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Pattern formation at multiple spatial scales
drives the resilience of mussel bed ecosystems
Quan-Xing Liu1,2, Peter M.J. Herman1, Wolf M. Mooij3,4, Jef Huisman2, Marten Scheffer4,

Han Olff5 & Johan van de Koppel1,5

Self-organized complexity at multiple spatial scales is a distinctive characteristic of biological

systems. Yet, little is known about how different self-organizing processes operating at

different spatial scales interact to determine ecosystem functioning. Here we show that

the interplay between self-organizing processes at individual and ecosystem level is

a key determinant of the functioning and resilience of mussel beds. In mussel beds,

self-organization generates spatial patterns at two characteristic spatial scales: small-scale

net-shaped patterns due to behavioural aggregation of individuals, and large-scale banded

patterns due to the interplay of between-mussel facilitation and resource depletion. Model

analysis reveals that the interaction between these behavioural and ecosystem-level

mechanisms increases mussel bed resilience, enables persistence under deteriorating

conditions and makes them less prone to catastrophic collapse. Our analysis highlights that

interactions between different forms of self-organization at multiple spatial scales may

enhance the intrinsic ability of ecosystems to withstand both natural and human-induced

disturbances.
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O
ne of the most striking features of biological systems is
the bewildering complexity at all levels of organization,
ranging from the structure of organic molecules to the

spatial organization of ecosystems. Untangling this biological
complexity has developed into an exciting line of research,
highly interdisciplinary in nature, and involving concepts that cut
across many different fields1–6. Many ecosystems show
patterns at multiple spatial scales, for example, in coral reefs7,
savannahs8,9 and seagrass ecosystems. Yet, because research
questions and techniques often vary among different scales,
there is a strong tendency to study the processes at these different
scales separately10–12. For instance, some studies focus on the
spatial patterns that result from the movement of individuals,
for example, for shelter, improved mate choice or the sharing
of information5,13–17. Other studies focus on large-scale eco-
system processes that create spatial variation in predation
pressure, resource availability8,12,18–20 and other environmental
conditions21–24. However, little is known about how interactions
between spatial pattern formation across different levels of
organization, acting across different spatio-temporal scales,
determine ecosystem functioning.

Here we report on the interaction of behavioural and
ecosystem-level mechanisms of pattern formation in self-organiz-
ing intertidal mussel beds. In mussel beds, patterns develop at two
distinctly separate scales, in the form of large-scale banded
patterns occurring at the ecosystem level (Fig. 1a,b), and small-
scale net-shaped patterns at the scale of individual mussels
(Fig. 1c). At the ecosystem level, pattern formation is driven by the
interplay of two scale-dependent processes. Mussels compete for
algae in the water column at large spatial scales (41 metre) due to
high flow rate of the tidal water, but facilitate each other at smaller
scales (o1 metre) by locally accumulating sediment (a form of
ecosystem engineering) within elevated hummocks of 1–4 metres

width, which improves individual feeding efficiency25. This
interplay between facilitation and competition explains the
banded patterns occurring at the 5–10-metre scale20. At the
smallest scale, individual mussels aggregate by means of density-
dependent movement, actively moving into small clusters and out
of larger ones, to form a reticulate network of clusters at B15-cm
intervals in which mussels attach to each other by means of byssal
threads, thereby protecting each other against predation and
dislodgement13,14,26,27. Both the large-scale banded patterns and
the reticulate network of small-scale clusters result from a self-
organization process, meaning that the patterns emerge from the
interactions between the mussels, rather than being imposed by
the landscape1. Pattern formation at the individual level is
strikingly fast, occurring within days, while the large-scale
banded patterns require many months to develop. Because of
these two separate, yet interacting self-organizing processes,
mussel beds provide a unique opportunity to investigate how
pattern formation at different spatio-temporal scales affects the
functioning of ecosystems.

Results
The model. We constructed an individual-based model (IBM) to
study the development of mussel beds on intertidal flats. The
model integrates small-scale aggregative movement of individual
mussels with the large-scale processes of between-mussel facil-
itation and competition for algae. Movement of individual mus-
sels is described by a random walk with an evenly distributed
angle and a step size that obeys a statistical model derived in
a previous paper13, where the movement step length of mussels
follows an exponential distribution, h(r, b)¼ (1/b)exp(� r/b),
with parameter b¼ 1/(p0þ p1L1� p2L2) (see Supplementary
Table 1 for detailed interpretation and values of the

25 m ±10 cm

Figure 1 | Self-organized spatial patterns in a mussel bed at two spatial scales nested within one another. (a) Aerial view of a mussel bed on an

intertidal flat, representing a width of B200 metres. (b) Self-organized banded patterns within this bed, where the distance between successive mussel

bands varies between 2 and 20 metres. (c) Small-scale clusters o20 cm in scale embedded within the mussel bands.
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parameters). This function expresses a scale-dependent effect of
mussel density on individual movement, where L1 and L2

represent the density of other mussels in the neighbourhood at
a scale of 1.5 and 6 cm, respectively. The large-scale population-
and ecosystem-level processes are represented as partial
differential equations (PDE), describing the local growth and
mortality of mussels as determined by algal consumption,
sediment accumulation and a density-dependent mortality
rate13,20,25. Let A(x, y, t) describe the algal concentration in the
benthic boundary layer, M(x, y, t) the mussel density and S(x, y, t)
the sediment elevation at location (x, y) and time t. This part of
the model is then given by:

@A
@t
¼ f Aup�A
� �

� c
Sþ ksg
ksþ S

AM�VrxA

@M
@t
¼ ec

Sþ ksg
ksþ S

AM� dm
km

kmþM
Mþ ~r2M

@S
@t
¼ k1M� dsSþDsr2S;

ð1Þ

where Aup is the concentration of algae in the surface layer, f is
the exchange rate between the benthic boundary layer and surface
layer, c is the maximum consumption rate of algae by mussels, ks

is the sediment level at which consumption is half maximal, g
specifies the consumption of algae in the absence of sediment
accumulation, e is the conversion efficiency of ingested algae to
mussel density, dm is the maximum mortality rate of the mussels,
km is the mussel density at which mussel mortality is half
maximal, k1 is the deposition rate of sediment by mussels in the
form of pseudofaeces and ds is the erosion rate of the sediment.
Here, we assume that mussel mortality decreases with local
mussel density because high, within-clump densities provide
protection against predation and dislodgement20,26,27. Advection
of algae is represented by the term VrxA with velocity V. Local
dispersion of sediment over the tidal flat is modelled by the
diffusion term Dsr2S. We use the notation ~r2M to express
mussel movement behaviour, which is modelled explicitly as
random walks of individual mussels (as described above). Local
changes in mussel density are translated into the IBM model by
random mortality of a fraction of the local individuals if local
change is negative, or by random addition of new mussels if local
change is positive. The detailed model formulation and
simulation methods are described in the Methods section.

The emergence of nested spatial patterning. The model predicts
the formation of nested spatial patterns in mussel beds, similar to
the development of mussel beds under natural conditions (Fig. 2).
For comparison, we made photographs of mussel beds at various
developmental stages, starting from a young mussel bed B2
months after settlement to a strongly patterned bed of about 2
years of age. At first, behavioural aggregation through individual
movement leads to the rapid development of clumped patterns at
small spatial scales (Fig. 2a,d), while the bed remains relatively
homogeneous at larger scales. As time progresses, the small-scale
clumps develop into a reticulate network, while banded patterns
develop at larger spatial scales due to differential growth and
mortality. Increased sedimentation triggered by mussel feeding
leads to the development of hummocks underneath mussel pat-
ches, which become raised from the seabed25 (Fig. 2b,e). This
leads in the long run to the development of a mature mussel bed
with clear spatial patterns at two spatial scales (Fig. 2c,f): small-
scale net-shaped patterns embedded in large-scale banded
patterns. For all stages, the model results reveal a striking
similarity between predicted patterns and those observed in the
field, as is confirmed by spectral analysis of the spatial patterns
revealing two dominant scales of 0.3 and 8.0 m, respectively

(Supplementary Fig. 1). This indicates that the model can well
explain the emergence of nested patterns in mussel beds.

Effect of spatial self-organization on ecosystem functioning.
We now use the model to investigate how this nested pattern
formation affects the functioning of self-organized ecosystems.
We used a full-factorial design to investigate the separate and
combined effects of small-scale and large-scale self-organization,
by switching off (1) the small-scale aggregative behaviour, (2) the
large-scale ecosystem patterning and (3) both forms of spatial
self-organization, and compared the predicted properties of the
equilibria with that of the full self-organizing model. Small-scale
aggregation was removed by switching off density-dependence of
individual mussel movement (that is, h(r, b)¼ constant); large-
scale spatial patterning was switched off by increasing the dis-
persion coefficient for sediment (Ds) to a value outside the
domain of pattern formation. Note that this method targets only
the spatial dispersal in the model but none of the growth or
mortality processes, making it possible to assess how the loss of
self-organization affects ecosystem dynamics, an analysis that is
rarely done. For each model variant, we determined changes in
equilibrium mussel density as a function of algal concentration in
the inflowing water (Aup), which provides the major food source
for mussel beds20.

The results of the full-factorial model analysis reveal that the
interplay between small-scale and large-scale self-organization
has a strong impact on the resilience of this ecosystem. We first
switched off all forms of self-organization, such that the mussels
are homogeneously distributed across the tidal flat. In this case, at
algal concentrations between 0.68 and 1.80 g m� 3, the model
predicts two alternative stable states: one with ample mussels that
enhance sediment stabilization and experience a low mortality
rate, the other a barren area without sediment stabilization and
with high mortality rates preventing mussel establishment
(Fig. 3a). When the algal concentration becomes too low
(o0.68 g m� 3), a tipping point occurs below which the mussel
bed collapses to a barren state devoid of mussels, from which
recovery is very difficult. Recovery only occurs when the algal
concentration increases to sufficiently high levels (41.80 g m� 3),
such that there is sufficient food for mussel beds to re-establish
themselves, or when initial mussel density is sufficiently high to
overcome the establishment-threshold. Hence, without self-
organization, the model predicts an extensive range of environ-
mental conditions where alternative stable states occur and where
mussels beds are particularly vulnerable to tipping behaviour in
response to disturbances. This model behaviour is qualitatively
similar to that described by models of other ecosystems with
alternative stable states, such as shallow lakes28,29.

The combination of small-scale aggregative behaviour and
large-scale ecosystem patterning strongly affects the functioning
and resilience of mussel beds. First, mussel beds can survive at
lower algal concentrations (Fig. 3b–d) and can persist at lower
mussel densities (Fig. 4a) when small-scale or large-scale self-
organization is introduced separately, but most strongly so when
these processes are combined. The range of algal concentrations
at which alternative stable states occur, and where the bed is
vulnerable to disturbances, becomes only slightly smaller when
either only small-scale or only large-scale self-organization is
allowed, but is strongly reduced when both self-organizing
processes are allowed to interact (Fig. 4b). Moreover, the
combination of both small-scale and large-scale spatial self-
organization leads to more rapid spatial pattern formation
(Fig. 4c), and allows for a much faster recovery from external
disturbances (Fig. 4d). This effect results from the fast aggregation
of mussels in small-scale clusters, which lowers mortality and
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thereby increases local mussel density, thus facilitating the
development of the large-scale banded patterns. Hence, small-
scale aggregation allows the mussels to quickly overcome the
establishment-threshold predicted by models without small-scale
aggregation. These results demonstrate that the interaction
between different levels of self-organization and the spatial
complexity that emerges from this interaction can have striking
effects on the stability, persistence and productivity of self-
organized ecosystems.

Discussion
Our results suggest that natural ecosystems may be much more
resilient and less likely to experience catastrophic shifts when self-
organization generates complexity at multiple spatial scales and
organizational levels. Mussels beds on soft-bottom substrates are

particularly interesting ecosystems in this respect, because different
processes of self-organization rapidly create conspicuous regular
spatial patterns at distinctly different scales, nested within one
another. However, nested spatial patterns are not unique to mussel
beds, and can also be observed in other ecosystems such as seagrass
beds, coral reefs7 and savannahs9 (Supplementary Data 1). Our
study illustrates that in these systems, self-organizing processes
driven by individual aggregation and spatial differentiation in
growth rates may allow for enhanced persistence in the face of
increasing stress, and faster recovery in the face of disturbances.

The ever-increasing impact of human activities on natural
landscapes (for example, by agricultural and urban development)
often results in spatial homogenization of natural ecosystems, and
restricts the movement and dispersal of many organisms30–32.
This human influence may strongly impair self-organizing
processes at multiple spatial scales and the resulting spatial
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Figure 2 | Development of spatial patterns at two spatial scales within mussel beds. (a–c) Development of spatial patterns in the field. (a,b) A mussel

bed at 2 months and 4 months after larval settlement in May/June 2009, on a tidal flat in the Wadden Sea (near De Cocksdorp, The Netherlands).

(c) A mature, undisturbed mussel bed in the Menai strait (near Bangor, United Kingdom). (d–f) Model predictions of the development of self-organized

spatial patterns at two spatial scales, nested within one another, in mussel beds of 4, 40 and 400 days old. The insets show a magnified view of the

nested patterns.
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complexity that is characteristic of many natural ecosystems. Our
study demonstrates that this ‘spatial simplification’ can make
populations and ecosystems more vulnerable to perturbation and
increases the potential for catastrophic collapse to alternative and
often degraded states. Allowing self-organization to generate
patterns and complexity at multiple spatial scales may improve
the intrinsic ability of ecosystems to withstand both natural and
human-induced disturbances.

Methods
The description of theoretical model. To study how pattern formation at mul-
tiple spatial scales affects the resilience of mussel beds, we developed a model that
combines a mathematical description of large-scale pattern formation in mussel
beds25 with an individual-based, numerical model for aggregative movement of
mussels at small spatial scales13. In this model, large-scale population growth and
losses processes are described by three partial differential equations, one describing
changes in algal concentration in the benthic boundary layer A(x, y, t), one for
mussel density on the bottom M(x, y, t) and one for sediment elevation S(x, y, t),
each at location (x, y) and time t. Therefore, the model can be written as
equation (1). We use the notation ~r2M to represent mussel movement, which is
modelled explicitly as random walks of individual mussels13. Statistical analysis of
experimental movement trails revealed that the distances covered by the mussels
during 1 min could be approximated by an exponential distribution13,33, where the
frequency h of occurrence decreased with movement distance r; h(r, b)¼ (1/b)
exp(� r/b). Here, the scaling parameter b is a function of the densities of mussels
in the neighbourhood. Statistical analysis of the relationship between movement
speed and mussel density revealed that this scale parameter b is negatively affected
by density at a scale of 1.5 cm, but positively affected by density at a scale of 6.0 cm.
The scale-dependent feedback can be expressed as b¼ 1/(p0þ p1L1� p2L2), where
L1 and L2 represent the mussel densities at the two different scales, and the
coefficients p0, p1 and p2 represent an intercept (movement speed at zero mussel
density), and the coefficients of density dependence, respectively, which were all
obtained from the regression analysis.

Implementation of the model on a graphics processor. For the PDE model, we
used a spatial grid of 256� 256 cells spanning a 50� 50-metre area covering

B6 wavelengths (Fig. 2d–f), but 128� 128 cells spanning a 20� 20-metre area
were used for the quantitative analysis of bifurcation analysis (Fig. 3). Imple-
mentation of this model (1) consists of three steps. The first step is to calculate
mussel growth and mortality, along with algal concentration and sediment eleva-
tion using the PDE components of the model (without mussel diffusion terms at
here). The second step is to update local mussel density in the IBM representation
of the mussels, using the new mussel densities predicted by the PDE. When the
PDE predicts that mussel density decreases locally, a random selection of individual
mussels is removed from the local grid cell of the IBM. When mussel density
increases, new mussels are randomly added to the grid cell. The last step is to
calculate mussel movement at the scale of the individual mussels. Experiments
demonstrated that individual movement occurred at much faster time scales than
ecosystem-level growth and mortality processes13,20. To facilitate the simulation
process, we assumed a fixed factor of 33 between the two time scales. This
simplification did not affect equilibrium densities. Owing to intensive calculations
required to compute movement of all individual mussels, the simulation
was implemented on a graphics processor, coded in the Compute Unified Device
Architecture (CUDA) extension of the C language (NVIDIA-CUDA,
https://developer.nvidia.com/cuda-gpus) and computed on multiple NVIDIA
Tesla C1060 high-performance computing boards. For sorting, we used the CUDA
Data Parallel Primitives Library (CUDPP, http://cudpp.github.io). The model
assumes a fixed (adult) mussel size, because even the high-performance computing
boards that we used did not have sufficient computing power to describe the
movement of large numbers of juvenile mussels. Each simulation run was started
with a randomized distribution of mussels. The program code is available at
ftp://public:public@dmgftp.nioz.nl/LiuCode/index.liu.

Switching off small-scale and large-scale self-organization. In the simulations
we removed small-scale aggregative behaviour of the mussels by setting the
exponential distribution to b¼ 1/p0. In this scenario, individual movement
becomes random Brownian motion, that is, equivalent to standard diffusion, and
hence can also be represented by the Laplace operator ,2M (Supplementary
Fig. 2). Simulation results suggest that the IBM model without small-scale aggre-
gation accurately reproduces the self-organized spatial patterns predicted by the
PDE model using a diffusion operator to describe mussel movement (see
Supplementary Fig. 2).

We removed large-scale ecosystem patterns by increasing the value of the
diffusion coefficient of sediment to Ds¼ 0.005 m2 h� 1, which is outside the
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domain allowing large-scale pattern formation (changing of the parameter, V or
Dm is possible34,35). Finally, a completely homogeneous state was obtained by
setting both individual mussel movement (b) and sediment diffusion (DS) to the
above-mentioned values.

We note that changing b and Ds only affects movement processes. Hence
mussel growth and mortality are not directly affected by changes in b and Ds, only
indirectly via the effect of b and Ds on the formation of small-scale and large-scale
patterns. This allows for identification of the emergent effects of pattern formation
on the mean equilibrium values of A, M and S. Finally, a completely homogeneous
state was obtained by setting both sediment diffusion and individual mussel
movement to the above-mentioned values.

Our analysis currently only investigates the sensitivity of the model to an
increase in the algal concentration in the incoming water, Aup. It is likely that the
bifurcation analysis of Fig. 3 is sensitive to other critical parameters such as mussel
mortality dm, its density dependence km and other parameters. The high computing
time required to analyse this model precludes such an analysis, although. We
therefore based our analysis on estimates that are, for as much as possible, based on
experiments in case of mussel movement, and literature evidence in case of growth
and mortality processes. Moreover, we provide extensive bifurcation analyses of the
models of small-scale and large-scale self-organization in previous
papers13,14,20,25,34,35.

Field photos of mussel patterns. Field photos of mussel patterns with different
spatial scales were taken on the tidal flats. Figure 2c was collected from the Gallow
Point (53.245238N, � 4.104166E) near Menai Bridge, UK, in July 2006, and
Fig. 2a,b was collected from opposite to De Cocksdorp (53.159239 N, 4.890936 E)
in Texel, The Netherlands, from August to September 2009.
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Figure 4 | Effects of increasing spatial complexity on ecosystem

functioning. (a) Average mussel density at the tipping point (marked by

down arrows in Fig. 3, TP¼ tipping point). (b) Size of the bistable domain

with respect to algal concentration. (c) Rate of pattern formation, which

was calculated as the time required to reach stable spatial patterns when

starting from a random initial distribution. (d) Recovery time after a large

perturbation (30% reduction of mussel density). Each panel compares four

model versions, where the colours indicate the types of patterns.
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