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� Abstract
Multicolor approaches are challenging for microbial flow cytometry; as flow cytometers
are mainly developed for biomedical applications, modern instruments contain more
detectors than needed. Some of these additional fluorescence detectors measure biolog-
ical information due to spectral overlap, yet the extent to which this information is rel-
evant for the identification of bacterial populations is ambiguous. In this paper we
characterize the usefulness of these additional detectors. We propose a data-driven
detector selection method to select the smallest subset of detectors that will optimally
discriminate between bacterial populations. Using a detector elimination strategy, we
show that one or more detectors can be removed without loss of resolving power. A
number of additional detectors are included in the final subset, which help to improve
the identification of bacterial populations. Experimental data were retrieved from two
types of modern cytometers with different configurations. The method reveals a clear
ordering of detector importances, which depends on the instrument from which the
data were retrieved. In addition, we were able to pinpoint unexpected behavior of
SYBR Green I in the red spectrum. As the field of microbial flow cytometry is maturing,
these results motivate the construction of a different kind of cytometric instruments
for microbiologists, for which the number of detectors is reduced, but tailored toward
the characteristics of microbial experiments. VC 2017 International Society for Advancement of

Cytometry
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Flow cytometry (FCM) is a well-established method for the analysis of microbial

communities. Originally used as a tool to assess bacterial heterogeneity and viabil-

ity (1), FCM has shown its significance for both environmental applications and

industrial setups (2,3). In recent literature, more and more emphasis is being

placed on the study of synthetic microbial communities (4,5). Typically, these

communities contain a lower amount of bacterial species. They exhibit key fea-

tures of their natural counterpart community, but are created and studied in a

highly controlled environment. Therefore, they can serve as a proxy between

microbial theories on the one hand and real natural communities on the other

hand (6,7). Recently we have been able to use so-called in silico communities to

retrieve the composition of low-complexity synthetic communities using FCM in

combination with a machine learning-based approach (8). This approach makes

use of an in silico data-aggregation step, which allows us to benefit from the avail-

ability of species labels and, therefore, enables the use of supervised machine

learning methods. As in silico communities have proven to be a valid stand-in for

synthetic microbial communities, they can be further exploited by adopting a
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data-driven approach in function of research questions in

the field of microbial FCM.

Microbial FCM suffers to a greater extent from technical

and biological limitations as compared to biomedical applica-

tions (9). Staining bacteria is subject to a complex interplay

between dye chemistry, target organisms, and staining condi-

tions. For microbiological applications, the diversity of bacte-

rial species is challenging, as even closely related organisms

are known to possess varying physiological characteristics

(10). Therefore, it is difficult to analyze bacteria in a standard-

ized way (11). Additional complications arise due to cell sizes,

which are much smaller compared to mammalian cells

(12–14). This is why most microbial flow cytometry experi-

ments make use of one or two stains. One expects therefore

that microbial FCM experiments result in three or four para-

metric datasets at best, containing forward and side scatter

information, combined with one or two fluorescence signals.

Yet, driven by human research, modern flow cytometers are

equipped with more detectors (15), which is why more infor-

mation than often necessary is measured in current practices.

This means that when applying microbial FCM, some addi-

tional not-targeted fluorescence detectors measure leakage

coming from the targeted channel due to spectral overlap.

This is often defined as crosstalk or spillover between detec-

tors. As this information is often neglected based on a theoret-

ical point of view, most researchers are interested in

compensating for this effect in multicolor experiments

(16–18). Some microbial procedures make use of a secondary

detector for denoising purposes (19–21), but little research

has been devoted to an actual characterization of the relevance

of these additional detectors.

The objective of this article is to quantify the usefulness of

all detectors present on modern flow cytometers. We propose a

machine learning-based detector elimination strategy which

allows us to objectively decide which detectors to retain and to

quantify their importance in function of bacterial identifica-

tion. Our method initially considers all available detectors.

Next, detectors that have the lowest resolving power are incre-

mentally removed. In an artificial way, flow cytometric data is

stripped sequentially from its least effective detectors. Our

detector elimination strategy was applied on data derived from

two types of cytometers with different specifications which ana-

lyzed biological replicates of individual bacterial cultures

stained with SYBR Green I.

MATERIALS AND METHODS

Dataset Description

FCM data of 20 individual bacterial cultures stained and

analyzed with SYBR Green I (Invitrogen), as previously

described in (8), were retrieved from FlowRepository (ID: FR-

FCM-ZZSH). In brief, samples were diluted to approximate

cell densities of 106 cells mL21 in 0.22 mm filtered PBS

(6.8 gL21KH2PO4, 8.8 gL21 K2HPO4, and 8.5 gL21 NaCl)

and stained with a final concentration of 1% (v/v) nucleic

acid stain SYBR Green I (100x concentrate in 0.22 mm filtered

dimethyl sulfoxide). Samples were incubated for 20 min in the

dark at 378C and immediately analyzed by means of an auto-

loader. All cultures were sampled after 24 h of incubation. The

growth curves of each culture indicate that most cultures

(n 5 17) were in early-to-mid stationary phase, while a few

(n 5 3) were still in the exponential or linear growth phase at

the time of sampling (Supporting Information, SI Fig. 1).

The samples were analyzed by an Accuri C6 flow

cytometer (BD Biosciences) at 66 mL/min and FL1-H

threshold of 500. Prior to measurement, the performance of

the Accuri C6 was evaluated by analyzing eight peak rain-

bow particles (Spherotech, Lake Forest, IL). The perfor-

mance check was passed if each bead population was located

at its fixed position and displayed a coefficient of variation

on its specific fluorescence channels of <5%. Samples were

analyzed in fixed volume mode (50 mL per sample) after 20

min incubation in the dark to ensure the reproducibility of

the staining protocol. Biological replicates were analyzed on

a FACSVerse flow cytometer at 60 mL/min for a maximum of

1 min (BD Biosciences; FlowRepository ID: FR-FCM-

ZY6M); see Table 1 for an overview of the detector setup for

both instruments, along with an estimation of the theoreti-

cal filter leakage due to spectral overlap for SYBR Green I.

The performance of the FACSVerse was verified by the FAC-

SuiteTM software performance quality check using CS&T

research beads (BD Biosciences). The quality check com-

pares the flow cytometry data of CS&T research beads with

the previous recorded bead data. Significant deviations from

the bead parameter values at the detector and laser

Table 1. Detector setup of the Accuri C6 and FACSVerse; the tar-

get fluorescence detector is bolded. The estimated filter leakage

is based on the BD Fluorescence Spectrum Viewer (22). Note that

this amount is not the same percentage used when applying

compensation.

CYTOMETER DETECTOR

WAVELENGTH/

BANDWIDTH

ESTIMATED

FILTER

LEAKAGE

Accuri C6 Laser: 488 nm

FL1 530/30 nm 43.4%

FL2 585/40 nm 0.4%

Parameters: FL3 670 nm LP –

Area/Height FSC/SSC

Laser: 640 nm

FL4 675/25 nm –

FACSVerse Laser: 488 nm

FITC 527/32 nm 46.4%

PE 586/42 nm 0.3%

Parameters: PerCP-Cy5.5 700/54 nm 0.3%

Area/Width/Height PE-Cy7 783/56 1.6%

FSC/SSC

Laser: 633 nm

APC 660/10 nm –

APC-Cy7 783/56 nm –

Laser: 405 nm

V450 448/45 nm 4.9%

V500 528/45 nm 30.5%
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parameters predefined for this specific experiment would

cause the quality check to fail. For a full technical overview

we refer to the manuals (23,24).

Instrumental and (in)organic noise were removed using

a reproducible digital gating strategy in the arcsinhðxÞ trans-

formed FL1 – FL3 (or FITC – PerCP-Cy5.5 equivalent) bivari-

ate space (19,20). This filtering strategy was verified by

negative controls (nonstained samples) and kept fixed for all

samples of the same individual culture. Results of the denois-

ing can be found in the Supporting Information (SI Fig. 2) for

the FACSVerse data; for the Accuri C6 they can be consulted

in (8). An additional stringent three-step data-driven denois-

ing was applied on the filtered data to remove cells for which

there was erroneous parameter acquisition using the auto-

mated flowAI package (v1.4.4., default settings, target chan-

nel 5 FL1 or FITC, changepoint detection penalty for

Accuri 5 150, for FACSVerse 5 200) (25). In short, flowAI

removes anomalous events in function of three stability crite-

ria: (1) the flow rate, expressed by the number of cells per unit

of time, (2) signal acquisition, defined by a stable average

fluorescence intensity per unit of time and (3) the dynamic

range, removing margin events that lie higher than the

dynamic range of a flow cytometer and that are, therefore

accumulated in the last channel of the dynamic range.

In Silico Communities

We created in silico communities to employ our detector

elimination strategy. This means that communities were cre-

ated artificially by aggregating data coming from bacterial cul-

tures, which were measured individually. These in silico

communities have proven to be a valid representation of syn-

thetic microbial communities (8). Our in silico approach ben-

efits from two advantages: we are able to evaluate our strategy

on a great amount of possible communities, an amount which

is much larger than is feasible in the lab. This enables us to

draw more general conclusions. Second, we are able to exploit

the labels of bacterial single cells, which enables to use super-

vised machine learning methods to identify single cells. This

allows us to capture relations between variables, in this case

detectors, which unsupervised statistical models are not able

to.

In silico communities were created for various species

richness S, that is, the number of bacterial populations present

in a community. For S 5 2 and S 5 18 all possible community

compositions at the species level were evaluated, which is 190.

Communities were also created for S 5 6, 10, or 14, for which

190 different bacterial compositions were drawn at random.

Per replicate we sampled 5,000 cells, adding 2,500 cells to a

training and test set respectively. As we have two replicates per

individual culture at our disposal, the number of cells N in a

training and test set equals 5,000 cells times the number of

bacterial populations present. The same community composi-

tions were evaluated for the two types of datasets.

Random Forest Classifier

We used a random forest classifier to classify bacterial

single cells (26). The random forest algorithm is an ensemble

method, which uses a decision tree as base classifier. It makes

use of two kinds of randomization to reduce the variance of the

predicted output. First, it fits a fully grown decision tree to

n 5 200 bootstrap samples. Second, a decision tree only gets to

choose from a random subset of a total of K variables at every

split. Our choice for the algorithm is motivated by the fact that

random forests have shown to be a reliable method to retrieve

the community composition of a synthetic community (8). It

belongs to the top-performing “off-the-shelf” classifiers (27)

and is an established method in the field of computational biol-

ogy (28). Moreover, it inherits a number of favorable properties

of decision trees, such as the fact that decision trees are insensi-

tive to transformations of the data and that it is able to handle

multiclass datasets in a natural way. Usually, the random forest

classifier does not suffer from correlated variables. There was

no need to tune its hyperparameter K (Supporting Information

SI Fig. 3), which is why we used the preset
ffiffiffiffi

K
p

, along with

default settings. Therefore, computational costs remain low

while achieving a high performance. The identification of bac-

terial populations was evaluated in terms of the accuracy, which

expresses the fraction of cells that were classified correctly. The

machine learning library scikit-learn (v0.18) was used to per-

form the analysis (29).

Detector Elimination Strategy. The goal of this article is to

investigate how many detectors can be eliminated while

retaining an optimal performance concerning the identifica-

tion of a bacterial community. To be able to incorporate

higher-order interactions between detectors, we implemented

a wrapper method, using a backward stepwise elimination

strategy (30). This means that an analysis was started with the

incorporation of all detectors. Next, the detector which gave

the smallest drop in bacterial identification accuracy was

removed from the dataset in an incremental fashion, until

there was one detector left. This approach implies that all

parameters from a single detector were used, that is, both the

area, height and for the FACSVerse the width parameter. The

longer a detector is retained in the analysis, the more impor-

tant it is considered to be. A formal scheme of the elimination

strategy can be found in Algorithm 1.

RESULTS

Mutual Variable Correlations

Staining bacteria with SYBR Green I targets the FL1-

and FITC-detector for the Accuri C6 and FACSVerse

Algorithm 1: Detector elimination scheme
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respectively. Based on the theoretical estimated filter leak-

age, one expects one (Accuri C6) or five (FACSVerse) detec-

tors to measure additional information due to crosstalk

(Table 1). Mutual variable dependencies, in terms of the

Pearson correlation q, were calculated to quantify the actual

amount of additional information that was measured by

both cytometers. In this way, we were able to assess to what

extent secondary signals were correlated with the target

detector based on experimental values. This was done for all

samples (n 5 40 for each instrument) and averaged using a

Fisher transformation (Fig. 1).

This preliminary analysis illustrates that actual variable

dependencies only partially comply with dependencies based

on theoretically estimated crosstalk. Inspecting the Accuri C6

cytometer, we see that all secondary fluorescence detectors

were significantly correlated to the target detector (i.e., signifi-

cantly correlated with at least one channel area, height or

width of the target fluorescence detector, q > 0:41, P< 0.01,

using a one sided Z-test), especially the FL2 and FL3 detectors.

This was unanticipated, as only FL2 was expected to measure

information due to spectral overlap. For the FACSVerse

cytometer, four out of five expected fluorescence detectors

detectors showed significant correlations to the target detector

(q > 0:41, P< 0.01, using a one sided Z-test), the exception

being the V450-detector. In general, we note that experimental

crosstalk did not match with what was expected from theoreti-

cal estimations for SYBR Green I.

Single Detector Identification Performance

First, bacterial populations were identified feeding infor-

mation from a single detector only to the random forest algo-

rithm (Fig. 2, Supporting Information SI Fig. 4). Doing so

allows one to compare detectors directly and to fully assess

the resolving power a single detector is able to capture.

Secondary fluorescence detectors that were significantly

correlated to the target detector were able to identify bacte-

rial populations better than random guessing (q > 0:41,

P< 0.01, using a one sided Z-test). The secondary detector

which is closest to the target detector was able to identify

bacterial single cells with an equivalent resolving power.

Although a higher correlation generally gave rise to a higher

identification capacity, this ranking was not strict (the

exception being the V500-detector). We conclude that sec-

ondary detectors that captured crosstalk can be used for the

identification of bacterial cells.

Both forward and side scatter detectors of the FACS-

Verse cytometer are able to distinguish bacterial single cells

with equivalent accuracy as the target fluorescence detector.

This is not the case for the Accuri C6 scatter detectors, for

which especially the side scatter is less informative. We

would like to highlight that the scatters have a different

technical setup compared to the fluorescence detectors of

the latter. The FACSVerse detectors contain photomultiplier

tubes (PMTs), including the scatters, which can increase the

signal up to 107 electrons per photon. Additionaly, the

FACSVerse is equipped with a bandpass filter in front of the

PMT, which will discriminate frequencies and denoise the

incoming signal (23). This is not the case for the Accuri C6

scatter detectors, which contain diodes that do not enhance

the signal (22). In addition, we note that the FACSVerse

instrument benefits from an improved optical bench

opposed to the Accuri C6 to reduce the loss of signal inten-

sity, yet resolving power based on fluorescence information

was comparable.

Detector Elimination and Importance Quantification

Our objective was to reduce the set of detectors as much as

possible while retaining an optimal identification of bacterial

Figure 1. Average mutual Pearson correlation q between all variables for the Accuri C6 and FACSVerse. Correlations were averaged over

all individual bacterial cultures and replicate samples using a Fisher transformation; this means that q was calculated for n 5 40 samples

for both instruments. [Color figure can be viewed at wileyonlinelibrary.com]
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populations. To do so a backward detector elimination strategy

was employed (see Algorithm 1). In this way, flow cytometric

data were artificially stripped, removing the least informative

detector at every step of the analysis. As this strategy allowed for

higher-order dependencies between detectors, it quantified the

extent to which the full combination of scatter, target and

secondary detectors could be used to identify bacterial cells. The

detector elimination strategy was applied on 190 bacterial in sil-

ico communities for a species richness S52; 6; 10; 14, and 18

(Fig. 3).

It was expected that most important information would

be captured in three detectors, that is, two scatter detectors

Figure 2. Single detector identification accuracies are visualized, along with the secondary detector for which the highest amount of

crosstalk was expected based on the estimated filter leakage (see Table 1). The accuracy for a single detector was calculated for three dif-

ferent community sizes (S 5 2, 6, 10), for which 190 in silico communities were created for both types of instruments. The box displays the

25% and 75% quartiles of the identification accuracy, while the whiskers show the full range of the accuracy, except for outliers in function

of the interquartile range. The dashed line represents the identification accuracy in case of random guessing. A full overview can be found

in Supporting Information SI Fig. 4. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 3. Average accuracies with standard deviations (SD) for 190 in silico communities resulting from the backward detector elimina-

tion strategy for the Accuri C6 and FACSVerse respectively. For S 5 2 and 18, all possible community compositions were analyzed; for

S 5 6, 10, and 14, in silico communities were created at random, however, the same community compositions were created for both data-

sets. We used the random forest algorithm to predict the label of a bacterial single-cell, evaluated in terms of the accuracy. To quantify the

removal of a detector, the accuracy was averaged for every S. The marker is visualized if the elimination of a certain detector resulted in a

drop of >1% in terms of the average accuracy. [Color figure can be viewed at wileyonlinelibrary.com]
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and one target fluorescence detector. In practice, the decline

in performance started earlier than expected but only gradu-

ally; it became more substantial toward the end of the elimi-

nation scheme. In other words, a combination of the three

best performing detectors resulted in a near optimal identifi-

cation, but additional secondary detectors that captured cross-

talk were part of the best performing subset. For the Accuri

C6, at least one detector could be removed before a drop of

>1% in performance was registered, for the FACSVerse this

was at least five. This means that the reduced subset contained

at most five detectors for both cytometers to optimally dis-

criminate between bacterial populations. Fewer detectors were

needed for a low S as opposed to a higher S. The FACSVerse

was able to deliver a better discrimination between bacterial

populations opposed to data coming from the Accuri C6 (see

Supporting Information SI Fig. 5 for a full overview), how-

ever, further standardization of the the experimental proce-

dure including technical replicates is needed to make a

conclusive comparison.

The longer a detector is retained in the elimination

scheme for the identification of a bacterial population, the

more important it is considered to be. Its importance could

therefore be quantified by calculating its average rank for all in

silico communities under consideration. This allowed to

inspect the set of detectors which resulted in an optimal iden-

tification. Moreover, as we have a large amount of in silico

communities at our disposal, we could investigate whether the

experimental procedure gave rise to a robust ranking of detec-

tors or whether the importance of detectors depended on the

microbial community at hand.

A general structure could be determined based on the

detector ranking for both instruments (Fig. 4). We were able

to establish a general subset of detectors that allowed to

analyze a microbial community with adequate precision. The

ranking varied slightly for increasing community complexity,

however, and more importantly, the variability in detector-

ranking dropped accordingly. This means that the ranking of

detectors became more robust when the number of bacterial

populations present in a community increased.

For the Accuri C6, the FL1-, FL2-, and FSC-detectors

could be considered as the most important ones, with FL1

being preferred for communities containing a lower amount

of bacterial populations, and vice versa for the FL2-detector.

This means that the performance did not deteriorate when

FL4 was dropped out of the analysis; it only deteriorated mar-

ginally when SSC was dropped. It is useful to include the FSC-

detector, despite the fact that its single detector performance

was considerably lower than that of either a targeted or sec-

ondary fluorescence detector, which highlights the resolving

power of the combination of scatter and fluorescence

information.

For the FACSVerse we note that the three most important

detectors were the FSC-, SSC-, and FITC-detectors, which was

the set of detectors to be expected. This means that the resolv-

ing power of the scatter detectors influenced the outcome of

the detector selection method considerably. In this case, both

scatter detectors were placed in the top of the ranking, giving

less importance to secondary detectors. Secondary detectors

which measured crosstalk received an intermediary rank,

although there was no order according to their estimated filter

leakage or the mutual pearson correlation (see e.g., the PE-

detector, which is not ranked in the top 5, but is the secondary

detector for which most spillover was expected and mea-

sured). Detectors for which no filter leakage was expected and

no mutual correlation was measured were placed last in the

ranking.

Figure 4. Quantification of the importance of detectors based on the ranking of the detector elimination strategy. To do so the average

rank for a detector was determined for all in silico communities for varying species richness. A detector is considered important when its

rank is low. Additionally, 95% confidence intervals were calculated based on 1,000 bootstrap samples. Detectors were aligned according

to their total average rank, from left to right. [Color figure can be viewed at wileyonlinelibrary.com]
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DISCUSSION

Biological and technical restrictions impact the use of

FCM for microbial experiments. Multicolor approaches are

difficult and, therefore in many experiments limited to double

staining. This means that modern instruments, as they contain

more detectors than possible stains, measure more informa-

tion than needed. Therefore, a considerable amount of fluo-

rescence detectors only measure information due to crosstalk,

however, knowledge is lacking concerning the resolving power

of this additional information. We proposed a robust detector

elimination strategy to evaluate in an objective way which

detectors can be removed without loss of bacterial identifica-

tion accuracy. This allowed us to characterize the importance

of a detector and at the same time distinguish unexpected

spectral behavior of SYBR Green I.

Summarizing our results, we can state that our microbial

FCM analysis did not need all the detectors that are present on

modern instruments. As expected, target fluorescence informa-

tion combined with scatter information resulted in a near-

optimal identification of bacterial communities. Secondary

detectors gave rise to correlated information when crosstalk was

measured, which could be used to boost the identification of a

bacterial community. This is a known property of correlated

nonredundant variables (31). However, the improvement was

limited, and the incorporation of one or two of these secondary

detectors was sufficient. The effect became more prominent

when the complexity of the community was increased. SYBR

Green I gave rise to a much stronger signal in the red spectrum

than was anticipated, which was reflected both in mutual vari-

able correlations and the importance that is given to detectors

that capture information in the red spectrum.

The importance ranking of detectors was robust in func-

tion of the composition of microbial communities, which

increased for communities containing more species. Both

identification performance and detector importance differed

considerably for data retrieved from the two instruments,

although the same methodology was applied. Scatter detectors

of the FACSVerse resulted in a higher-resolving power than

the ones of the Accuri C6. This can possibly be attributed to a

different technical configuration of detectors, which differs

between instruments for the scatter detectors but not for the

fluorescence ones. However, further standardization of the

experimental procedures is needed to be able to make this

statement fully conclusive, for which technical replicates are

needed instead of biological replicates. Note that the subset of

detectors and detector ranking is subject to the interplay of

the technical configuration of the instrument, the chemical

properties of the staining in combination with the species that

it is used for and the computational method that is employed.

Our method can be used to characterize the behavior of

stains and the functionality of detectors in an independent

and objective way. The creation of in silico communities, that

is, aggregating data coming from individual cultures, has

proven to be effective, as the availability of species labels

allows us to employ supervised machine learning methods.

This approach has been used in the past to analyze the

influence of various staining cocktails (32), or to analyze the

influence of improved scatter information (33), albeit at a pre-

liminary stage. As computational and technical resources have

increased since then, this approach can now be fully exploited,

for which our detector selection strategy is an example.

Driven by the focus on human cells (34), current instru-

ments in FCM contain an increased number of fluorescence

detectors (35), which is why modern instruments contain

more lasers and detectors than necessary for microbial FCM.

Our results motivate a shift in instrumental development, tai-

lored toward specifics of microbial experiments. This shift

implies the construction of instruments with fewer detectors

and lasers, but of sufficient quality to detect smaller particles.

These stripped instruments would reduce economical costs,

which is still known to be a barrier for the field of microbiol-

ogy. At the same time it will allow microbiologists to fully

employ the strength of flow cytometry for their anticipated

applications. This shift has initiated, see for example (36–38),

but is yet to be fully exploited. As the fields of dye chemistry,

cytometry and machine learning have matured since then, we

encourage a data-driven approach for future model and

experimental procedure development.
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