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Although offshore freshened groundwater (OFG) systems have been documented in
numerous continental margins worldwide, their geometry, controls and emplacement
dynamics remain poorly constrained. Here we integrate controlled-source electromagnetic,
seismic reflection and borehole data with hydrological modelling to quantitatively char-
acterise a previously unknown OFG system near Canterbury, New Zealand. The OFG system
consists of one main, and two smaller, low salinity groundwater bodies. The main body
extends up to 60 km from the coast and a seawater depth of 110 m. We attribute along-shelf
variability in salinity to permeability heterogeneity due to permeable conduits and normal
faults, and to recharge from rivers during sea level lowstands. A meteoric origin of the OFG
and active groundwater migration from onshore are inferred. However, modelling results
suggest that the majority of the OFG was emplaced via topographically-driven flow during
sea level lowstands in the last 300 ka. Global volumetric estimates of OFG will be sig-
nificantly revised if active margins, with steep coastal topographies like the Canterbury
margin, are considered.
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ast offshore bodies of fresh and moderately brackish

groundwater (concentration of total dissolved solids of

<10gl~!) have been documented up to 100km from
modern shorelines and down to 4.5 km below the seafloor (bsf)!.
The majority of offshore freshened groundwater (OFG) is hosted
in shallow (<300 m), poorly consolidated, clastic sediments in
seawater depths less than 50 m!=3, Nearly all discoveries of OFG
have been made along passive continental margins, mostly in the
Atlantic US and European margins®>. There are at least five
mechanisms known to be responsible for the emplacement of
OFG. These include active groundwater migration across topo-
graphic gradients via present day, permeable connections between
offshore and onshore aquifers®, recharge during Pleistocene sea-
level lowstands”-8, sub-glacial and pro-glacial injection®, entrap-
ment of connate water in subsiding basins!?, and gas hydrate
dissociation!!. Global volumetric estimates of OFG were derived
in passive margins and are on the order of 10° km3. This is two
orders of magnitude greater than the volume of groundwater that
has been extracted globally from continental aquifers since 1900
(refs. 1:8).

The main driving force for an improved understanding of OFG
systems is their potential use as a source of potable water!2.
Groundwater resources are declining in terms of quantity and
quality as a result of climate change, pollution and over-
exploitation caused by population growth and urbanisation, par-
ticularly in coastal regions and island nations!®»!%. OFG may
provide a buffer to increased demand during periods of intense
drought and, in some coastal areas, is already being inadvertently
exploited by onshore pumping®!3, Industrial sectors involving
seafloor engineering, carbon dioxide sequestration, and ore
deposit and petroleum exploration have a direct interest in the
evolution of OFG systems because these can place better con-
straints on past fluid migration histories!®. Apart from these broad
societal impacts, OFG plays a fundamental role in biogeochemical
fluxes to the ocean as well as benthic and sub-seafloor ecology!”.
OFG can also provide potential archives of former environmental
conditions!8 and contribute to advance our understanding of
human settlement and migration in the past!®.

The characteristics and dynamics of OFG systems remain
poorly constrained. There are many first-order questions waiting
to be addressed, mainly related to the geometry, distribution and
extent of offshore aquifers, as well as their flow and emplacement
dynamics. This stems from the fact that our understanding of
OFG systems is predominantly based on offshore borehole data
from legacy drilling campaigns and incidental discoveries in
petroleum wells20, The coverage of these borehole data is lim-
ited!, and direct observation of the aquifer structure and geo-
chemical characteristics of OFG remain rare?!22. In addition,
most measurements and research efforts related to OFG have
focused on the nearshore zone?3. The control of the geological
environment on the spatial distribution and flow of OFG is also
poorly constrained???4. Contrasting results have been reported,
with freshwater being preferentially stored in coarse-grained
sandy deposits?? or in fine-grained clay intervals?2, and with
faults acting as both barriers and conduits?’.

Controlled source electromagnetic methods using a horizontal
electric dipole source are sensitive to bulk electrical resistivity and
can detect resistivity contrasts between the OFG and the sur-
rounding seawater-saturated sediment, in a similar manner to
hydrocarbon reservoirs2®27, In this study we integrate offshore
time-domain controlled-source electromagnetic (CSEM) data
with multichannel seismic reflection data, borehole data and
hydrological modelling to quantitatively characterise an OFG
system at high spatial resolution. The objectives of our study are
to constrain the 3D geometry, extent, dimensions, hydraulic and
age characteristics of the OFG system, to infer the origin and

emplacement mechanisms of the OFG, and to identify the con-
trols of the OFG system and its characteristics. Our study area is
the Canterbury Bight, located off the eastern coast of the South
Island of New Zealand. This continental margin was investigated
because a pore water salinity anomaly was recorded in borehole
U1353 during IODP expedition 317 (refs. 1:28). Here we docu-
ment an extensive OFG system that consists of one main, and two
smaller, low salinity groundwater bodies. The origin of the OFG is
meteoric, although the majority of the OFG appears to have been
emplaced via topographically driven flow during sea-level low-
stands in the last 300 ka. We also report along-shelf variability in
OFG salinity, which we attribute to permeability heterogeneity
due to permeable conduits and normal faults, and to recharge
from rivers during sea-level lowstands.

Results

Geological framework. The 50,000 km? Canterbury Basin is a
foreland basin on the eastern side of the Southern Alps in the
South Island of New Zealand (Fig. 1). The basin includes the
Canterbury Plains onshore and the Canterbury Bight shelf and
continental slope offshore2®30, The onshore sedimentary sequence
is dominated by a >600-m-thick Quaternary, cyclically stacked,
fluvio-deltaic succession, which includes an alternation of gravels
and sand/silt units3!. These sediments were eroded from Torlesse
rocks in the >3500 m high Southern Alps during glacial times,
transported by high energy braided rivers, and deposited as glacial
outwash onto a margin subsiding at 0.2-0.5mka—1 (refs. 30-32).
The main aquifers are hosted in gravels down to at least 150 m
depth33, with unconnected sand and silt/clay layers forming
aquitards3?343>, The regional flow of groundwater in the Can-
terbury aquifers is from the foothills of the Southern Alps towards
the sea34.

The Canterbury Bight comprises a continental shelf that is
180 km long and up to 95 km wide, with a shelf gradient of 0.09°
and a maximum depth of 140-150 m3° (Fig. 1). It comprises a
1-km-thick progradational succession of coeval shelf-slope
deposits that are punctuated by numerous advances of the braid
plain (up to 70 km eastwards) during periods of sea-level fall3. In
spite of its proximity to the Alpine Fault plate boundary, the
Canterbury Bight has been an area of relative tectonic stability
since the late Cretaceous®. The sedimentary history of the
Canterbury Bight since the middle Miocene has been controlled
by eustatically driven transgressive-regressive cycles®’-3%. The
sedimentary sequence within this time frame can be divided into
19 regional sequence-bounding unconformities identified from
seismic reflection profiles, which represent erosional surfaces
caused by marine ravinement superposed on subaerial exposure
surfaces®%37. The most recent 15 of these unconformities have
been correlated with borehole logs from IODP expedition 317
and correspond to coarse sandy or shelly beds overlain by fining
upwards mud and sandy mud®7-3%.

Boreholes U1353 and U1354 were drilled in the middle to
outer Canterbury Bight during IODP expedition 317 (ref. 40;
Fig. 1). Downhole variations in sediment grain size, pore water
salinity, porosity and methane concentration for borehole U1353
are displayed in Fig. 2a-e. Variations in chemical element
concentration for pore water samples from borehole U1353 are
listed in Supplementary Table 1. The sediments were deposited in
inner to outer shelf settings between the Holocene and Early
Miocene, and predominantly consist of silt and clay with sub-
ordinate layers of sand and granules?’. Down to 180 m bsf,
porosity values decrease from 45% to 40%. Pore water salinities
decrease rapidly from 34 psu (practical salinity unit) at the
seafloor to 24 psu at a depth of ~40m bsf (psu, or practical
salinity unit, is a unitless quantity equivalent to parts per
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Fig. 1 Study area. Three-dimensional digital elevation model of the Canterbury Basin (Source: https://data/linz.govt.nz). The location of the rivers, onshore
gravel aquifer, onshore well Ealing-1, CSEM and multichannel seismic reflection lines, and boreholes U1353 and U1354, is shown.

thousand or g kg~! and based on the properties of sea water
conductivity; the global ocean has an average salinity of 35.5 psu).
Salinity remains constant at 24-25 psu down to ~65m bsf, and
then increases gradually to 34 psu at ~180m bsf. Downcore
variations in salinity are mirrored by those in Cl~ and Nat
concentrations#0. No pore water salinity anomaly was observed in
borehole U1354 (Fig. 2c).

Seismic reflection data. Four seafloor transects across the Can-
terbury Bight (lines 2, 4, 5 and 7), with a total length of 175 km,
were surveyed with multichannel reflection seismics and a
seafloor-towed CSEM system (Figs. 1, 3a-d and 4). The multi-
channel seismic reflection profiles were sub-divided into five
different facies (Fig. 3e-h; see Methods). Four of these facies were
correlated with lithologies in boreholes U1353 and U1354: Facies
A—clay; Facies B—silt; Facies C—fine sand; and Facies D—coarse
sand/granules (Fig. 2b). Facies E was not sampled by the bore-
holes, but we interpret this as gravel. Our interpretation is based
on the occurrence of a 600-m-thick alluvial gravel layer in the
coastal well Ealing-1 (Fig. 1)1, which is expected to extend off-
shore, the similarity of facies E with the seismic signature of the
600-m-thick gravel layer onshore*2, and the prediction of off-
shore gravel distribution from conceptual and quantitative stra-
tigraphic models3®. The stratigraphic framework across the
Canterbury Bight therefore consists of an alternation between
lowstand fluvial gravels and sands, which become thicker towards
the shore, and highstand sands, silts and clays, which are more
dominant in the deeper sections. This distribution of facies
represents a trend of decreasing grain size and permeability with
distance from the shoreline, and is consistent with sediment
transport models results’?. In line 7, we also observe 5-10km
long isolated bodies of facies C occurring at multiple depths and
offset seismic reflectors at four locations in the SW section
(Fig. 3h, Supplementary Fig. 1).

CSEM data. We identify a number of resistive features in the
CSEM inversion models, which we define as bodies of resistivity
of >2 Om*3 that extend across a minimum horizontal distance of
5km (Fig. 4). The characteristics of these resistive features are

summarised in Table 1. Line 4 displays the highest resistivity of
the shore-normal profiles. Line 7 is characterised by shore-
parallel variability in resistivity, with the highest values recorded
in the vicinity of line 4. Resistive features correspond to all five
seismic facies, with the most common being facies B and C (silt
and fine sand). The thin, shallow, high resistivity features (4b and
7b) in lines 4 and 7 correspond to facies C (fine sand) (Figs. 3f, h
and 4b, d). The top boundaries of the resistive features tend to
follow seismic reflectors, although a few exceptions do occur
(Fig. 4, Table 1).

Resistive features in the CSEM models can arise from low
salinity pore water, a decrease in porosity (due to changes in grain
size or presence of gas), and a decrease in clay content*»4>. We do
not find sufficient indicators that link the resistive features to the
occurrence of gas-charged sediments. For lines 4 and 7, this
would require high gas saturations of the available pore space in
the order of 50%. There is only a low spatial correlation, in both
the vertical and horizontal planes, between sub-seafloor indica-
tors of gas in the seismic reflection data (e.g. acoustic blanking,
amplitude anomalies, pipe structures) and the resistive features*°.
In addition, no significant amounts of hydrocarbons above
background laboratory air were detected in the uppermost 350 m
of borehole U1353 (ref. 28) (Fig. 2e).

We can test whether the resistive features are a result of
changes in pore water salinity, porosity or clay content for a
section of the resistivity model in line 2, where ground-truthing
information is available. Due to the measurement error associated
with the acquired data and the physics that dictate the diffusive
nature of electromagnetic signal propagation, an ensemble of
best-fit models exist that describe the measured CSEM data
within its uncertainty equally well. We validate the resistivity-
depth variations of our CSEM inversion model for line 2 with the
resistivity measurements from borehole U1353 (Fig. 5). For the
upper 100 m, we only have core porosity and salinity information.
For this region, we converted the pore water salinity values from
borehole Ul1353 to a resistivity-depth model using Archie’s
Law*>. We used two different porosity models: one based on the
porosity-depth function derived from U1353 (ref. 28), shown in
blue, and the measured porosity values (MAD) for U1353, shown
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Fig. 2 Borehole U1353 data. Depth profiles of a sediment grain size, b seismic reflection data (from TAN1703 survey) and interpreted facies, € pore water
salinity, d porosity, e methane concentration, f plots of HCOs vs. Cl and g Na vs. Cl. Pore water salinity profiles, derived from the hydrological model (solid
line) and the model for solute transport by vertical diffusion (dashed line) for the site of boreholes U1353 and U1354, are included in c.

in green (Fig. 5). The resistivity estimates from our inversion
model and the resistivity variation from the core data agree quite
well above 100 m bsf, and we can resolve the subtle resistivity
variations caused by a salinity variation of 10 psu. We can thus
infer that resistive feature 2a corresponds with brackish pore
water in borehole U1353 (Figs. 2c and 4a). The uppermost section
of the inversion model (<20 m) is likely an erroneous structure
that appears due to over-fitting of the data or another systematic
inversion artefact (Fig. 5).

Below 100 m bsf, we can validate our inversion resistivity
model against the resistivity log measured by the IODP induction
tool. The induction tool shows comparatively large variations in
resistivity (Fig. 5), which is related to the fine layering of
sediments with variations in clay content and grain size (Figs. 2a
and 3e). The variation in the resistivity log is likely more
attributable to variable clay content, since there is a correlation
between resistivity and natural gamma radiation*? (Fig. 5). Clay
tends to reduce resistivity through conductive pathways along the
surface of negatively charged clay particles, causing electrical
anisotropy in a predominantly vertical direction. Thin, inter-
calated clay layers may be directly picked up by the induction tool

with its short source-receiver offsets, causing the wide scatter in
the resistivity log, while the horizontal inline electric field
component measured with the seafloor-towed CSEM system is
mainly sensitive to vertical current flow in the subsurface. The
resistivity model derived from the CSEM data tends towards the
higher resistive layers as seen in feature 2b (Figs. 4a and 5).

Estimation of pore water salinity. In the absence of borehole
data for the resistive feature 2c and along lines 4, 5 and 7, we
apply Archie’s Law*> and the Fofonoff and Millard algorithm?*’ to
calculate pore water salinities from the resistivity models for
porosities of 20%, 30% and 40% (see Methods; Fig. 6). We
observe fresh to brackish (<10 psu) offshore groundwater in lines
4 and 7 for all porosity scenarios. This result indicates that the
high resistivity features along lines 4 and 7 (Fig. 4b, d) are
primarily related to low pore water salinities. More brackish
(10-22 psu) offshore groundwater is visible in lines 2 and 5, if a
porosity of 230% is considered (Fig. 6b, c). In view of the pre-
dominant sediment facies (silts and fine sands; Fig. 3e-h), we
consider the 40% porosity estimate as the most representative
(Fig. 6¢). We observe shore-parallel variations in pore water
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salinity along line 7, and between lines 2, 4 and 5. The freshest
groundwater always occurs along, and laterally from, line 4. The
resistivity models in Fig. 4b, ¢, and the derived pore water salinity
models in Fig. 6¢c, suggest that two smaller OFG bodies occur
above a main OF0G body in lines 4 and 7. They are up to 15km
long, 50 m thick, have lenticular cross-sections and correspond to
fine sand bodies (Fig. 3f, h).

Hydrological models. The goals of the hydrological models are to
quantify the hydraulic characteristics of the OFG system and to
provide insights into the relative importance and timing of
freshwater transport and emplacement. We constructed three
shore-normal cross-sectional hydrological models of groundwater
flow and solute transport based on lines 2, 4 and 5 (see Methods).
The computed hydraulic characteristics are total dissolved solids
concentrations, residence times and groundwater velocity (com-
puted by dividing specific discharge by porosity). The governing
transport equations, boundary and initial conditions are descri-
bed in the Methods section.

We first imposed a fixed modern sea-level condition for 1 Ma
and refer to this as the steady-state scenario (Table 2). In the
steady-state scenario, OFG extends 10-20 km from the coastline
and is associated with submarine groundwater discharge due to
onshore water table head gradients (Fig. 7a-c). The relatively
short distances of observed OFG, in comparison to prior

studies*3, are due to a lateral decrease of permeability offshore
(Supplementary Fig. 5b). Flow driven by shore-normal head
gradients is dominant. Sequestered offshore fresh (<1 psu) and
brackish (<10 psu) water for the steady-state scenario varies
between 0.43 and 2.78 km3km~! (volume per km of coastline)
(Table 2). Freshwater is mainly sequestered in coarse-grained
units close the shoreline.

For the transient shore-normal scenarios, where sea level was
varied over the past 1 Ma due to Pleistocene climate change?’
(Supplementary Fig. 4), fresh to brackish water is sequestered in
both coarse and fine-grained facies, resulting from diffusive and
dispersive processes. This is evident by the lack of fingering
between relatively thin coarser and finer units (Fig. 7d-f).
Differences in salinity patterns between the three profiles are due
to differences in stratigraphy and shore-normal gradients. After 1
Ma of sea level change, the OFG extends up to 60 km from the
coastline. Sequestered offshore fresh and brackish water ranged
between 3.11 and 5.06 km3 km~! (Table 2). Most of the OFG is
located within 20-40 km from the shoreline. Computed mean
groundwater age for the transient simulations indicate that much
of the OFG is younger than 300 ka (Fig. 7p-r). Computed
groundwater velocities range between 100 ma~! onshore to
<10>ma~! offshore at present (Fig. 7j-1). In the uplands, a
portion of the topographically driven flow discharges before
reaching the ocean and this does not change during sea level
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Fig. 4 CSEM lines. Interpreted resistive features from the data acquired
along lines 2, 4, 5, and 7, overlaid on seismic reflection profiles (see
Table 1). The features are denoted by white labels whereas their boundaries
are delineated by broken white lines. Location in Fig. 1. Location of
intersecting lines and borehole U1353 is shown. Black triangles mark
seafloor CSEM transmitter positions on waypoints.

lowstands. During sea level lowstands, topographically driven
flow takes place across much of the continental shelf, where
groundwater velocities are about an order of magnitude higher
than during highstands (Fig. 7m-o; Supplementary Fig. 5c).
Shallow, local topographically driven flow cells developed in what
is today an offshore environment due to local topographic
variations on the continental shelf. During sea level highstands,
onshore topographically driven flow patterns change slightly
(Fig. 7j-1). In the offshore environment, however, reversals in
lateral flow directions take place due to reduction in shore-
normal flow rates (Fig. 7j-1; Supplementary Fig. 5c¢) and the
presence of lateral density gradients. It is important to point out
that this is not haline convection®®. Calculated grid Rayleigh
numbers (see Methods) are sub-critical for fine-grained sand, silt,
and clay clastic facies (Supplementary Fig. 6a). Computed
horizontal Peclet numbers (see Methods) in the mid-shelf region
vary between 10 and 1000 (Supplementary Fig. 6b), which
indicates that advective transport dominates. Models of solute
transport that rely solely on vertical diffusion and use realistic
diffusion coefficients (10719 m? s~1) significantly underpredicted
the depth of OFG relative to observed conditions (Fig. 2¢;
Supplementary Fig. 9; Supplementary Note 1). Modern salinity
conditions are not in equilibrium with present-day sea level
conditions.

Comparison of CSEM data and hydrological model results. The
model-derived salinity patterns for lines 4 and 5 (Fig. 7e-f) are
similar to the estimated pore water salinities for the 40% porosity
scenario (Fig. 6c). For line 2, the model-derived salinity field
pattern compares favourably with the pore water salinity profiles
in boreholes U1353 and U1354 (Fig. 2¢). For the upper 100 m of
borehole U1353, the CSEM inversion model agrees with the
resistivity variation estimated from the core data (Fig. 5), and the
estimated pore water salinity (Fig. 6¢) compares well with the
pore water salinity values (Fig. 2c).

We also converted the salinity profiles derived from the
hydrological models (Fig. 7d-f) to bulk formation resistivity
profiles (Fig. 8) using Archie’s Law (porosity of 40%) and a thin-
plate spline model’!, and compared them with the CSEM

Table 1 List of resistive features identified in lines 2, 4, 5 and 7 and their properties.
Line Resistive Resistivity of Extent of Depth (bsf) of Thickness of Corresponding facies Notes
feature feature (Qm)  feature (km) top of feature (m)
feature (m)
2 2a 2 35 0 <50 in NW; A, B, C; shallow and irregular u-
150 m in the SE  shaped depressions infilled with
facies E in the NW
2b 4 20 50-150 Up to 200 A B CD
2c 8 15 50 >200 B, C E
4 4a >20 37 25-150 >200 B, C,D Top is parallel to seismic
reflectors up to 35 km
mark, then it deepens
by 50 m
4b >20 15 25 50 B, C; NW section predominantly
corresponds to facies C
5 5a 3 17 0-100 >150 B, C, D; W section predominantly
corresponds to facies D
5b 12 33 0-30 <25 B, C Resistive feature has an
irregular, wavy shape
along its top and bottom
5c 2 18 75 150 B, C
7 7a >20 40 ~50 >200 B, C SW boundary
corresponds to 120 m
vertical offset; top is
parallel to seismic
reflectors up to 65
km mark
7b 20 10 ~10 <25 B, C
7c 3 27 50-200 ~50 B, C Interfingers with 7a
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Fig. 5 Validation of the resistivity-depth variations data for line 2 with
resistivity measurements from borehole U1353. Downcore variations in
resistivity derived from CSEM measurements (inversion model, shown as
black circles), measured resistivities in borehole U1353 (IDPH = phasor
deep induction log, shown as black line; IMPH = phasor medium induction
log, shown as red line), and resistivities based on estimates using pore
water salinity values from U1353 and the porosity-depth function derived
from U1353, shown as blue squares, or the measured porosity values from
U1353, shown as green squares.

inversion models (Fig. 4). For line 2, the computed formation
resistivities are similar to those in the corresponding CSEM
model further offshore in the eastern half of the profile, but are
higher at depth in the western half (Figs. 4a and 8). In line 4, we
observe a thinner main resistivity body and slightly lower
resistivities in the computed formation resistivities (Fig. 8) in
comparison to the CSEM model (Fig. 4b). The computed
formation resistivities for line 5 are higher than those in the
CSEM model, but the general distribution compares well (Figs. 4c
and 8). Interestingly, the computed model reveals shallow
resistivity anomalies, which are also observed in the CSEM
model.

A number of factors may explain the discrepancies between the
resistivity models derived from hydrological modelling and
CSEM data inversion. CSEM has been shown to be a useful
geophysical tool to map resistivity changes associated with OFG
from local to regional scales. However, the diffusive nature of
electromagnetic field propagation favours the interpretation of
CSEM data using smooth resistivity contrasts. Thus, small
contrasts, like the one resulting from the small salinity anomaly
observed in Ul1353, are difficult to resolve (Fig. 4a). Model
resolution also depends on the CSEM measurement configura-
tion. The applied inline electric dipole-dipole system is
particularly sensitive to the lateral resistivity distribution down
to about 300 m bsf. In turn, the significant resistivity contrasts
along lines 4 and 7 are well-resolved by the CSEM data and are

interpreted as a clear indication of freshened pore water. As
indicated by the seismic reflection data, lithology changes within
the spatial scales of the survey area and with depth (Fig. 3e-h).
The conversion of seafloor resistivity to pore fluid salinity
requires knowledge of the porosity, clay contents and Archie
coefficients. This information is only available at borehole U1353
and may change across the survey area. Lithological information
derived from seismic reflection data can help to reduce the
ambiguity of CSEM interpretation, but do not allow for a direct
conversion of the observed resistivity to pore fluid salinity.
However, converting the resistivity cross-sections to salinities
using averaged porosity estimates derived from borehole data or
lithologies identified in seismic data (Fig. 6) provide first-order
approximations on the salinity distribution, which are otherwise
not available from remote measurements.

An important limitation of our hydrological models is that we
used a single permeability value for each facies. In reality, sands,
silts and clays can display at least two orders of magnitude
variations for a given grain size. Our hydrologic models are also
sensitive to the choice of permeability represented (see Methods).
Additional uncertainty in our model arises from the hydrostrati-
graphic framework models (which are based on seismic facies
classification and may have missed fine-scale geological variabil-
ities), the degree of connectivity between facies represented in the
model®2, and the choice of initial conditions at 1Ma (see
Methods). The paucity of borehole control precluded the
development of 3D hydrological models. Our models are thus
conceptual 2D models that lack 3D stratigraphic connectivity,
which could account for shore-parallel flow regimes. It is also
important to point out that none of the geophysical surveys
extend close to the shoreline, where most of the freshwater is
predicted to occur in our hydrological models.

Water column data. Attempts at detecting freshwater seepage
across the Canterbury Bight from conductivity-temperature
measurements in the water column, water column chemistry, and
pore water chemistry from surficial sediment samples (see
Methods) were unsuccessful. Measurements made by the
conductivity-temperature-depth sensor attached to the CSEM
system do show zones with brackish water along lines 2 and 7
(Supplementary Fig. 8). However, in view of the spatial correla-
tion with both coarse and fine sediments at the seafloor
(Fig. 3d, h), the small differences between our measurements and
water column salinity measurements elsewhere on the shelf®,
and the poorly constrained physical oceanographic baseline
conditions, we are unable to determine whether the low salinity
measurements are due to localised diffused freshwater discharge
or changes in bottom water salinities due to currents.

Discussion

The OFG system in the Canterbury Bight consists of one main,
and two shallower and smaller, freshened groundwater bodies
(Figs. 6-7). The main OFG body extends up to a distance of 60 km
perpendicularly from the coast, has a maximum thickness of at
least 250 m, and its top reaches a maximum depth of 50 m bsf.
The cross-sectional shape of the main OFG body is best described
as wedge-shaped, becoming thinner and more saline with
increasing distance offshore. Considering porosities of 40%, which
are realistic for line 7 (Fig. 3h), the main OFG body extends from
the shoreline of Ashburton in the NE to offshore of Timaru in the
SW, across an along-shelf distance of 72 km in seawater depths of
up to 110 m. The borehole and geophysical data, and the hydro-
logical model results, show that OFG occurs in sedimentary layers
that mainly include silt and sand, and occasionally gravel and clay
(Figs. 2-7). The minimum and maximum OFG volumes,
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estimated from the geophysical data for porosities of 20% and 40%
(Fig. 6a, c), are 56 and 213 km?, respectively. The volume of OFG
per km thus ranges between 1.22 and 2.96 km? km~!. The model-
derived estimates were higher (average of 3.24-4.78 km3 km™1),
but these included freshwater sequestered both shoreward and
seaward of the CSEM profiles. These volumes compare with 519
km?3 for the entire onshore aquifer of the Canterbury Plains®3, and
1.6-1.8 km3>km™! offshore of New England?, 4.4 km3km~! off-
shore of New Jersey, 9.9 km3km~! offshore of Florida, 6.3 km?3
km~! offshore of Suriname, 1.0 km3 km~1 offshore of Jakarta and
3.1km3km™! offshore of Gippsland!. These published offshore

groundwater volumes were based on borehole observations along
a profile or numerical model simulations. The seawater depth at
which OFG in the Canterbury Bight occurs (up to 110 m) exceeds
Pleistocene average sea level (~40 m)% This implies that the
onshore hydraulic drive in the Canterbury Basin is unusually high,
which we attribute to a high onshore topographic gradient of
0.77% (in comparison to 0.05% for New Jersey?’, for example).
We infer that the origin of the OFG is predominantly meteoric
based on the geochemical characteristics of the pore water in
borehole U1353. Concentrations of Ca?2t and HCO;~ tend to be
lower and higher, respectively, in coastal groundwater compared
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to seawater®»°>, Pore water samples from borehole U1353 can
be divided into two distinct groups according to their geochem-
ical characteristics (Supplementary Table 1). Pore water samples
from group 2 (depth range of 114.6-318.5m bsf) have average

Table 2 Model estimates of the volume of OFG.

Profile Scenario Cr (psu) Ve (km3km—1)
Line 2 T 1 3.25
Line 2 T 10 5.06
Line 2 SS 1 157
Line 2 SS 10 2.78
Line 4 T 1 3.37
Line 4 T 10 4.65
Line 4 SS 1 0.56
Line 4 SS 10 0.43
Line 5 T 1 3
Line 5 T 10 4.62
Line 5 SS 1 0.92
Line 5 SS 10 1.23
Average T 1 314
Average T 10 478
Average SS 1 0.98
Average SS 10 1.52

T transient sea-level model run, SS steady-state model run with fixed present-day sea-level
boundary condition enforced, CT threshold concentration for freshwater volume calculation, V¢
volume of freshwater (in km3 per km of shoreline) below modern sea-level for a given threshold
concentration.

concentrations of 624 mgl~! for Ca?* and 138mgl~! for
HCO;™, indicating seawater composition. Pore water samples
from group 1 (depth range of 59.7-75m bsf) have mean con-
centrations of 383 mgl~! for Ca?* and 320 mgl~! for HCO;™,
suggesting freshwater mixing. The ratio of HCO5/Cl is a sig-
nificant indicator of freshwater recharge if it is greater than the
seawater ratio (0.0069)°°. Samples from groups 1 and 2 had
HCO,;/Cl ratios of 0.0124 and 0.0041 (Fig. 2f), respectively,
indicating that samples from group 1 were likely emplaced by
freshwater recharge. The Na/Cl ratio allows us to define the
salinity source in water>’=>°. In our case, the Na/Cl ratio varies
from 0.86 to 0.88 with an average value of 0.87 and suggests that
the water samples of the study area are highly saline®’”. The scatter
plot between Na and Cl shows that the group 1 samples have
lower values of Na and Cl when compared to group 2 samples
(Fig. 2g), which may be due to mixing with freshwater. If the
freshwater was emplaced by mineral hydration, the source would
have been deeper and the salinity profile would have been the
reverse of the one recorded in borehole U1353. Gas hydrate
dissociation is also an unlikely source of the OFG, in view of the
fact that the concentrations of methane in borehole U1353 are
low (Fig. 2e), and that the gas hydrate stability field does not
extend to the continental shelf 0.

The offshore extension of the onshore gravel sequences facil-
itates migration of meteoric water from the Canterbury Plains
aquifers to the main OFG body. A number of observations sug-
gest that topographically driven flow of groundwater from
onshore to offshore is taking place at present. First, the water
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Fig. 7 Hydrological model results for lines 2, 4 and 5. a-c Computed present-day salinity after 1 Ma using fixed, modern sea-level conditions.

d-f Computed present-day salinity after 1 Ma using time-varying sea-level conditions (see Supplementary Fig. 4). The offshore section that corresponds to
the CSEM profiles is indicated by a red rectangle. g-i Computed salinity conditions at the last glacial maximum (21ka before present). Computed
groundwater velocities (v) from j-I transient scenario today and m-o during the last glacial maximum. The red arrows in j-o are groundwater streamlines,
which are everywhere parallel to groundwater flow directions. While the streamlines appear to converge to a single point near the bottom of the model
domain near the coastline, distinctive flow tubes exist that are too thin to be distinguished. The convergence of stream tubes is due to a reduction in flow
rates associated with the transition from a high permeability to lower permeability environments. p-r Computed present-day mean groundwater residence

times from the transient simulation. Dashed line denotes sea level.
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budget for the Hinds Rangitata Plain shows that groundwater
outflow to the ocean can reach up to 65% of all discharge from
the coastal aquifer33. Second, in the Rakaia-Ashburton Plains,
groundwater near the coast has a relatively young age (<50 a),
which, combined with the general absence of surface springs,
suggests substantial active offshore flow®l. Third, our model
estimates of groundwater age distribution qualitatively agree with
these observations (Fig. 7p-r). Relatively young groundwater ages
are found in aquifers onshore and near the shoreline (100 a near
the surface), whereas older waters are found offshore. The OFG
system has a wedge-shaped geometry and exhibits an increase in
salinity with distance offshore (Figs. 6, 7), which in other settings
has been associated to a connection with onshore aquifers®-20-27,

The maximum offshore extent for a present-day OFG in the
Canterbury Bight, as estimated in the steady-state scenario
(Fig. 7a—c, Table 2), is between one-sixth and one-third the extent
of the OFG inferred from our data (Fig. 6). This indicates that
recharge from onshore aquifers at present can only account for a
small fraction of the OFG. Our transient model results suggest
that the majority of the OFG was emplaced during the last three
glacial cycles (Fig. 7p-r). During low sea levels, topographically
driven shore-normal flow was higher than at present due to an
increase in the hydraulic head and steep onshore gradients
(Supplementary Fig. 5c). This played a key role in driving
freshwater offshore and extending the OFG further out into the
continental shelf. Enhanced infiltration, due to a more extensive
area exposed to meteoric recharge, played a less important role.
Local flow cells developing on the exposed shelf helped to
enhance freshwater infiltration. As sea level rose, there was a
reduction in the topographically driven flow. Lateral differences

in salinity on the shelf drove groundwater laterally and in some
cases shoreward (Fig. 7j-1). The smaller OFG bodies in coarse-
grained sediments in the shallowest layers (Figs. 3, 4 and 6), on
the other hand, may be explained by higher groundwater flow in a
direction oblique to the profile via permeable conduits, or
incorporation as fresh connate water during deposition during
the last glacial cycle.

The difference in along-shelf OFG salinity distribution across
the study area, with the freshest offshore groundwater located in
the vicinity of line 4 (Figs. 4d and 6), may be explained by three
factors:

Sedimentary framework of the Canterbury Bight: The sedi-
mentary and permeability architecture of braided alluvium is
inherently heterogeneous®2. Across the Canterbury Plains, the
braided alluvium predominantly comprises medium to coarse
sandy gravels®3, which correspond to tabular primary channel fills
that formed by deposition in first-order channels®. Ten per cent
of the total volume of the braided alluvium consists of narrow and
arcuate conduits of coarse gravel (also known as open-framework
gravel)®3, which is well-sorted material from the fastest flowing
river channels®®. These conduits, which can be up to five times
more permeable than the sandy gravels, account for the majority
of groundwater flow®3. Floodplain and lacustrine shales, on the
other hand, can act as laterally extensive permeability barriers®.
At the regional scale, conduits provide a strong permeability
anisotropy to the aquifer, but they only constitute discrete,
identifiable flow channels at the local scale (metres to hundreds of
metres). These sedimentary structures are expected to extend
offshore3%. A second source of heterogeneity are high perme-
ability corridors associated to unconfined braided rivers that act
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as preferential groundwater flow pathways. These buried features,
which can be up to 10 km wide and sub-perpendicular to the
coastline, were developed during interglacials and infilled with
coarse-grained sediments during glacials®!. In line 7, we interpret
the thin and isolated bodies of facies C occurring at multiple
depths (Fig. 3d, h) as high permeability corridors3%40. Both
conduits and high permeability corridors can account for lateral
changes in permeability and OFG salinity along the Canterbury
Bight, although only the corridors can be detected in our
geophysical data.

Recharge from onshore aquifers and rivers: Groundwater flow
estimated in the vicinity of the Rangitata River, which is located
onshore of line 4, is lower than that for the Ashburton River,
found onshore of line 5 (113 vs. 176 m3a~!, respectively4)
(Fig. 1). Piezometric contours for a regional groundwater surface
show a general flow parallel to the topographic gradient towards
the coast, and small deviations in the contours, indicative of lower
heads, around the river mouths®. These two observations suggest
that onshore recharge is not an important contributor to along-
shelf variations in OFG salinity at present. However, Rangitata
River has a median flow rate of >5 times that of Ashburton,
Opihi, Orari, and Hinds Rivers (Fig. 1 (ref. 7). Since Rangitata
River has the largest catchment area, it likely had the highest flow
rate during glacial periods as well®8. In view of this, and the fact
that aquifer systems onshore are primarily replenished by infil-
tration from rivers34, we propose that the Rangitata River had the
potential to provide more sustained recharge to the adjacent
groundwater than the Ashburton River when these rivers exten-
ded across the continental shelf during lower sea levels.

Structural control: The only structural features identifiable in
our study area include a series of normal faults, as inferred from
the offset seismic reflectors in line 7 (Fig. 3h; Supplementary
Fig. 1). These faults extend vertically up to sequence boundary
U16, which has an age between 0.44 and 1.05Ma3"-3%. These
faults are either previously unmapped, or comprise extensions of
the fault mapped by Lu and Fulthorpe3”. The faults coincide with
the SW limit of the main OFG body (Figs. 4d and 6). They likely
acted as a source of shallow groundwater salinisation due to flow
of saline water along hydraulically conductive faults from over-
pressured sediment below?’. It is also possible that the faults
provide a barrier to the lateral flow of groundwater to the SW as a
result of displacement and steepening of the permeable strata,
and/or clay smearing®26?,

Topographically driven flow and solute transport can also
result in three-dimensional redistribution of salinity profiles’°.
We note that the Canterbury Plains are characterised by topo-
graphic gradients of >0.05% parallel to the coast. We therefore
hypothesise that topographically driven flow systems could have
developed on the Canterbury Bight during sea level lowstands
and may also account for along-shelf variability in OFG salinity.

This study has demonstrated that the integration of time-
domain CSEM data with seismic reflection data and hydrologic
modelling, constrained by borehole data, is a powerful approach
to quantitatively characterise OFG. The geophysical data can
determine the 3D geometry, extent and dimensions of the OFG
and identify controls of salinity distribution, whereas hydrological
modelling can provide insights into the mechanisms and timing
of groundwater emplacement. In our case, the method has
allowed us to map a previously unknown OFG system offshore of
Canterbury, which has the potential to provide a source of
freshwater to one of the driest regions in New Zealand in the
future. The high-resolution characterisation of this OFG system
has revealed a more extensive and fresher OFG body than could
previously be inferred from borehole data or analytical modelling
alone. Our results also suggest that aquifer structures and OFG
characteristics are more complex and variable in comparison to

what has previously been documented in other margins. Geolo-
gical characterisation of the sub-seafloor, particularly in terms of
porosity and permeability, is fundamental to OFG system
investigation. Both sedimentary structures and faults exhibit
spatial heterogeneity along the shelf and play a key role in con-
trolling variability in OFG characteristics. The latter supports
inferences based on numerical modelling’!, and suggests caution
in extrapolating the characteristics of OFG systems along con-
tinental margins. Modelling of the evolution of the OFG system
during successive glacial cycles is crucial to understanding con-
ditions at present. Such efforts would benefit significantly from
3D representation and consideration of the temporal evolution of
seafloor geomorphology and stratigraphy. The remarkable depth
at which OFG occurs in the Canterbury Bight is a result of high
shore-normal topographic and hydraulic gradients. Prior esti-
mates of OFG volumes only included 16% of the present-day
coastline and focused on passive continental margins'. Including
coastlines along active margins with their steep coastal topo-
graphies is likely to result in a significant revision of global
volumetric estimates of OFG.

Methods

Marine data. The following data were acquired during oceanographic expedition
TAN1703, which took place on board the R/V Tangaroa between 7 April and 1
May 2017.

Sub-bottom profiles: A Kongsberg Maritime TOPAS PS 18 Parametric sub-
bottom profiler, with a linear frequency-modulated chirp (LFM) with a frequency
range of 2.0-6.0 kHz and a chirp length of 15/20 ms, was used to acquire the sub-
bottom profiles. The data were sample with 40 kHz and the recording length was
300 ms. The TOPAS PS 18 beam was stabilised for heave, roll and pitch movements
via motion data fed from the POSMYV. In areas with a steep slope gradient, the
acoustic beam was steered manually. The data were processed using a matched
(wavelet) filter, an automatic digital gain, a time-varying bottom tracked gain and
subsequently converted into instantaneous amplitude data. This resulted in a
vertical resolution of up to 20 cm in the acquired profiles.

Multichannel seismic reflection profiles: 600 km of high-resolution MCS data
were acquired using a mini GI-gun (13/35 cubic inch), deployed at 1.5 m water
depth and shooting with a pressure of 1800-2000 PSI (124 to 138 bar). Three
100 m long active solid-state sections of the GeoEel digital seismic streamer
(Geometrics), containing eight hydrophone groups per section (spacing 12.5 m),
served as receiving unit. The acquisition parameters were set to a shot interval of
3s and a record length of 1.5s. Data processing was carried out using GLOBE
Claritas™ and included the following operations: conversion from SEGD to SEGY,
co-ordinate conversion, definition of streamer geometry, special divergence
corrections and band pass filtering (corner frequencies of 50, 100, 500 and 700 Hz),
common depth point binning (6.25 m bin size) and sorting, normal move-out
correction and stacking, and quality control of processed data. Post-processing
included swell correction, deconvolution, migration and AGC/Balancing. The
processed seismic profiles have a vertical resolution of 2-2.5 m. In addition to the
multichannel seismic reflection profiles collected during TAN1703, we also used
the EW00-01 multichannel seismic reflection data set, which was acquired in 2000
by R/V Maurice Ewing across the outer shelf and slope area of the Canterbury
Bight’2. The survey includes 57 profiles (total length of ~3750 km) with a spacing
of 0.3 to 0.7 km between the individual lines. For data acquisition, two GI air guns
(45/45in3) and a streamer containing 96-120 channels in 12.5m groups, each
containing 26 hydrophones, were deployed. A shot interval of 5s and a record
length of 3 s were set during acquisition. The data processing was carried out with
the Focus software resulting in stacked profiles that provide >1.6 s seafloor
penetration and a vertical resolution of ~5m.

CSEM data: 175 km of seafloor were surveyed with a bottom-towed, time-
domain, CSEM provided by BGR73. GEOMAR’s deep-sea current transmitter was
used to generate 20 Ampere and 50% duty cycle square wave current signals, which
were injected into the subsurface via a 100 m horizontal electrical dipole’4. Four
receiver units (HYDRA) recorded the inline electrical field responses at predefined
offsets of approximately 150, 250, 400 and 650 m from the source centre at a
sampling rate of 10 kHz. Stationary measurements were carried out every 500 m
along lines 2, 4 and 5, and every 1000 m along line 7. Additional data were
recorded in between waypoints while the array was moving, but they were
neglected in the interpretation due to inferior signal-to-noise ratios. The CSEM
transmitter at the front of the seafloor array was equipped with a Seabird SBE37
conductivity—temperature-depth probe. Data processing was carried out using an
in-house software at GEOMAR that synchronises the measured time series with the
source signal. The raw data are subsequently robustly processed to final step-off
transients at each waypoint and for each receiver. Subsequently, a 2D inversion was
conducted for the time-domain CSEM data using an extension of MARE2DEM7>
to derive a resistivity cross-section up to depths of approximately 350 m.
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Conductivity-temperature-depth profiles and Niskin bottle samples:
Conductivity-temperature-depth profiles were acquired at 27 stations using a
combined a Seabird Electronics Inc. (SBE) 911plus instrument and a 24 x 10 1
SBE 32 Carousel water sampler. The sensor configuration consisted of TC-ducted
primary temperature and conductivity (SBE 3plus and SBE4, respectively) and a
pressure sensor (Digiquartz). Measurements of conductivity, temperature and pH
of the waters sampled at these stations were made on board, whereas analysis of
anion (Ca2*, Na~) and cation (Cl~, SO,2~) concentrations was carried out by Hill
Laboratories in Hamilton, New Zealand, using inductively coupled plasma mass
spectrometry.

Analyses of pore water from sediment cores: Coring was carried out at six sites
using NIWA’s in-house, purpose-built piston coring system, which has a 3-6 m
long barrel. Pore water was extracted from the recovered sediment using Rhizon
samplers. Measurements of conductivity, temperature and pH were made on
board, whereas analysis of anion (Ca2t, Na~) and cation (Cl—, SO427)
concentrations was carried out by Hill Laboratories in Hamilton, New Zealand,
using an inductively coupled plasma mass spectrometry.

Granulometric analyses of IODP 317 samples: 41 samples from depths ranging
between 0 and 200 m bsf from borehole U1353 were analysed for grain size
distribution using sieves, following the ASTM D0422, and a Malvern
Mastersizer 3000.

Estimation of pore water salinity. We applied Archie’s Law*> and the Fofonoff
and Millard algorithm?” to calculate pore water salinities from the resistivity
models. The values for porosity and the constants in Archie’s Law were derived
from borehole U1353 (refs. 28:40) (Fig. 2). For each interpreted seismic facies, we
assigned the following values for porosity: Facies A and B—45% for silts and clays;
Facies C—40% for fine sands; Facies D—35% for coarse sands; Facies E—20% for
gravel (with sands)28:03, These porosity values are on the lower end of marine
clastic deposits reported by Spinelli et al.7%. For each line, we estimated pore water
salinity by using three different porosity values, representative of gravels to fine
sands: 20% for the lowest porosity, 30% for an intermediate porosity, and 40% for
the highest porosity. We also took into consideration the variation of porosity with
depth in borehole U1353 (Fig. 2d), which varies according to a porosity—depth
function?8, and assumed that this function applies to all CSEM lines. This calcu-
lation gives us the upper and lower bounds of the spatial extent of the OFG system.
We adopted this approach for three reasons. First, due to insufficient data quality
and offset in the seismic reflection data, it was not possible to derive velocities that
could be used to invert for porosity elsewhere. Second, the resolution of CSEM data
is not high enough to resolve thin sandy layers in the sub-seafloor, which could
cause vertical anisotropic resistivities. Third, horizontal electric dipole-dipole
methods, like the one used in this study, are more sensitive to vertical resistivity
than horizontal resistivity’’. As a result, we cannot impose a high-resolution
porosity model, inferred from the seismic reflection profiles, on a low-resolution
resistivity model.

Generation of hydrostratigraphic framework models. We generated the seafloor
sections of the hydrostratigraphic models (Supplementary Figs. 2 and 3) using
multi-attribute seismic facies classification. First, the seismic reflection profiles were
sub-divided into five seismic facies based on amplitude characteristics, lateral
continuity, reflector geometry and two seismic attributes—instantaneous frequency
and envelope’8. The amplitude characteristics and reflector geometry of the seismic
facies are the following: Facies A—parallel, continuous, low-amplitude reflectors;
Facies B—parallel, continuous, moderate amplitude reflectors; Facies C—parallel,
continuous, high-amplitude reflectors; Facies D—irregular, continuous, high-
amplitude reflectors; Facies E—irregular, discontinuous, high-amplitude reflectors,
locally associated with velocity pull-ups. Second, a depth-travel time relationship
was determined from the sonic logs and used to correlate features in the borehole
logs, recorded in the depth domain, with features in the seismic reflection data,
recorded in the time domain. A synthetic seismogram was constructed in boreholes
U1353 and U1354 from the sonic log and the density curve calculated from the
resistivity log using Archie’s relationship?®. Third, four of the five seismic facies
were correlated with sediment grain size in boreholes U1353 and U1354.

The onshore sections of the hydrostratigraphic model were based on published
literature. The connection between the onshore and offshore sections, and the
extension beyond and below the seismic data (Supplementary Fig. 2) was based on
EW00-01 multichannel seismic reflection data and published stratigraphic
models.

The finite element mesh comprised 13041 nodes forming 25600 triangular
elements. We used a structured finite element grid composed of 160 elemental
columns and 80 elemental rows. Each element had a characteristic dimension of
about 5m (Az) by 750 m (Ax). The onshore portion of the model domain had a
topographic slope and length that varied between 0.007 and 0.01 (Az/Ax), between
19 and 50 km, respectively (Supplementary Fig. 5a). The submarine portion of the
shelf varied in length between 75 and 85 km. The hydrostratigraphic properties
were interpolated onto the triangular finite elements using an image analysis
programme (Supplementary Fig. 3).

Hydrological modelling. This section presents the governing transport equations,
boundary and initial conditions used in the hydrological models. The model runs
considered sea level variations of 120 m over a 1 Ma period (Supplementary Fig. 4,
referred to as transient model runs) as well as steady-state models in which sea level
was fixed at present-day levels.

Mathematical model: We solved the following freshwater head based, variable-
density groundwater flow equation:

oh kp,g
S5 = {H VM+4ﬂ} (1)

where h is the equivalent freshwater hydraulic head, S the specific storage, k the
permeability tensor, y the fluid viscosity, z elevation, p, relative fluid density (p, =
[(p — Po)lpo)ls po is the density of groundwater at standard state conditions (0 °C,
0mgl~1, 10° Pa), and p is the fluid density. The Darcy flux vector () depends on
both head and relative fluid density gradients:

k
q:*¥v[h+pﬁ]- (2)
We solved the following solute transport equation:
aC ~
o =V [¢DVIC] - vC, 6

where C is the concentration, D the diffusion/dispersion tensor, and ¢ the porosity.
Note that groundwater velocity is equal to v = q/¢. The diffusion/dispersion tensor
is given by

V2 2
Dxx=0‘1,7x+“TTL+de (42)
2 2
D, =ap=+oa, =+ Dy, (4b)
vy,
sz:sz: [‘foaT] sza (4C>
v=4/v2 412, (4d)

where Dy is the molecular diffusion coefficient and «;, and ay are the longitudinal
dispersivities, respectively.

The mean residence time equation solved in this model is given by

0A
3; =V [4DVICA] - qVA + ¢, )
where A is the calculated mean groundwater age’®.

RIFT2D solves the above system of equations using the finite element method.
Triangular elements using linear shape functions were employed®’. The resulting
system of algebraic equations is solved directly using Gaussian elimination.
Verification of the accuracy of the variable-density flow and solute transport
aspects of the code are presented in the appendix of Person et al.”.

We also computed average Rayleigh (Ra) and Peclet (Pe) numbers along all
three profiles (Supplementary Fig. 6). The Rayleigh and Peclet numbers®? are given
by

_ Opgk.H

Ra (62)
#Dy
v.L
Pe = X

e D, (6b)

where Ap is the density difference between seawater and freshwater, k, is the
vertically averaged permeability per column, v, is the vertically average velocity,
H is the average thickness of the profile, Dy is solute diffusivity, L is the cell length,
g is gravity, and y is fluid viscosity. The Rayleigh number used the average vertical
permeability and assumed a sediment column thickness (H) of 300 m. The Peclet
number used a lateral cell dimension (L) of 750 m. Both Rayleigh and Peclet
numbers assume a sediment diffusivity of 10710 m2s~1.

Initial and boundary conditions: For groundwater flow, we imposed a specified
head boundary condition along the top surface of the model domain. For nodes
below sea level, we set the initial heads to be equal to the sea level elevation. For
nodes above sea level, we imposed a specified head along the top boundary
assuming that the water table topography represents a subdued replica of the land
surface8!. In some preliminary models (not shown), we imposed a recharge
boundary condition for nodes above sea level. Using modern estimates of
recharged? resulted in computed heads above the land surface at some locations in
some simulations. Given the uncertainty of palaeo-recharge during the Pleistocene,
we decided that a specified head boundary was more likely to produce realistic flow
rates. For the shore-normal cross-sections, we imposed no flux boundary
conditions along the base and sides of the model domain. During the past 2.6 Ma,
sea level was, on average, 40 m lower than present. During the last glacial
maximum (21 ka before present), sea level reached 120 m below modern levels*’,
exposing continental shelf strata.
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Table 3 Material properties assigned to different formations
in hydrological models.

Formation name k, (m2) Porosity
Clay 10-16 0.45

Silt 1014 0.45
Fine sand 10-135 0.4
Coarse sand 10-13 0.35
Gravel 1012 0.2

For solute transport and groundwater residence times, we assigned a specified
concentration/age at the top boundary and no flux boundary conditions on all other
sides for the shore-normal cross-sections. We assigned an initial concentration of
0 psu for nodes in columns above sea level and 35 psu for nodes in columns that
were below sea level. We used the modern sea level elevation of 0 m to assign these
initial salinity conditions. While we could have assumed that, at the initial
conditions, freshwater occupied sediments to a seawater depth of 40 m, we felt that
setting it at the modern shoreline was more conservative and ensured that simulated
modern OFG was not an artefact of the initial conditions. We assigned a specified
value boundary condition for the groundwater residence time equation of 0 years
along the top boundary. We assigned an initial age of 0 years for all nodes. We
recognise this is an idealisation and that we have neglected the mean seawater
residence time. Because of these imposed initial conditions, actual groundwater age
could be higher.

Observed recharge, based on rainfall, evapotranspiration and soil moisture data,
vary between 100 and 500 mma~! across the Canterbury Plains®2. We assumed a
constant temperature of 10 °C. Given the thin model domain (~300 m), temperature
increases with depth (~1°C/300 m) or due to differences between marine and
continental environments (~6 °C) would have a small effect on computed fluid
density when compared to density differences between seawater and freshwater
(~25kg m~3). Longitudinal and transverse dispersivity was set to 100 and 10 m for
all units, consistent with basin scale models®3. We assumed a solute diffusivity of
10~10m?2 s~ 1. Specific storage was equal to 107¢m~! for all layers. Our model did
not include a sediment loading term that could produce overpressures in fine-
grained sediments.

Model parameters: The topographic/bathymetric profiles of the three shore-
normal lines and the vertically averaged permeability are presented in
Supplementary Fig. 5a, b. The permeability in the horizontal direction varied
between 10712 and 10716 m? between gravel and fine-grained clay facies (Table 3).
The vertically averaged permeability decreased seaward by about 2.5 orders of
magnitude between onshore and the continental shelf (Supplementary Fig. 5b).
These permeabilities are on the middle to upper end of the range of permeability
measurements made for coastal plain and marine sediments227684, Measured
permeability anisotropy (k,/k;) from sediment cores is typically around 3-10 for
clastic materials®>. When numerical models lump multiple clastic layers of sands,
silts, and clays into a single hydrostratigraphic layer, the anisotropy can go up to
1000-10,000%°. In our study, however, all individual lithologies derived from the
seismic data were represented as individual metre-scale units. We assigned an
anisotropy of 80 (k,/k.), which we consider reasonable for metre-scale clastic
deposits®®. The porosity values used in the models are shown in Table 3.

The contrast between the coarse and fine-grained facies could be as high as 8
orders of magnitude. Had we used a larger range (10~ m2 <k, <1018 (ref. %;
Supplementary Table 2) and assigned a higher anisotropy (1000), OFG in the
model would have extended further offshore and the pore water salinities for the
site of borehole U1353 would have been too low (Supplementary Fig. 7).

The permeability of clay formation could be as low as 10721 m? (ref. 87).
However, reducing the value of clay permeability below 10~16 m? had a second-
order effect on advective transport. In addition, the clay facies are mainly found in
the deep offshore environment, where seawater depths exceed 100 m below
modern sea level conditions.

We ran simulations with permeabilities that were two orders of magnitude
lower than listed in Table 3. These produced diffusion-dominated offshore profiles
with a lens of brackish water tapering seaward underlain by seawater. This was not
consistent with any of the geophysical observations, which indicate freshwater
overlain by seawater.

We also explored higher permeabilities for coarse-grained facies (e.g. gravel
k.= 1011 m2); however, using an onshore specified head boundary condition
consistent with modern water table elevations produced unrealistically high
recharge rates (up to about 30 m a—1), which exceeded precipitation measurements.

Data availability

Most data generated or analysed during this study are included in this published article.
The conductivity-depth-temperature profiles, and geochemical data for Niskin bottle
samples and pore water from sediment cores, are available from the corresponding
author on reasonable request.
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