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In 2009, a self-sampling programme was organized in the Netherlands, fishers sampling ca. 80 kg of discards from randomly selected
bottom trawls in the North Sea. A statistical procedure is proposed to highlight samples, trips (with multiple samples), or vessels
(which may have multiple trips within a year) where extreme mean lengths of discarded fish were observed. Randomization
methods were used to test for evidence of non-randomness in patterns of highlighted discard samples, e.g. repeated observations
of extreme mean lengths for consecutive discard samples across trips from the same vessel. European plaice (Pleuronectes platessa),
common dab (Limanda limanda), grey gurnard (Eutrigla gurnardus), and whiting (Merlangius merlangus) were considered because
these were the most abundant species in most of the discard samples. A linear mixed model was used to estimate random-
sample effects on the estimated mean lengths by species. These random effects were incorporated into uni- and bivariate procedures
to identify extreme samples that were summed for each vessel, and the probability of observing such numbers was estimated.

Excluding these samples from the dataset had marginal effects on estimated size distributions of fish.
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Introduction

At-sea sampling of commercial fish catches by observers is expens-
ive because the observers typically have to remain on board for the
duration of a trip. This tends to return large clusters of samples
from a few trips, which may lead to small effective sample sizes
(e.g. Pennington and Volstad, 1994), when the aim is to make
inferences for all trips made by the whole fleet. From this perspec-
tive, self-sampling by fishers is an attractive alternative because
more samples from more trips can be collected with unit costs
being lower. Compared with the long-term fishery-observer pro-
gramme organized under the European Data Collection
Framework (EU Regulations 1543/2000 and 10121/2009), the
benefit has been demonstrated for a self-sampling programme
conceived at the Institute for Marine Resources and Ecosystem
Studies (IMARES, Wageningen University; see van Helmond
and van Overzee, 2010, for detail). In both programmes, apart
from general biological, technical, and environmental infor-
mation, length frequency data are collected for discards of the
Dutch bottom-trawl fishery in the North Sea. Ideally, these data
are used for stock assessment.

However, fishery-dependent length frequency data may be
biased by systematic sampling errors that can influence stock
assessments seriously (Heery and Berkson, 2009). Self-sampling
may be particularly prone to such bias, because fishers routinely
and subjectively select fish from the catch during their daily com-
mercial operations (sorting ogive), but potentially non-randomly

subsample the discards for subsequent biological analysis
(sampling ogive). Fishers may find it difficult to conform to the
more objective sampling regime required for scientific monitoring.
Although sorting ogives may be similar across vessels, especially
when targeting species with a minimum landing size (MLS;
Appendix XII of EC Council Regulation No 850/98), sampling
ogives may differ, especially if fishers consistently and non-
randomly pick and/or miss certain size classes of a species.

Lacking any independent in situ validation techniques (e.g.
video-assisted monitoring; Ames et al, 2007; Stanley et al,
2009), a post hoc statistical screening method is developed here
to detect patterns in the mean lengths of samples of discarded
fish across species, hauls, vessels, and trips which may suggest
biased sampling at a haul level. Self-reported data may also be
biased at the sorting level as a consequence of fishers misreporting
catches and/or discards to circumvent regulations, e.g. on quota
and MLS (Bremner et al., 2009; Heery and Berkson, 2009;
Bousquet et al., 2010). This can arise with large marketable fish
or small fish (below MLS); in either case, the sampled size distri-
bution of the discards will be biased.

Historically, this problem has been observed in comparisons of
the discard fractions of European plaice (Pleuronectes platessa) and
Atlantic cod (Gadus morhua) reported from observer and self-
sampling operations in the Dutch beam-trawl fishery (Aarts and
van Helmond, 2007). The different length frequency distributions
for plaice, despite accounting for spatial and temporal effects,
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suggested that discarded small fish were consistently missing from
the samples (this term is used here instead of “underreporting”,
because the latter implies a deliberate process, which it may not
be) in the self-sampling programme (Aarts and van Helmond,
2007). Because of these discrepancies, the data from this self-
sampling programme were considered unsuitable for stock
assessments.

Since the study of Aarts and van Helmond (2007), the self-
sampling programme has shifted from an industry-driven initiat-
ive (designed and organized by staff of the Dutch Fish Product
Board, from 2004 to 2008) to a scientific sampling scheme
(designed, organized, and analysed by IMARES staff, from 2009
on) which has operated in parallel with the long-term observer
programme. In the current IMARES self-sampling programme,
there is a reference fleet (n = 12 vessels in 2009) with trained
observers among the crew who opportunistically and voluntarily
collect discard samples during commercial fishing operations
throughout the year. In accord with the instructions of IMARES
staff, two random and pre-determined hauls are sampled on an
agreed trip. One sample comprises two boxes of discards (a box
weighs ca. 40 kg), filled by taking subsamples ideally at intervals
while the catch is sorted (Heales et al., 2003). For each sampled
haul, additional information on the composition and volume of
catch and landings, environmental factors (e.g. wind direction
and speed, latitude and longitude, and water depth) and oper-
ational details (e.g. start and end times of trawling, gear type,
and mesh size) are also recorded. All discard samples are returned
to the laboratory where the species composition, size, and age
structure of the sample is determined. European plaice, common
dab (Limanda limanda), grey gurnard (Eutrigla gurnardus), and
whiting (Merlangius merlangus) are among the most commonly
discarded species (van Helmond and van Overzee, 2010).

Here, we present a statistical tool to highlight samples, trips
(with multiple samples), or vessels (with multiple trips) for
which (i) the on-board sorting into discards and landings, (ii)
the on-board sampling of individual fish from the discard fraction
for return to the laboratory, or both have led to mean length in a
sample being different from other samples. Process (ii) may indi-
cate sampling bias. However, our statistical tool cannot establish
which of processes (i) or (ii) prevails, especially for species
without an MLS. It can, however, visualize simultaneous occur-
rences of extreme values. Notwithstanding this, the tool can be
used for rapid assessment of potential biases in the estimated
mean fish lengths of discards by species where each sample is
taken at a haul level. Because of the geographic spread of sampling,
different populations of discarded fish are sampled by the observer
and self-sampling programmes (Figure 1). Therefore, the present
study focuses on the data from the Dutch self-sampling pro-
gramme in 2009, as a case study.

Material and methods

The numbers-at-length of discarded European plaice, common
dab, grey gurnard, and whiting were extracted from the IMARES
database. Samples, i.e. two boxes (ca. 80kg) of discards per
haul, were returned from two fleet segments each with two charac-
teristic mesh sizes (in total, four métiers) operating in ICES
Divisions IVc and IVb throughout the year, namely beam and
otter trawlers with 80 and 100 mm mesh sizes. Discards were
sampled from 133 hauls on a total of 70 trips in each month of
2009. For each haul, the numbers-at-length were raised to the
haul level, based on the fraction of the subsample, i.e. two boxes
out of the total number of boxes discarded. All data were
checked carefully for transcription errors and missing values.
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Figure 1. Geographic locations of hauls sampled in 2009 for the Dutch bottom-trawl fishery by the observer (open triangles) and

self-sampling (dots) programmes.
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Statistical analysis
Mixed model for estimating random-sample effects on mean
lengths
The means of the measured discarded fish lengths by species were
expected to vary as a result of changes in the underlying popu-
lation from which the catch was taken, the selectivity of the gear,
the on-board sampling method, and sorting and sampling ogives
(Benoit and Allard, 2009). Therefore, we modelled the expected
mean fish lengths in the absence of on-board sorting and sampling
bias as a function of location, season, and gear type. Location was
treated as three distinct areas to reflect the distribution of the
metiérs, e.g. mesh sizes >100 mm need to be used north of
55°N: >51 to <53.5°N; >53.5° to 55°N; and >55°N. The
number of measured fish per species in a sample (corresponding
to a haul) can vary from just 1 to >100. We chose a mixed-model
approach in which sample effects on mean lengths are estimated as
random effects, because in that case the estimated sample effects
based on a few fish will decrease towards the expected mean
length (Gelman et al., 1995).

Let yj; be the measured length of fish i (i = 1,2, ... ., ;) in sample
Jj» where n; is the number of measured fish in sample j. For readabil-
ity, we do not use a subscript for species here; the same model
applies to each species. Then, a random-sample effect can be esti-
mated using the following mixed model:

yji =a+ Bygeary ;, + Byareayj + Bsquarter,; 0
+ B4areaa( i) X quarterq( ) + Tr(j) + g + Eijs

where geary( j), area,( j), and quarter, ;) are fixed-effect parameters
for gear type g, area a (a x {1,2,3}), and quarter q (q x {1,2,3,4}),
corresponding to sample j, and area,(j) X quarter,; is the inter-
action between these factors. Random effects are 7,( ;) for the com-
bination of quarter and ICES rectangle r in which sample j was
taken, i.e. accounting for the between-rectangle variability within
a given area, and gj are random-sample effects. The residual
error term is g;; for fish i in sample j. Both random effects are
assumed to be normally distributed with a mean of zero and var-
iances o and o2, respectively. The distribution of length measure-
ments was also modelled by a normal distribution (error term).

Uni- and bivariate approaches

Extreme values (with reference to a normal distribution) of
random-sample effects g; as estimated using the mixed model,
Equation (1), may indicate a different sorting ogive or a sampling
bias, particularly if large/small values of g; were estimated simul-
taneously for multiple species within the same trip (across
hauls) or for multiple trips by the same vessel. To investigate
this, we counted the number of extreme values in the estimated
random-sample effects per trip and vessel, taking both univariate
(per species) and bivariate (with combinations of species)
approaches. Although the latter approach could extend to many
more dimensions, two seemed appropriate here, because including
more species would result in too few samples per category to be
useful. We chose to couple the two most abundant species
groups (European plaice and common dab; and grey gurnard
and whiting, respectively) because most samples had at least one
measured fish of each of these species. Univariately, results were
classified beyond the 2.5 and 97.5 percentiles of the random-
sample effects by species as extreme. The choice of percentile is
subjective and arbitrary and can be varied by the analyst. For the
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univariate and bivariate methods, percentiles need to be selected
to return numbers of extreme samples that are neither too small
nor too large to identify patterns and to compute p-values using
the randomization method.

Bivariately, the distance—distance plot methodology proposed
by Rousseeuw and van Zomeren (1990) was used to classify
extreme samples in bivariate space, based on comparing a robust
version of the Mahalanobis distance with the quantiles of the
Chi-squared distribution, with 2 degrees of freedom (Garrett,
1989). This classification method circumvents potential problems
with biased estimation of the multivariate mean and covariance
matrix attributable to the presence of potential extreme values,
based on the minimum covariance determinant (MCD) estimator
of Rousseeuw and van Driessen (1999). As the random-sample
effects are estimated independently for each species, the multi-
variate mean may not necessarily be at zero.

Finally, using the bivariate extreme samples from the European
plaice and common dab group, a randomization test (Manly,
2007) was used to investigate whether the observed numbers of
extreme samples per vessel could have occurred by chance. In
all, 5000 replicate datasets were simulated by randomly reordering
the flags (extreme sample or not) across all samples. For each repli-
cate dataset, the number of flags per vessel was counted, and the
number of flags per vessel compared with the observed number
of flags per vessel, to estimate the chance of observing the same
number or more flags. Bonferroni correction (Gotelli and
Ellison, 2004) was applied to account for the multiplicity of tests
if more than one vessel had flagged samples.

To illustrate how the estimated length distribution of discarded
European plaice and common dab changed by excluding the
extreme samples identified in the bivariate approach, relative
length frequency distributions (i.e. proportions per size class)
for these species were plotted from all self-sampled trips in 2009.
The size frequency distributions (at 1-cm intervals) of counts
(raised to trip level) of European plaice and common dab, from
samples including or excluding extreme samples, were compared
using two-sample Kolmogorov—Smirnov tests.

The mixed-model analyses were carried out using the statistical
software R (R Development Core Team, 2005), with the aid of the
“ellipse” (Murdoch and Chow, 1996) and “mvoutlier” (Filzmoser
et al., 2005) packages, which contain routines for drawing ellipse-
like confidence regions, and estimation of robust Mahalanobis dis-
tances using the MCD method for estimating variance—covariance
matrices. The package “nlme” (Pinheiro et al., 2009) was used to
fit the random-effects model. All packages can be downloaded
from http://cran.r-project.org.

Results

For the univariate method of classifying extreme samples (using
the random-sample effects on a per-species basis), 130 samples
with measured fish were included (European plaice, n = 127;
common dab, n = 130; grey gurnard, n = 109; whiting, n = 89;
Table 1, Figure 2).

All but one of the 12 vessels participating in the self-sampling
programme in 2009 returned at least one sample with either a
positive or a negative sample effect (estimated mean lengths
greater or smaller than expected) for at least one of the species
measured (Table 1). Within any sample, no more than two
extreme mean lengths across the four species were evident
(Table 1); more extreme mean lengths were found for European
plaice and common dab (Table 1). Within a trip up to three,
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Table 1. List of vessel codes, number of sampled trips (n), and
sample codes for which at least one random-sample effect for
plaice, dab, grey gurnard, and whiting was classified as extreme
(univariate method; see Figure 2).

Vessel Trip  Sample Grey

code n code code Plaice Dab gurnard Whiting
1 4 119 6000684 0 + + n/a
2 9 124 6000602 - 0 0 0
2 9 126 6000629 - 0 0 0
2 9 127 6000679 - 0 0 n/a
2 9 128 6000700 + 0 0 0
2 9 130 6000725 0 0 0 +
2 9 130 6000726 0 0 0 -
3 2 134 6000685 0 + + n/a
4 2 135 6000609 0 0 n/a -
4 2 136 6000643 + 0 n/a 0
5 8 138 6000623 0 - 0 0
5 8 138 6000624 0 0 0 +
5 8 140 6000663 0 0 0 +
7 8 149 6000662 0 - 0 n/a
8 9 155 6000605 0 0 + 0
8 9 156 6000632 0 + 0 n/a
8 9 157 6000659 + 0 0 n/a
9 8 167 6000670 0 0 n/a
10 8 173 6000612 - 0 0 0
1 5 182 6000647 + + 0 n/a
12 6 187 6000636 0 - 0 -
12 6 189 6000707 0 0 - 0
12 6 189 6000708 0 - - 0

n=11 69 20 23 4+ /4— 4+ /4— 3+/3— 3+/3—

The extreme cases are shown as — or + for, respectively, extreme negative
or positive random-sample effects, and 0 for all others. The total number of
samples for each category “(n; vessel, trip, sample, and positive/negative
random-sample effect per species) are given in the bottom row. n/a, no
data available.
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Figure 2. Classification of extreme length measurements using the
univariate approach. The smallest (<2.5 percentile) and the largest
(>97.5 percentile) of the random-sample effects estimated using the
mixed model [Equation (1)] for plaice, dab, grey gurnard, and
whiting are deemed extreme (triangles); other data points are shown
as dots.

and within a vessel up to six, extreme mean lengths were recorded.
Of these, four extreme negative mean lengths were returned for a
particular vessel (code “2”; three and one for MLS-regulated

European plaice and whiting, respectively), although overall the
numbers of positive or negative sample effects were evenly distrib-
uted within and across species (Table 1).

For the bivariate method (excluding extreme values),
126 samples with measurements of both European plaice and
common dab could be included, along with 69 with both grey
gurnard and whiting (Table 2, Figure 3).

Sample effects (extreme values) were flagged for data collected
on 8 of the 12 vessels (Table 2). For the European plaice and
common dab group, five and three samples were flagged as
falling outside the 95 and 99% prediction intervals of the
normal random effect, respectively (Figure 3a). For grey gurnard
and whiting, the corresponding numbers were five and one
samples, respectively (Figure 3c). Notably, for one vessel (code
“2” in Tables 1 and 2), samples of both European plaice and
common dab were flagged on nearly every trip, and repeatedly
in consecutive samples from the same trip (Table 2). This is the
same vessel for which the most sample effects were recorded as
extreme in the univariate analysis. The number of trips sampled
was similar compared with other participating vessels (Table 1).
However, given Bonferroni correction (n =12 tests; error rate
p < 0.005), it appears likely that such a large number of extreme
samples could have arisen at least once by chance for a particular
vessel if the extreme samples were distributed randomly across all
samples (randomization test; Table 3).

There were no significant differences in length frequency distri-
butions of European plaice or common dab whether or not
extreme samples identified by the bivariate method were included
(Kolmogorov—Smirnov test, p > 0.05; Figure 4).

Discussion

Self-sampling programmes are popular (Catchpole and Gray,
2010) because more samples from more trips can be collected at
lower cost than during on-board observer programmes. The
results here suggest that the length frequencies of self-sampled dis-
cards of European plaice, common dab, grey gurnard, and whiting
in 2009 provided no evidence that the sampling may have been
biased at a vessel level, assuming that all vessels applied the same
sorting ogive for discards, because MLS-regulated species were tar-
geted. However, using our uni- and bivariate approaches, we
identified individual discard samples (e.g. samples of European
plaice from vessel “2”or the top triangles in Figure 3a) that may
be considered in greater detail, e.g. by plotting length frequency
distributions. Further, we examined the sensitivity of the estimated
length-class proportions with and without the trips that returned
large random-sample effects, using the bivariate method for
European plaice and common dab (Figure 4). Although the vari-
ation is negligible, our results may nevertheless be used to identify
the crews that need additional training or experience in the
sampling methodology or for which it is necessary to study the
discard sorting ogive.

Central to the method here is the use of a mixed model to
determine random-sample effects on the estimated mean length
of discarded fish. An important advantage of the method is that
the effects of samples with few measured fish will decrease
towards the overall mean of the fixed effects. This avoids the
problem that samples with just a few fish might be flagged as
extreme. On the other hand, samples with many measured fish
may be classified as extreme because the shrinkage effect of the
model is less effective in that case. Most samples with a random-
sample effect contained at least ten measured fish (Table 2).
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Table 2. List of vessel, trip, and sample codes for which at least one random-sample effect for European plaice, common dab, grey gurnard,
and whiting was classified as extreme using the bivariate method, showing the numbers of discarded fish measured, with bivariate 1 (BIV1)
and 2 (BIV2) flagging extreme values for discard samples with plaice and dab, and grey gurnard and whiting, respectively (Figure 3).

Vessel code Trip code Sample code BIV1 BIV2 Plaice Dab Grey gurnard Whiting
2 124 6000602 1 0 97 85 4 27
2 126 6000629 1 0 167 106 1 3

2 127 6000679 1 n/a 66 92 1 n/a
2 127 6000680 1 n/a 86 67 n/a n/a
2 128 6000700 1 0 25 41 5 1

2 130 6000725 0 1 44 14 5 12
2 130 6000726 0 1 104 27 6 7

3 134 6000685 1 n/a 57 13 53 n/a
5 138 6000624 0 1 106 123 3 21
8 160 6000711 1 n/a 50 63 2 n/a
9 170 6000717 1 0 26 56 16 2
10 173 6000612 1 0 17 31 3 5
11 182 6000647 1 n/a 54 50 30 n/a
12 186 6000607 0 1 25 56 39 75
12 187 6000636 1 1 167 77 14 83
n=2=8 13 15 11 5 1091 901 182 236

For BIV1 and BIV2, the extreme values are shown as “1”, and “0” otherwise. The total number of samples for each category (n; vessel, trip, sample, and
random-sample effect per species group) and total number of individual fish measured are given in the bottom row. n/a, no data available.
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Figure 3. Classification of extreme samples using the bivariate distributions of the random-sample effects estimated using the mixed model
[Equation (1)]. The bivariate distribution, with 95 and 99% prediction intervals (inner and outer ellipses, respectively), is shown for (a) plaice
vs. dab and (c) grey gurnard vs. whiting. The classification of extreme samples is made using the method of Rousseeuw and van Zomeren
(1990) by comparing a robust version of the Mahalanobis distance with the quantiles of the Chi-squared distribution with 2 degrees of
freedom. The horizontal and vertical lines in (b) and (d) are drawn at the square roots of the 97.5% quantiles of a Chi-squared distribution
with 2 degrees of freedom for (b) plaice and dab, and (d) grey gurnard and whiting. Points above the horizontal line (shown as triangles) are
considered extremes.
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Table 3. Results of the randomization test for the number of extreme samples per vessel classified using the bivariate distribution of the

random-sample effects for plaice and dab (Figure 3a and b).

k
Vessel code 0 1 2 3 4 5 6 7 K p(k = K)
1 0.526 0.358 0.094 0.02 0.002 0 0 0 0 1
2 0.203 0.318 0.293 0.134 0.039 0.013 0 0 5 0.013
3 0.668 0.292 0.039 0.001 0 0 0 0 1 0.232
4 0.627 0.312 0.060 0.001 0 0 0 0 0 1
5 033 0.393 0218 0.050 0.007 0.002 0 0 1 0.670
6 0.839 0.155 0.006 0 0 0 0 0 0 1
7 0.303 0.376 0.230 0.079 0.010 0.002 0 0 0 1
8 0.158 0.343 0318 0.128 0.044 0.008 0 0.001 1 0.842
9 0.249 0.39 0.254 0.079 0.023 0.003 0.002 0 1 0.751
10 0.263 0.403 0.235 0.076 0.020 0.003 0 0 1 0.737
11 0.460 0.399 0.120 0.020 0.001 0 0 0 1 0.54
12 0.334 0.398 0.208 0.051 0.007 0.002 0 0 2 0.286

The probabilities of observing k extreme samples per vessel were estimated from 5000 replicate datasets, where the extremes were randomly reordered across
samples. The probabilities of observing at least K extreme samples per vessel [p(k > K)] are in the column to the right. The error rate (p = 0.05) was divided
by the number of hypothesis tests carried out within the randomization analysis (Bonferroni correction, p < 0.005).

There are several limitations of the present methodology. First,
compared with the univariate method, the bivariate method cur-
rently does not identify the direction of the random-sample
effect, i.e. positive or negative. Second, classification of individual
random-sample effects into extreme or non-extreme values is
necessarily partly subjective, influenced to a large extent by the
choice of confidence levels. For example, classification based on
the 99% prediction intervals (outer ellipses in Figure 3) resulted
in fewest samples classified as extreme, whereas the univariate
method based on 2.5 and 97.5 percentiles resulted in most
(Table 1). Although the choice of confidence level can be varied,
the idea behind the methodology is that patterns in highlighted
samples are investigated using randomization methods to test
for evidence of possible non-randomness in these patterns.
Third, the classification of extreme samples relies heavily upon
modelling assumptions, so care should be taken in interpreting
random-sample effects. Notably, the validity of the method
depends upon having a good model for the dependence of
sampled mean lengths on the structure of the fish population
and the gear-selectivity characteristics. In the mixed model
[Equation (1)], these effects were incorporated by including
spatial and temporal factors, and their interactions, as well as tech-
nical (gear) factors. Another and potentially more robust way of
including such effects in the analysis would be to subdivide the
data by grouping trips from the same fishing ground, the same
season, and the same gear and mesh-size combination. However,
in interpreting patterns (if any), one needs to be aware that
certain modelling assumptions could have been violated, e.g.
that certain explanatory variables were missing or included in
the model in the wrong way (e.g. their effect was non-linear
when they were included as linear effects). Such misspecifications
of the model can introduce bias in the estimated random effects or
induce the random effects to be non-normal.

Here, the focus was on detecting potential sampling biases for
mean fish length. However, this is just one of several biases that
may arise, and alternative important aspects of the sampling and
its variance may be looked at using similar methodologies
(Vigneau and Mahévas, 2007). The methodology employed is
purely statistical and cannot be used to make any inferences on
the processes underlying the potential bias in sampling. For that,
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Figure 4. Proportions of the numbers of discarded (a) plaice and (b)
dab per trip and size class (cm) from self-sampled discard data for
the Dutch bottom-trawl fisheries in 2009. Grey continuous lines, all
data included; black dashed lines, length distributions where trips
with extreme samples detected by the bivariate method (Table 2 and
Figure 3) were excluded.
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less-theoretical, more-practical approaches are needed, such as in
situ video-monitoring systems to validate logbook catch estimates
(Stanley et al., 2009), or concurrent sampling by both fishers and
on-board observers. Recognizing the importance of having statisti-
cal methodology in place to screen data from discard self-sampling
programmes, especially considering the incentives for fishers to
misreport the occurrence of large marketable and/or small juven-
ile fish within the discard fraction, so negatively or positively
biasing the length frequency distributions, we caution jumping
to any foregone conclusion if any extreme samples were to be
excluded from a database and/or analysis. Achieving the long-
term goal of proving that reliable data can be obtained through
self-sampling will eventually promote and maximize the benefits
of cooperative research partnerships between fishers, scientists,
and managers (Johnson and van Densen, 2007).
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