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Abstract

In seasonal environments, increasing spring temperatures lead many taxa to advance

the timing of reproduction. Species that do not may suffer lower fitness. We investi-

gated why black‐tailed godwits (Limosa limosa limosa), a ground‐breeding agricultural

grassland shorebird, have not advanced timing of reproduction during the last three

decades in the face of climate change and human‐induced habitat degradation. We

used data from an 11‐year field study to parameterize an Integral Projection Model

to predict how spring temperature and habitat quality simultaneously influence the

timing of reproduction and population dynamics. We found apparent selection for

earlier laying, but not a correlation between the laying dates of parents and their

offspring. Nevertheless, in warmer springs, laying dates of adults show a stronger

positive correlation with laying date in previous springs than in cooler ones, and this

leads us to predict a slight advance in the timing of reproduction if spring tempera-

tures continue to increase. We also show that only in landscapes with low agricul-

tural activity, the population can continue to act as a source. This study shows how

climate change and declining habitat quality may enhance extinction risk.
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1 | INTRODUCTION

We live in an era during which environments are changing rapidly

due to large‐scale human‐induced habitat alterations, which range

from complete destruction of habitats to effects induced by global

climate change (Sala et al., 2000). Numerous studies have revealed

that timing of reproduction has advanced in many species breeding

in seasonal environments in response to increasing spring tempera-

tures (Parmesan, 2007). Yet, the phenology of some species has not

altered sufficiently to maintain a match between local peaks in

resource availability and the time of highest energy demands for off-

spring in the growing phase (Both, Bouwhuis, Lessells, & Visser,

2006; Plard et al., 2014; Reneerkens et al., 2016; Visser, Noordwijk,

Tinbergen, & Lessells, 1998). Likewise, individuals also need to opti-

mize their phenology to, for instance, breeding site availability or

predator occurrence which may vary within the season. As shown

for mammals (e.g., Plard et al., 2014), birds (e.g., Both et al., 2006;
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Saino et al., 2011), plankton and fish (e.g., Edwards & Richardson,

2004), any phenological mismatch may reduce fitness and population

size. This reduction in fitness has been shown to be greater in habi-

tats which have been significantly altered by humans in recent dec-

ades (Forister et al., 2010).

Modification of habitats often impacts survival and reproductive

rates (e.g., Allen et al., 2017; Piersma et al., 2016), for example, by

altering food availability, introducing predators or making the habitat

more suitable for predators. If reproduction becomes sufficiently

suppressed that it cannot counter losses due to mortality, popula-

tions become “sinks” (Pulliam, 1988). Without a contribution from

source areas, where more recruits are produced than adults die, such

sink populations will decline in size and eventually go extinct. In

addition, rapidly deteriorating habitats may impact environmental

cues associated with optimally timed reproduction (Bourgault, Tho-

mas, Perret, & Blondel, 2010; Winkler et al., 2014), making the com-

bination of climate change and altered habitats especially difficult for

populations to adapt to. Several integrative studies have disentan-

gled climate or habitat effects on population dynamics (e.g., Gamelon

et al., 2017; van der Meer, Jacquemyn, Carey, & Jongejans, 2016;

Simmonds & Coulson, 2015) or have studied correlations between

timing of reproduction and population growth (e.g., Both et al.,

2006; Dunn & Møller, 2014). To our knowledge, the interactive

mechanistic effects of habitat quality, climate change and timing of

reproduction on population growth have not been examined before.

Agricultural landscapes have seen a higher rate of change in the

past decades than any other type of landscape, and this change may

well continue given projected human population growth (Foley et al.,

2005; Tilman et al., 2001). On temperate agricultural grasslands, land-

scape‐scale changes in agriculture, including increased fertilizer use and

drainage of excess rain‐ and groundwater, combined with increasing

spring temperatures have triggered earlier grass growth, insect emer-

gence dates and advanced agricultural schedules (Kleijn et al., 2010).

Bird communities breeding here have been affected by advancing agri-

cultural practices such as mowing. Mowing alters reproductive outputs

(Grüebler, Schuler, Horch, & Spaar, 2012; Kragten & De Snoo, 2007;

Schekkerman, Teunissen, & Oosterveld, 2008) by placing nests at risk

of physical destruction as well as reducing available cover of remaining

nests (Kentie, Both, Hooijmeijer, & Piersma, 2015), and cover and food

availability for the precocial chicks (Kentie, Hooijmeijer, Trimbos,

Groen, & Piersma, 2013; Schekkerman & Beintema, 2007). These cli-

matic and land use changes are associated with advanced arrival dates

and timing of reproduction in species that reproduce on agricultural

landscapes (Brandsma, Kentie, & Piersma, 2017; Gill et al., 2014; Smith,

Steenhof, Mcclure, & Heath, 2017).

Arrival and laying dates of migratory black‐tailed godwits (Limosa

limosa limosa) breeding on agricultural grasslands in Western Europe

have not advanced since 1975 (Kleijn et al., 2010; Meltofte, Amstrup,

Petersen, Rigét, & Tøttrup, 2018; Schroeder et al., 2012). Over a sim-

ilar period, their population has declined by 75% (Kentie, Hooijmeijer,

Verhoeven, Senner, & Piersma, 2016), primarily due to reproductive

failure on intensified agricultural grasslands (Roodbergen, van der

Werf, & Hötker, 2012; Schekkerman et al., 2008). In such habitats,

mowing advanced by 0.7 day/year (Kleijn et al., 2010). One hypothe-

sis to explain the failure of some migratory species to advance laying

dates is that at the wintering grounds, they are unable to predict cli-

matic conditions on the breeding grounds (Both & Visser, 2001; Lok,

Veldhoen, Overdijk, Tinbergen, & Piersma, 2017). However, black‐
tailed godwits arrive on average 6 weeks before the onset of laying

(Lourenço et al., 2011), which seem to allow them sufficient time to

adjust laying dates to local spring conditions, as other shorebirds

needed between 1 and 3 weeks (Gill et al., 2014).

In this study, we modelled the effects of spring temperature and

agricultural land use intensity on laying dates while simultaneously

examining how laying date affected fitness, and consequently popu-

lation growth rates. We parameterised our structured model (Ellner

& Rees, 2006; Smallegange & Coulson, 2013) using data from a

long‐term demographic study (2007–2017). We then used the model

to (a) predict laying dates at different spring temperatures at differ-

ent agricultural land use intensities, (b) explain why black‐tailed god-

wits laying dates have not advanced in recent decades, (c)

investigate the effects of spring temperature and agricultural land

use intensity on population growth, and (d) predict population persis-

tence and laying date in each of the different agricultural land use

intensities if spring temperatures would continue to increase.

2 | MATERIALS AND METHODS

2.1 | Model framework: Integral Projection Model

We constructed an Integral Projection Model (IPM) to investigate

how spring temperature and agricultural land use intensity influenced

timing of reproduction and population dynamics of black‐tailed god-

wits. An IPM is a discrete‐time population projection model struc-

tured by a continuous trait (Coulson, 2012). Instead of body size,

which is primarily used as continuous trait, we used laying date. We

built the IPM from functions describing how laying date (z) in year t

influenced: (a) adult survival to t + 1, S(z, t); (b) laying date in year

t + 1, G(z′|z, t); (c) recruitment of offspring to the population at year

t + 1, R(z, t); and (d) offspring laying date at t + 1, D(z′|z, t), where z′
denotes the laying date at time t + 1. These functions were parameter-

ized for three different habitat types and three spring temperature sce-

narios using predictions from field data. The IPM can be written as:

nðz0; tþ 1Þ ¼
Z

Gðz0jz; tÞSðz; tÞ þ Dðz0jz; tÞRðz; tÞ½ �nðz; tÞdz;

where n(z, t) is the distribution of character traits z at time t, and n(z

′, t + 1) is the distribution of character traits z′ at time t + 1. From

the IPM, we calculated the long run population growth rate and

mean laying date, and assessed the relative contribution of each

parameter to laying date and growth rate with a sensitivity analysis.

2.2 | Parameterisation of IPMs

Separate stochastic IPMs were constructed for habitats with low,

intermediate and high agricultural land use intensity, and for three
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stochastic spring temperature scenarios reflecting springs before

spring temperatures rose (~1900–1975), the present (2007–2017)
(Figure 1) and an assumed warmer future spring (~2040 if tempera-

ture increases linearly). Although only one‐third of godwits return to

breed in their second year of life (Kentie, 2015), we opted to keep

the model simple; we assumed that each individual attempted to

breed each year, and we did not construct an age‐structured model,

nor took repeat breeding attempts after failure and dispersal

between habitat types into account. We used field data of uniquely

marked female godwits (unless stated otherwise) of a demographic

study spanning 2007–2017 to parameterize the functions defining

the IPMs. We included effects of spring temperature and land use

intensity if they sufficiently explained observed variation in the

demographic data (see below for details of the statistical analyses).

As laying date is a labile trait (Childs, Sheldon, & Rees, 2016), we

also tested effects of spring temperature in t + 1 for functions G(z′|z,
t) and D(z′|z, t).

2.3 | Study area

Field data were collected between 2007 and 2017 in a region of

dairy farming in southwest Friesland, the Netherlands (52°55′N,

5°25′E; Kentie et al., 2015). In 2007, we monitored godwits on

8,970 ha of agricultural land, but expanded the study area in 2012

to include an adjacent area of 2,445 ha (see for a description Groen

et al., 2012; Howison, Piersma, Kentie, Hooijmeijer, & Olff, 2018).

We categorized agricultural fields into low, intermediate and high

land use intensity using change in vegetation structure measure-

ments of the Sentinel‐1 C‐SAR (active radar) satellite and verified

with detailed ground surveys (see Howison et al., 2018 for a detailed

description). In general, grasslands of low land use intensity show lit-

tle seasonal change in vegetation height; they are characterized by

high water tables, herb‐rich vegetation, and mowing is delayed until

after 15 June as they are often part of an agri‐environmental conser-

vation scheme. In contrast, grasslands with high land use intensity

are intensely managed for dairy farming, with mowing occurring as

early as mid‐April and frequently (every 3–4 weeks) throughout the

summer, where early mowing coincides with the incubation stage of

the godwits (Kentie et al., 2015). To enable early mowing, water

tables are kept low, and the vegetation consists of a monoculture of

fast‐growing rye grasses Lolium sp., onto which fertilizers are applied

(Groen et al., 2012; Howison et al., 2018). Intermediate land use

intensity consists of fields grazed by livestock or mown less fre-

quently than intensively managed fields. The categorization of land

use is based on the situation in 2016, and some fields might have

changed during the study period. Our field crews, however, observed

that ~80% of fields have stable management schemes throughout

the study period. In 2016, the sizes of the study area for low, inter-

mediate and high land use intensity were respectively, 3,935, 2,669

and 4,814 ha (Howison et al., 2018).

2.4 | Spring temperatures

To define spring temperatures during field work years, we used data

from Stavoren weather station within our study area (Royal Nether-

lands Meteorological Institute [KNMI]; www.knmi.nl). For each year,

we calculated spring temperature sum (Tsum) by adding up daily

average temperatures in March and April. In these months, godwits

arrive and start to incubate. This measure of spring temperature

showed a strong negative correlation with median first mowing

dates, which we estimated in 2008–2016 from randomly chosen

fields in our study area of which we annually recorded first mowing

dates and which did not have mowing restrictions or grazing cattle

(N between 34 and 41, F1,6 = 15.45, p = 0.008, R2 = 0.72). Between

2007 and 2017, Tsum varied between 229 and 589°C with a mean

of 450°C (Figure 1).

To investigate past spring temperatures in our study area, we

extrapolated spring temperatures for the period from 1900 to 2017

from the weather station De Bilt, because Stavoren weather station

started measuring weather data from 1990 onwards (90 km from Sta-

voren; Tsum Stavoren = −28 + 0.97 × Tsum De Bilt, R2 = 0.94; www.

knmi.nl). We used R package “segmented” (Muggeo, 2008) to analyse

the start of spring temperature rise in our study area (Figure 1).

2.5 | Timing and demographic field data of godwits

Godwits breed on the ground; their nests were located and positions

stored in a GPS. Because nests were almost always found during the

incubation stage, we estimated laying date by floating the eggs in

water and measured the float angle (Liebezeit et al., 2007). A nest

was considered successful if at least one chick was found in the

nest, or if we found an indication of successful hatching (Kentie et

al., 2015). From 2008 onwards, 1‐day‐old chicks were marked with a

flag‐ring with a unique code. Adults were caught on the nest and

uniquely marked with a flag and four plastic colour rings and a num-

bered metal ring. Chicks older than 10 days, including recaptured

chicks wearing a flag‐ring with a code, were also marked with a flag

and four plastic colour rings and a numbered metal ring. Every year

we scanned birds for colour rings on a daily basis throughout the

200

300

400

500

600

19
00

19
10

19
20

19
30

19
40

19
50

19
60

19
70

19
80

19
90

20
00

20
10

20
20

Te
m

pe
ra

tu
re

 s
um

 M
ar

 −
 A

pr

Year

F IGURE 1 Sum of daily average temperatures of March and April
(Tsum), extrapolated from weather station De Bilt to fit the weather
in our study area from 1900 until 2017. The thick (red) line
represents the period when temperatures started to rise [Colour
figure can be viewed at wileyonlinelibrary.com]

5294 | KENTIE ET AL.

http://www.knmi.nl
http://www.knmi.nl
http://www.knmi.nl
www.wileyonlinelibrary.com


breeding period. Colour marked black‐tailed godwits were linked to

the nest by observing returning parents from a distance, or by plac-

ing camera traps at the nest site. We collected a blood sample to

genetically determine sex (see Trimbos et al., 2013 for details), but if

a blood sample was lacking, we used morphological measurements

to sex adults (Schroeder et al., 2008; 8% of 649 individuals).

2.6 | Statistical demographic analyses for S(z,t)

We used Cormack–Jolly–Seber mark–recapture models (White &

Burnham, 1999) to test whether apparent adult survival probability

was constant or was associated with laying date, Tsum and land use

intensity of their breeding location in the year it was captured

(N = 649). We only included sightings of females if they were seen

at least twice within a breeding season in our research area. Resight-

ing rate was modelled to be constant, to vary between years, and to

vary between land use intensities. Because godwits are site faithful

(Kentie, Both, Hooijmeijer, & Piersma, 2014), we assumed that

apparent survival is close to true survival. Not all nests were found,

and not all found nests could be linked to an individually marked

godwit. Therefore, we do not have each individual's laying date for

each year, and we used laying date of the year a bird was first cap-

tured. In a preliminary test, where laying date only affected survival

in the year of which we used laying date—the first year after mark-

ing—we found similar results.

2.7 | Statistical demographic analyses for G(z′|z, t)

Within‐individual development of laying dates accounts for the flexi-

bility of laying from 1 year to the next. Godwits can lay repeat

clutches if the first failed (Senner, Verhoeven, Hooijmeijer, &

Piersma, 2015). Including these repeat attempts would lead to a bias

in the relationship between laying date at time t and at time t + 1.

However, usually we were unaware whether we found the first or a

repeat nest. From laying dates of confirmed repeat nests (N = 67),

we estimated that 95% of the repeat nests occurred after 27 April.

To establish the relationship between laying date at time t + 1 and

at time t within individuals, we used a linear model with a Gaussian

error structure with laying dates until 27 April (N = 174, 37, 41 for

low, intermediate and high land use intensity). Because laying date

can be a labile trait and is more likely defined by spring temperature

in the year of breeding, we included Tsum at t + 1 as direct laying

date cue instead of Tsum at t. We tested for effects of laying date

at t, and Tsum at t + 1 and its interaction on laying date at t + 1,

and included land use intensity as factor. We estimated the variance

around the intercept to include in the IPM model.

2.8 | Statistical demographic analyses for R(z, t)

To estimate reproductive success, we separately estimated nest sur-

vival and first‐year survival probability. We assumed 3.7 hatched

eggs per successful nest (Kentie, 2015) and equal sex ratios at hatch

(R. Kentie, A. H. J. Loonstra, T. Piersma, unpublished data).

We used binomial generalized linear models to test models for

nest survival using all nests of which we knew when it was laid

(N = 4,018, 951 and 966 nests for low, intermediate and high land

use intensity, respectively). To account for nests, we have not found

before they were lost, nest age when found was included as a

covariate. A nest which is found shortly after it was initiated has a

higher chance to get predated while being under observation than a

nest which is due to hatch soon. We assumed a linear relationship

between the covariate nest age when found and nest success, and

kept it zero when extracting parameter estimates, so that nest sur-

vival was estimated from the moment of laying. We analysed nest

survival with covariates laying date, quadratic laying date, land use

intensity, Tsum and all two‐way interactions.

We used Cormack–Jolly–Seber mark–recapture models with an

age structure to estimate survival from hatch day until the following

year. We always included land use intensity as predictor based on

previous results (Kentie et al., 2013, 2014), and we tested models

with laying date of their birth nest, Tsum, and each interaction

between laying date, land use intensity and Tsum as predictors for

survival rate of the first age class (N = 2239 hatchlings). Survival

probability after the first year was kept constant. Based on earlier

results (Kentie et al., 2014), resighting probability always contained

age class (first year and adult), whether a bird was ringed with a

flag‐ring or a more visible colour ring combination (3.6% of chicks)

and was either constant or could vary between years. A preliminary

test showed no evidence of a quadratic effect of laying date (dAIC >

44 than in the best model without quadratic effects), which we

therefore not included in the models.

2.9 | Statistical demographic analyses for D(z′|z, t)

We tested for a parent–offspring association in laying dates with a

linear model using a Gaussian error structure and estimated the vari-

ance around the intercept. Because most young godwits start breed-

ing in their second year after hatching, we excluded earlier breeding

attempts (N = 8) to exclude potential age effects. We included all

chicks to increase the sample size (N females 19, N males 9, N

unknown sex 8). A preliminary test did not find a difference in laying

dates between males and females (F1,26 = 0.05, p = 0.8). Too few

godwits recruited successfully from fields of intermediate and high

land use intensity (4 and 3, respectively, of N = 36) to account for

effects of land use intensity. We therefore tested only for an effect

of parents laying date, Tsum when hatched, and Tsum at t + 2.

2.10 | Statistical demographic analyses: model
selection and inferences

Statistical analyses were carried out in R 3.4.3 (R Core Team, 2017).

We used RMark (Laake, 2013) for mark–recapture models. Good-

ness‐of‐fit was checked with program release from within R (re-

lease.gof). We used a variance inflation factor, or ĉ, of 1.5 for the

data set with birds ringed as adults as the data were overdispersed

(Test 2: χ2 = 81.38, df = 22, p < 0.001, Test 3: χ2 = 27.11, df = 50,
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p > 0.5). Goodness‐of‐fit test showed no signs of overdispersion for

the data set of birds marked as chicks (Test 2: χ2 = 23.0, df = 3,

p = 0.9). Model selection was based on Akaike's information criterion

adjusted for small sample sizes (AICc; Burnham & Anderson, 2002).

Model selection procedures are described in the Supporting Informa-

tion. We used Tsum/100 to reach model convergence.

2.11 | IPM modelling

As demographic relationships both depend on Tsum at time t and at

time t + 1, we built stochastic IPMs with simulated yearly fluctuating

Tsums (see Figure 2 for a life‐cycle diagram). The IPM contained

matrices of 250 discrete bins of laying dates, which ranged between

−10 and 80. We built separate IPMs for fields with low, intermedi-

ate and high land use intensity, with past, present and future spring

temperature scenarios. The three spring temperature scenarios had a

mean Tsum of 350, 450 and 550°C, for “past,” “present” and “fu-
ture” respectively, and a standard deviation of 70, which corre-

sponds to the standard deviation of the temperatures between 1900

and 1975 (see Supporting Information Figure S1 for simulated

Tsums). Future spring scenario represents 2040 if Tsum will continue

to increase at the same rate. The temperature scenarios were gener-

ated randomly for a 5,000‐year time span. We then started with 100

individuals laying at 24 April, and followed the population trajectories

for each. We inspected the results, then discarded the first 100 time

steps and stored laying date, population structure and growth rate

(natural log lambda) of the remaining 4,900 time steps. Sensitivities

of the vital rates were tested for the models with a current tempera-

ture scenario, by subsequently changing each parameter by 0.1%.

3 | RESULTS

3.1 | Are there population level changes in laying
dates?

The annual mode of laying date, which corresponds to peak laying

dates (and thus independent of repeat clutches), did not advance

between 2007 and 2017 (Figure 3a). The yearly mode was

N(z,t) N(z’,t+1)

Mortality
1 – S(z,t)

Change in 
laying dates
G(z’|z,t)

Reproduction
R(z,t)

Offspring 
development
D(z’|z,t)

Population change over time

t+1

t Habitat

F IGURE 2 Life‐cycle diagram of our model system, showing the
processes influencing population size N with trait distribution z
(laying date) between time t and time t + 1. The dark grey circles
represent the population size and the distribution of trait z. The
upper curved arrow is the trajectory for individuals who were adults
at time t, while the lower curved arrow is the trajectory for new
recruits. As external factors, habitat (land use intensity) and spring
temperature at time t (shown as the sun) influenced reproductive
output, while spring temperature at time t + 1 influenced laying
dates of adults [Colour figure can be viewed at wileyonlinelibrary.c
om]
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negatively correlated with spring temperature (R2 = 0.12, p = 0.03),

but not with land use intensity (Tsum: 186.6 AICc, df = 3; null‐
model: 189.3 AICc, df = 2; Tsum + land use: 190.8 AICc, df = 5; land

use: 193.3 AICc, df = 4; Figure 3b). Between 2007 and 2017, the

mode of laying date was on average 21 April.

3.2 | Demographic and laying date functions

Adult females survived with a probability of 0.86 (0.84–0.87 95% CI)

to the next year (Table 1a). The best‐supported model had a con-

stant survival and resighting probability. See Supporting Information

for all model comparisons. Resighting rate was 0.88 (0.87–0.90 95%

CI; see Supporting Information). Survival of newly hatched chicks

until the following year declined with laying date in interaction with

land use intensity and spring temperature (Table 1b). First‐year sur-

vival was highest for chicks hatched on fields of low land use inten-

sity in cold springs, and lowest when hatched on fields of high land

use intensity in warm springs. The effect of spring temperature was

largest for chicks hatched on high land use intensity fields. Nest sur-

vival showed a quadratic relationship with highest survival for a lay-

ing date of 21 April. Additionally, survival was highest for nests on

low land use fields in cold springs and lowest for nests on high land

use fields. We also found support for an interaction between spring

temperature and land use intensity: The effect of spring tempera-

ture, with warmer springs leading to lower nest survival, was highest

on intermediate land use fields and absent on high land use fields

(Table 1c). The combined effects of reproduction show that later lay-

ing and higher land use intensity correlate with lower numbers of

recruits, and that higher spring temperatures correlate with lower

numbers of recruits most notably on the intermediate and high land

use fields (Figure 4).

Laying dates of individual females were more repeatable

between consecutive years in warm springs at t + 1 (i.e., had a slope

closer to x = y) and were not correlated with land use intensity

(Table 1d, Figure 5a). Laying date of young godwits 2 years after

hatching did not correlate with Tsum when hatched, Tsum 2 years

after hatching, nor laying dates of their parents (Table 1e; Figure 5b).

We found this lack of relationship after removing a suspicious out-

lier, which was a nest with a laying date of 25 May. This appeared

to be a second breeding attempt, as this individual was seen nest

building on 11 April.

3.3 | IPM: effect of habitat, spring temperature
and laying date on population growth rate and laying
date

The results of the IPMs predict that mean laying dates did not dif-

fer much between different land use intensities and showed a wide

standard deviation of the mean (Figure 6a). The predicted laying

dates for past and present spring temperature scenarios are close

to the observed peak laying date; a difference of 1–2 days (see also

Figure 3b). The wide standard deviation shows that mean laying

dates are predicted to vary substantially per year. On fields with

low land use intensity, mean laying date advanced from past to pre-

sent spring scenarios by 2 days and is predicted to advance to

future spring scenarios by 4 days. On fields with intermediate and

high land use intensity, mean laying date is predicted to advance by

6 days.

Mean predicted annual population growth rates differed

between land use intensities and spring temperature scenarios

(Figure 6b). On fields with low land use intensity, growth rates

were positive in the past, present and future scenarios. On fields

with intermediate and high land use intensity, predicted growth

rates approached zero in past temperature scenarios and are pre-

dicted to be negative for present and future scenarios. Note that

in the past, fields with a comparably high land use intensity did

not exist.

TABLE 1 Model parameter estimates used for the functions in
the IPMs. Model selection procedures are described in the
Supporting Information

Parameters Estimate SE

(a) Adult survival (logit)

Intercept 1.790 0.061

(b) Juvenile survival (logit)

Intercept–adult 1.482 0.190

Young −1.272 0.644

Young × Laying date −0.063 0.012

Young × Tsum −0.005 0.096

Young × Intermediate land use 0.239 1.104

Young × High land use 2.191 1.211

Young × Tsum × Intermediate land use −0.167 0.263

Young × Tsum × High land use −0.583 0.287

(c) Nest survival (logit)

Intercept −0.177 0.282

Laying date 0.073 0.013

Laying date2 −0.002 0.000

Tsum −0.135 0.039

Intermediate land use 0.173 0.393

High land use −1.423 0.418

Age of nest when found 0.111 0.006

Tsum × Intermediate land use −0.132 0.086

Tsum × High land use 0.158 0.091

(d) Laying date at t + 1

Intercept 36.256 7.735

Laying date −0.359 0.354

Tsum t + 1 −6.079 1.672

Laying date × Tsum t + 1 0.193 0.076

Variance (intercept) 18.184 1.547

(e) Parent–offspring relationship

Intercept 24.264 1.318

Variance (intercept) 60.84 11.7

Note. Tsum is divided by 100.
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3.4 | Sensitivity analysis

The sensitivity analysis showed that population growth rates were

mostly affected by a change in laying dates and reproductive param-

eters (Figure 7). The strongest effect would be caused by a change

in the intercept of the function G(z′|z, t) that describes the within‐in-
dividual development of laying dates; a positive change would lead

to later laying dates which will have a negative effect on population

growth rate. The magnitude of the effects on population growth

rates differed between land use intensities; for instance, on fields

with high land use intensity a positive change in the intercept of

first‐year survival and its relationship with spring temperature would

lead to a larger positive change in population growth rates than on

low land use intensity. Laying dates were most affected by the

function G(z′|z, t) and were hardly affected by changes in demo-

graphic rates.

4 | DISCUSSION

4.1 | Timing of reproduction; are godwits able to
respond to a warming world?

Previous studies have shown that black‐tailed godwits have not

advanced their laying dates since the early 1980s (Kleijn et al., 2010;

Schroeder et al., 2012) or possibly even the 1930s (Meltofte et al.,

2018), which contrasts most temperate species that advanced their

reproductive timing in response to increasing spring temperatures

(Crick & Sparks, 1999; Parmesan, 2007). This is surprising as we
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showed that godwits would have higher fitness if they bred earlier.

Are they unable to respond to a warming world? Over the past dec-

ade, we did not observe advancement of laying dates. However, we

did find that the yearly mode of laying dates (the mean or median

could be biased by repeated nesting attempts in years with low nest

survival) negatively correlated with spring temperatures, although
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the slope of the correlation was shallow. Large variation in spring

temperatures in the last 11 years may have masked any increasing

trend of spring temperatures, and possibly an advancement of laying

date over time.

Our models predicted only a slight advance in laying dates if

spring temperature was to increase from temperatures before 1976

to the average temperatures experienced during the study period:

2 days on fields with low agricultural land use intensity and 3 days

on fields with intermediate and high land use intensity. This change

may be too modest to be empirically detected in previous studies,

particularly as variation in laying dates between years can be large.

We predict that, if springs become warmer, mean laying dates will

advance by 4–6 days—not enough to match the optimal timing of

offspring production. As we did not find a correlation between laying

dates of the parents and laying dates of their offspring, the predicted

shift in laying dates was entirely caused by phenotypic flexibility of

the adults. The low number of recruits prevented us from carrying

out more formal tests for heritability of laying dates (Charmantier &

Gienapp, 2014).

The subspecies of black‐tailed godwits breeding on Iceland

(Limosa l. islandica) also faces warming springs and agricultural inten-

sification (Gill et al., 2007; Jóhannesdóttir, Alves, Gill, & Gunnarsson,

in press), but spring warming at this more northern latitude and the

relative low level of agricultural intensification so far seems to have

benefitted the birds. The Icelandic black‐tailed godwits seem to be

more flexible in general; laying dates within pairs were not repeat-

able and advanced by 2.5 days per year (and 4 day/°C June tempera-

ture) during the last 11‐year period, but little is known about how

individual arrival affects laying date in this population. Furthermore,

Icelandic godwits were able to advance arrival date by 2 weeks over

the last 20 years (Gill et al., 2014), whilst the continental West‐Euro-
pean godwit population did not advance arrival dates since at least

1970 (Kleijn et al., 2010).

To explain these timing phenomena, Gill et al. (2014) suggested a

mechanism that does not require phenotypic plasticity or evolution

of phenology: Early hatched offspring would winter at higher quality

wintering grounds, which would allow for earlier migration to the

breeding grounds. Although wintering location also affects arrival

and laying date in Dutch godwits—those who winter at the most

southern location arrive and lay earlier than those wintering at

northern sites (Kentie et al., 2017)—it is currently not known what

influences winter site choice. Nevertheless, we did not find a rela-

tionship between laying dates of parents (i.e., hatching date of their

offspring) and that of their recruits in subsequent years, so indirect

evidence is lacking. Spring temperature during the year that recruits

hatched or in the year that they started to breed did not affect their

laying date either. So, to unravel what makes a bird an early breeder,

and thus how and where individual life histories develop, we need

to get more insight into the ontogenetic pathways shaping adult tim-

ing behaviour (Senner, Conklin, & Piersma, 2015).

Mechanisms that influence phenology and habitat choice could

thus differ in closely related subspecies. It is also possible that over

time, mechanisms influencing timing of reproduction will change,

such as shown with an increase in heritability of laying dates in great

tits (Parus major; Husby, Visser, & Kruuk, 2011). Our sensitivity anal-

ysis showed that changes in the flexibility of adult laying dates have

the relative strongest effect on population laying dates and growth

rates, which makes this a potential mechanism to select upon. Show-

ing their potential to react to temperature, we observed that during

a cold spell in the Netherlands in early spring 2013, black‐tailed god-

wits returning from West‐African wintering sites were able to

respond by delaying their arrival and laying dates (Senner, Verho-

even, Abad‐Gómez, et al., 2015). Yet, perhaps a cold spring causes a

direct behavioural response due to an immediate lack of food, while

they are less sensitive to slower ecological processes such as a mis-

match between reproduction and food peaks of which the outcomes

—lower reproductive success—are less directly experienced.

4.2 | Population consequences: sources and sinks

The Dutch godwit population started to decline in the same period

when spring temperatures started to increase and agricultural intensi-

fication accelerated (Harms, Stortelder, & Vos, 1987; Kentie et al.,

2016). Our estimated growth rates of past and current spring temper-

ature scenarios and habitats of different land use intensity match this

long‐term observed population trajectory. Mean population growth

rate was only positive on fields of low land use intensity, and close to

zero in past spring scenarios on fields with intermediate and high agri-

cultural land use intensity. Note that we simplified the models, for

instance, we did not include an age structure or second nesting

attempts in the models, which likely produced a bias in opposite

directions, nor did we include parameter estimate uncertainty, which

would increase the standard deviations around the mean. On fields

with intermediate and high land use intensity, we predicted a negative

mean growth rate for present and future temperature scenario. Nev-

ertheless, godwits continue to breed here (Howison et al., 2018),

albeit in lower densities. Young godwits disperse larger distances than

adults and seem to be less discerning about habitat quality (Kentie et

al., 2014), suggesting that intermediate and intensive agricultural areas

are sinks, which are maintained by godwits breeding on fields with

low land use intensities which act as sources (Pulliam, 1988).

The effects of spring temperature and land use intensity on

reproductive output is a combination of mowing dates and food

availability for the chicks. On intensive agricultural fields, warmer

springs enhance grass growth and mowing starts earlier in the sea-

son than in cold springs. Mowing destroys the nests, or, if marked

by local volunteers so that farmers can spare them, removes cover

and increases depredation probability (Kentie et al., 2015). Mowing

also poses a threat for prefledged chicks, which may partly explain

the decrease in first‐year survival during the season, as most mortal-

ity happens in the first week after hatching (Schekkerman, Teunis-

sen, & Oosterveld, 2009). Additionally, late hatched chicks have a

lower body condition (Loonstra, Verhoeven, & Piersma, 2018), possi-

bly caused by a mismatch relative to the insect food peak, or due to

a decline in insect biomass caused by mowing (Schekkerman & Bein-

tema, 2007). Godwit families with prefledged chicks are mobile and,
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if in the vicinity, families from mown fields can move to grassland

with delayed mowing regimes. Most grassland with low land use

intensity is especially managed to protect breeding birds; here agri-

cultural activity is delayed until at least 15 June regardless of spring

temperature, that is, after the nesting phase (Kentie et al., 2015).

Yet, on fields where mowing is postponed, chicks hatched from

nests laid after 26 April (assuming 25 incubation days and 25 pre-

fledging days) also have a high mortality risk due to agricultural

activities.

There are only few studies that identify the possible mechanisms

that underlie (the lack of) phenological change and integrate this

with population dynamics (but see Vedder, Bouwhuis, & Sheldon,

2013; Weegman, Arnold, Dawson, Winkler, & Clark, 2017). Our

model suggests that for black‐tailed godwits, climate change has

considerably stronger negative effects in areas with most human‐in-
duced habitat alterations, compared to habitats which are less

affected by humans. This stronger effect is caused by demographic

differences between these habitats rather than phenological differ-

ences. Habitat degradation is a much greater risk, and for black‐
tailed godwits, as dependent as they are on agricultural landscapes

not only during reproduction but also in the rest of the year, a seri-

ous threat. Many other species also live in habitats both affected by

habitat and climate change, while when modelling extinction risks

often only climate change are taken into account (Urban, 2015).

Although species may adapt to climate change, either through phe-

notypic plasticity or evolution, large‐scale human‐induced habitat

change may accelerate species extinctions even more. It is therefore

important to preserve landscapes in which species are able to keep

up with global climate change.
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