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A B S T R A C T   

Facing the loss of biodiversity caused by landscape fragmentation, implementation of ecological networks to 
connect habitats is an important biodiversity conservation issue. It is necessary to develop easily reproducible 
methods to identify and prioritize actions to maintain or restore ecological corridors. To date, several competing 
methods are used with recurrent debate on which is best and if expert-based approaches can replace data-driven 
models. We compared three methods: knowledge-driven (expert based), data-driven (based on species distri
bution model), and a mixed approach. We quantified their differences in habitat and corridor mapping, and 
prioritizations of landscape elements in terms of importance for connectivity. Key parameters generating these 
differences were identified. To put this into practice, the case study of the wildcat (Felis silvestris Schreber, 1777) 
was chosen. The results highlighted differences and similarities between approaches used. The data-driven 
approach was more successful in identifying the suitable habitat with regard to wildcat ecology, while the 
knowledge-driven approach was better able to account for obstacles to wildcat movements in the landscape 
matrix. However, these two methods converged for the identification of patterns of habitat patches and corridors 
that are important for global landscape connectivity. For both methods, we identified adjustments that can 
improve the outcome. The mixed approach largely differed in that it required more inputs to be performed. In the 
end, conservation actions were identified and could guide nature conservation practitioners in their efforts to 
restore landscape connectivity.   

1. Introduction 

Despite the establishment of protected areas, anthropogenic pres
sures on landscapes cause significant fragmentation of species habitats, 
increasing species extinction rates (Hanski, 2005; Stanners & Bourdeau, 
1995). This is particularly the case in landscapes strongly shaped by 
human activities, such as Western Europe, where natural areas are 
reduced to small and isolated habitat remnants embedded in an 
anthropogenic matrix 

(Jongman, Külvik, & Kristiansen, 2004; Luck, 2007). Significant 
fragmentation restricts population movements of species in the land
scape, limiting metapopulation functioning (Hansson, Söderström, & 
Solbreck, 1992; Jongman et al., 2004). Populations can suffer genetic 
drifts, including inbreeding, further increasing their extinction risk 

(Hansson et al., 1992). In addition, lack of habitat connectivity prevents 
recolonization of potential habitats after local extinctions (Verboom, 
Schotman, Opdam, & Metz, 1991). 

The lack of connectivity could be efficiently addressed by imple
menting ecological networks, also known as habitat networks (Melin, 
1997; Opdam, Steingröver, & Rooij, 2006), which are progressively 
integrated into conservation planning (Albert et al., 2016; Rayfield, 
Pelletier, Dumitru, Cardille, & Gonzalez, 2016). The ambition of this 
conservation tool is to connect isolated populations of targeted species 
by linking their habitats in a coherent way and in interaction with the 
landscape matrix (Opdam et al., 2006). To implement ecological net
works, habitat areas or biodiversity cores and the corridors connecting 
them must be identified (Bennett & Mulongoy, 2006; Bernier & Théau, 
2013; Sordello R., Billon, Amsallem, & Vanpeene, 2017; Sordello 
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Romain, Billon, Amsallem, & Vanpeene, 2017). To identify them, many 
scientists use the concept of landscape connectivity, which can be 
defined as functional or structural. Functional connectivity identifies 
how well genes, gametes or individuals move through the landscape 
(Rudnick et al., 2012; Weeks, 2017). Structural connectivity measures 
habitat permeability to species movements based on the spatial 
arrangement of habitat patches, and the disturbances and other lands in 
the matrix (Hilty, Keeley, Merenlender, & Lidicker, 2019). This help to 
identify existent and potential landscapes features through which spe
cies may be able to move (Hilty et al., 2020). However, evaluation of 
connectivity requires spatial analyses of large and various sets of 
spatially explicit data that describe landscapes and the habitats corre
sponding to the natural life history traits of targeted species (Duflot, 
Avon, Roche, & Bergès, 2018; Gurrutxaga, Rubio, & Saura, 2011; Sor
dello R. et al., 2017; Sordello Romain et al., 2017;). 

An increasingly used method to model ecological networks and 
support decision making regarding their implementation is based on 
spatial graphs theory. Spatial graphs are a simplification of landscapes 
where habitat patches are considered as nodes and potential movements 
of species as links connecting pairs of nodes (Galpern, Manseau, & Fall, 
2011; Urban & Keitt, 2001; Urban, Minor, Treml, & Schick, 2009). This 
method allows landscape elements (habitat patches and corridors) to be 
prioritized for their contribution to the overall connectivity of a habitat 
network (Avon & Bergès, 2016; Duflot et al., 2018; Gurrutxaga et al., 
2011; Saura & Rubio, 2010). A key step is to evaluate the potential 
connectivity between habitat patches, which is most commonly done in 
current scientific literature through use of least cost paths (LCP; Sawyer, 
Epps, & Brashares, 2011). The landscape is interpreted as a resistance 
raster map representing the resistance to species movements, where 
each pixel has a travel cost specific to the targeted species, or group of 
species. Then, the path analysis identifies LCP connecting pairs of 
patches through the series of pixels with the lowest cumulative cost (Liu, 
Newell, White, & Bennett, 2018). Hence, to model spatial graph and 
LCPs for maintaining ecological networks, two steps must be completed: 
(i) identify the habitat patches to be (re)connected, and (ii) create a 
resistance map to describe landscape permeability to species 
movements. 

The habitat and resistance maps used for LCP and spatial graph 
modeling have been defined in different ways. Some studies have built 
maps on the basis of expertise, using land-cover maps: some land-cover 
categories are considered as habitat, while every other land-cover 
category is assigned a resistance value according to the ecology of the 
targeted species (Liu et al., 2018; Watts et al., 2010). However, this 
method has some limitations due to the potential subjectivity of experts 
in identifying habitat patches and assigning resistance values to the 
land-cover classes (Sawyer et al., 2011; Stevenson-Holt, Watts, Bellamy, 
Nevin, & Ramsey, 2014). In view of the increasing use of species habitat 
suitability models, other studies have defined habitat patches and 
calculated resistance maps by transforming the map of habitat suit
ability derived from species distribution models (Duflot et al., 2018). 
Such data-driven approaches are expected to better reflect reality. 
However, this method assumes that factors influencing species move
ment behaviors are the same as those influencing the habitat suitability, 
which may not always be true (Zeller et al., 2018; Ziolkowska et al., 
2012). Nevertheless, the use of a habitat suitability model is preferred 
when species observation data are available (Stevenson-Holt et al., 
2014). 

The emergency state of biodiversity loss pushes local stakeholders to 
value ecological networks as a leading strategy in nature conservation 
stakes (Amsallem, Deshayes, & Bonnevialle, 2010; Sordello et al., 2017). 
However, the lack of suitable species data often forces local nature 
conservation practitioners to use expert knowledge to perform ecolog
ical analyses (Stevenson-Holt et al., 2014). In this context, we compared 
data-driven and knowledge-driven approaches to assess if expert-based 
ecological network modeling could be used as an alternative solution to 
approaches based on habitat suitability models, when data are missing. 

In this study, three approaches were compared: a “knowledge-driven 
method” based on expert opinion, a “data-driven method” based on a 
habitat suitability model, and a “mixed method” combining data and 
knowledge-driven methods to potentially compensate for their respec
tive weaknesses. The rationale behind the mixed approach is that a 
habitat suitability model is more accurate in identifying the species 
habitat, but may be less relevant to inform about the species movement 
behavior. The resistance map was therefore created following expert 
opinion. To align our results to the needs of nature conservation prac
titioners, our aim was to identify the differences between habitat, 
resistance, and priority action maps obtained by the alternative 
methods. We therefore focused on easily reproducible workflows based 
on available datasets. 

To carry out this comparison, we studied the potential corridors of 
the wildcat (Felis silvestris Schreber, 1777) in the Walloon region 
(southern Belgium). The Walloon forests are the core part of a large 
group of forests at European scale. They play an important role for the 
connectivity of the species at a supra-population scale with the Alsatian 
and Black Forest areas. However, Belgium has one of the most frag
mented landscapes of Western Europe, reducing the connectivity of 
forest habitats (Jaeger, Madrinan, Soukup, Schwick, & Kienast, 2011). 
These issues have pushed local nature conservation stakeholders to view 
the wildcat and the connectivity of its habitat as a top priority. In this 
study, we address the following questions:  

• What are the differences between the ecological network and priority 
action maps derived from knowledge-driven, data-driven and mixed 
approaches?  

• Can expert knowledge lead to similar conclusions as approaches 
using species observation data?  

• Which components generate the main differences between the 
different approaches tested? 

2. Materials and methods 

2.1. Focal species and observation data 

Like other forest species, the wildcat is particularly vulnerable to 
historical and present fragmentation, mainly due to increased agricul
tural practices and the development of urbanized areas (Foley et al., 
2005; Gibson et al., 2013). The species - once widespread in Europe - has 
suffered a significant decline over the past century, mainly due to the 
destruction of its habitat (Stahl, Artois, & Europe, 1994; Sunquist & 
Sunquist, 2002), but also to hunting. Its registration as a protected 
species has enabled the gradual recovery of its populations, but it re
mains sensitive to habitat fragmentation caused by transport infra
structure, mainly roads (Hartmann, Steyer, Kraus, Segelbacher, & 
Nowak, 2013; Klar et al., 2008). In addition, hybridization with do
mestic cats is a significant threat to the genetic integrity of the species 
(Hertwig et al., 2009; Hubbard et al., 1992; Lecis et al., 2006; Pierpaoli 
et al., 2003). 

The wildcat is mainly a forest animal that prefers dense understory 
vegetation. It needs a spatial continuity of forest cover and therefore 
very rarely visits isolated groves (Klar et al., 2008; Libois, 1991; Libois & 
Maréchal, 1994). The wildcat is also looking for undisturbed areas that 
are rich in prey such as small mammals. At night, the cat leaves the forest 
to roam the open spaces to search for prey (Klar et al., 2008; Libois, 
1991; Libois & Maréchal, 1994). The wildcat also strongly avoids village 
areas and isolated houses (Klar et al., 2008; Libois, 1991; Libois & 
Maréchal, 1994). 

For this study, we used wildcat observations (occurrence points) that 
combined two different databases: a field survey performed by public- 
service agents, and a public database built upon opportunistic obser
vations made by naturalists (Source: Observations.be, Natagora, 
Natuurpunt et la Fondation "Observation International"). The former is 
more accurate, but the extent of the sampled area is smaller than the 
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area covered by opportunistic records. The latter is less accurate 
regarding species identification and often also less precise in terms of 
geographic location. To limit bias due to this dataset, we excluded 
opportunistic observations not confirmed by experts: only observations 
i) flagged with a high degree of certainty and ii) validated by an expert 
were retained. Observation coordinates located in an artificialized area 
were also relocated to the nearest neighboring ecotope (see section 2.3) 
which is not artificial. These observations usually result from an 
observer recording the observation from where he/she was and not 
where the animal was. While this dataset has some limitation, it is 
representative of the data usually available to nature conservation 
practitioners, which gives more pertinence to the results of this study. 

2.2. Study area 

The study was located in the Walloon region (southern part of 
Belgium) and the studied area extent was defined based on the wildcat 
observation range in the region. This was done to ensure that the con
structed models stay ecologically coherent, without taking into account 
the large diversity of ecological factors associated with different land
scape entities present in the Walloon region. To do so, a convex hull 
polygon was created from wildcat observations and an additional 10 km 
buffer (average dispersal distance of the species) was applied (Fig. 1). 
This buffer ensures that the wildcat habitat patches of interest are not 
considered in isolation from neighboring regions. This also ensures that 
it takes into account a recurring problem of graph analysis: the 
measured importance for connectivity of external habitat patches may 
be underestimated (Avon & Bergès, 2016; Duflot et al., 2018; Gil-Tena 
et al., 2014; Saura & Pascual-Hortal, 2007). This buffer is only used to 
perform consistent spatial graph analyses. Therefore, comparisons 

between approaches and other analyses were only performed inside the 
convex hull polygon. Any further mention of the study area refers to the 
area of data availability without the buffer. 

The study area corresponds to the Ardenne plateau, representing the 
highest region of the country (200–700 m) and dominated by forests. 
The center of the study area contains a slightly undulating plateau 
covered by coniferous forests, with deep valleys covered by deciduous 
forests on its edges (CPDT, 2014). The northern and outermost southern 
parts of the study area lean at the bottom of the Ardenne plateau and 
exhibit a mixed landscape where forests give way to croplands and 
grasslands. The whole study area is fragmented by villages, small cities, 
and a dense road network, including highways; although it is less frag
mented than the rest of the country (CPDT, 2010; Quadu, Leclercq, & 
Hanin, 2014). The northern edge of the study area includes large town 
suburbs (namely Liège and Namur). 

2.3. Environmental data layers 

Land-cover and environmental maps were extracted from the eco
tope database (Radoux, Bourdouxhe, Coos, Dufrêne, & Defourny, 2019). 
This database consists of a polygon map where each polygon represents 
an ecotope, which is considered to be the smallest ecologically distinct 
landscape feature (Bastian et al., 2002; Chan & Paelinckx, 2008). The 
ecotope map of Wallonia was obtained by segmentation and classifica
tion of a multispectral remote sensing imagery and elevation model 
derived from LIDAR (Radoux & Bogaert, 2014). The ecotope map has 
106 descriptors including land-cover variables, land-cover of the 
neighborhood (e.g. percentage of broad-leaved forest in a 250 m radius 
around the polygon and of each land-cover with 250 and 500 m radius), 
bioclimatic variables (e.g. rainfall of the wettest month, minimum 

Fig. 1. Location of the study area delimited by data availability (blue line) and the buffer of 10 km around it (red line) in the regional context of Belgium and its 
neighboring countries. It covers most of the Walloon region in southern Belgium. Forest areas are represented in dark green (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article). 
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temperature of the coldest month), soil variables (e.g. percentage of wet 
or alluvial soils), or topographic variables (e.g. mean slope of the eco
tope, azimuthal exposure). This set of 106 variables resulted from an 
optimization for building ecological models performed in a previous 
study (Delangre, Radoux, & Dufrene, 2017). (For further information 
about the ecotope database, visit the website: http://maps.elie.ucl.ac.be 
/lifewatch/ecotopes.html) 

For the study, the ecotope data layer was transformed into a raster of 
20 m resolution. As highways and large roads are the major obstacles for 
mammals (Gurrutxaga et al., 2011), and to prevent them from becoming 
discontinuous during the conversion to raster, a 20-meter buffer was 
built around these structures and was then superimposed onto the 
resistance maps for all methods. 

This complete and precise dataset was only available for the Walloon 
region at the time of the study. To consistently complete the environ
mental data set in neighboring regions, a new set of patches was created, 
which covers the Netherlands, Luxembourg, Belgium, and neighboring 
parts of France and Germany. Due to this much larger area and non- 
availability of accurate data in every overlapping country, this 
expanded dataset has a lower resolution and a less complete set of 
environmental data. It was based on a supervised classification of 
Sentinel-1 (C-Band Synthetic Aperture RADAR) and Sentinel-2 (13 
bands visible and infra-red sensor) images, using the ecotopes as training 
data. The resulting classification was consolidated based on Open Street 
Map data (© OpenStreetMap contributors) and the Copernicus high 
resolution layers. The source of elevation data was the EU-DEM from the 
Copernicus land monitoring service. Only factors useful to model 
wildcat habitat suitability were included in this dataset (see section 3). 

2.4. Knowledge-driven approach 

Expert-based habitat and resistance maps were derived from the 
land-cover classes of the ecotope database. The following land-cover 
classes are related to the forest environment and were considered 
wildcat habitats: deciduous, coniferous, and mixed forests, as well as 
clear-cuts including regeneration growth. A cost of resistance to move
ments between 1 for the habitat and 1000 for the most resistant land- 
cover was assigned based on scientific knowledge (Table 1). For other 
costs, we followed the order of magnitude of cost values used by Gur
rutxaga et al. (2011) for studying habitat connectivity of mammals. A 

cost value of 5 was assigned to wildcat hunting territories which are 
open habitats with little disturbance, such as diversified grasslands and 
shrublands. Open habitats with disturbance such as crops were given a 
cost value of 60. Finally, the avoidance behavior of the wildcat towards 
built-up areas was taken into account by assigning the maximum cost 
value of 1000 to artificialized areas. The other land-cover classes also 
received relevant cost values according to their similarity with previ
ously mentioned ones (Table 1). In the case of the mixed approach, a 
resistance of 2 was assigned to land-covers corresponding to the 
knowledge-driven habitats that the data-driven model did not identify as 
optimal. Those land-covers are considered as sub-optimal habitat for the 
mixed approach. 

2.5. Data-driven approach 

We followed an adapted version of the data-driven method described 
in Duflot et al. (2018). MaxEnt package in R (Phillips, Anderson, & 
Schapire, 2006) was used to model the habitat suitability for wildcats in 
the study area. Opportunistic observations may lead to some bias due to 
the lack of true-absence data. However, precautions have been taken to 
diminish this bias by using Maxent model which can handle 
pseudo-absence. The model was built using validated observations of the 
wildcat as presence points, while pseudo-absences were simulated by 
randomly projecting points onto the study area. To prevent 
pseudo-absence points from being projected into areas potentially 
covered by wildcats, buffers with a radius of 800 m were created around 
points of presence in order to be excluded from the area where the 
pseudo-absences were projected (Klar et al., 2008). This radius corre
sponds to that of a circle whose surface area is the average area of the 
wildcat’s home range, which is 200 ha according to the literature (Klar 
et al., 2008; Libois, 1991; Sordello, 2012). The predictive variables used 
to train the model were extracted from the ecotope database. The set of 
106 predictors was filtered to keep only variables relevant to wildcat 
ecology on the basis of the aforementioned literature. Then, the values 
of these variables were extracted for each of the presence and 
pseudo-absence points. Collinearity across environmental variables (or 
predictors) was tested (Spearman rho), and variables that were overly 
correlated (> 0.80) were removed to improve the quality of the model 
(Guisan, Thuiller, & Zimmermann, 2017). This was done manually 
(using “corrplot” package in R to visualize correlations) and iteratively 
to obtain the less correlated set of predictors. Then, the selected envi
ronmental variables were used to train the habitat suitability model, 
which was tested by cross-validation. The quality of the obtained model 
was assessed using the Area Under the Curve (AUC) and True Positive 
Rate (TPR), i.e., the percentage of correctly predicted presences 
compared to actual presence (also called sensitivity or recall). To 
calculate the latter, a presence/absence threshold was defined by 
maximizing the sensitivity and specificity (MSS) of the model as rec
ommended in the literature (Liu, White, & Newell, 2013). The obtained 
model was used to predict the habitat suitability over the entire studied 
area, using the environmental variable layer. 

The habitat suitability index (HSI) map was used to determine the 
species habitat and define costs of movements for the non-habitat 
landscape matrix. The threshold selected for the calculation of TPR 
(MSS) was reused to determine which elements of the prediction map 
would be used as habitat patches for the species (Duflot et al., 2018). 
Thus, all pixels whose prediction probability was greater than the 
identified habitat/matrix threshold were considered as habitat and all 
others were considered as the landscape matrix. The resistance map was 
computed by applying a negative exponential transformation function 
(Eq. 1) to the HSI values of pixels not predicted as habitat (Keeley, Beier, 
& Gagnon, 2016): 

resistance = e
ln(0.001)
threshold×HSI × 103 (1)  

where threshold is the habitat/matrix threshold and HSI is the value 

Table 1 
Summary table of land-cover classes in the ecotope database showing the travel 
costs assigned to each land-cover class to create the resistance map.  

Land-cover class Cost 

Broad-leaved deciduous forest 1 (Habitat)/ 2 
(suboptimal) 

Needle-leaved sempervirens forest 1 (Habitat)/ 2 
(suboptimal) 

Needle-leaved deciduous forest 1 (Habitat)/ 2 
(suboptimal) 

Mixed forest 1 (Habitat)/ 2 
(suboptimal) 

Recently cleared areas with forest regrowth, also includes 
forest gaps and Christmas trees 

1 (Habitat)/ 2 
(suboptimal) 

Mixed herbaceous and tree cover (with a majority of trees) 5 
Diversified grassland and shrubland 5 
Shrub and herbaceous flooded 5 
Mixed herbaceous and tree cover (with a majority of 

herbaceous) 
10 

Mixed crop cover (with a minority of crops) 20 
Permanent mono specific productive grassland 20 
Mixed crop cover (with a majority of crops) 50 
Periodically herbaceous 60 
Mixture of vegetation and bare soil 60 
Bare soil 500 
Water 500 
Densely artificialized (>50 % artificial surface) 1000 
Sparsely artificialized (>25 % artificial surface) 1000  
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resulting from the habitat suitability model. The decay parameter of the 
negative exponential is set to provide resistance values ranging from 1 to 
1,000. 

2.6. Connectivity analysis 

The habitat and resistance maps obtained by each method were then 
used to perform a connectivity analysis using Graphab software (Foltête, 
Clauzel, & Vuidel, 2012). Three spatial graphs were built based on (i) 
knowledge-driven habitat and resistance maps, (ii) data-driven habitat 
and resistance maps, and (iii) data-driven habitat maps and 
knowledge-driven resistance maps (the mixed approach). All following 
analyses were performed for all three approaches. 

Habitat patches were further selected using a minimum surface area 
threshold that was set to 200 ha, which is commonly considered to be 
the home range area of wildcats (Klar et al., 2008; Libois, 1991; Sordello, 
2012). Habitat area was used as the attribute for patches. With the use of 
the resistance maps, LCP analysis was performed to calculate the cost 
distance between neighboring patches (minimum planar graph).The 
cost distance was used as the attribute of links connecting pairs of 
habitat patches. 

To build spatial graphs, we used the average dispersal distance of the 
wildcat, that is 10 km (Klar et al., 2008; Libois, 1991; Sordello, 2012). 
The dispersal distance must be multiplied by the median value of the 
resistance map. Thus, this distance is weighted within the reference 
frame used, i.e., the resistance map, and therefore is independent from 
the chosen scales of cost values (Avon & Bergès, 2016; Duflot et al., 
2018; Gil-Tena et al., 2014; Gurrutxaga et al., 2011). The obtained 
distance values, which are different in each approach because the 
resistance maps are different, were then used as a threshold to sort 
corridors that must be preserved or restored (i.e., those links with lower 
distance than the mean dispersal distance). 

Then, the Probability of Connectivity index (PC, Eq. 2) and its par
titions were calculated to assess the importance of each habitat patch 
and the corridors that connect them for the overall connectivity (Saura 
& Pascual-Hortal, 2007). For this analysis, all links were retained (i.e., 
no threshold was applied). The PC index evaluates the global connec
tivity of the ecological network: 

PC =

∑n
i=1

∑n
j=1aiaj p*

ij

A2
L

(2)  

where n is the number of nodes (or habitat patches), aiis the attribute 
characterizing node i (here patch size), aj is the attribute of node j, AL is 
the total area of the study area, and p*

ij is the maximum probability 
product, i.e., the maximum value of the product of the attribute of the 
links for all possible paths, between patch i and j (Saura & 
Pascual-Hortal, 2007). 

Habitat patches and links were evaluated for their contribution to 
overall connectivity using the percentage change in PC (dPCk) when 
removing the element k in question (Saura & Pascual-Hortal, 2007). 

dPCk =
PC − PCremove, k

PC
× 100 (3)  

Finally, this dPCk can be split down into three additive components: 

dPCk = dPCkintra + dPCkflux + dPCkconnector (4)  

where dPCk intra is the contribution of the patch or link to habitat 
availability, dPCkflux is the dispersion flow in patch k from and to all 
other network patches, and dPCkconnector is the contribution of the 
patch or link k to the connectivity of network elements based on their 
topological position. The higher the connector value, the more essential 
the element is to the network (Saura & Rubio, 2010). dPCkconnector is 
recommended to measure the importance of patches and links for the 
overall connectivity of a habitat network, independently of patch size 

(Saura & Rubio, 2010). dPCkconnector corresponds to a part of the sum 
of ai × aj × p*

ij (Eq. 2) for each pair of patches i and j in which i ∕= k, j ∕= k 
and k is part of the maximum probability path between them (p*

ij) (Saura 
& Rubio, 2010). 

The dPCkconnector values allow the creation of priority action maps 
needed to maintain or increase the connectivity of the Walloon land
scape for wildcat populations (Amsallem et al., 2010; Duflot et al., 
2018). Because of the generalist behavior of the wildcat regarding 
habitat selection, we focused mainly on corridors, but dPCkconnector 
was also calculated for habitat patches. For each method, corridors 
(LCPs) are sorted based on dPCkconnector values to remove less impor
tant corridors for landscape connectivity and to prioritize the remaining 
ones. To do so, dPCkconnector values were divided into four categories 
on the basis of Jenks natural breaks (that create groups maximizing 
differences between groups and minimizing variance within groups). A 
quantitative comparison between the three resulting habitat networks 
has been done regarding the priority class given by dPCkconnector values 
to habitat patches and corridors. The category with lowest 
dPCkconnector value was then put aside in order to keep only the most 
important corridors for landscape connectivity. 

The remaining corridors have been categorized according to their 
state of conservation to differentiate corridors that must be conserved or 
restored. When the cumulated cost of a corridor was lower than the 
dispersal distance weighted to the median cost of resistance map, the 
corridor was considered as “conservation”, corridors were otherwise 
categorized as “restoration”. 

Restoration actions can take several forms, such as forest patches or 
hedges and riparian forest restoration, to improve the landscape matrix 
for wildcat movements (Jerosch, Kramer-Schadt, Götz, & Roth, 2018). 
However, when a corridor must cross a road, actions to facilitate the 
crossing are more specific. While road infrastructure without fences are 
not always blocking elements compared to those with fences, some en
hancements could prevent and reduce mortality such as wildlife bridges 
(Hartmann et al., 2013; Klar, Herrmann, & Kramer-Schadt, 2009). Po
tential locations for such specific actions were identified by intersecting 
corridors considered as important to maintain overall connectivity with 
the road network. Roads are still important obstacles even if the corri
dors crossing them are below the weighted dispersal distance threshold, 
therefore both “conservation” and “restoration” corridors were 
included. Restoration corridors that do not cross roads were put into a 
“non-suitable habitat” category if no obstacles could be identified. 

In order to quantitatively measure if priority conflicts with roads 
were located at the same places, we used a Jaccard similarity index. To 
do so, a buffer of 5 km was calculated around intersections between 
priority corridors and roads. Then, the area of intersection between 
those buffers from the two compared approaches was calculated and 
divided by the total area of buffers of the two approaches. This was done 
between all three approaches. A higher value explains a higher simi
larity in terms of location between identified conflicts with roads. This 
value of 5 km was arbitrarily chosen as a compromise between study 
extent, the precision needed for corridor spatial location, and a sensi
tivity analysis performed to find the best value to highlight similarities 
and differences. The study extent plays a role in the potential conver
gences of buffers and the precision should not be too excessive because 
precise location of corridor restoration actions should also align with 
actual land-use planning opportunities. 

A selection based on the different priority categories was made to 
study the variation in the Jaccard index while taking into account i) all 
conflict points, ii) conflict points of first and second priority, and iii) 
conflict points of first priority only. 
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3. Results 

3.1. Wildcat habitat maps 

After refining the wildcat observation data, there were 1319 pres
ence points available, and as many pseudo-absences were generated to 
calibrate the MaxEnt model. Among presences, 40 points located in 
artificial areas were relocated to avoid any unintended effect on the 
model. The obtained model has satisfactory accuracy with an AUC of 
0.79 and a TPR of 0.75. The presence/absence threshold that maximizes 
the sensitivity and specificity of the model is 0.56. Pixels with Habitat 
Suitability Index above this value were considered as potential habitats 
of the wild cat, representing 35.9 % of the study area. As a comparison, 
the area considered as habitat in the knowledge driven approach rep
resented 56.4 % of the study area. However, the TPR calculated for this 
approach reaches 0.47 which is 0.28 lower than data-driven approach. 
Maps of the suitable habitat obtained by the two approaches can be 
found in Appendix A (in Supplementary material). Concerning the data- 
driven approach, the main factors influencing habitat suitability for the 
wildcat were contextual variables. For instance, the most important 
factor was the presence of forests dominated by coniferous trees within a 
250 m radius, which is positively correlated to the habitat suitability. 
The second most important factor was the presence of artificial light in 
the neighborhood, which is negatively correlated to the habitat suit
ability and positively correlated to the presence of artificial areas. The 
list of variables retained in the final model and their relative importance 
in predicting habitat suitability can be found in Appendix B (in Sup
plementary material). 

3.2. Resistance maps 

The two resistance maps created following data-driven and 
knowledge-driven approaches are available in Appendix C (in Supple
mentary material). To help in comparing those results, we calculated the 
absolute difference of costs between the two approaches for each land- 
cover category (Fig. 2). Land-cover were grouped in a broader cate
gory if they share similar costs for both approaches. Forest environment 
land-covers can be related to the habitat of the species and generally 
have a mean difference close to zero but a large variance. Land-covers 
related to artificialized areas also had a mean difference near zero and 
an even larger variance. Those land-covers are generally well identified 

as habitat or blocking elements but differences still exist, as shown by 
large variances. In contrast, important differences exist between the two 
resistance maps for other land-covers, particularly water bodies and 
bare soils with a mean difference higher than 100, while crop and 
productive pastures showed differences near 100 in absolute difference 
of resistance values. Bare soils represent only 0.06 % of the study area 
and were not taken into account in the model of the data-driven model 
which explain the important difference of cost. Yet, their sporadic 
location should diminish their impact on connectivity. In contrast, water 
bodies such as rivers are linear elements which have a potential role of 
blocking elements. Crop and pastures occupy larger areas. Therefore, 
differences of cost for these two land-cover should have a strong influ
ence on the connectivity results. Differences measured can be explained 
by their location near forests or cities and the use of contextual variables 
in the data-driven approach. A high cost is given in the surrounding 
areas of cities, villages, and roads, whereas the opposite applies to water 
bodies, crops, and pastures near forests, i.e., a lower resistance due to 
proximity to forest. This proximity effect was not considered in the 
knowledge-driven approach. As a consequence, rivers are less well 
identified as blocking elements in the data-driven approach, particularly 
in forest environments. However, crop and pastures near forests can 
contribute to corridors and can be identified as more favourable element 
for species movement with this approach. Proximity variables also 
affected land-cover related to forest environments (when forest was part 
of the landscape matrix) explaining some of the differences. In the data- 
driven resistance map, forests located in artificial landscapes are less 
favorable for wildcat connectivity. This influence of local context does 
not emerge from the knowledge-driven method because ecotope poly
gons are considered independently from each other. For instance, the 
mean percentage of presence of artificialized areas in a 500 m radius 
around each ecotope identified as habitat of the species has been 
calculated. This mean percentage is 0.9 % for the knowledge-driven 
approach and 0.4 % for the data-driven one. This result indicates that 
more knowledge-driven habitat patches are surrounded by artificialized 
areas than data-driven ones. This converges with our hypothesis that 
proximity to artificialized areas impacts forest habitat suitability in the 
data-driven approach and not in the knowledge-driven one. 

The median values of resistance per meter traveled for the expert- 
based, data-based, and mixed methods are 40, 5, and 2 (cost/meter) 
respectively. The resulting weighted dispersal distances for each method 
are 20,000, 2,500, and 1000 (in cost units). 

3.3. Connectivity analysis 

To visualize priority corridors, a schematization of habitat patches 
and corridors was performed, using the graph representation, i.e., nodes 
and links (Fig. 3). Gaps between forest patches would not be visible on a 
land-cover map at the regional scale. Because Fig. 3 stays complex 
despite the schematization, it was not possible to highlight the cumu
lated cost of each corridor. This useful information, that makes it 
possible to quickly visualize actual connectivity between patches, is 
available in Appendix D (in Supplementary material). We compared the 
three resulting habitat network regarding the priority class given by 
dPCkconnector values to habitat patches and corridors (Table 2). As a 
reminder, the lowest priority class entities (priority 4) are not consid
ered important for connectivity in further analysis. For each approach 
and each priority class, habitat area in hectares and number of corridors 
were calculated. We can see that for all three approaches tested, 
dPCkconnector identified a few main patches and corridors needed to 
maintain connectivity in the network. The data-driven is the approach 
that identified the most first priority corridors (3). Besides, big habitat 
patches are often considered as important for the connectivity which 
increase habitat area of importance except for the mixed approach. The 
knowledge-driven and the data-driven approaches both identified large 
and central patches along the Ardennes as the most important patches 
for connectivity. The mixed approach showed a different result with 

Fig. 2. Boxplots of absolute costs differences between resistance maps from 
knowledge and data-driven approaches, for each land-cover class. A log 10 
transformation has been applied to the y axis while land-cover categories are 
arranged from least to highest resistance (left to right). 
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large external patches marked as important. It is crucial to note that all 
approaches also identified small patches as important for connectivity, 
particularly the data-driven and the mixed approaches. For the mixed 
approach, three patches in the southern part of study area were classi
fied in the top two categories of priority. All three methods identified 
several important corridors following the Ardenne high plateau sum
mits. Those central corridors were also generally those with the highest 
cumulated cost for all methods (Appendix D (in Supplementary mate
rial)). The knowledge-driven approach identifies about twice as many 
corridors (248) than the other methods (Table 2). This approach high
lighted an important path in southern Ardennes (southwest of the study 
area), which was not shown by other approaches. It also identified 
corridors connecting central patches with southernmost ones and also 

with south-eastern patches. In general, the knowledge-driven approach 
identified a much more connected landscape. 

For the knowledge-driven approach, 49 out of 248 corridors were 
considered as important for connectivity based on their dPCkconnector. 
Those 49 corridors were all considered for conservation objectives as 
their cost did not exceed the weighted dispersal distance. Concerning 
conflict with obstacles, 19 were related to roads. The others were not 
related to a lack of suitable habitat because their cost did not exceed the 
weighted dispersal distance. 

Concerning the data-driven approach, 10 out of 125 corridors were 
considered important for connectivity and all of them had conservation 
goals. 6 of them were related to road conflict. 

In the case of the mixed approach, 11 out of 124 corridors were 
important for connectivity. 4 of them had conservation goals, while 6 
had restoration and 7 had road conflict. 

This sorting helped to build priority action maps that show, for each 
method, habitat patches, corridors that must be preserved (important 
conservation corridors), and road conflicts (intersection between 
important corridors of conservation or restoration and major road net
works). Due to high values of weighted dispersal distance, no corridors 
with a lack of suitable habitat were identified (restoration corridors not 
crossed by a road). 

The different priority action maps showed that the corridors needing 
restoration to improve overall connectivity are small corridors crossing 
important road infrastructure such highways or 2 × 2 lane national 
roads (Fig. 4). These roads split important forest areas from north to 
south. Knowledge-based priority action maps identified more obstacles 
in accordance with the higher number of corridors in that map. 

Table 3 shows the different values of the Jaccard index measuring 

Fig. 3. Schematic representation of the connectivity of habitat patches for each approach, overlaid on land-cover map. Habitat patches are represented by nodes 
whose size is proportional to their area, the different colors represent the respective importance of each patch for the connectivity based on the dPC Connector 
calculation. Corridors are represented by links, the thicker they are the more important they are to support global connectivity. 

Table 2 
Habitat area and number of corridors are compared across the three approaches 
tested according to their importance to maintain connectivity. Priority classes 
were created using Jenks natural breaks on dPCkconnector values ranking them 
from lowest (Priority 4) to highest priority (Priority 1).   

Priority 4 Priority 3 Priority 2 Priority 1 Sum 

Habitat area (km2)      
Knowledge-driven 864 1357 668 2567 5456 
Data-driven 801 885 1081 703 3470 
Mixed 1647 813 138 872 3470  

Number of corridors      
Knowledge-driven 199 44 4 1 248 
Data-driven 115 6 1 3 125 
Mixed 113 7 3 1 124  
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location proximity of corridors in conflict with roads between the three 
approaches. We can see that the mixed and data-driven approaches 
share the most similarities but few are shared with the knowledge- 
driven approach. However, the similarity between the knowledge- 
driven approach and the two others doubles when we focus on high 
priority conflicts. With first priority conflicts, this similarity approaches 
50 %. 

4. Discussion 

4.1. Modeling habitat and resistance maps 

The different methods used to model the habitat network of the 
wildcat led to different results. First, there were important differences in 
identification of suitable habitat patches. Despite a much larger area was 
predicted as habitat in the knowledge driven approach (1.5 times 
larger), the habitats mapped by the data-driven approach included 28 % 
more of total observations, suggesting a better identification of habitat 
suitability. The knowledge-driven map shows its limitations by only 
considering the local land-cover. In contrast, the data-driven approach 
accounted for local characteristic and surrounding context, which is 
closer to wildcat ecology. It does not come close to villages and human- 
related land-cover types and prefers proximity with forests, particularly 
the ecotone between forests and open natural areas to hunt (Klar et al., 
2008). Accordingly, the final habitat suitability model included 
contextual variables such as presence of needle-leaved forest in a 250 m 
radius and artificial light. The knowledge-driven approach did not use 
contextual variables, so the quality of the identified habitat patches can 
be questioned as there are more of them in densely populated areas than 
in the data-driven approach. Contextual variables such as proximity to 
built-up areas or forests could also be considered in the 
knowledge-driven approach, but would be much more difficult to 
parameterize (i.e., define proximity distance) and would require addi
tional time-consuming GIS (Geographic Information System) data ma
nipulations. The resulting networks are therefore very different. The 

Fig. 4. Action maps identifying obstacles and important corridors that need to be taken into account to improve general connectivity of the Walloon landscape. 
Priority obstacles include conflicts with conservation and restoration corridors crossing a road (represented by black crosses). “Corridors to be maintained” cor
responds to all important corridors for connectivity with conservation goals, they are represented by green triangles (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article). 

Table 3 
Results of Jaccard index analysis performed on priority conflict between corri
dors and roads based on priority action maps. Values range from 0 to 1, higher 
values indicate that conflict points are closely located to each other.  
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habitat map resulting from the data-driven approach may be considered 
conservative and focused on higher quality patches. However, the 
generalist behavior of the wildcat makes it difficult to map its suitable 
habitat, hence the intermediate predictive accuracy of the habitat suit
ability model (AUC = 0.79). It is known that wide-ranging species pro
duce models with a lower accuracy than habitat-specific ones (Segurado 
& Araújo, 2004). However, modeling the habitat suitability of the 
wildcat is also sensitive to calibration data. The observation data used 
here is not optimal and may represent biased reality, and contains less 
information than presence-absence data. Radio-tracked data could be 
used as relevant data to create very performant resistance maps, with 
more realistic information related to movements, but there is a recog
nized shortage of such data (Eycott et al., 2012). Approaches based on 
expert opinion and opportunistic observation data are therefore most 
often used (Stevenson-Holt et al., 2014). It remains important to stress 
that the effectiveness of either method compared in this study may 
depend on the data available, the species considered, and on the land
scape in which the study is carried out (McClure, Hansen, & Inman, 
2016). In our case, the obtained model represents the probability of 
seeing the wildcat rather than identifying its current habitat. It is thus 
important to take those limitations into consideration when designing a 
conservation action plan from such a method. 

Second, the resistance maps obtained from the two approaches were 
partially divergent. However, forest and densely populated areas were 
still distinctly identified in both maps (Appendix C (in Supplementary 
material)). The main differences were due to smoother transitions be
tween habitat and matrix in the data-driven approach, as a result of 
contextual variables, and leading to huge differences in costs for areas 
near forests and artificial areas (Fig. 2). The huge variance within land- 
covers corresponding to blocking elements suggests that the data-driven 
approach did not correctly identify obstacles as such. This could be 
explained by a high proportion of forest land-cover decreasing the cost 

value of surrounding obstacles such as rivers or roads crossing forests. It 
is therefore sometimes difficult to handle the effect of contextual vari
ables because it does not always give the results sought. This problem 
may be avoided in the mixed method by using the knowledge-driven 
resistance map. However, in that approach, assigning cost values to 
land-covers other than obvious obstacles remains subjective, or even 
speculative. Also, in this approach, the use of local context variables, 
although possible, remains even more questionable. As a compromise, 
the data-driven method could be combined with manually defined costs 
for certain obstacle elements, herein roads (Stevenson-Holt et al., 2014). 
However, this would require case-specific adaptations, which may be 
too time consuming to be performed on a regular basis. 

4.2. Connectivity analysis 

Connectivity analysis through use of dPCkconnector allowed priori
tization of elements that are important to maintain overall connectivity. 
All approaches located these elements between the large forest patches 
along the Ardennes plateau (Fig. 3). Additional smaller habitat patches 
and connections located in the southern part were also identified as 
important. The data-driven approach prioritized a lower area of habitat 
patches and fewer corridors, which can help to reduce the number of 
priority actions when resources available for conservation are limited. 

In general, the dPCkconnector values for patches and corridors were 
low, showing a relative weak effect of fragmentation in the study region. 
Nevertheless, road infrastructures still have a negative impact on the 
wildcat population (Hartmann et al., 2013; Klar et al., 2008), and their 
effect on connectivity may have been compensated here by the high 
dispersal capacity of the wildcat, its generalist behavior, and relatively 
high habitat availability. Furthermore, the study area is one of the less 
fragmented regions of Belgium (Quadu et al., 2014). The use of 
dPCkconnector values is therefore best suited for relative comparisons 

Fig. 5. Zoom on similar conflicts with roads identified on the different action maps.  
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between elements of the network. 
The differences in the dPCkconnector range of values across ap

proaches resulted from the use of different habitat and resistance maps. 
dPCkconnector calculations were also based on the dispersion distance 
derived from the dispersal capacity of the wildcat adjusted by the me
dian cost value of resistance maps. These median cost values were 
different across the three approaches. The lowest median travel cost 
value was in the mixed approach (2/meter), indicating a more perme
able matrix. This was probably due to suboptimal habitats, which were 
excluded from favorable habitat patches in the data-driven habitat map, 
but considered permeable (low costs) in the knowledge-driven resis
tance map. In addition, habitat patches from the data-driven approach 
overlap areas considered as less favorable in the knowledge-driven one 
(reducing areas with higher costs in the mixed approach). 

Calculating the weighted dispersal distance using the median cost 
value allows comparisons to be made between the cumulated cost of LCP 
and the dispersal distance of the focal species, independently from the 
scale of cost allocated to the landscape (Avon & Bergès, 2016; Duflot 
et al., 2018; Gil-Tena et al., 2014). However, comparing different ap
proaches highlights, again, the fact that weighted dispersal distances 
and related dPCkconnector values are useful for relative comparisons (e. 
g. ranking/prioritization) within one particular map/approach, but may 
have limited relevance out of their context. Therefore, we advise to limit 
the use of dPCkconnector values to the comparison of element impor
tance within the same approach and not between different methods. 
Instead, priority ranks should be used for comparison. 

4.3. From connectivity analysis to conservation actions 

Despite large differences, the most important conflict points between 
high priority corridors and roads were similarly identified across the 
different approaches (Fig. 5). These high priority conflicts can be 
considered with certainty as priority areas for conservation and used to 
guide nature conservation practitioners in their efforts to restore land
scape connectivity. Therefore, the knowledge-driven approach still 
identified similar high priority conflicts and this approach should not be 
totally excluded when qualitative datasets are missing. However, many 
important corridors that must be preserved differ significantly between 
approaches. The data-driven and mixed approach share the most simi
larities with regard to the locations of the conflict points compared with 
knowledge-driven one. This is probably because data-driven and mixed 
approaches share the same habitat patches while knowledge-driven 
identified habitat patches in other areas. Corridors have therefore 
more chance to be in similar places. But difference still exists between 
data-driven and mixed approach due to the use of different resistance 
map. Differences in location of priority action between approaches can 
be, at least in part, explained by the dispersal distance weighted by the 
median cost value of the resistance map. Those weighted dispersal dis
tances influenced the categorization of corridors as “conservation” or 
“restoration” sites and the way obstacles were identified as blocking 
elements or not. Therefore, those categories may be seen as indications 
for practitioners, but do not directly infer the probability of movement 
through them. 

Nature conservation practitioners should bear in mind that quanti
tative comparison of priority action maps remains difficult because of 
the spatial aspect. We propose in this study the use of a Jaccard simi
larity index. Although the method has its own limitations due to arbi
trary choices made, the results were useful and relevant. We therefore 
advise the use of such a quantitative comparison method. Also, some 
arbitrary choices have been made following the up to date knowledge (e. 
g. dispersal distance, resistance scales, connectivity metrics), with po
tential consequences on the results. 

5. Conclusion 

Our study tested different approaches to habitat network modeling 

from habitat and resistance maps to the creation of priority action maps. 
It comes out that core habitats and corridors are confirmed, but that only 
the data-driven method could take advantage of the multiple impacts of 
contextual information on the final results. Although we do not have 
access to the true use of space by the wildcat, the comparison of the 
results therefore seems to indicate the data-driven approach correspond 
best to the known ecology of the species. Moreover this approach can be 
improved by systematically identifying obstacles based on expert 
opinion. The knowledge-based method could be more competitive with 
additionnal parameters in case of absence of observation, but a robust 
and systematic method to gather expert opinion is needed as well as in- 
depth sensitivity analysis. In the end, the data-driven approach with 
presence-only data was more efficient in this study. However, all ap
proaches identified the same important corridors, showing the impor
tance of maintaining the continuity of the Ardennes plateau. The graph 
analysis of the mixed approach did not highlight central patches 
important for landscape connectivity. Also, this method requires more 
inputs (gathering expert opinion and performing habitat suitability 
models) for less accurate results. The study shows some limitations as 
arbitrary choices were made throughout, but precautions were taken 
and discussed. We highlight that one important parameter is the 
weighted dispersal distance. We suggest therefore that the graph-based 
metrics should be used for prioritizing connectivity of landscape ele
ments, rather than the direct use of LCP values. We also encourage using 
sensitivity analysis of dispersal distance to detect uncertainty associated 
with this parameter. In the end, the different priority action maps, albeit 
different, identified similar conflict points between important corridors 
and roads. Those conflict points could guide nature conservation prac
titioners in their efforts to improve landscape connectivity. 
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