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Abstract  

A three-dimensional model for the generation and evolution of sand waves from bottom 
perturbations of a flat seabed subject to the action of tidal currents and wind waves is proposed. 
A horizontally-two-dimensional basic flow comprehensive of Coriolis effects, forced by the local 
climate (tides, residual currents and waves), is considered. Thie flow is completely resolved also 
in the vertical direction from the free surface down to the seabed. The flow regime is assumed to 
be turbulent and a Boussinesq's approach based on a space-dependent eddy viscosity is adopted 
to model Reynolds stresses. Sediment transport is modelled in terms of both suspended load and 
bed load. The model is capable of predicting the conditions leading to the appearence of sand 
waves and to determine their main characteristics (wavelength, orientation and migration speed).  

Introduction  

The bottoms of shallow seas characterized by the presence of tidal currents and large deposits of 
sand exhibit a variety of regular morphological patterns of different length scales. Among them 
we find sand waves which are rhythmic features of a few hundred metres in length and heights of 
a few metres (Stride, 1982). The profile of sand waves is highly symmetric unless either strong 
residual currents are present or the tidal wave is highly asymmetric. A striking characteristic of 
sand waves is that they are not static bed forms. Under the action of residual currents they 
migrate, their crests almost orthogonal to the direction of tide propagation, at a typical rate of 
about one to some tens of metres per year (Fenster et al., 1990).  

Previous studies of the process which leads to the formation of sand waves have shown that these 
regular features arise as free instabilities of the system describing the interactions between the 
cohesionless sea bottom and the water motions induced by tide propagation.  

Although significant progresses have been made both in the prediction of sand waves appearance 
and in the prediction of their characteristics (Fredsøe & Deigaard, 1992; De Swart & Hulscher, 
1995; Hulscher, 1996) much remains to be done. Indeed to describe the tidal flow, simple 
hydrodynamic models have been used so far in which important aspects of the phenomenon have 
been neglected and simple sediment transport predictors have been employed. Moreover, 
available models fail to give a complete account of some physical effects which are thought of 
influencing the formation process such as the presence of wind waves, residual currents, 
suspended load, longitudinal and transverse bed slope effects on the bed load sediment transport.  

The aim of the present contribution is to describe the results of a more sophisticated and 
complete model capable of giving both a more reliable description of the process which leads to 
the formation of sand waves and more accurate predictions of their characteristics. To this aim 
the model describes not only the tidal flow but also its interaction with wind waves which often 



coexist and can be thought of having a large influence on the growth of bottom forms. Sediments 
are supposed to move as both bed load and suspended load since field surveys show that large 
amounts of sediments are put into suspension by the stirring action of sea waves and then 
transported by tidal currents. Furthermore, residual (steady) currents are taken into account 
because their presence is essential in explaining sand wave migration. The model is based on the 
study of the stability of the flat bottom configuration subject to the flow induced by tidal wave 
propagation. Small bottom perturbations are considered and a linear analysis is performed. Since 
the morphodynamic time scale is much longer than the hydrodynamic time scale, it is possible to 
decouple the problem of flow determination from that of analysing the bottom profile evolution. 
The problem is, thus, reduced to determining the flow field induced by the interaction of the tidal 
wave with a bottom waviness and then to study the time development of the amplitude of a 
generic Fourier spatial component of the bottom perturbation which turns out to be periodic in 
the two horizontal directions.  

1 - The model  

The model considers a shallow sea of small depth h* which extends indefinitely in the horizontal 
directions: the x*-axis is along the parallels pointing East while the y*-axis points North along the 
meridian line. The z*-axis is vertical pointing upwards. The seabed is supposed to be made of 
cohesionless sediments of uniform size d* and density rs

*. By using the f-plane approximation, 
the problem of flow determination is posed in terms of continuity and momentum equations for 
the flow, where Coriolis contribution related to the Earth's rotation (W* is the angular velocity of 
the Earth's rotation) is taken into account because it affects tide propagation (hereinafter a star 
denotes dimensional quantities). The flow regime is assumed to be turbulent and viscous effects 
are neglected. Moreover, Reynolds stresses are modelled by introducing a kinematic eddy 
viscosity nT

* = nT0
* nT (nT0

* being a constant which provides the order of magnitude of the eddy 
viscosity).  

Reynolds equations are made dimensionless on defining the following variables:  
   
   
   
   

where r* is the sea water density, h0
* is the local average water depth, w* is the angular frequency 

of the tide, U0
* is the maximum value of the fluid velocity during the tidal cycle. Dimensionless 

equations depend on four parameters which we denote by s, d , Fr and W respectively:  
   

 
  

    

 
   



The parameter s is a kind of Keulegan-Carpenter number and is the ratio between the amplitude of fluid 
displacement oscillations induced in the horizontal direction by the tidal wave and the local depth. Actual values of s 
are much larger than one, let us say of order 102. The value of d can be thought of as the ratio between the thickness 
of the viscous bottom boundary layer generated by the tidal wave and the local depth. A rough estimate of d shows 
that d is a parameter of order one. Fr is the Froude number of the tidal flow which turns out to be smaller than one. 
Finally, W is the ratio between the angular velocity of the Earth's rotation and the angular frequency of the tidal 
wave. For a semidiurnal tide W@ 0.5 while for the diurnal tide component W@ 1.  

The hydrodynamic problem is then completed by forcing appropriate boundary conditions. At the free surface both a 
kinematic and a dynamic boundary condition are imposed, the latest forcing the vanishing of the stresses. Because 
the tidal period is much larger than the turbulence time scale, the flow induced by the tide propagation can be 
assumed to be slowly varying. Hence, as in steady flows, a boundary condition is specified at the bottom by 
imposing the vanishing of the velocity at a distance from the seabed equal to a fraction of the roughness zr

*.  

The time development of the bottom configuration is described by the sediment continuity equation:  
   
   
   
   

where (qx,qy) = (qx
*,qy

*)/ Ö (rs
*/r*-1)g*(d*)3 are the dimensionless volumetric sediment transport rates per unit width 

in the x- and y-directions respectively, s is the Keulegan-Carpenter number already introduced, d is the 
dimensionless sediment size equal to d*/h0

*, F = U0
*2/(rs

*/r*-1) g* d* is the mobility number of the bottom material 
and N is the sediment porosity. Equation (2.3) simply relates erosion/deposition processes to spatial 
increases/decreases of sediment transport. The problem can be closed once a model for the eddy viscosity n*

T is 
given and relationships for qx

* and qy
* are provided. To this purpose we have adopted an eddy viscosity model 

similar to that proposed by Van Rijn (1984a,b; 1991) which takes into account the superposition of wind waves to 
tidal currents. Moreover sediment transport is evaluated following Van Rijn (1984a,b, 1991) and adding a 
component related to bed slope effects.  

More details on both the adopted turbulence model and on the representation of sediment transport contributions can 
be found in Blondeaux et al. (2000).  

2 - The basic flow and the perturbations  

The solution of the problem for arbitrary functions h* is a difficult task. However, in the present 
analysis small perturbations of the flat bottom configuration are considered. Hence the bottom 
configuration differs from the flat one of a small amount proportional to e , this being a small 
(strictly infinitesimal) quantity. The small value of e allows for the solution to be expanded in 
terms of e .  

At the leading order of approximation [i.e. O(e0)], the bottom turns out to be flat and the problem 
is reduced to the determination of both the flow and sediment transport induced by tide 
propagation over a flat seabed.  

The scaling introduced by (2.1) is appropriate to study the flow induced by the interaction of a tidal wave with 
bedforms which are characterized by a length scale of the same order of magnitude of the water depth h0

*. In this 
case the three velocity components are expected to be of the same order of magnitude. When a tidal wave 
propagating over a flat bottom is considered, the most appropriate horizontal length scale turns out to be  
   
   



Moreover, since the ratio h0
*/L* is much smaller than one, the horizontal velocity components are much larger than 

the vertical one. Finally, the vertical displacement a* of the free surface [i.e. the amplitude of the tidal wave a*@ U0
* 

h0
*/(w*L*)] is usually much smaller than the local water depth h0

* (a*/h0
*<<1). Because of the above considerations, 

in order to determine the flow induced by tide propagation, it is appropriate to introduce the slow spatial coordinates  
   
   

and to assume that the basic solution, identified by the subscript '0', can be written in the form  

in which 'c.c.' stands for 'complex conjugate', the subscripts label the functions according to the power of e while the 
superscripts label the functions of the basic flow according to the chosen tidal components (i.e. n=0 refers to residual 
currents).  

Substitution of (3.3) into model equations and into the boundary conditions leads to the equations used to describe 
the 'basic flow'. Those are used to find the vertical structure of the velocity field for given characteristics of the tidal 
ellipse (orientation with respect to the x-axis, eccentricity, etc.).  
   
   
   
   

Since the amplitude of the bottom perturbation, the development of which we want to determine, is assumed to be 
much smaller than the local water depth it is possible to consider a generic spatial component  

here e is assumed to be infinitesimal, C (t) is the amplitude of the generic component which is periodic in the x- and 
y-directions [x=(x,y)] with wavenumbers ax and ax respectively [a =(ax,ay)]. Because e << 1, it is feasible to expand 
the flow field in the form (only including the semidiurnal tidal component) and the sediment concentration in the 
form  
   
   
   
   
   
   

The factors s and Fr2 multiplying the perturbations of both the pressure field and of the free surface configuration 
have been introduced in such a way that p1 and e1 are of order one.  

When (3.5) is substituted into the flow problem formulated in section 2 and terms of order e2 are neglected, a set of 
linear equations for u1, v1, w1, p1 and e1 is derived.  
   
   

A numerical approach, the details of which can be found in Blondeaux et al. (2000), is then used to solve the 
problem.  

The amplitude equation which provides the time development of the amplitude C of the bottom perturbation follows 
from the sediment continuity equation:  
   
   



where g is a periodic, complex function of t which depends on the parameters of the problem and is made of four 
contributions:  

The most important contributions are those related to the bed load gBC and to the suspended load gSC due to the tidal 
currents since the appearance of sand waves and tidal ridges is induced by the propagation of the tidal wave on 
shallow seas. The value of g is also affected by the wave-related sediment transport gW but this contribution affects 
the results only from a quantitative point of view. Finally, the bed slope also affects g providing a contribution gslope 
which is always real and negative, thus, representing a damping of the perturbations.  

The solution of (3.7) is clearly:  
   
   
   
   

Hence, the growth or the decay of the perturbation is controlled by the real part of the time average of g , while the 
imaginary part is related to the migration speed of the perturbations. The periodic part of g , with vanishing time 
average, simply describes oscillations of the sand wave configuration around its average configuration.  

3 - Discussion of the results  

Because of the large number of parameters controlling the behaviour of the system an exhaustive discussion of the 
results is not possible. Therefore we start by considering a specific set of data which allows for a comparison of the 
theoretical findings with some field observations. Subsequently, on varying climate parameters, we try to identify 
the role of the different components involved in the phenomenon of sand waves formation.  

We start by considering a location chracterized by a latitude of about 50° North and an average water depth equal to 
about 20m where sediments of uniform size (d*=0.45mm) and relative density of 2.65 are present. To make the 
presentation of the results as simple as possible a first set of model runs has been completed on neglecting the 
presence of wind waves and on varying the strenght U0

* of the tidal velocity oscillations while keeping fixed the 
form of the tidal ellipse (in particular the principal axis of the ellipse is assumed to be parallel to the x-axis and its 
eccentricity e to be fixed and equal to 0.1) and considering only the semidiurnal component (W@ 0.5). Of course, 
different values of the parameters induce quantitative variations in the results we are presenting but no qualitative 
changes. In figure 1 the vertical structure of the basic flow is shown for different values of U0

* at different phases 
(5p /16, p /2 and 9p /16) of the tidal cycle. Please notice that the exact symmetry due to tidal flow reversal suggests 
the same results also characterize phases 21p /16, 3p /2 and 25p /16 respectively. Phases within the cycle have been 
chosen in such a way that for those values of U0

* considered in figure 1, the bottom shear stress can mobilize the 
sediments resting on the bottom. Indeed, for the smallest value of U0

* (U0
*=0.60m/s) when 0<t£ 5p /16 and 9p /16£ 

t<p the Shields parameter is smaller than the critical value. For simplicity only the modulus of the velocity vector is 
shown on the top panels of figure 1. As it appears from figure 1, the unsteadiness of the flow plays a minor role 
since the velocity distribution does not significantly differ from the logarithmic law characteristic of a steady 
current. Also, the sediment concentration distribution is close to that characteristic of steady flows as shown from 
the bottom panels of figure 1, where the concentration profiles are plotted during the tidal cycle for different values 
of U0

*.  

In figure 2 the time development of the sediment flow rate (qx,qy) is plotted during the tydal cycle for different 
values of U0

*. A typical shape, characterized by two symmetric lobes appears. Although there are no reliable 
measurements of the sediment flux induced by a tidal flow, it is worth to point out that the time behaviour of (qx,qy) 
well agrees with that discussed by Stride (1982).  

To show the capability of the model of predicting the appearence of sand waves the real part gR of the time average 
of the function g is obtained as function of ax and ay for fixed values of the parameters (related to climate and 
sediment characteristics). We remind that gR is the growth rate of the bottom perturbations. Hence, positive values 



of gR imply the growth of the bottom perturbations while negative values of gR cause the disappearence of any initial 
bottom disturbance. Finally, when gR vanishes perturbations neither amplify nor decay. For weak tidal currents (e.g. 
U0

*=0.55m/s) and the other input parameters as previously defined (h0
*=21m and d*=0.45mm), the bottom shear 

stress induced by tide propagation is unable to move sediments and, of course, no change in the bottom 
configuration is induced.  

On increasing U0
* while keeping the other parameters fixed, a critical value (U0

*)c is encountered such that for U0
* 

larger than (U0
*)c sediments start to move and bottom perturbation to develop. Results show that gR is positive for 

perturturbation components characterized by wavenumbers falling in a restricted range around a critical value [(ax)c, 
(ay)c] for which the value of gR is maximum. Hence, the theory suggests that in these conditions perturbations 
characterized by a dimensionless wavelength equal to about 2p /|ac| will grow and will lead to the appearence of 
periodic bottom forms. For the water depth and sediment characteristics presently investigated this happens, for 
example, when U0

*=0.60m/s (see figure 3). Hence, the critical value of U0
* predicted by the theory falls between 

0.55m/s and 0.60m/s in agreement with field observations. Indeed, as described by Stride (1982), sand waves only 
appear when the amplitude of the tidal velocity oscillations exceeds a threshold of about 0.50-0.55m/s. Moreover, 
the analysis shows that the bedforms which tend to appear are characterized by crests almost orthogonal to the major 
axis of the tide since the maximum value of gR is reached for almost vanishing values of ay.  

This theoretical prediction well agrees with field observations as described for example by Belderson et al. (1982) 
and Stride (1982). Also the wavelength of sand waves predicted by the theory falls within the range of observed 
values, since the perturbation component characterized by the maximum amplification rate, i.e. the component 
which will dominate the bottom configuration, is characterized by (ax,ay) ~ (0.49,-0.10) which corresponds to a 
dimensional wavelength of about 260m, a value in agreement with the size of sand waves observed in the North Sea 
which range from about 100m to about 500m.  

More results on the model validation and performances can be found in Blondeaux et al. (1999, 2000).  
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