retained in commercial or subsistence fisheries,

including both high-trophic-level (HTL) and low-trophic-level

(LTL) taxa. Any pre-recruit stages that are represented in the eco-

system models are excluded from the fishing scenarios, as are ma-

rine mammals, marine turtles, and seabirds. The HTL and LTL

species/taxa represented in each of the ten ecosystem models are

detailed in Supplementary Table S1.

Primary productivity
For all ten ecosystems, changes in phytoplankton biomass, com-

parable across models and ecosystems, were used to represent

changes in primary productivity. For the Atlantis ecosystem

model, however, it is not possible to directly scale phytoplankton

biomass, because of the role of phytoplankton in the biogeochem-

ical cycles represented in Atlantis. Therefore, in this case, time-

series of nutrient inputs were scaled so that the resulting changes

in phytoplankton biomass were in line with those implemented

in other models.

Two types of changes in primary productivity were simulated:

directional and random. For directional changes in primary pro-

ductivity, a multiplier c2 {0.85, 0.9, 0.95, 1, 1.05, 1.1} was di-

rectly applied to modelled phytoplankton biomass. This range of

variability encompasses the range of changes observed in the ten

ecosystems in the last decade (Boyce et al., 2014). With respect to

random changes in primary productivity, the modelled phyto-

plankton biomass was multiplied by a random multiplier drawn

from a lognormal distribution with a mean l of 1 and a range of

standard deviations r¼ {0.1, 0.2, 0.3}. These standard deviation

values are consistent with the observed annual satellite-derived

chlorophyll-a concentration levels from the MODIS (Moderate

Resolution Imaging Spectroradiometer) Aqua spectral data (Shin

et al., 2018). A set of 30 random multipliers was generated for

each value of r, so as to adequately sample the random

distribution.

Consequently, within each ecosystem, 12 combinations of fish-

ing strategies (F_ltl, F_htl, and F_all) and primary productivity

change (directional change, and random change while assuming

r¼ 0.1, 0.2, or 0.3) were simulated to explore interactions of

these two factors.

Ecological indicators
Following Fu et al. (2019), 14 ecological indicators were explored

(Table 1), including biomass to fisheries catch ratio (B/C), pro-

portion of predatory fish (Pred), mean intrinsic vulnerability

(IVI), mean lifespan (Lifesp), mean trophic level of the commu-

nity (TLco), and marine trophic index (MTI), the trophic level

(TL) of catch calculated assuming a constant TL for taxa (TLc),

the TL of catch calculated assuming a variable TL for taxa

(TLcVar; Reed et al., 2017), and six community-level biomass

indicators [biomass of all-trophic-level taxa (B_all), the biomass

of HTL taxa (B_htl), the biomass of LTL taxa (B_ltl), the ratio of

B_htl to B_all (B_H2A), the ratio of B_ltl to B_all (B_L2A), and

the ratio of B_ltl to B_htl (B_L2H)]. Aside from the six

Table 1. List of the indicators considered in this study.

Indicator Definition Abbreviation

Biomass to catch ratio B/C B/C
Proportion of predatory fish B (predatory fish)/

B (surveyed)
Pred

Mean intrinsic vulnerability
P

s
IVI sCsP

s
Cs

IVI

Mean lifespan
P

s
Agemax; sBsP

s
Bs

Lifesp

Trophic level of catch
P

s
TLsCsP

s
Cs

TLc

Trophic level of catch with
variable TL

P
s
TL0sCsP

s
Cs

TLcVar

Marine trophic index

P
sðTL>3:25ÞTLsCsP

sðTL>3:25ÞCs
MTI

Mean trophic level of
community

P
s
TLsBsP

s
Bs

TLco

Biomass of all surveyed species
P

sðallÞBs B_all

Biomass of high-trophic-level
(htl) species

P
sðhtlÞBs B_htl

Biomass of low-trophic-level
(ltl) species

P
sðltlÞBs B_ltl

Ratio of htl biomass to total
biomass

Bhtl

Ball
B_H2A

Ratio of ltl biomass to total
biomass

Bltl

Ball
B_L2A

Ratio of ltl biomass to htl
biomass

Bltl

Bhtl
B_L2H

High-trophic-level and low-trophic-level taxa for all the ecosystems are listed
in Supplementary Table S1.
B, biomass (in tonnes); C, catch (in tonnes); s, species; TL, trophic level; TL’,
variable TL; IVI, intrinsic vulnerability index.
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community-level biomass indicators, the indicators Pred, Lifesp,

TLco were also derived from survey biomass data (i.e. biomass-

based); in contrast, the indicators IVI, MTI, TLc, and TLcVar

were calculated from catch data (i.e. catch-based). Within each of

the 10 ecosystem models, these 14 ecological indicators were aver-

aged over the last 10 years of simulation period under each sce-

nario of varying fishing mortality rate and primary productivity,

which implies that these indicator data points corresponding to

different fishing mortality rates and primary productivity levels

are independent of each other.

Generalized additive models: linearity/non-linearity and
directions
Nonparametric regression methods such as generalized additive

models (GAMs; Hastie and Tibshirani, 1990) are powerful tools

for exploring linear or non-linear responses of a variable to pre-

dictors without being constrained to an underlying parametric

model of a specific form, which is particularly useful when eco-

logical thresholds of non-linear responses are of interest (Lintz

et al., 2011; Nicolaou and Constandinou, 2016). Therefore,

GAMs were employed in this study to explore the responses of

ecological indicators to fishing mortality and primary productiv-

ity change. Each of the two stressors was modelled individually in

order to avoid convergence issues because of the small number of

fishing mortality and primary productivity levels considered in

this study, as well as to avoid potential correlation between fish-

ing mortality and primary productivity. The GAM model is for-

mulated as (Large et al., 2013):

Y ¼ aþ s Xð Þ þ e; (1)

where Y is the ecological indicator; a is the intercept held con-

stant; X is the predictor, representing either fishing mortality or

primary productivity level; sðÞ is the smoothing function; and e is

the error term of a normal distribution with zero mean and finite

variance. The smoothing parameter was estimated using the gen-

eralized cross-validation criterion (GCV criterion; Wood et al.,

2016) implemented in R package “mgcv” (Version 1.8-24; Wood,

2017). Thin plate regression spline smoothing terms with a ridge

penalty were employed, such that the smoothing term could be

eliminated and the predicted curve could be reduced to a linear

function when the smoothing term did not improve fit.

Confidence intervals were calculated for each GAM with a naive

bootstrap using random sampling and replacement [see Large

et al. (2013) for more details on the naive bootstrap approach].

For the purpose of exploring linear or non-linear responses

of ecological indicators to fishing mortality, the present study

focuses on the development and exploration of 10�
14� 3� 4¼ 1680 GAMs, covering 10 ecosystems, 14 ecological

indicators, 3 fishing strategies (F_ltl, F_htl, and F_all), and 4 sce-

narios of primary productivity change (directional change, and

random change while assuming r¼ 0.1, 0.2, or 0.3). The perfor-

mance of a GAM model is often gauged by examining

the amount of variance it explains (i.e. the proportion of the de-

viance in the data explained). Comparisons of GAM predictions

across the different scenarios of primary productivity change

provide perspectives on how the nature and degree of environ-

mental variability affects the capacity of GAMs to capture the

detrimental impacts of fishing, as well as whether indicators’

responses to fishing pressure are robust to varying levels of envi-

ronmental variability.

Predicted GAM curves based on empirical time-series have of-

ten been explored for non-linear responses to drivers using first

and second derivatives (e.g. Large et al., 2013; Burthe et al.,

2016). However, empirical time-series are typically faced with sta-

tistical problems such as temporal autocorrelation, confounding

among unknown sources of variability and inadequacy in replica-

tion, resulting in difficulty in identifying linearity/non-linearity

(Litzow and Hunsicker, 2016). In contrast to empirical time-

series data explored in Large et al. (2013) and Burthe et al.

(2016), the ecological indicator data in the present study were

obtained through individual simulations with different fishing

mortality and primary productivity and are thus independent

data points and not time-series, as stated above. Thus, the line-

arity/non-linearity was explored in a more literal sense using

specifically designed methods for these datasets, as described

below.

For each of the 1680 GAMs with respect to fishing mortality,

we first determine whether the indicator’s response to fishing

mortality is linear by fitting a linear regression to the GAM

predicted values. If the correlation coefficient between the GAM

predicted values and the linear regression fitted values is >0.95,

the indicator’s response to fishing mortality (derived from the

GAM) is considered linear. Otherwise, the indicator’s response to

fishing mortality is assumed to be non-linear. If the relationship

between the indicator and fishing mortality is linear and if the

slope of the linear regression is statistically significant (p< 0.05),

the direction of indicator’s change in response to fishing mortal-

ity is defined as a “linear increase” when the slope is >0 and a

“linear decrease” when the slope is <0.

When the relationship between the indicator and fishing mor-

tality is non-linear, the GAM curve is further investigated for

identifying monotonicity and determining the direction of indi-

cator’s change in response to fishing mortality by examining the

first derivative of the curve. A “non-linear-monotonic increase” is

associated with all first derivatives being non-negative; whereas a

“non-linear-monotonic decrease” is associated with all first deriv-

atives being non-positive. However, if the first derivatives have

both positive and negative values, the GAM curve is defined as

non-linear-mixed. For this type of non-linearity, the direction of

an indicator’s change in response to fishing mortality is deter-

mined by fitting a linear regression to GAM predicted values.

When a significant linear relationship exists (i.e. the correlation

coefficient between the GAM predicted values and the linear re-

gression fitted values is >0.95), the non-linear-mixed curve is de-

fined as a “non-linear-mixed increase” when the linear regression

fitted slope is >0 and as a “non-linear-mixed decrease” when the

linear regression fitted slope is <0.

Thresholds
For non-linear-mixed GAM curves, there are regions along the

fishing mortality gradient where the first derivative of the re-

sponse function changes sign at an inflection point. Inflection

points on GAM curves have been considered as ecological thresh-

olds (e.g. Large et al., 2013; Tam et al., 2017), and such ecological

thresholds, also known as tipping points (e.g. Moore, 2018), may

have implication for fisheries management (e.g. indicate the oc-

currence of a regime shift) and, therefore, deserve special atten-

tion. Because of the fact that there are only six discrete fishing
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mortality rates (FMSY multiplier¼ 0.25, 0.5, 0.75, 1.0, 1.25, 1.5),

we do not use the threshold-determination approach developed

by Large et al. (2013), rather, we fit a fifth order polynomial

model [degree of freedom¼ 6, Equation (1)] in all the cases

where the indicator’s response to fishing mortality is identified as

non-linear-mixed:

f xð Þ ¼ a0 þ a1x þ a2x2 þ a3x3 þ a4x4þa5x5; (2)

where x is the predictor, representing the levels of fishing mortal-

ity; f xð Þ is the ecological indicator as a function of x; and

a0; � � � ; a5 are coefficients of the polynomial model. The analyt-

ical root(s) of the second derivatives, where ecological thresholds

reside, are derived from:

f
0 0 ðxÞ ¼ 2a2 þ 6a3x þ 12a4x2þ20a5x3 ¼ 0: (3)

The analytical root(s) (x¼ xi) are solved using the “rootSolve”

package in R (R Core Team, 2019). Only root(s) within the range

of FMSY multiplier (0.25�1.25) are retained for consideration.

In addition, root(s) with their predicted values f(xi) being outside

the range defined by the indicator value on either side of the xi

value are not considered as thresholds, as they are inflection

points resulting from local maxima or minima artificially intro-

duced by high-order polynomial fits.

Results
Variance explained
The amount of variance explained by fishing mortality (i.e. RF

2),

though varying among the ten ecosystems under each of the three

fishing strategies (Figures 1–3), has some common themes. First,

the RF
2 values for all indicators tend to be the highest under the

F_all fishing strategy with all four scenarios of primary productiv-

ity change across all ecosystems, whereas those under the F_ltl

fishing strategy tend to be the lowest (the higher the RF
2 values,

the stronger the indication of fishing impacts). Within a given

ecosystem, an individual indicator can have drastically different

RF
2 values among the three fishing strategies, implying that fish-

ing patterns are important when interpreting the dynamics of
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Figure 1. Bar plots of variances explained from the generalized additive models (GAMs; with fishing mortality as the predictor) for each of
the 14 indicators for the 10 study marine ecosystems under the low-trophic-level (F_ltl) fishing strategy under 4 different scenarios of primary
productivity (directional, r¼ 0.1, r¼ 0.2, and r¼ 0.3). The full name and meaning of ecological indicators are provided in Table 1.
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ecological indicators. Second, the RF
2 value of a specific indicator

under any fishing strategy is generally smaller under directional

than under random primary productivity change, and the RF
2

value consistently decreases with increasing primary productivity

variability (i.e. when r increases from 0.1 to 0.3), suggesting that

an indicator’s response to fishing mortality can be increasingly

obscured when environmental variability increases. Third, com-

paring across the 14 indicators, the biomass indicators B_all,

B_htl, and B_ltl tend to have the lowest RF
2 values under each of

the three fishing strategies, which can be more clearly seen from

their values averaged over the ten ecosystems (Figure 4). These

ecosystem-averaged RF
2 values indicate the ability of the 14 indica-

tors to reflect fishing impacts. Fourth, the RF
2 value for the indica-

tor B/C under the F_all fishing strategy is close to one under all

four scenarios of primary productivity change for all ecosystems

except the southern Catalan Sea, indicating that the trends for the

indicator B/C are usually well explained by fishing mortality when

both HTL and LTL taxa are targeted by fishing.

Responses of indicators to fishing mortality:
linearity/non-linearity
Overall, the shapes of the GAM curves (linear, non-linear-mono-

tonic, or non-linear-mixed) for most indicators are consistent

among the four scenarios of primary productivity change

(Figures 5–7), suggesting that most indicators’ responses to

fishing mortality are largely insensitive to primary productivity

variability. In contrast, the shapes of the GAM curves for most

indicators across the ten ecosystems tend to vary with the three

different fishing strategies, indicating the importance of fishing

patterns when considering the responses of ecological indicators

to fishing mortality.

Across the ten ecosystems, the response to fishing mortality is

largely linear (over 50% for most indicators; Figure 8). Within a

given ecosystem, the shapes of GAM curves tend to differ among

the 14 indicators. The catch-based indicators (e.g. B/C, IVI, TLc,

MTI) tend to have larger proportion of non-linear responses.

In contrast, the community and biomass-based indicators
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Figure 2. Bar plots of variances explained from the generalized additive models (GAMs; with fishing mortality as the predictor) for each
of the 14 indicators for the 10 study marine ecosystems under the high-trophic-level (F_htl) fishing strategy under 4 different scenarios
of primary productivity (directional, r¼ 0.1, r¼ 0.2, and r¼ 0.3). The full name and meaning of ecological indicators are provided
in Table 1.
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(e.g. TLco, B_all, B_htl, B_ltl) are largely linear in their response

to fishing mortality (Figure 8), which may suggest that the

responses of the community and biomass-based indicators to

fishing mortality are more predictable.

Responses of indicators to fishing mortality: direction
Similar to the shapes of GAM curves, one common theme across

the ten ecosystems is that the response direction of GAM curves

(“decrease” or “increase”) for a specific indicator depends on the

type of fishing strategy (Figures 5–7 and 9). Under the F_ltl fish-

ing strategy, the indicators Pred, Lifesp, and B_H2A show in-

creasing GAM trends in more than half of the study ecosystems

under both directional and random primary productivity

changes. However, these three indicators all show decreasing

GAM trends in most ecosystems under the F_htl and F_all fishing

strategies. Under the F_htl fishing strategy, there are six indicators

(IVI, TLc, MTI, B_ltl, B_L2A, and B_L2H) that show an increas-

ing trend with increasing fishing mortality in over 50% of the

ecosystems under both directional and random primary produc-

tivity changes. However, these six indicators predominantly
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Figure 3. Bar plots of variances explained from the generalized additive models (GAMs; with fishing mortality as the predictor) for each of
the 14 indicators in the 10 study marine ecosystems under the all-trophic-level (F_all) fishing strategy under 4 different scenarios of primary
productivity (directional, r¼ 0.1, r¼ 0.2, and r¼ 0.3). The full name and meaning of ecological indicators are provided in Table 1.
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Figure 4. Bar plots of variances explained from the generalized
additive models (GAMs; with fishing mortality as the predictor) for
each of the 14 indicators for the 10 study marine ecosystems that
were averaged over all the 10 ecosystems under each of the 3 fishing
strategies: (top) F_ltl (the low-trophic-level fishing strategy), (middle)
F_htl (the high-trophic-level fishing strategy), and (bottom) F_all (the
all-trophic-level fishing strategy) under 4 different scenarios of primary
productivity (directional, r¼ 0.1, r¼ 0.2, and r¼ 0.3). The full name
and meaning of ecological indicators are provided in Table 1.
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decrease with increasing fishing mortality under both the F_ltl

and F_all fishing strategies. Under the F_all fishing strategy, the

indicator B_L2H is the only one that predominantly shows an in-

creasing GAM trend with increasing fishing mortality, demon-

strating that the response direction of all other indicators

becomes more consistent (i.e. always decreasing with increasing

fishing mortality) when fishing targets both HTL and LTL taxa

(i.e. under the F_all fishing strategy). It is worth noting that,

among all the indicators, B/C is the only one that predominantly

exhibits a decreasing trend with increasing fishing mortality un-

der both directional and random primary productivity changes

and under all three fishing strategies, which indicates that B/C is

the most informative indicator of fishing impacts.

Thresholds
Overall, under all three fishing strategies, the occurrence of

threshold for the non-linear-mixed type is not prevalent for

most ecosystems (Figures 5–7; Supplementary Figures S1–S3).

Exceptions include the Black Sea (under the F_ltl fishing

strategy), Catalan Sea (under the F_htl fishing strategy), and

Southeastern Australia and West Coast of Canada (under the

F_all fishing strategy), where more than 50% of the non-linear-

mixed GAM curves have thresholds (Table 2). The infrequency

of threshold occurrences may imply that the root(s) of second

derivatives either fall outside the fishing mortality range

(0.25–1.5*FMSY) for most non-linear-mixed type (aside from

the possibility of imaginary roots), indicating that future
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Shapes and directions of GAMs under F_ltl fishing strategy
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Figure 5. Schematic plots of the shapes, including linear (shown as line), non-linear-monotonic (solid curve), and non-linear-mixed (dashed
curve), and directions, including increase (upward arrowhead), decrease (downwards arrowhead), and no significant trend (no arrowhead), of
the generalized additive models (GAMs) for each of the 14 indicators for the 10 marine ecosystems under the low-trophic-level (F_ltl) fishing
strategy using fishing mortality as the predictor under 4 different scenarios of primary productivity (directional, random changes with r¼ 0.1,
r¼ 0.2, and r¼ 0.3, respectively). The locations of thresholds are shown as dark dots and those for inflection points that do not constitute
thresholds are shown as light dots. The full name and meaning of ecological indicators are provided in Table 1.
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simulations may desire a broader range of fishing mortality rate

in order to avoid missing true ecological thresholds.

The occurrence of inflection points resulting from local max-

ima or minima of the fifth order polynomial fits (not signalling

thresholds) is rare except in the Southeastern Australia ecosystem,

where there are 16 such type of inflection points (consisting 35%

of the non-linear-mixed type contrasting with 52% of thresholds;

Table 2). This implies that thresholds identified within the fishing

mortality range are generally appropriate.

Discussion
The multi-ecosystem, multi-model simulation experiment con-

ducted within the IndiSeas programme (Shin et al., 2018; Fu

et al., 2019) has generated a comprehensive simulation database

of ecological indicators under two ecosystem stressors, fishing

pressure, and primary productivity change. The GAMs employed

in the present study have allowed us to produce response curves

for 14 major ecological indicators evaluated for 10 ecosystems in

response to fishing mortality, revealing linearity or non-linearity

in the responses, with decreasing or increasing trends and thresh-

olds associated with non-linear responses. This comprehensive

and comparative research thus provides a rich knowledge base of

commonalities and differences among ecosystems in indicators’

dynamics and performance at different levels of fishing mortality

under different primary productivity scenarios, as well as thresh-

olds associated with non-linear responses of indicators, thereby

providing essential knowledge to facilitate the move towards

ecosystem-based fisheries management.
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Figure 6. Schematic plots of the shapes, including linear (shown as line), non-linear-monotonic (solid curve), and non-linear-mixed (dashed
curve), and directions, including increase (upward arrowhead), decrease (downwards arrowhead), and no significant trend (no arrowhead), of
the generalized additive models (GAMs) for each of the 14 indicators for the 10 marine ecosystems under the high-trophic-level (F_htl)
fishing strategy using fishing mortality as the predictor variable under 4 different scenarios of primary productivity (directional, random
changes with r¼ 0.1, r¼ 0.2, and r¼ 0.3, respectively). The locations of thresholds are shown as dark dots and those for inflection points
that do not constitute thresholds are shown as light dots. The full name and meaning of ecological indicators are provided in Table 1.
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Comparison with previous work
Using the gradient forest method, Fu et al. (2019) investigated

the performance of the same set of ecological indicators about

their sensitivity, specificity, and threshold responses to both fish-

ing pressure and primary productivity change. However, the gra-

dient forest method does not allow quantitative descriptions of

the directions (“decrease” or “increase”) and shapes of the indica-

tors’ responses to pressures (e.g. fishing mortality). Samhouri

et al. (2017) employed a multi-model inference framework, a

combination of the gradient forest method and GAMs, for ex-

ploring directions, shapes, and thresholds in the responses of eco-

system state indicators to pressures of environmental change and

human activities. The present study also uses GAMs to expand

the previous work with the gradient forest method (Fu et al.,

2019). Additionally, the present study has expanded the investiga-

tion from one fishing strategy (F_all) in Fu et al. (2019) to all
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Figure 7. Schematic plots of the shapes, including linear (shown as line), non-linear-monotonic (solid curve), and non-linear-mixed (dashed
curve), and directions, including increase (upward arrowhead), decrease (downwards arrowhead), and no significant trend (no arrowhead), of
the generalized additive models (GAMs) for each of the 14 indicators for the 10 marine ecosystems under the all-trophic-level (F_all) fishing
strategy using fishing mortality as the predictor variable under 4 different scenarios of primary productivity (directional, random changes
with r¼ 0.1, r¼ 0.2, and r¼ 0.3, respectively). The locations of thresholds are shown as dark dots and those for inflection points that do not
constitute thresholds are shown as light dots. The full name and meaning of ecological indicators are provided in Table 1.
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three fishing strategies (F_ltl, F_htl, F_all). The expansion has

been proven to be valuable as it has led to the important discov-

ery that for all ten ecosystems, all aspects of the GAM curves, in-

cluding model performances in the form of variance explained

(Figures 1–3), shapes (Figures 5–7), and the response directions

(Figure 9) are dependent on the different fishing strategies con-

sidered. Despite the importance of considering fisheries exploita-

tion history, as pointed out by Shannon et al. (2014) and Fu et al.

(2018), ecological indicators have hitherto been investigated

largely in the absence of such knowledge (e.g. Blanchard et al.,

2010; Coll et al., 2016). Future data collection and analysis related

to fisheries exploitation should be more conscious about fishing

patterns, i.e. what trophic levels fisheries target.

Responses of indicators to fishing mortality: variance
explained
Our results demonstrate that responses of indicators to fishing

mortality differ across fishing strategies in all ten ecosystems

B
/C

P
re

d

IV
I

Li
fe

sp

T
Lc

T
Lc

V
ar

M
T

I

T
Lc

o

B
_a

ll

B
_h

tl

B
_l

tl

B
_H

2A

B
_L

2A

B
_L

2H

0

0.25

0.5

0.75

1
P

ro
po

rt
io

n 
of

 n
on

lin
ea

rit
y Proportion of nonlinearity under directional primary productivity change

P
ro

po
rt

io
n 

of
 n

on
lin

ea
rit

y Proportion of nonlinearity under random primary productivity change

B
/C

P
re

d

IV
I

Li
fe

sp

T
Lc

T
Lc

V
ar

M
T

I

T
Lc

o

B
_a

ll

B
_h

tl

B
_l

tl

B
_H

2A

B
_L

2A

B
_L

2H

0

0.25

0.5

0.75

1

F_ltl−Monotonic

F_htl−Montonic

F_all−Monotonic

F_ltl−Mixed

F_htl−Mixed

F_all−Mixed

Figure 8. Proportion of non-linear GAM (generalized additive model) types (including monotonic and mixed) for each of the 14 indicators
averaged over the 10 marine ecosystems under each of the 3 fishing strategies (F_ltl for the low-trophic-level fishing strategy, F_htl for the
high-trophic-level fishing strategy, and F_all for the all-trophic-level fishing strategy) under 2 types of primary productivity changes: (top)
directional, and (bottom) random (the results for random were averaged over 3 levels of variability with r¼ 0.1, 0.2, and 0.3). The full name
and meaning of ecological indicators are provided in Table 1.

Table 2. Total number of non-linear-mixed GAM (generalized additive model) curves and identified thresholds for each of the ten
ecosystems and under each of the three fishing strategies (F_ltl, F_htl, F_all), as well as the percentage of non-linear-mixed GAM curves that
have thresholds.

Ecosystem model

Number of non-
linear-mixed GAM

Number of
thresholds

Number of fake
thresholds

Percentage of
threshold occurrences

F_ltl F_htl F_all F_ltl F_htl F_all F_ltl F_htl F_all F_ltl F_htl F_all

BlackSea-EwE 21 8 38 19 5 18 1 0 4 90 63 47
GulfGabes-OSMOSE 16 22 9 8 2 2 0 0 0 50 9 22
NorthSea-SizeS 24 7 11 11 4 7 0 0 0 46 57 64
CatalanSea.S-EwE 22 23 26 9 15 5 0 0 0 41 65 19
Australian.SE-Atlantis 26 12 46 8 0 24 0 0 16 31 0 52
Benguela.S-EwE 9 4 16 6 1 4 0 0 1 67 25 25
Canada.W-OSMOSE 6 6 20 2 4 19 0 0 0 33 67 95
Scotland.W-EwE 12 22 7 1 3 1 1 0 0 8 14 14
FloridaShelf.W-OSMOSE 7 10 12 1 5 4 0 0 0 14 50 33
ScotianShelf.W-EwE 21 21 4 0 2 3 0 0 1 0 10 75

The scenarios with more than 50% chance of having thresholds are bolded, excluding those that have <19 (one-third of 56) non-linear-mixed GAM curves
within a particular ecosystem.
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(Figures 1–3, 5–7, and 9). In particular, the RF
2 values for all indi-

cators tend to be highest under the F_all fishing strategy whereas

lowest under the F_ltl fishing strategy, which may suggest that the

impacts of fisheries exploitation on LTL taxa could be obscured

because of the relatively closer coupling between the dynamics of

LTL taxa and primary productivity. In order to further under-

stand the commonalities and differences among the ten ecosys-

tems, we explored how they would respond to primary

productivity change. We conducted an additional 1680 GAMs

(10 ecosystems� 14 ecological indicators� 3 fishing strat-

egies� 4 scenarios of primary productivity change) with primary

productivity as the predictor. Unlike the GAMs with fishing mor-

tality as the predictor, the GAMs with primary productivity as the

predictor generally resulted in low RP
2 under all fishing strategies

across all ecosystems with only a few exceptions (Supplementary

Figures S10–S12), which add insight to the results for fishing

mortality.

One interesting exception is the southern Benguela ecosystem

under the F_ltl fishing strategy (Supplementary Figure S10). The

southern Benguela is an upwelling ecosystem with abundant

lower trophic level taxa. Upwelling indices of this ecosystem have

shown increased variability in the 1990s and 2000s, presumably

reflecting climate change (Blamey et al., 2012), which have caused

ecosystem changes mediated through the lower trophic level fish

community of this wasp-waist foodweb (Cury et al., 2000). The

exceptionally high RP
2 values (but low RF

2 values) for most indi-

cators under the F_ltl fishing strategy suggests that this ecosystem

is extremely sensitive to changes in primary productivity (see

Ortega-Cisneros et al., 2018), and any potential ecosystem change

evoked through lower trophic level fisheries is primarily driven

by environmental changes. This conclusion is consistent with pre-

vious indicator-based studies that have concluded that interpreta-

tion of ecological indicator trends in response to fishing in the

southern Benguela requires careful unpacking of changes in envi-

ronmental conditions in this ecosystem (Shannon et al., 2010;

Lockerbie et al., 2016). The importance of environmental drivers

in upwelling systems has been highlighted in the northern

Benguela ecosystem, where environmental conditions and overf-

ishing together have caused apparent regime shifts (Heymans and

Tomczak, 2016).

The Black Sea ecosystem also displays unique features, particu-

larly the large discrepancies in the GAM curves between the direc-

tional and random primary productivity change scenarios

indicating that this ecosystem is very sensitive (or responsive) to

changes in primary productivity, more so than to changes in fish-

ing mortality, when the primary productivity changes are direc-

tional. Similar to the southern Benguela ecosystem, the changes

in the Black Sea ecosystem are predominantly mediated by the

wasp-waist control exerted on the foodweb by small pelagic fish

with a significant interplay of bottom-up control (Akoglu et al.,

2014), which determines the endurance of small pelagic fish un-

der the influence of fisheries overexploitation. However, the large

discrepancies disappear when comparing the results of the three

different scenarios of random primary productivity changes

(where r ¼ 0.1, 0.2, or 0.3), which suggests that the indicators

considered in the present study are robust to environmental vari-

ability for the Black Sea ecosystem.

The West Florida Shelf ecosystem contrasts with the southern

Benguela ecosystem in that the West Florida Shelf has very high

RF
2 values for most indicators and very low RP

2 values for all
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Figure 9. Proportion of GAM (generalized additive model) directions (increase and decrease) for each of the 14 indicators averaged over the
10 marine ecosystems under each of 3 fishing strategies (F_ltl for the low-trophic-level fishing strategy, F_htl for the high-trophic-level fishing
strategy, and F_all for the all-trophic-level fishing strategy) under 2 types of primary productivity changes: (top) directional, and (bottom)
random (the results for random were averaged over 3 levels of variability with r¼ 0.1, 0.2, and 0.3). The full name and meaning of ecological
indicators are provided in Table 1.
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indicators. These results concur with the findings of Grüss et al.

(2016a, 2016b), which show that the West Florida Shelf ecosystem

is under such a strong top-down control that elevated natural

mortality because of large environmental changes (e.g. harmful

algal blooms) has negligible impacts on ecosystem structure and

functioning compared with elevated mortality resulting directly

or indirectly (via trophic interactions) from changes in fishing

patterns. Other ecosystems such as the western Scotian Shelf and

West Coast Scotland have an intermediate response. Although

the community-level biomass indicators (B_ltl, B_htl, B_all) tend

to have higher RP
2 values compared with RF

2, other indicators,

such as B/C and IVI, indicate strong responsiveness to fishing

mortality. These ecosystems have a long exploitation history;

however, their temperate location may be providing some resil-

ience to exploitation (Frank et al., 2007).

In contrast to other ecosystems in this study, the southern

Catalan Sea stands out as one that has quite different indicator

dynamics in response to fishing mortality and primary productiv-

ity change. This ecosystem has a long fishing history, and current

fishing mortality rates in the southern Catalan Sea (northwestern

Mediterranean Sea) are very high (Fernandes et al., 2017). All

indicators except for Lifesp, TLc, TLcVar, and MTI have very low

RF
2 values under both directional and random primary produc-

tivity changes. Essentially, the southern Catalan Sea ecosystem

has been fished down and the foodweb of this ecosystem is cur-

rently under bottom-up control. Consequently, the variations in

many of the ecological indicators are no longer responsive to

changes in fishing pressure, and are instead primarily driven by

directional changes in primary productivity with high RP
2 for

most indicators when there is directional primary productivity

change, as already highlighted in previous studies (Shannon et al.,

2014; Coll et al., 2016; Lockerbie et al., 2017).

As shown above, the five ecosystems (Black Sea, southern

Benguela, southern Catalan Sea, western Scotian Shelf, and

western Scotland) demonstrate diverse responses of indicators to

fishing mortality and primary productivity change, despite the

same ecosystem modelling approach EwE applied to these ecosys-

tems. This suggests that the types of ecosystem modelling ap-

proach may not contribute to the differing results among the ten

ecosystems. Because of the commonly low RP
2 of the GAMs with

primary productivity as the predictor, there is no need to explore

other properties of the GAMs, such as shapes and directions.

However, the generally low RP
2 values could be caused by the

rather narrow range of primary productivity (multiplier¼ 0.85,

0.9, 0.95, 1, 1.05, 1.1). Future research with a broader range of

primary productivity scenarios are warranted for investigating the

responses of ecological indicators to extreme climate change (pri-

mary productivity change in this case).

Responses of indicators to fishing mortality: direction
The majority of the GAM curves demonstrates decreasing trends

with increasing fishing mortality (Figures 5–7 and 9;

Supplementary Figures S4–S9). These decreasing trends reflect

the expected behaviour of indicators in response to increasing

fishing mortality (Rice and Rochet, 2005; Bundy et al., 2010; Shin

et al., 2010). However, the trends (“decrease” or “increase”) of

the GAM curves of a specific indicator can depend on the type of

fishing strategy considered. For instance, the indicators Pred,

Lifesp, and B_H2A increase with increasing fishing mortality un-

der the F_ltl fishing strategy, but decrease under the F_htl and

F_all fishing strategies. This implies that caution is required when

interpreting the dynamics of these indicators when fishing pri-

marily targets lower trophic level taxa, and even more so in eco-

systems such as upwelling systems (e.g. the southern Benguela)

where environmental variability strongly influences ecological

indicators.

On the other hand, other indicators, including IVI, TLc, MTI,

B_ltl, B_L2A, and B_L2H, increase with increasing fishing mor-

tality under the F_htl fishing strategy, but decrease under F_ltl

and F_all in most ecosystems. The decrease of indicator TLc in re-

sponse to fishing has been observed in many ecosystems (Pauly

and Watson, 2005; Fu et al., 2012), resulting from “fishing down

the foodweb.” It is likely that the ecosystems for which these stud-

ies were carried out are ecosystems where fishing activities pri-

marily target HTL taxa. However, the present study suggests that

the indicator TLc (along with IVI, TLc, MTI, B_ltl, B_L2A, and

B_L2H) may increase in response to increasing fishing mortality

if fishing activities in the ecosystem of interest primarily target

LTL taxa, providing potentially false assurance of ecosystem

health. Therefore, our multi-ecosystem, multi-model simulation

experiment supports the assertion of Branch (2015) and Shannon

et al. (2014), i.e. multiple working hypotheses are needed to ex-

plore how fishing affects marine foodwebs rather than assuming

“fishing down the foodweb” applies in all cases.

In contrast to the situations under the F_ltl and F_htl fishing

strategies, all indicators except B_L2H decrease with increasing

fishing mortality for most ecosystems under the F_all fishing

strategy. Therefore, we conclude that when fishing expands over

time on all-trophic-level taxa, the direction of change in ecologi-

cal indicators is more predictable, with a generally decreasing

trend in response to increasing fishing levels emerging.

Responses of indicators to fishing mortality:
linearity/non-linearity and thresholds
Identifying non-linearity is a premise for applying early warning

signals to ecosystem-based fisheries management that can be used

in a similar way to limit reference points in the precautionary ap-

proach (Gabriel and Mace, 1999). However, formal tests of non-

linearity are often hampered by typically short and autocorrelated

time-series in empirical studies (Litzow and Hunsicker, 2016).

Most studies on non-linearity have been based on the identifica-

tion of threshold responses on GAMs curves fitted to empirical

relationships between time-series of response (e.g. indicators)

and drivers (e.g. environmental variables and fishing pressure;

Large et al., 2013; Samhouri et al., 2017; Tam et al., 2017). The

present study explores non-linearity in a literal sense because it

deals with independent data points from ecosystem simulations

for which autocorrelation is not a concern. Our results suggest

that most indicators tend to respond to fishing mortality in a lin-

ear way, particularly for the community and biomass-based indi-

cators (e.g. TLco, B_all, B_htl, B_ltl; Figure 8). Although the

indicator B/C predominantly responds to fishing mortality in a

non-linear way, the majority of trends in the B/C indicator is

non-linear-monotonic under the F_all fishing strategy with dis-

tinct response direction and straightforward interpretation of re-

sponse to fishing mortality. This is in line with the suggestion by

Litzow and Hunsicker (2016) that most observed ecosystem

changes may be parsimoniously explained by linear and reversible

tracking of perturbation.
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For potentially non-linear relationships between response and

drivers, GAMs and/or the gradient forest method have often been

employed to quantify thresholds (e.g. Large et al., 2013, 2015;

Samhouri et al., 2017; Tam et al., 2017; Fu et al., 2019). The pre-

vious studies of quantifying thresholds of ecological indicators in

their responses to fishing pressure and environmental change

have contributed important knowledge to identify operational

reference points for moving towards ecosystem-based fisheries

management by avoiding regime shifts caused by climate change

and/or overfishing (Tam et al., 2017). Although the previous

studies identified all inflection points (second derivative of the

GAMs curve¼ 0) or significant shift in the gradient forest analysis

as thresholds, the present study deliberately focuses only on the

cases where fitted GAMs curves are non-linear-mixed and ignores

all other cases of linear tracking and monotonic non-linearity. Fu

et al. (2019), using the 14 indicators explored here, concluded

that under the F_all fishing strategy, all 14 indicators had thresh-

old responses and over 50% of the threshold responses were

around 0.6*FMSY for most ecosystems. Compared with Fu et al.

(2019), thresholds found in the present study under the F_all

fishing strategy are generally similar, indicating general consis-

tency between these two different approaches. However, by ignor-

ing cases of linear tracking and monotonic non-linearity, the

present study indicates that the occurrence of non-linearity is less

frequent. In addition, thresholds identified using the fifth order

polynomial curves are also infrequent for the non-linear-mixed

type in most ecosystems under all fishing strategies (Figures 5–7;

Supplementary Figures S1–S3). The elimination of threshold

responses resulting from potentially linear and reversible tracking

of perturbation is a step further towards ecosystem-based fisheries

management by helping managers to identify sudden ecological

transitions of real ecological concerns, because over-application

of non-linearity and thresholds has caused confusion among

managers (Litzow and Hunsicker, 2016).

Overall, it is becoming clear that tailoring decision-support

systems to the unique biological and environmental characteris-

tics of an ecosystem is critical, and, once again, we stress the im-

portance of taking cognizance of the fisheries exploitation history

of an ecosystem (e.g. Shannon et al., 2014; Coll et al., 2016;

Lockerbie et al., 2017, 2018; Briton et al., 2019).

Concluding remarks
Using GAMs combined with linear regression and polynomial

models to analyse the outputs from the multi-ecosystem, multi-

model simulation experiment conducted under the IndiSeas pro-

gramme is useful for uncovering indicators’ responses to fishing

mortality in direction, non-linearity, and threshold. The present

study has led to the following conclusions: (i) responses of indica-

tors to fishing mortality in shape, direction, and threshold depend

on the fishing strategies considered; (ii) the majority of the indi-

cator response curves demonstrates negative relationships with

fishing mortality, with a few exceptions which depend on fishing

strategies, suggesting the importance of considering the history of

fisheries exploitation when interpreting indicators for a particular

marine ecosystem; (iii) most indicators tend to respond to fishing

mortality in a linear way, particularly for community and

biomass-based indicators, indicating that responses of these indi-

cators to fishing mortality are more predictable; (iv) the infre-

quent occurrence of threshold for the non-linear-mixed response

in most ecosystems may suggest that our approach has helped

eliminate threshold responses of linear and reversible tracking of

perturbation and focus attention only on thresholds of real eco-

logical concerns. Although future simulations should be carried

out over a broader range of fishing mortality rate to further

explore ecological thresholds, the various responses (linearity,

non-linearity, and threshold) demonstrated here should be used

to start to define management targets (levels and/or directions)

and recommendations for sustainable levels of fishing pressure.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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