
RESEARCH ARTICLE

Flow Cytometric Single-Cell Identification of

Populations in Synthetic Bacterial

Communities

Peter Rubbens1*, Ruben Props2, Nico Boon2, Willem Waegeman1

1 KERMIT, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Ghent,

Belgium, 2 Center for Microbial Technology and Ecology (CMET), Ghent University, Ghent, Belgium

* Peter.Rubbens@UGent.be

Abstract

Bacterial cells can be characterized in terms of their cell properties using flow cytometry.

Flow cytometry is able to deliver multiparametric measurements of up to 50,000 cells per

second. However, there has not yet been a thorough survey concerning the identification of

the population to which bacterial single cells belong based on flow cytometry data. This

paper not only aims to assess the quality of flow cytometry data when measuring bacterial

populations, but also suggests an alternative approach for analyzing synthetic microbial

communities. We created so-called in silico communities, which allow us to explore the

possibilities of bacterial flow cytometry data using supervised machine learning techniques.

We can identify single cells with an accuracy >90% for more than half of the communities

consisting out of two bacterial populations. In order to assess to what extent an in silico

community is representative for its synthetic counterpart, we created so-called abundance

gradients, a combination of synthetic (i.e., in vitro) communities containing two bacterial

populations in varying abundances. By showing that we are able to retrieve an abundance

gradient using a combination of in silico communities and supervised machine learning tech-

niques, we argue that in silico communities form a viable representation for synthetic bacte-

rial communities, opening up new opportunities for the analysis of synthetic communities

and bacterial flow cytometry data in general.

Introduction

Microbial communities are primary contributors in most biogeochemical processes on Earth

[1]. As such, a large portion of microbial research has been dedicated to the study of the struc-

ture and functionality within microbial communities of various complexities. Historically,

these aspects have been largely inferred from research with axenic cultures. Nowadays, the

availability of next-generation sequencing technologies has shifted the focus towards the study

of microbial taxa directly in their respective environment (’omics). However, both approaches

suffer from either a lack of complexity (axenic cultures) or a lack of controllability (’omics) [2].
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To cope with these bottlenecks, synthetic microbial communities, assembled through the

selection of individual microbial populations, and studied under controlled environmental

conditions, have recently been suggested as promising intermediary platforms [2–5].

Advanced cultivation methods have allowed researchers to construct defined and diverse syn-

thetic bacterial consortia for both ecological and biotechnological research [6]. Depending on

the goal of the study, these synthetic bacterial consortia may consist out of several [5, 7] to

more than ten taxa [8, 9]. The goals of these studies can be manifold; on the one hand,

enhanced biotechnological conversion processes such as production of biofuels are envisioned

[10, 11], while on the other hand synthetic communities are used as simplified ecosystem mod-

els for developing ecological theories [7, 8]. It is worth noting that the latter studies have facili-

tated advanced experimental design, with large microcosm studies using more than thousands

of consortia.

With the number of synthetic ecology studies ever increasing, the analysis of low-complex-

ity community compositions, i.e. quantifying the abundance of each constituent taxon,

remains the most significant challenge. A study by Saleem et al. used traditional plate counting,

which entailed the cultivation of all individual members on agar plates followed by subsequent

enumeration of the colony forming units (CFU) [7]. Their counting approach benefited from

the fact that each microbial population in their study had distinct morphological characteris-

tics. However, cultivation-based enumeration inevitably suffers from a significant source of

bias, since lab cultures frequently adopt a viable but non-culturable state (VBNC) [12]. This

results in inflated numbers of false negative counts, and as such, to severe underestimations of

population densities.

Other studies, such as the one by Mee et al., applied quantitative PCR (qPCR) [9]. Yet,

while successful for their Escherichia coli mutants, the analysis of complex synthetic communi-

ties that consist of diverse taxa (e.g., mixtures of Gram-positive and Gram-negative bacteria)

faces considerable bias due to taxon-dependent nucleic acid extraction efficiencies, varying

amplification efficiency and also primer selectivity. In extremis, this has limited studies with

complex synthetic communities to relate their temporal observations only to the initial com-

munity composition [8]. Overall, there exists a lack of streamlined and validated methods to

monitor the composition of synthetic consortia.

Flow cytometry (FCM) offers a multiparametric description of individual cells, which can

be applied to study microbial communities [13, 14]. As the speed of measurement is increasing

(up to 50,000 of cells per second), alongside with the dimensionality of the data, the number of

computational and statistical methods and applications, shortly dubbed as FCM bioinformat-
ics, is growing accordingly [15].

The main goal of this paper is to explore in a systematic way the possibilities of using FCM

data to identify bacterial single cells, in order to be able to characterize the composition of syn-

thetic bacterial communities. We will do this by introducing the concept of in silico communi-
ties. These are communities created by an aggregation of FCM data coming from axenic

cultures which are being measured separately through FCM. The great advantage of using this

approach is that we know which cell stems from which bacterial population. This enables us to

apply a supervised machine learning approach, which has shown previous success in the recog-

nition of leukemia [16] or to find markers which are able to discriminate between tumor and

normal cells in lung cancer [17]. More specifically, artificial neural networks have been used to

identify various populations of phytoplankton [18, 19]. Applied to bacterial populations, this

approach has been used to analyze the effect of various cocktails of fluorescent staining [20] or

to analyze the extent to which individual cells can be classified using multiple scatter signals

[21]. However, the number of populations used in these latter studies is small, studying only

pairwise combinations of two taxa.
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In the first part of the paper we analyze to what extent data coming from FCM can be used

in order to separate microbial populations at the single-cell level. To do so we have cultivated

twenty axenic cultures and characterized them by FCM. We performed single-cell predictions

using Linear Discriminant Analysis (LDA), an established method for performing multivariate

analyses in microbial ecology [22], and a Random Forest classifier, a robust classifier known

for its high performance in various applications [23].

In the second part we show to which degree an in silico community is able to identify a syn-

thetic bacterial community. This is not a foregone conclusion due to the heterogeneous char-

acter of bacterial populations, which is reflected in FCM data [24]. In order to do so we created

so-called abundance gradients, a combination of in vitro communities which consist out of

two populations in varying abundances. We will show that we are able to retrieve these relative

abundances, using a classifier trained on an in silico community; this result enables researchers

to perform a supervised analysis of synthetic microbial communities.

In the third part of the paper we estimate to what extent bacterial communities can be ana-

lyzed for higher population complexities, i.e., in a multiclass setting. To do so we created and

evaluated in silico communities containing more than two populations. The results show that

our approach is valid for communities of lower complexities, furthermore FCM gives rise to

data that should be feasible for higher complexities as well. A schematic overview of the pro-

posed method can be found in Fig 1.

Results

Classification performances on binary in silico communities

The performances using LDA and a Random Forest classifier were calculated for all possible

pairwise combinations considering twenty populations for S = 2, S denoting the number of

Fig 1. Proposed method to identify the composition of a synthetic microbial community comprising bacterial

populations A & B. 1) Measure both bacterial populations A & B separately through FCM, as well as the synthetic

community made up out of A & B. 2) Create in silico community by aggregating datafiles of individual populations. 3)

Choose classifier and train it on silico community to learn decision boundary (evaluated in the first part of the paper). 4) Use

trained classifier to identify the composition of a synthetic bacterial community (evaluated in the second part of the paper).

doi:10.1371/journal.pone.0169754.g001
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populations making up a community, i.e., the population richness. This results in 190 in silico

communities, where the same amount of cells was sampled for each population, thus creating

evenly distributed in silico communities. We calculated the mean for the area under the ROC

curve (AUC) and the accuracy (acc), accompanied with their standard deviations and the

percentage of communities which reported a score higher than 0.90; results are reported in

Table 1.

We conclude that for a majority of in silico communities we are able to perform single-cell

predictions up to high performances, especially when using Random Forests; in this case more

than half of our communities report results higher than 0.90 for both AUC and the accuracy.

Our highest performances top off at an AUC of 0.999 and an accuracy of 0.996. To further

illustrate our findings we have visualized the AUC and the accuracy for all in silico communi-

ties, where performances have been ranked in descending order according to the results of

applying a Random Forest classifier (Fig 2).

On average we see that a Random Forest classifier performs better than LDA. However, it is

not always necessary to use a ‘black-box’ non-linear classifier such as a Random Forest. For

some of the in silico communities we see that the performance of LDA is similar to the perfor-

mance of Random Forests; 45% of the in silico communities report an increase in AUC of less

than 0.03, 17% report an increase in accuracy less than 0.03. Moreover, note that pairwise com-

binations of populations give rise to performance accuracies ranging from 99% to near ran-

dom guessing predictions. Hence, our dataset is highly representative, that is, we were not

biased towards highly discriminative populations.

Predicting the abundance gradient

An abundance gradient consists out of a set of bacterial communities containing two popula-

tions in varying abundances. We constructed these gradients for three combinations of bacte-

rial populations, combinations for which we initially reported a low (Comb. 1), medium

(Comb. 2) and high performance (Comb. 3) respectively. We created these gradients in vitro,

but, because we measured the bacterial cultures separately beforehand through FCM, we were

also able to construct these gradients in silico. In order to explore to what extent in silico com-

munities can be used to identify synthetic bacterial communities, we have predicted the rela-

tive abundances of both in silico and in vitro abundance gradients, using LDA and a Random

Forest classifier trained on a full evenly distributed in silico community. Ideally, a classifier

which is able to achieve a high AUC and accuracy on a held-out test set of this in silico com-

munity gives rise to a well-predicted abundance gradient, both in silico and in vitro. The pre-

dicted abundance gradients are visualized in Fig 3.

As expected, the predicted abundance gradients for Comb. 2 and 3 match the target abun-

dance gradients (Fig 3C, 3D, 3E and 3F), whereas this is not the case for Comb. 1 (Fig 3A and

3B). We highlight the similar behavior for the in silico gradient (left panel) and the in vitro gra-

dient (right panel). First, we note a systematic bias using LDA for Comb. 3; although trained

on an evenly distributed in silico community, the classifier systematically favors the S. oneiden-
sis population.

Table 1. Performances using LDA and Random Forests (RF) for S = 2. Both classifiers were trained on 70% of the data for all 190 in silico communities,

after which they predicted the population to which individual cells belong contained in 30% held-out test sets. We denote the mean AUC (μAUC) and accuracy

(μacc), along with their standard deviation (σAUC/acc) and the percentage of communities reporting a performance of 0.90 or higher.

μAUC σAUC AUC > 0.90 μacc σacc acc > 0.90

LDA 0.90 0.089 62% 0.83 0.088 27%

RF 0.95 0.071 82% 0.90 0.085 65%

doi:10.1371/journal.pone.0169754.t001
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Fig 2. Classifier performances using LDA and Random Forests for S = 2. A AUC. B Accuracy.

Performances are visualized for all 190 evenly distributed in silico communities; the performances have been

calculated on a 30% held-out test set. The in silico communities have been ranked in descending order

according to the performances resulting from using Random Forests, accompanied with performances

resulting from LDA on the same in silico community.

doi:10.1371/journal.pone.0169754.g002
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Second, we note that for Comb. 2 the predicted gradients highly overlap; this means that an

analysis using LDA and a Random Forest gives rise to very similar results. This is however not

the case for Comb. 3, where the use of Random Forests results in a gradient that lies closer to

the target gradient, which is reflected for both the in silico and the in vitro analysis. These

observations are reflected in the root mean squared error (RMSE), which is calculated between

the predicted gradients and the known target abundance gradients (Table 2). The RMSE for

the in silico analysis can be interpreted as the most optimal value to achieve for a classifier

when analyzing an in vitro community. We see that the RMSE gives comparable results when

performing an in silico or in vitro analysis for Comb. 3, this is however not the case for Comb.

1 or 2. This can result from experimental noise when creating in vitro gradients.

Fig 3. Predicted abundance gradients. AB Comb. 1: P. putida—P. fluorescens; CD Comb. 2: A.

rhizogenes—Janthinobacterium sp. B3; EF Comb. 3: S. oneidensis—M. luteus. Both the in silico (left panel)

and in vitro (right panel) constructed abundance gradients are visualized. The predicted relative abundance

gradients is plotted against its target relative abundance (designed in silico and in vitro) for the first bacterial

population of the three combinations. The relative abundance of the opposite population equals one minus the

relative abundance of the first population (as S = 2).

doi:10.1371/journal.pone.0169754.g003
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Using the knowledge that FCM analyses generally do not exceed a 5% instrumental error

[25], we performed a comparable analysis in terms of the Hill number of order one, i.e., the

exponential of the Shannon diversity, noted as D1 [26]; this diversity index gives information

concerning the evenness of a community (see Appendix: Alpha diversity analysis). Because

mathematical properties of this index allow us to combine uncertainties for all relative abun-

dances characterizing a microbial community, we can calculate confidence intervals (CI)

within which our in vitro target abundance gradient should lie. Inspecting the results, we see

that our predicted abundance gradients for most communities in Comb. 2 (both LDA and

Random Forests) and 3 (Random Forests) lie within the 68%-CI; all of them lie within the

95%-CI (S4 Fig).

The results for the in vitro analysis of Comb. 2 and 3 are similar, although we would expect

from initial performances that these values would be different. To investigate this issue, we

added additional results in Table 3, for which we report the performance of a classifier on a

held-out test set of the new in silico communities in terms of the accuracy and the AUC, com-

pared to the original values calculated in the previous section (�). In order to be able to make a

comparison, classifiers were trained and evaluated in exactly the same way.

We note that although the performances are similar for Comb. 3, this is not the case for

Comb. 1 and 2. Whereas the performances for Comb. 1 initially reported higher, the perfor-

mances for Comb. 2 initially reported lower. This could explain why the RMSE for the in vitro

analysis for Comb. 2 and 3. has similar precision. However, this implies that although our

approach is fruitful to analyze synthetic communities, performances are not yet reproducible

when axenic cultures are characterized by FCM at different time points.

Table 3. Performance comparison for the in silico communities that are present in both dataset 1 and

2. Classifier performance comparison on a held-out test set for dataset 1 (denoted with *) and 2 for those in sil-

ico communities that are present in both datasets. These in silico communities are constructed and used in

exactly the same way, that is, they are evenly distributed communities consisting out of the same number of

cells and made up out of the same bacterial taxa. Classifiers are trained on 70% of the data and evaluated on

the opposite 30% data.

Comb. 1 Comb. 2 Comb. 3

AUC LDA* 0.64 0.82 0.96

AUC LDA 0.62 1.0 0.93

acc LDA* 0.62 0.77 0.92

acc LDA 0.59 0.99 0.91

AUC RF* 0.82 0.94 1.0

AUC RF 0.70 1.0 0.99

acc RF* 0.75 0.87 0.99

acc RF 0.64 1.0 0.97

doi:10.1371/journal.pone.0169754.t003

Table 2. RMSE for predicted abundance gradients. RMSE has been calculated between the predicted gra-

dients and the target gradients, both in silico and in vitro, having used LDA and a Random Forest classifier.

Comb. 1 Comb. 2 Comb. 3

RMSE LDA in silico 0.29 0.0060 0.10

RMSE LDA in vitro 0.51 0.036 0.096

RMSE RF in silico 0.21 0.0036 0.022

RMSE RF in vitro 0.48 0.036 0.032

doi:10.1371/journal.pone.0169754.t002
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Evaluation of higher complexity in silico communities

In order to explore to what extent single-cell predictions can be made when we increase the

population richness, we created in silico communities in a multiclass setting. We used the

same approach as in the binary setting, but now we let S vary from 2, . . ., 20. To keep it compu-

tationally feasible we chose 150 different in silico communities at random for every increment

in S (except for S = 19 and S = 20, where we only have 20 and 1 different combinations respec-

tively at our disposal). To quantify our results we calculated the mean accuracy for every S;

results are displayed in Fig 4.

For all values of S our approach is able to make single-cell predictions significantly better

than random guessing. As S increases, both the mean accuracy and the size of the confidence

interval decreases. As the richness increases, the degree in overlap between populations in the

multiparametric ‘FCM-space’ starts growing accordingly. Therefore it is harder for classifiers

to make a distinction between populations, which results in performances that are lower and

more centered.

The difference in performance between the two classifiers increases as S increases. This

means that for communities with a low richness (S = 2, 3) LDA might provide a sufficient

method to make single-cell predictions, but as S increases Random Forest will be a better

option for most communities. This also implies that although for low S a linear combination

of variables already discriminates populations quite well, predictions can be improved by

Fig 4. Classifier performances using LDA and Random Forests for increasing population richness. Mean accuracy

along with a 68%-CI is displayed, resulting from an analysis using LDA and Random Forests for 150 randomly chosen in

silico communities for S = 2, . . ., 18 (for S = 19 and S = 20 this number is 20 and 1 respectively); every in silico community

is evenly distributed, sampling 5,000 cells per population. The accuracy has been calculated on a 30% held-out test set,

after which the mean accuracy is calculated for the ensemble of silico communities for every increment of S.

doi:10.1371/journal.pone.0169754.g004
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resorting to classifiers which have the possibility of detecting non-linear relations between

variables.

Discussion

Using the concept of in silico communities, we are able to use supervised machine learning

techniques to taxonomically identify bacterial cells up to high accuracies based on FCM data.

We note that this approach has not yet been adopted to analyze the composition of synthetic

bacterial communities. A possible reason for this is the lack of incorporating these methods in

standard FCM software [27].

Using a full combination of fluorescence and scatter signals, we demonstrated that using

‘off-the-shelf’ classifiers without further data manipulation already results in acceptable to high

performances for low population richness. Compared to previous research, we note that Rajwa

et al. were not able to use LDA in order to make proper single-cell predictions [21]. While they

were limited to the combination of scatter signals, we also incorporated fluorescence parame-

ters in our analysis, thereby improving the amount of single-cell information that is acquired.

In our study, we applied a single staining approach; there exists, however, a wide array of fluo-

rescent viability markers, all of which may harbor additional single-cell information [28, 29].

Preliminary observations have already revealed the differential behavior of bacterial taxa to

these staining protocols [28]. As the number of dimensions and the amount of fluorochromes

describing a single-cell is increasing, we expect our approach only to gain in utility in the near

future. A natural extension of this research would be to find the optimal classification method

to analyze FCM data, which should be extensible to a multiclass setting; a number of possibili-

ties exist, ranging from binary classifiers which are naturally extendable to a multiclass setting

or a combination of binary classifiers using a one-versus-one (OVO) or one-versus-all (OVA)
approach [30].

Although it has been briefly mentioned in literature that an in silico community can be rep-

resentative for its in vitro counterpart [20], there is a lack of rigorous studies proving this

observation. We feel that this question has been answered more thoroughly by systematically

retrieving the composition of synthetic communities across an abundance gradient. The

results imply that in silico communities form a valid representation of synthetic communities.

However, although the performance of classifiers gives a good indication to what extent popu-

lations are distinguishable, it is not always possible to reproduce the classifier performance in

different experiments. This observation can be attributed to two sources of variation, namely

technical variability and biological variability. It has been shown that both sources give rise to

heterogeneity in FCM data when studying bacterial axenic cultures [24], although it is difficult

to distinguish between one another [31].

Technical variability has been suggested to arise from the time-dependent bleaching and

leaking of fluorochrome molecules [32]. Its effect on the classifier performance becomes clear

when conducting an in silico performance evaluation using individual replicates (instead of

pooling them, as they are measured in duplicate). Creating two sets of replicates for S = 2, A &

B, we see that for a significant number of combinations the difference in classifier performance

is noteworthy, with a mean difference of 2% and a standard deviation of 11%. For clarity, we

added the Random Forest performances (A, B and pooled) for all in silico communities in S1

File. However, referring to the results of the in vitro analysis, we note that pooling replicate

samples compensates this experimental bias and is sufficient to retrieve the composition of an

in vitro community. In order to reduce technical variability as much as possible, we do suggest

to include a higher number of replicates for future experiments. To find this number, the

Flow Cytometric Single-Cell Identification of Bacterial Populations
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strategy of Davis et al. can be followed [33], which suggests that less than five replicates (but

more than two) are sufficient for most experiments.

Biological variability is another and perhaps more important factor to take into account

when analyzing microbial communities with FCM. Vives-Rego et al. hypothesize that biologi-

cal variability in FCM stems from cell size diversity and cell cycle variations [24]. In this study

we tried to control for this variability by focusing on cultures in the stationary growth phase,

so that we could directly compare the performance of the analysis. Yet overall, the multitude of

biological processes that result in single cell physiological variation still remain largely unde-

fined [34]. Results of this research comply with motivations that FCM can be used to further

characterize bacterial heterogeneity and physiology [35–37], for which a holistic approach has

been proposed [13].

To do so, a more comprehensive protocol is required to make our in silico approach fully

operational, a need which has been pointed out before [38]. This protocol includes further

improvement of data-analysis techniques, such as automated denoising, but also a more devel-

oped methodology to reduce sources of variability, both of instrumental and biological origin.

However, we believe that the combined approach of microbial flow cytometry and machine

learning supports this endeavor, and this will be the main focus of further research.

For now, in silico communities can already be exploited for various purposes. For environ-

ments where limited physiological variation in the axenic populations is expected, or where

the in silico populations have been defined for all possible physiological states, our approach

can be used to retrieve the community composition for low-complexity microbial communi-

ties. Furthermore, by using evaluation tools for classifiers such as the accuracy or the AUC,

one can quantify which populations are distinguishable and which are not. One intuitive tool

which is extensible to a multiclass setting, is the use of a confusion or misidentification matrix.

This allows one to inspect which populations are likely to overlap and which are not; an exam-

ple is given in S1 Fig.

Secondly, as we have shown that in silico communities form a viable representation of their

in vitro counterparts, we are allowed to extrapolate properties of in silico communities to in

vitro microbial communities. This means that in silico communities can be used as a stand-in

for in vitro communities, enabling us to use them to develop new data-driven techniques,

which will ultimately lead to novel applications for microbial FCM.

Materials and Methods

In silico communities

An in silico community consists out of an aggregation of data coming from axenic cultures,

which are being measured separately through FCM. As we have twenty axenic cultures at our

disposal, the population richness (S) of an in silico community varies from S = 2, . . ., 20.

Learning in silico communities

Each bacterial population was sampled in equal size. We randomly subsampled Nax = 5,000

cells per axenic culture. This means that an in silico community consists out of Ntot = S × Nax

cells. We used 70% of an in silico community to train a classifier, this is the training set; the

other 30% was held-out and used to evaluate the performance of a classifier, the test set.

For S = 2 we evaluated the performance of LDA and the Random Forest classifier for all

possible pairwise combinations, which is 190. For increasing S, i.e. the multiclass setting, we

evaluated the performance for 150 randomly chosen combinations for S = 2, . . ., 18 (for S = 19

and S = 20 we chose the maximum number of combinations, which is 20 and 1 respectively),
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in order to keep it computationally feasible. For every increment of S we calculated the mean

accuracy, averaging the accuracies for all 150 randomly chosen in silico communities.

Learning in silico communities to predict the abundance gradient

We used the concept of an abundance gradient to prove that properties of in silico communi-

ties can be used for the identification of their in vitro counterparts. An abundance gradient

consists out of a set of microbial communities where populations have been mixed in varying

abundances. We created an abundance gradient both in silico and in vitro for three combina-

tions of two populations, with abundances ranging from 1% to 99% for the one population

and vice versa for the other. This was possible as we measured the axenic cultures separately

through FCM beforehand. We chose three different combinations of two populations to create

abundance gradients, combinations which initially reported a low, medium and high perfor-

mance respectively, based on the performance of the Random Forest classifier for S = 2. For

every community in an abundance gradient we sampled 10,000 cells (both in silico and in

vitro), except for one in vitro community of Comb. 3, for which we were not able to register

enough cells (see further on).

We trained a classifier on an evenly sampled in silico community to predict the label of

individual cells for all communities in an abundance gradient. We sampled Nax = 5,000 cells

per bacterial population to create the in silico community upon which we trained our classifier;

as the abundance gradient acts as our test set, we trained our classifier on the full in silico com-

munity. Note that we have cultivated and measured new axenic cultures in order to create

both the in silico and in vitro abundance gradients.

Datasets

Dataset 1: axenic cultures. Twenty bacterial populations were gathered from publicly

available culture collections, of which a full list can be found in Table 4. Populations with

Table 4. List of axenic cultures measured individually through FCM.

Bacterial population Culture collection reference

Agrobacter rhizogenes UFZ [7]

Bacillus subtilis LMG 7135

Burkholderia ambifaria LMG 19182

Citrobacter freundii DSMZ 15979

Cupriavidus necator LMG 1201

Cupriavidus pinatubonensis LMG 1197

Edwardsialla ictaluri LMG 7860

Enterobacter aerogenes DSMZ 30053

Escherichia coli DSMZ 2840

Janthinobacterium sp. B3 UFZ [7]

Klebsiella oxytoca LMG 3055

Lactobacillus plantarum LMG 9211

Micrococcus luteus UFZ [7]

Pseudomonas fluorescens R 23898

Pseudomonas putida R 17801

Rhizobium radiobacter LMG 287

Shewanella oneidensis LMG 19005

Sphingomonas aromaticivorans LMG 18303

Streptococcus salivarius LMG 11489

Zymomonas mobilis subsp. mobilis LMG 460

doi:10.1371/journal.pone.0169754.t004
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reference numbers LMG, R, DSMZ and UFZ originate from the collection of LM-UGent, Bel-

gian co-ordinated collection of microorganisms BCCM/LMG (www.bccm.belspo.be), Leibniz

Institute DSMZ (www.dsmz.de) and Helmholtz Centre for Environmental Research (www.

ufz.de/index.php?en=13354), respectively. For cultivation, all bacteria were grown on rich,

solid lysogeny broth medium (LB; Carl Roth, Germany). A single colony was picked and culti-

vated for 48h in liquid LB medium. Finally, fresh LB medium was inoculated with 10% (v/v)

inoculum and incubated for 24h; all samples were measured in duplicate. A bivariate scatter-

plot (FL1-H vs. FL3-H) after denoising can be found for every culture (S2 Fig); >10,000 cells

were registered for each measurement.

Dataset 2: abundance gradients. To create abundance gradients, we chose three combi-

nations (Comb.) of two bacterial populations based on Random Forest performances calcu-

lated during the in silico analysis of dataset 1 (Table 5). We measured the exact cell densities of

both bacterial cultures through FCM, and used them to calculate the required volumetric pro-

portions to construct a relative abundance gradient of 1%, 5%, 10%, 20%, 30%, 40%, 50%,

60%, 70%, 80%, 90%, 95% and 99%. After 24h of growth, cells were diluted in 0.2 μm filtered

PBS for FCM measurement. Based on these cell densities both cultures were diluted in 0.2 μm

filtered PBS to an equal cell density of approximately 108 cells mL-1, which was verified

through an additional FCM measurement. The equal density suspensions were then mixed in

the required proportions to final volumes of 500 μL. All samples were subsequently measured

in triplicate through FCM (for Comb. 2 the axenic cultures were measured in quadruplicate).

>10,000 cells were registered for each measurement, except for Comb. 3 where we registered

3.084 cells for 1% of S. oneidensis.
As we measured the populations separately beforehand through FCM, we were also able to

construct an abundance gradient in silico, by sampling communities according to the same

relative abundances as described above.

FCM analysis. Samples were diluted until an approximate cell density of 106 cells mL-1 in

0.2 μm filtered buffer solution was reached (PBS; 6.8 g L-1 KH2PO4, 8.8 g L-1 KH2PO4 and 8.5

g L-1 NaCl) and stained with a final concentration of 1% (v/v) nucleic acid stain SYBR1 Green

I (100x concentrate in 0.2 μm filtered dimethyl sulfoxide). Samples were incubated for 20 min-

utes in the dark at 37˚C. FCM measurements were performed on a C6 Accuri flow cytometer

(BD Biosciences, Belgium) equipped with four fluorescence detectors (530/30 nm, 585/40 nm,

670 nm LP, 675/25 nm), two scatter detectors and a 20mW 488nm laser. This results in a mul-

tiparametric description of each cell consisting out of twelve variables (FL1-A, FL1-H, FL2-A,

FL2-H, FL3-A, FL3-H, FL4-A, FL4-H, FSC-A, FSC-H, SSC-A and SSC-H).

Data preprocessing. The FCM data were denoised from (in)organic and instrument

noise by means of a reproducible digital gating strategy in the arcsinh(x) transformed FL1-FL3

bivariate space, following the guidelines by Hammes et al. [39] and Prest et al. [40]. This filter-

ing strategy was verified by negative controls (non-stained samples) and kept fixed for all sam-

ples of the same axenic culture and within each abundance gradient. An example of the gating

stratey has been given for the 40%/60% abundance files for all three combinations used to cre-

ate abundance gradients (S3 Fig). Filtered data files were exported as individual FCS files with

Table 5. Three different combinations of bacterial populations used to create abundance gradients.

Comb. Population 1 Population 2 initial RF accuracy

1 P. fluorescens P. Putida low (0.75)

2 A. rhizogenes Janthinobacterium sp. B3 medium (0.87)

3 M. luteus S. oneidensis high (0.99)

doi:10.1371/journal.pone.0169754.t005
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the write.FCS function. The cell densities for each individually measured taxon were

calculated by the filter function; both functions are available from the flowCore package

(v.1.38.1). As axenic cultures and synthetic communities have been measured in a number of

replicates, we pooled these replicates together first, before subsampling cells to create our in sil-

ico and in vitro communities we use for analysis.

Classifiers

Linear Discriminant Analysis. Linear Discriminant Analysis (LDA) is a linear classifier

which tries to find the optimal linear combination of features in order to separate objects or

classes. It assumes the data are distributed according to a Gaussian distribution. It has no

hyperparameters to tune and is able to handle problems in the multiclass setting in a natural

way. For more information, see [41] or chapter 4.3 in [42].

Random Forests. A Random Forest classifier is an example of an ensemble method, a

method in which various classifiers are trained and in which a majority vote is taken to predict

the outcome of an unknown sample. In this case the ensemble consists out of decorrelated

unpruned trees grown on bootstrap samples. The trees are decorrelated because at every split

only a random subset of the total number of K variables is available (K = 12). This results in a

decrease in variance for only a slight increase in bias, hence lowering the overall classification

error. For more information see [43] or chapter 15 in [42].

We grew 200 trees when training a Random Forest and chose the gini criterion when mak-

ing a split. We note that there is no need to tune the number of features that are available to

choose from when making a split. We applied the preset
ffiffiffiffi
K
p

, which resulted in (near-)optimal

results, in accordance with [44]. This has been verified by comparing the performance for

twenty randomly chosen in silico communities for S = 2, . . ., 19 using the preset
ffiffiffiffi
K
p

as

opposed to determining this value by 10-fold cross-validation. The increase in accuracy never

reported higher than 0.7%.

Performance measurement

We used various performance metrics in order to evaluate our methodology. We evaluated the

in silico analysis in terms of the accuracy and the area under the receiving operating characteris-
tic curve (AUC). The in vitro analysis is expressed in terms of the root mean squared error
(RMSE).

Accuracy. The accuracy can be defined in the following way:

accuracy ¼
1

N

XN

i¼1

1ðŷ i ¼ yiÞ; ð1Þ

where N denotes the total number of elements to predict, ŷ the predicted label of an element, y
the true label and 1 the indicator function, which returns the value of 1 when its argument is

true and 0 otherwise. It can also be expressed in terms of the true positives (tp), the number of

correctly predicted elements belonging to a certain class j, true negatives (tn) the number of

correctly predicted elements not belonging to class j, false positives (fp), the number of incor-

rectly predicted elements belonging to class j and false negatives (fn), the number incorrectly

predicted elements not belonging to class j. In this setting, the accuracy can be written as:

accuracy ¼

PS
j¼1

tpjþtnj
tpjþtnjþfpjþfnj

S
; ð2Þ

where S denotes the total number of classes.
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Area under the receiver operating characteristic curve. The AUC measures the area

under the receiving operating characteristic (ROC) curve and can be used as a performance

measurement for a binary classifier [45, 46]. The ROC curve is a curve which is constructed by

calculating the tp rate versus the fp rate for various thresholds. These thresholds can be deter-

mined for classifiers which assign probabilities to predictions; this is the case for both LDA

(applying Bayes’ theorem) and for Random Forests (applying a majority vote for the ensemble

of trees).

Calculating this area results in a number between 0 and 1; the higher this number, the better

the performance of a classifier. The AUC can be interpreted as the probability that a classifier

will rank a randomly chosen positive higher than a randomly chosen negative. Using the AUC

has a number of favorable properties. Most notable are the fact that it gives an indication of

how well separated the positive and negative class are and that it is insensitive to prior skew-

ness concerning class distributions.

Root mean squared error. Expressing the known relative abundance as p, opposed to the

predicted p̂, the RMSE becomes:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðpi � p̂iÞ

2

n

s

; ð3Þ

with n being the total number of bacterial communities constituting an abundance gradient.

Therefore when the set of predictions are close to the ground truth, the RMSE lies close to

zero.

Confusion matrix. A confusion matrix is a tool which helps to describe the performance

of a classifier. It reports the tp, tn, fp and fn, and is naturally extendable to a multiclass setting.

In this way one can inspect to what extent a classifier ‘confuses’ certain labels of classes. An

example for the binary setting is given in Table 6.

Applied to the use of in silico communities, one is able to inspect which populations are

easily separated by a classifier and which populations have a similar FCM fingerprint.

Computational Tools

Code availability. Our code has been made available on github: https://github.com/

prubbens/InSilicoFlow.

Data availability. Our data has been made freely available in .fcs format on the Flow-

Repository database [47], and can be found using the following identifiers:

• Axenic cultures: FR-FCM-ZZSH.

• Abundance gradients: FR-FCM-ZZSG.

flowCore. The data has been preprocessed and exported using flowCore, a package of

computational Tools written in R for the analysis of FCM data [48].

Table 6. Confusion matrix for a binary setting.

Predicted

Actual label 0 1

0 tp fn

1 fp tn

doi:10.1371/journal.pone.0169754.t006
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Scikit-learn. Scikit-learn is an open-source library of various machine learning

methods, which can be used in Python [49]. We used its implementation to perform LDA

and Random Forests, to calculate the AUC and accuracy, and to perform cross-validation.

Appendix: Alpha diversity analysis

Knowing the relative abundance of a population, we can determine the Hill number of order

one, i.e., the first alpha diversity metric, denoted as D1 [26]. This index is well established in

the context of synthetic ecology and can be used both in a binary and a multiclass setting. It is

defined according to the following formula, where pi denotes the relative abundance of popula-

tion i:

D1 ¼ exp �
XS

i¼1

pi lnpi

 !

;

An additional advantage using a diversity index such as D1 is that we can combine uncer-

tainties for the relative abundances. As it has been established that the instrumental variation

�I for FCM is less than 5% considering cell counts [25], we can calculate the variance for the

relative abundance s2
p. As p can be calculated from a division of two cell counts, s2

p equals:

s2

p ¼ 2�2

I � p2

We can combine the variances for pi (as pi can be determined independently) to determine the

variance for D1 in the following way:

s2

D1
¼ D2

1

XS

i¼1

ð lnpi þ 1Þ
2
s2

pi

For S = 2 (as p2 = 1−p1), this formula can be expressed in terms of the relative abundance of

the first population p1 as follows, combining the two formulas above:

s2

D1
¼ 2�2

I D
2

1
p2

1
ð ln ðp1Þ þ 1Þ

2
þ ð1 � p1Þ

2
ð ln ð1 � p1Þ þ 1Þ

2
� �

Using this information, we calculated D1 for every community constituting the abundance gra-

dient, and additionally, we gained a confidence interval within which our in vitro constructed

D1 should lie, setting �I = 0.05; this information is visualized in S4 Fig.

Supporting Information

S1 File. Random Forest performances for all in silico communities for S = 2.

(XLSX)

S1 Fig. Confusion matrix. Example of a confusion matrix calculated on a 30% held-out test

set for an in silico community with S = 5. Every element of the matrix mij gives the fraction of

the population i that is predicted as population j.
(TIF)

S2 Fig. Scatterplots of all individual bacterial populations after denoising. Flow cytometric

characterization of 20 bacterial taxa. Each point represents one single cell characterized by two

fluorescence parameters (FL1-H and FL3-H). The data were denoised from (in)organic noise

based on a reproducible digital gating strategy (explained above) and was adjusted for each

taxon.

(TIF)
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S3 Fig. Filtering strategies. A Comb. 1: P. putida—P. fluorescens; B Comb. 2: A. rhizogenes—
Janthinobacterium sp. B3; C Comb. 3: S. oneidensis—M. luteus. Data filtering strategy for

the FCM data for each abundance gradient based on a reproducible digital gating strategy

(explained above); data points outside the filter represent (in)organic noise. Examples are

given for the 40%-60% abundance files.

(TIF)

S4 Fig. Predicted abundance gradients expressed in terms of alpha diversity D1. AB Comb.

1: P. putida—P. fluorescens; CD Comb. 2:A. rhizogenes—Janthinobac terium sp. B3; EF Comb.

3: S. oneidensis—M. luteus. Both predicted and target D1 is plotted against the relative abun-

dance of the first population for every combination, both for the in silico (left panel) and in

vitro (right panel) abundance gradients; the 68%-CI and 95%-CI for the in vitro gradients are

also visualized, determined as described in Appendix: Alpha diversity analysis.

(TIF)
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