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INTRODUCTION

Considerable developments have occurred in both data

acquisition and in the modelling of spatial patterns of

marine systems (Ault & al. 1999). Generally however,

spatialized data bases covering long periods of time are

still often treated separately from one another. This has

lead to a necessary development of adequate numerical

methods resulting in better understanding of the spatial

and temporal variability in marine ecosystems. Moreo-

ver, the need for marine habitat classification and map-

ping is important as a result of increasing activities of

the international conventions on Biodiversity (Rio), the

Protection of Species and Habitat (OSPAR), the FAO

Code of Conduct for Responsible Fisheries (Cancun),

and the Jakarta Mandate for Marine Protected Areas.
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This new numerical approach proposes a solution to a fundamental and difficult question in ecology,

consisting of the correct geographical representation of multidimensional structures. Firstly, transfor-

mation was applied to the original matrix (n sites x q variables) in order to satisfy the condition of

multinormality. Then, a hierarchical cluster analysis was used and each hierarchical level was studied

and characterised by a certain probability level. For each cut off level an algorithm based on the compu-

tation of the Bayesian probabilities produced a smaller matrix (n sites × c groups). These conditional
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distributions of these probability values for each group of sites were mapped using kriging interpola-

tion. Finally, the maps were used to define homogenous zones on a single map by superimposing one

map on the other. The maximal value of interpolated probability was used as criterion to assign each

point of the map to the zones predefined by this classification.

This method was applied to map demersal fish habitats by using a dataset from bottom trawl surveys

in the Bay of Biscay (France) during October 1990. The boundaries between habitats were identified

objectively. Then, the indicator species and species assemblages characterising the different habitats

were identified by using an indicator value index. This index integrates the specificity and the fidelity

quantities calculated for each species in each habitat. The obtained results showed that this method

presented a robust tool to describe the habitat of exploited species. The obtained habitats were validated

by their correspondence with depth strata, sediment type and also by the biological characteristics of the

indicator species.

The proposed method is useful in the study of temporal variations of habitats with regards to species

assemblages and can also be generalised to other multivariate databases of different descriptors (physi-

cal, chemical, biological, etc.).
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Consequently, the rich source of ecological information

available from scientific surveys carried out in different

exploited areas has been increasingly analysed to define

habitat and species changes after anthropogenic or envi-

ronmental impact (Greenstreet & Hall 1996; Greenstreet

& al. 1999; Jennings & al. 1999a, b; Rogers & Ellis 2000).

Recently Mahon & al. (1998) used a large data set

collected by demersal research trawl surveys from 1970

to 1994 on the east coast of North America in order to

study assemblages and biogeography of demersal fishes.

The approach of pooling all the data from different sur-

veys together in order to carry out multivariate analysis

can however be confusing as both spatial and temporal

factors are mixed. It is thus necessary to map each trawl

survey fish habitat separately in order to efficiently as-

sess spatial and temporal effects (Gaertner & al. 1998).

Moreover, species assemblages should be considered in

order to define the habitat dynamics.

Multivariate regionalization techniques are necessary

in the study of spatial structure of large datasets. Several

methods have been developed in spatialized disciplines

(e.g. geology, climatology, terrestrial vegetation, etc.)

including Principal Components Analysis (Richman &

Lamb 1985; Boyer & al. 1997; Comrie & Glenn 1998),

multivariate classification (Oliver & Webster 1989;

Bourgault & al. 1992; Souissi & al. 2000). However until

now, visual appreciation has been the primary means by

which groups of sites have been assimilated to ecosys-

tem regions after using regionalization methods. Spatial

contiguity is not necessarily the rule in marine ecology

especially when characterised by high levels of spatial

heterogeneity due to accidental topography and to non-

linear hydrodynamical properties. Therefore, the con-

strained cluster analysis often used in terrestrial ecology

(Dufrêne & Legendre 1991) may not be necessarily jus-

tified in marine habitat studies.

This paper describes a new algorithm combining both

multivariate hierarchical classification techniques and

spatial models of regionalized variables. This combina-

tion goes further than the separation of groups of sites as

with ordinary classification since interpolation is used

resulting in a more refined mapping. A one year bottom

trawl survey in the bay of Biscay is used as an example

to illustrate the different steps and results obtained with

this algorithm. This study of demersal species habitats

has four main aims: 1) to identify the spatial structure of

demersal communities at different scales. 2) To estab-

lish how the definition of the boundaries between these

sub-areas can be carried out objectively. 3) To define the

characteristic species assemblages for each area. 4) To

assess the ecological interpretations after using this

method.

The data set was first subdivided into two matrices

representing the dominant species and the secondary

species. A classification of sites after hierarchical clus-

ter analysis was applied to the matrix of dominant spe-

cies. Then, successive levels of hierarchical classifica-

tion were considered. For each regionalization level, the

study area was divided into different habitats correspond-

ing to the number of clusters. The interpolation of each

point within its identified habitat was obtained by using

the theory of regionalized variables based on a Bayesian

probability. These techniques were initially developed

for geological applications (Harff & Davis 1990; Harff

& al. 1993). Finally, the indicator species for each group

of sites were identified by computing the indicator value

index proposed by Dufrêne & Legendre (1997).

MATERIAL AND METHODS

DATA SOURCES

The developed method was applied to a set of data col-

lected during the groundfish survey carried out by

IFREMER in the Bay of Biscay. The EVHOE survey

series began in 1987 (Poulard 1989; ICES 1991, 1997;

Amara & al. 1998). The survey area was between 48°30'N

in the north and the northern margin of Gouf de Cap

Breton in the south. The area was stratified according to

latitude and depth. A 36/47 GOV trawl was used with a

20 mm mesh codend liner. The haul duration was 30

minutes long with a towing speed of 4 knots. Fishing

was mainly restricted to daylight hours. Catch weights

and catch numbers were recorded for all species, all

finfish and a selection of shellfish were measured. The

data obtained from the 135 hauls carried out between 25

September and 25 October 1990 were used to illustrate

the different steps of the method. The biology of the spe-

cies, alimentary diet, behaviour and habitat, is given by

the FAO world fish fauna (Fisher & al. 1987).

SPECIES SELECTION AND MATHEMATICAL TRANSFORMATION

The abundance indices of pelagic species are better esti-

mated by acoustic surveys (Massé 1996) and pelagic

trawls than bottom trawls, so these species (e.g. anchovy,

sardine, mackerel, etc.) were eliminated from this analy-

sis. Species present in more than 5 % of the tows were

retained (Fig. 1A). The data was transformed by a dou-

ble square root for two reasons, firstly to minimise the

effects of high values and secondly to satisfy the

multinormality of the data, a required condition before

using the regionalized variables (Harff & Davis 1990).

In order to accomplish the latter condition, the sum of

the total abundances for each selected species was com-

puted. After this, species were ranked following their

contribution to the global sum of the data (Fig. 1B). The

contribution level of 0.5 % separated the species into

two groups: the dominant species (Table 1) and the sec-

ondary species (Table 2).
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The multinormality of transformed data was tested

with the Dagnelie method (Dagnelie 1975 in Legendre

& Legendre 1998) based on the Mahalanobis general-

ized distance (see Eq. 6). Generalized distances are com-

puted between each object (site) and the multidimen-

sional mean of all objects. Then the values of the skew-

ness and kurtosis were computed and their deviation

compared to a theoretical normal distribution was tested

(CEA 1986; Legendre & Legendre 1998). The null hy-

pothesis of normality of the distribution of both param-

eters tested could not be rejected (p = 0.289 and 0.122

for skewness and kurtosis, respectively). Thus the multi-

normality of the data was confirmed.

METHOD

The different steps of the numerical method are shown

in Fig. 2. Only the stages after species selection have

been detailed. In this case the inputs of the analysis are

the sites-species matrices A and B (Fig. 2), correspond-

ing to dominant species and secondary species, respec-

tively.

Step 1: cluster analysis

The matrix A was used in a cluster analysis. First, the

species abundances were transformed (x0.25) before com-

puting a similarity coefficient between sites (matrix S).

The Bray-Curtis similarity coefficient and clustering

strategy of flexible links with beta set at the value of

–0.25 (Legendre & Legendre 1998) were used.

Instead of studying one spatial configuration with a

fixed number of clusters, a hierarchical tree with suc-

cessive cutting off levels was used. Consequently, for

the same data set different spatial organization patterns

of assemblages were studied.

Step 2: expression of conditional probabilities

For each level of the hierarchical classification a number

of clusters was obtained. The level of heterogeneity be-

tween each site and properties of each group was as-

sessed with one value of a conditional Bayesian prob-

ability. This method, originally developed in geology

(Harff & Davis 1990; Harff & al. 1993), was adapted for

the purposes of this study.

Each object (site) X
i
 is a q-dimensional variable, where

q is the number of the selected dominant species (A in

Fig. 2):

    
X x x x xi i i i j i q= { }, , , .. ,, ,.. .,1 2 (1)

where x
i,j
 is the transformed abundance of species j in

the site i.

For each cut off level (c) of the hierarchical tree, a

partition   Zc
G of groups of sites G

j
 can be considered,

    
Z G G G Gc

G
j c= { }1 2, ,.. ..,. (2)

of which each element is defined by a number of sites

  
n j

G, a centroid of the group 
  
m j

G and a covariance matrix

Σ
j
 :

    
G n mj j

G
j
G

j: , ,Σ( )     
j I I cc c∈ = { }, ,...,1 (3)

Where j is a group of sites obtained from a hierarchical

classification and Ic is the set of groups of sites contain-

ing c elements, where c is the cut off level. The centroid

is the data point (vector) that is the mean of the abun-

dance values of each species among the sites belonging

to the considered group. The covariance matrix repre-

sents the within dispersion of a group G
j
.

The partition
  Zc

G is termed the model and each one of

its elements G
j
 is termed a j-model (Harff & Davis 1990).

It should be noted that the number of elements in each

partition depends on the level c of the hierarchical clas-

sification (Fig. 2). In general, the spatial coherence of a

j-model emerges from the contagiousness of the ecologi-

cal processes involved. In this case this concerns the

habitats of demersal species characterising a typical spe-
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Fig. 1. Numerical criteria of species selection. A) the percent-

age of zeroes in the 135 sites for different species are sorted in

ascending order. The threshold level of 95 % is considered.

B) Contribution of each selected species in the total abundance.

The 70 species selected in the step (A) are ranked according

their contribution. At the level of 0.5 % the selected species are

subdivided into two groups: the dominant species (Table 1) and

the secondary species (Table 2).
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cies association. Depending on the composition of each

site X
i
 (Eq. 1), its conditional probability of membership

to a j-model is expressed by Bayes’ relationship (Harff

& al. 1993):

    

P X G
p d i

p d i
i j

j j j

k k k
k IC

( )
exp ( ) /

exp ( ) /

/

/
∈ =

−( )
−( )

−

−

∈∑
Σ

Σ

1 2
2

1 2
2

2

2
(4)

where p
j
 is an a priori probability of the j-model, which

represents the proportion of the number of sites in the

cluster j versus the total number of sites:

  

p
n

n
j

j
G

k
G

k IC

=

∈∑ (5)

and 
    
d ij

2 ( )is the generalised Mahalanobis distance be-

tween G
j
 and X

i
:

    
d i X mj i j

G2 ( ) ( )= − ' 
    
Σ j i j

GX m− −1 ( ) (6)

Assuming that the dispersion matrices are equals (Harff

& Davis, 1990),

    
i j

K

i j I∑ ∑ ∑= = ∀ ∈
0

,

Table 1. List of dominant demersal species selected for mapping their habitats in the Bay of Biscay and the South Celtic Sea. All

species were present in the 135 stations selected from the autumn survey of 1990 with a frequency greater than 5 % and a total

abundance contribution greater than 0.5 %. The species are subdivided into 4 groups: Sharks and Rays, Bony fishes, Crustacea and

Cephalopoda.

Group & Family Label (%) Species

Sharks and Rays

Scyliorhinidae SCYLCAN 2.48 Scyliorhinus canicula (Linné., 1758)

Rajidae RAJANAE 0.70 Raja naevus Müller & Henle, 1841

Bony fishes

Argentinidae ARGESIL 0.87 Argentina silus (Ascanius, 1775)

Argentinidae ARGESPH 4.52 Argentina sphyraena Linné, 1758

Gadidae GADIARG 3.86 Gadiculus argenteus Guichenot, 1850

Gadidae MERLMNG 1.38 Merlangius merlangus (Linné, 1758)

Gadidae MICRPOU 10.35 Micromesistius poutassou (Risso, 1827)

Gadidae TRISLUS 2.97 Trisopterus luscus (Linné, 1758)

Gadidae TRISMIN 10.42 Trisopterus minutus (Linné, 1758)

Lotidae MOLVMOL 0.56 Molva molva (Linné, 1758)

Merlucciidae MERLMCC 8.23 Merluccius merluccius (Linné, 1758)

Zeidae ZEUSFAB 0.78 Zeus faber Linné, 1758

Caproidae CAPRAPE 2.84 Capros aper (Linné, 1758)

Triglidae ASPICUC 2.01 Aspitrigla cuculus (Linné, 1758)

Sparidae SPONCAN 0.80 Spondyliosoma cantharus (Linné, 1758)

Mullidae MULLSUR 0.58 Mullus surmuletus Linné, 1758

Callionymidae CALLLYR 2.65 Callionymus lyra Linné, 1758

Callionymidae CALLMAC 1.29 Callionymus maculatus Rafinesque, 1810

Gobiidae LESUFRI 0.83 Lesueurigobius friesii (Malm, 1874)

Gobiidae POMAMIN 0.71 Pomatoschistus minutus (Pallas (ex Gronovius), 1770)

Scophthalmidae LEPIWHI 1.92 Lepidorhombus whiffiagonis (Walbaum, 1792)

Bothidae ARNOIMP 1.23 Arnoglossus imperialis (Rafinesque, 1810)

Bothidae ARNOLAT 1.22 Arnoglossus laterna (Walbaum, 1792)

Soleidae MICRVAR 0.93 Microchirus variegatus (Donovan, 1808)

Crustacea

Nephropidae NEPHNOR 1.32 Nephrops norvegicus (Linné, 1758)

Galatheidae MUNIBAM 1.51 Munida bamffia (Pennant, 1777)

Cancridae CANCPAG 0.62 Cancer pagurus Linné, 1758

Cephalopoda

Sepiidae SEPIELE 1.45 Sepia elegans Blainville, 1827

Sepiidae SEPIORB 0.60 Sepia orbignyana Ferussac, 1826

Sepiolidae SEPISPP 2.05 Sepiola spp. & Sepietta spp.

Loliginidae ALLOSPP 5.50 Alloteuthis spp.

Loliginidae LOLIFOR 3.52 Loligo forbesi Steenstrup,1856

Loliginidae LOLIVUL 1.84 Loligo vulgaris Lamarck, 1798

Ommastrephidae ILLECOI 4.95 Illex coindeti (Verany, 1839)

Ommastrephidae TODAEBL 0.84 Todaropsis eblanae (Ball, 1841)
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a pooled variance-covariance matrix Σ
p
 (Cooley &

Lohnes 1971; Legendre & Legendre 1998) was used as

a substitute of the normal dispersion matrix Σ in the d 2

computation.

Step 3: cartography of regionalized variables

Harff & al. (1993) considered that the conditional prob-

ability (Eq. 4) may be treated as a regionalized variable,

because the stochastic features of X
i
 were retained. Thus

geostatistical tools can be applied to matrices P
c
 of con-

ditional probabilities (Fig. 2). In this way the spatial dis-

tributions of the conditional probability for each group

of sites were mapped. An interpolated regular grid of

0.025 longitude by 0.025 latitude degrees correspond-

ing to the study area limits was obtained by using a spheri-

cal variogram model and the kriging method (Matheron

1962). The probability data are assumed to be isotropic.

For each point z in space (one node of the regular inter-

polated grid) a vector of conditional probabilities ob-

tained by interpolation can be associated:

Table 2. List of secondary demersal species considered in the study of indicator species at the local scale when habitats are

identified using the dominant species shown in Table 1. All species were present in the 135 stations selected from the autumn

survey of 1990 with a frequency greater than 5 % and a contribution to total abundances of under 0.5 %. The selected species are

subdivided into 5 groups: Sharks and Rays, Bony fishes, Crustacea, Cephalopoda and Bivalves.

Group & Family Label (%) Species

Sharks and Rays

Rajidae RAJACLA 0.30 Raja clavata Linnaeus, 1758

Rajidae RAJAMON 0.22 Raja montagui Fowler, 1910

Scyliorhinidae GALEMEL 0.45 Galeus melastomus Rafinesque, 1810

Bony fishes

Congridae CONGCON 0.39 Conger conger (Linnaeus, 1758)

Lophiidae LOPHBUD 0.20 Lophius budegassa Spinola, 1807

Lophiidae LOPHPIS 0.39 Lophius piscatorius Linnaeus, 1758

Sebastidae HELIDAC 0.43 Helicolenus dactylopterus (Delaroche, 1809)

Triglidae EUTRGUR 0.42 Eutrigla gurnardus (Linnaeus, 1758)

Triglidae TRIGLUC 0.20 Trigla lucerna Linnaeus, 1758

Cepolidae CEPORUB 0.44 Cepola rubescens Linnaeus, 1766

Pleuronectidae MICRKIT 0.39 Microstomus kitt (Walbaum, 1792)

Pleuronectidae PLEUPLA 0.27 Pleuronectes platessa Linnaeus, 1758

Pleuronectidae LIMALIM 0.26 Limanda limanda (Linnaeus, 1758)

Soleidae SOLEVUL 0.38 Solea vulgaris Quensel, 1806

Soleidae BUGLLUT 0.29 Buglossidium luteum (Risso, 1810)

Soleidae DICOCUN 0.22 Dicologoglossa cuneata (Moreau, 1881)

Trachinidae TRACDRA 0.42 Trachinus draco Linnaeus, 1758

Trachinidae ECHIVIP 0.45 Echiichthys vipera (Cuvier, 1829)

Bothidae LEPIBOS 0.40 Lepidorhombus boscii (Risso, 1810)

Gadidae PHYCBLE 0.35 Phycis blennoides (Brünnich, 1768)

Gadidae POLLPOL 0.26 Pollachius pollachius (Linnaeus, 1758)

Gadidae ENCHCIM 0.29 Enchelyopus cimbrius (Linnaeus, 1758)

Moronidae DICELAB 0.34 Dicentrarchus labrax (Linnaeus, 1758)

Sparidae BOOPBOO 0.25 Boops boops (Linnaeus, 1758)

Ammodytidae AMMOTOB 0.53 Ammodytes tobianus (Linnaeus, 1758)

Ammodytidae HYPELAN 0.27 Hyperoplus lanceolatus (Le Sauvage, 1824)

Mugilidae LIZARAM 0.47 Liza ramada (Risso, 1826)

Macrouridae MALALAE 0.28 Malacocephalus laevis (Lowe, 1843)

Crustacea

Portunidae MACRPUB 0.38 Macropipus puber (Linnaeus, 1758)

Crangonidae CRANCRA 0.35 Crangon crangon (Linnaeus, 1758)

Cephalopoda

Octopodidae ELEDCIR 0.23 Eledone cirrhosa (Lamarck, 1798)

Octopodidae OCTOSPP 0.28 Octopus sp.

Sepiidae SEPIOFF 0.37 Sepia officinalis Linnaeus, 1758

Ommastrephidae TODASAG 0.29 Todarodes sagittatus (Lamarck, 1798)

Bivalves

Pectinidae PECTMAX 0.20 Pecten maximus (Linnaeus, 1758)
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Fig. 2. Diagram of the analysis steps for the multivariate mapping method. The different steps explaining the connections between

the input matrices A(n: sites, q: dominant species) and B(n: sites, r: secondary species) and the final resulting map of fish habitats

and indicator species for each hierarchical level. The different steps of the diagram are detailed in Materials and Methods section.
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p p p p cz z z z= ( ) ( ) ( ){ }1 2, ,..., (7)

So z belongs to the area j representative of the group of

sites G
j
 if its conditional probability is the largest for

that group (Eq. 8).

    
p j pz z( ) = ( )max (8)

Step 4: characterisation of the different zones

After mapping the different habitat zones, it is necessary

to identify the species that characterise each habitat. The

indicator value index proposed by Dufrêne & Legendre

(1997) was used to identify the indicator species and the

significant assemblages for each habitat and spatial or-

ganization (Fig. 2). The specificity and fidelity of each

species s compared to each cluster of sites G
j
 can be

measured by the values SP
j,s

 and FI
j,s

, respectively:

    

SP NI NI

FI NS NS

j s j s j

j s j s j

, ,

, ,

/

/

=

=






+

+
(9)

where NI
j,s

 is the mean abundance of species s across the

sites relating to G
j
, NI

+ j
 which is the sum of the mean

abundances of species s within the various groups in the

partition. At the same time NS
j,s

 is the number of sites in

G
j
 where the species s is present and NS

j+
 is the total

number of sites in that group. The specificity value (SP
j,s

)

is maximum when species s is present in group G
j
 only,

whereas the fidelity value (FI
j,s

) is maximum when spe-

cies s is present in all sites of G
j
. The specificity and

fidelity represent information independently from one

another, their product multiplied by 100 produces a per-

centage of the indicator value IV
j,s

 :

    
IV SP FIj s j s j s, , ,= 100 (10)

Dufrêne & Legendre (1997) proposed to retain the maxi-

mum indicator value for each species s among all groups.

    
IV IVj j s= ( )max , (11)

For this study, only species having an indicator value

greater than 25 %, being the threshold level used by

Dufrêne & Legendre (1997), were retained in the assem-

blages. Furthermore, the indicator value indices were

computed for each level of the hierarchical classifica-

tion. The analysis of the variation of indicator value as

the number of groups increased point out the character-

istic species for each hierarchical level. For the highest

hierarchical levels, when the indicator values of all spe-

cies are decreasing, the clustering method does not of-

ten offer any additional information. So, this analysis

provides an a posteriori criterion to define the highest

significant hierarchical level (Dufrêne & Legendre 1997).

Moreover, a new criterion for characterising each hi-

erarchical level by one probability value was added. For

each probability matrix (P
k
, k = 2 to c in Fig. 2) a vector

P
max

(k) representing the maximal probability for each site

was computed.

P
max

(k) = max(P'
k
) (12)

where P'
k
 is the transposed sites-probabilities matrix for

the cutoff level k.

Then each level of hierarchical classification k was

characterised by one probability value P
M
(k) estimated

from the median of the vector P
max

(k):

    
P k median P kM ( ) = ( )( )max (13)

P
M
(k) can be interpreted as being an average measure of

the within-groups homogeneity for each hierarchical

level.

The different steps of the method (shown in Fig. 2)

were programmed with Matlab Software.

RESULTS

GLOBAL ANALYSIS OF SITE GROUPS AT DIFFERENT HIERARCHICAL

LEVELS

Nineteen different partitions of groups of sites corre-

sponding to increasing levels from 2 to 20 clusters were

considered after hierarchical classification (Fig. 3). The

corresponding P
M
(k) (Eq. 13) quantities were computed,

and then plotted in Fig. 4. The median probability that a

site belongs to its group of sites for the first cut off level

was equal to 0.86. Then, P
M
(3) increased to the value of

0.89. For the next aggregation level, with 4 site groups,

the median probability P
M
(4) decreased slightly to the

value of 0.88. The highest amplitude of increase in P
M

values was obtained for the five site group hierarchical

level, where the associated probability (P
M
(5)) overcame

the threshold of 0.9. Then, the values of P
M
 increased

slightly for the next levels 6 and 7. The threshold value

of 0.95 was first reached for the eight cluster aggrega-

tion (Fig. 4). The probabilities P
M
 continued increasing

with the number of clusters showing a plateau around

1.0 for the highest number of clusters. According to this

first characterisation, the spatial organization patterns of

species assemblages for the first seven partitions (from

2 to 8 clusters indicated with discontinuous lines in Fig.

3) were arbitrarily retained for the following detailed

analyses.

Mapping of the different zones

Starting with the second hierarchical level, a matrix of

conditional probabilities (135 sites × 2 site groups) was

computed. The maps of the iso-probability contours for

each zone are shown in Fig. 5A-B. The probability lev-

els are shown by a colour scale increasing from white to

one characteristic colour. For example the median depth

of the first zone (Fig. 5A) is equal to 62 m, which corre-

sponds to the green colour according to the depth colour

scale. This representation facilitates the interpretation of

the geographical representation of habitat zones and their
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average depth properties. The probability of correct clas-

sification of each point within a zone is assessed by ap-

plying the maximal probability value criterion (Eq. 8).

Fig. 5C shows the final map of both habitats. The method

does not introduce any spatial contiguity constraints,

however the obtained zones are contiguous. They clearly

represent a separation between the coastal zone in the

bay of Biscay and the rest of the study area including the

southern part of the Celtic Sea.

Fig. 6 shows the final maps obtained for a number of

habitats starting from 3 and continuing up to 8. The first

habitats identified from the hierarchical classification are

those of the bay of Biscay shallow water (Fig. 6A) and

the slope of the shelf-break (Fig. 6B). It must be pointed

out however that the resulting mapped group formations

from one level to the next one, may subtly differ (par-

ticularly at group boundaries) from the groups formed

after IndVal calculation using hierarchical clustering

since interpolation is used. In fact the boundaries may

change altogether, this is particularly noticeable for sites

occurring near the boarders of each group. An example

is shown for the passage from 4 zones (Fig. 8B) to 5

Fig. 3. Classification of the sampling sites for the bottom trawl survey carried out between 25 September and 25

October 1990, using Bray-Curtis dissimilarity coefficient and clustering strategy of flexible links with beta equal

to –0.25. The first seven hierarchical levels giving from 2 to 8 site groups were indicated with discontinuous lines.
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zones (Fig. 8C). The newly appeared zone III (Fig. 8C)

is represented by two separate areas. This is directly due

to the procedure of computing new conditional probabili-

ties and identifying, through interpolation, new bounda-

ries between the different zones.

The subdivision of the studied area into 6 groups is

characterised by a clearcut separation between the cen-

tral bay of Biscay zone and the southern Celtic Sea zone

(Fig. 6D). By increasing the number of habitats, we ob-

tain first a separation between the central Bay of Biscay

zone (zone IV in Fig. 6E) and the continental slope zone

(zone VI in Fig. 6E). The last subdivision concerns the

coastal area, which is characterised by 4 different habi-

tats for the 8 site groups level (Fig. 6F).

The increase of the number of zones resulted in a de-

crease of both spatial heterogeneity (in terms of average

probability, Fig. 4) and spatial contiguity between zones

(Fig. 6).
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Fig. 4. Variation of the median probability (P
M
) as a function of

the number of site groups. Vectors of maximal probabilities (P
max

in Fig. 2) were used in the computation of P
M
 at the considered

19 hierarchical levels. The probability levels of 0.9 and 0.95

are shown with discontinuous horizontal lines.

Fig. 5. Iso-probability maps for the coastal zone (A) and the offshore zone (B). Each map represents a spatial distribution of the

probabilities of being a member of one group of sites identified in Fig. 3 for the two site groups hierarchical level. The probability

levels are represented by a colour scale bar increasing from white (P = 0) to a characteristic colour (P = 1) depending on the median

depth of the site group. The depth colour bar shown in (C) was truncated over 200 m depth.

C) Final map of the two habitats zones. The positions of the sampling sites in the Bay of Biscay are indicated by black symbols.
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BATHYMETRIC REGIONALIZATION OF THE SAMPLED AREA

As a first criterion for characterising the spatial patterns

of site groups, the average depth distributions were cal-

culated for different site groups using Box-and-whisk-

ers plots (Fig. 7). When only two groups of sites were

considered, their depths were distributed around two

median values: 62 m and 150 m. For this level, the boxes

of depth-distribution did not overlap (Fig. 7), so, the

bathymetry can be considered as a good discriminator

between these habitats. When increasing the hierarchi-

cal level, the more heterogeneous group was split into

two new site groups. For example, the third hierarchical

level was characterised by the isolation of the shallow

coastal and estuarine site group (25 m median depth)

from the other coastal sites of intermediate depths (77 m

median depth). The group of deepest sites, characterised

by a high variability of depths around a median of 375 m

corresponding to the slope of the shelf-break, formed

the next cut off level (Fig. 7). The four identified site

groups were sorted according to a bathymetric gradient.

Five depth strata were distinguished around the follow-

ing median values: 25 m, 51 m, 99 m, 145 m and 375 m.

The higher hierarchical levels of 6 and 7 groups, showed

a subdivision of the 145 m deep group. This group was

subdivided into two groups with similar depth distribu-

tions (Fig. 7), one of these groups (141 m median depth)

was then further subdivided into shallower sites (132 m

median depth) and deeper sites (172 m median depth).

The last subdivision concerned the coastal group of me-

dian depth 51 m, which was split into two groups having

36 m and 62 m median depths, respectively. While

bathymetry appeared to be a good structuring factor,

additional information was derived from the study of the

assemblages and indicator species for each aggregation

level.

Fig. 6. Maps of the different habitat zones for the following hierarchical levels: 3(A), 4(B), 5(C), 6(D), 7(E) and 8(F). Each colour

represents the median depth according to colour scale bar of Fig. 5. Dark violet colour indicates the deeper sites (median depth = 375 m).
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INDICATOR SPECIES AND SPECIES ASSEMBLAGES

The indicator values (Eq. 11) for both dominant species

(Table 1) and secondary species (Table 2) were com-

puted for the seven levels of the hierarchical structure of

site clustering. The threshold level of 25 % for the index

chosen by Dufrêne & Legendre (1997) was used in this

analysis. The characteristic species for each site group

and the values of the index are shown in Table 3. For the

first hierarchical subdivision in two groups, only 69 %

of the total number of the dominant species were retained

Table 3. Variations of the indicator value (Eq. 10) with hierarchical levels shown in Fig. 3. Only species having indicator values

greater than 25 % were retained. Species labels for dominant species and rare species are those of Tables 1 and 2, respectively. The

indicator value is shown between parentheses and preceded by the number of the site group.

Number of site groups

Species label 2 3 4 5 6 7 8

Dominant species

ALLOSPP I(68) II(69) II(67) III(44);II(32) III(42);II(31) III(39);II(29) III(42)

ARGESIL IV(48) V(48) VI(44) VII(31) VIII(31)

ARGESPH II(70) III(67) III(77) IV(67) IV(55) VI(38);IV(31) VII(35);V(29)

ARNOIMP II(46) III(46) III(53) IV(52) V(72) V(61) VI(61)

ARNOLAT I(27) II(32) II(31) III(29) III(27) III(37)

ASPICUC II(46) III(40) III(44) IV(38) V(65) V(57) VI(54)

CALLLYR I(51) II(38) II(37) II(73) II(64) II(63) II(63)

CALLMAC II(25) III(28) IV(27) IV(27)

CAPRAPE II(74) III(74) III(77) IV(77) V(67) V(46);VI(33) VI(46);VII(33)

GADIARG II(62) III(61) IV(86) V(84) VI(80) VII(70) VIII(69)

ILLECOI II(83) III(82) III(76) IV(72) IV(67) VI(70) VII(69)

LEPIWHI II(63) III(61) III(39) IV(37) IV(30) VI(32) VII(32)

LESUFRI I(31) II(35) II(35) III(59) III(59) III(59) IV(58)

LOLIFOR II(58) III(53) III(41) IV(35) V(62) V(59) VI(58)

LOLIVUL I(44) I(80) I(80) I(66) I(66) I(66) I(54);II(26)

MERLMCC I(69) II(76) II(72) III(74) III(69) III(61) IV(58)

MERLMNG I(49) I(25) I(25) II(54) II(54) II(54) II(53)

MICRPOU II(97) III(97) III(72) IV(71) IV(74) VI(83) VII(83)

MOLVMOL V(43) V(40) VI(40)

MULLSUR I(56) I(56) I(48) I(48) I(47) I(43)

MUNIBAM II(26) III(26) IV(47) V(46) VI(45) VII(42) VIII(42)

NEPHNOR II(28) III(47) III(44) III(40) IV(40)

POMAMIN II(26) II(26) II(46) II(46) II(46) II(39)

RAJANAE II(32) III(32) V(36) V(30) VI(30)

SCYLCAN II(49) III(27) III(27)

SEPIELE II(44) III(42) III(49) IV(40) V(49) V(41) VI(33)

SEPISPP III(30) III(26) IV(25)

SPONCAN I(30) I(81) I(81) I(71) I(71) I(71) I(65)

TRISLUS I(50) I(41) I(41) I(32);II(27) I(31);II(26) I(30);II(25) II(40);I(26)

TRISMIN I(55) II(70) II(68);III(25) II(61) II(49) II(47) II(57)

Secondary species

BOOPBOO I(57) I(57) I(55) I(55) I(55) I(53)

CEPORUB II(27) II(26) III(28) III(27) III(26)

ELEDCIR V(33) V(32) VI(32)

GALEMEL IV(89) V(89) VI(89) VII(85) VIII(85)

HELIDAC IV(53) V(53) VI(47) VII(41) VIII(41)

HYPELAN I(36) I(36) I(30) I(30) I(30)

LEPIBOS IV(54) V(54) VI(52) VII(44) VIII(44)

LIMALIM II(32) II(32) II(32) II(45)

LIZARAM I(55) I(55) I(53) I(53) I(53) I(50)

MALALAE IV(66) V(66) VI(64) VII(58) VIII(58)

OCTOSPP IV(33) V(32) VI(31) VII(28) VIII(27)

PHYCBLE IV(58) V(57) VI(57) VII(56) VIII(56)

SOLESOL I(28) I(28) II(27)

TODASAG IV(45) V(45) VI(43) VII(36) VIII(36)

TRACDRA I(38) I(38) I(34) I(34) I(34) I(32)
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(see Table 1). Both zones (Fig. 5C) were dominated by

species with wider spatial distribution patterns, such as

blue whiting Micromesistius poutassou with an index

value of 97 % for the second zone (Table 3). Almost all

the blue whiting individuals were in the offshore zone

and were present in all of these sites. This species is as-

sociated with Illex coindeti, Capros aper, Argentina

sphyraena, Lepidorhombus whiffiagonis, Gadiculus

argenteus and Loligo forbesi. The indicator values of

these species were equal to or greater than 58 %. An-

other group of seven species (Scyliorhinus canicula,

Aspitrigla cuculus, Arnoglossus imperialis, Sepia

elegans, Raja naevus, Munida bamffia and Callionymus

maculatus) with lower indicator values for the same zone

was also distinguished. On the other hand, ten species

characterised the coastal zone (Table 3). The highest in-

dicator value of 69 % was obtained for hake Merluccius

merluccius. The maximum indicator value for most char-

acteristic species was obtained for higher hierarchical

levels, this is an indication of the heterogeneity of the

coastal habitats. For example, the species association of

Spondyliosoma cantharus, Loligo vulgaris and Mullus

surmuletus characterised the shallow water habitat for

the third hierarchical level. For the same level, the indi-

cator values of three characteristic species (Merluccius

merluccius, Trisopterus minutus and Alloteuthis spp.) of

the second coastal zone reached their maximum. The iso-

lation of smaller site groups made the apparition of sec-

ondary species in the list of indicator species possible

(Table 3). For example, after the third hierarchical level,

seven secondary species (Boops boops, Liza ramada,

Trachinus draco, Hyperoplus lanceolatus, Dicologo-

glossa cuneata, Trigla lucerna and Solea solea) were

identified as indicators of the shallow coastal zone.

The first subdivision of the offshore zone isolated the

break-shelf sites, characterised by the association of three

dominant species (Gadiculus argenteus, Argentina silus

and Munida bamffia) with seven secondary species (Ta-

ble 3). The highest indicator value for this group was

obtained for the secondary species Galeus melastomus

(89 %). The characteristic species of zone III (Fig. 6B)

were Capros aper and Argentina sphyraena, as their

maximal indicator value (77 %) was reached at this level.

The characteristic species of the next hierarchical level

(5 site groups) were indicators of the newly isolated

groups: Callionymus lyra for zone II (Fig. 6C) and

Lesueurigobius friesii for zone III (Fig. 6C). The sepa-

ration between the Southern Celtic Sea and the Bay of

Biscay habitats occurred in the sixth hierarchical level

(Fig. 6D). Table 3 shows the difference between these

Fig. 7. Detailed representation of depth distributions of the two newly obtained groups

of sites at each hierarchical level using box-and-whisker plots. For each aggregation

level only the two newly obtained groups of sites were shown. Arrows indicated the

hierarchical link between the different groups.

The box has lines at the lower quartile, median, and upper quartile values (represent-

ing the 25th, 50th and 75th percentiles of the sample, respectively). The whiskers are

lines extending from each end of the box to show the extent of the rest of the data.
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zones in terms of assemblages of indicator species. With

the exception of the species Capros aper, the maximal

indicator values for the Southern Celtic Sea zone were

obtained at this hierarchical level (Table 3).

The next levels did not result in any increase of indi-

cator values for any of the species. So, it was assumed

that the highest significant hierarchical level was attained

for the six site groups.

DISCUSSION

The development of remote sensing techniques has sig-

nificantly globalised approaches in spatially orientated

ocean research. Considering the development of tech-

niques using ocean colour detectors to estimate the pri-

mary productivity (Antoine & al. 1995) and water circu-

lation (Taupier-Lepage & Millot 1988), extrapolation to

estimate the productivity of the higher trophic levels (in

particular the exploited resources) remains currently dif-

ficult. All mono-species and non spatialized approaches

used in the past for fisheries management have shown

their limitations (Gunderson & al. 1995; Parsons 1995),

as an alternative the integrated ecosystem approaches

(Christensen & al. 1996; Larkin 1996) and spatially based

approaches (Ault & al. 1999) have been developed. In

order to improve these approaches, it is necessary to de-

velop broad scale monitoring and surveys of marine re-

sources. At present, there is an increasing demand to study

species assemblages in relationships with their habitats

and to study their temporal evolution or change with re-

spect to both fishing pressure and environmental change

(Gomes & al. 1995; Mahon & al. 1998). However the

current techniques used to analyse the databases coming

from bottom trawl surveys or catch data are based on

strong assumptions. These assumptions can go from sam-

pling programs involving a priori selected areas (Iglesias

1981) up to the visual delimitation of homogenous re-

gions after random sampling (Gomes & al. 1995). In the

absence of an objective statistical approach to separate

spatially homogenous zones according to their species

assemblages, the comparison of the temporal evolution

of these habitats and their biodiversity remains unsatis-

factory.

The regionalization of habitats based on the proper-

ties of their inhabitants is a classical approach in ecol-

ogy (Dufrêne & Legendre 1997). However, this approach

is limited because it relies too much on ecologically

meaningful descriptors, because the species compositions

and spatial distributions of species populations do not

only vary with the habitat type. The other direct approach

consisting in the description of all the characteristics of

a habitat is also limited as much by the knowledge of the

relevant characteristics of these habitats as that of the

volume of work needed. Until now, both approaches have

come up against difficulties in geographically represent-

ing the properties defined in a multidimensional math-

ematical space. Mahon & al. (1998) used principal com-

ponent analysis (PCA) and cluster analysis (CA) to map

fish assemblages from large spatio-temporal datasets. In

their study, assemblages were identified using arbitrary

threshold levels of species loadings on the principal com-

ponents (PCs). The top 5 % of the site scores for each

PC, were also arbitrarily used in identifying the main

sites of each assemblage. So, the same site can belong to

more than one map, increasing the difficulty in defining

clear boundaries between the biogeographical zones (see

Fig. 3 in Mahon & al. 1998). Moreover, the authors did

not perform any statistical tests showing the robustness

of their results based on the use of one random subset of

10 % of the data in CA. Mahon & al. (1998) considered

their results as being too preliminary to permit them to

conclude with serious management implications. They

also showed the necessity of the use of such results (as-

semblage maps) in the definition of boundaries for large

marine ecosystems. Although the notion of boundaries

is important, it is difficult to separate these objectively

in the previous studies, especially if the number of site

groups is low. Colvocoresses & Musick (1984) performed

CA on a pooled sites-species matrix constructed from

bottom trawl surveys over a 9-year period. They used

different symbols to map the various site groups. This

classically used representation is also limited when clear

boundaries have to be drawn or if seasonal (or inter-an-

nual) comparison between maps is to be made (for ex-

ample see figs 4 & 6 in Colvocoresses & Musick 1984).

In this paper the proposed method overcomes these

limitations and proposes an objective technique for de-

fining boundaries after regionalization of spatialised

databases. The first originality of the method is the ap-

plication of the regionalized variables theory to map

demersal species habitats. These techniques developed

for geological applications (Harff & Davis 1990; Harff

& al. 1993) are powerful tools for use in answering a

host of ecological questions that deal with the mapping

of multivariate databases. The computation of conditional

Bayesian probabilities for each site showed several ad-

vantages. Firstly, it was used to assess the level of within-

group heterogeneity. For example, for homogenous site

groups, each site is characterised by high conditional

probabilities of belonging to the same site groups. In other

situations, when one or more sites again show high prob-

abilities but this time in other site groups, the technique

reallocates them. In other words, the conditional prob-

ability is a measure of the power of belonging of a site to

a particular site group. In this paper, the vectors of maxi-

mal probabilities of sites were used to characterise each

level of hierarchical classification by an average prob-

ability value (see Figs 3-4). Another advantage of the
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use of conditional probabilities came from the objective

method in the establishment of boundaries between the

different zones (Fig. 5).

The method can be separated into three steps: i) the

clustering of site groups, ii) the calculation of conditional

probabilities, and, iii) the identification of assemblages

and indicator species. The last two steps were applied to

each hierarchical level. Each single step of the method

is not new in itself, however, the combination between

these different multivariate techniques developed for

different disciplines may be considered as a new applied

approach. This originality is further strengthened by the

flexibility of the algorithm and the numerous extensions

possible not to mention the use of various powerful

multivariate analyses. For this application, a hierarchi-

cal cluster analysis was used in the first step to classify

the different sites. However, all methods which are able

to produce a partition of sites into groups, such as k-

means or probabilistic clustering for example, may be

used in the first step of this method (see Legendre &

Legendre 1998). It is also possible to include partitions

obtained from other environmental data sets (Souissi &

al. 2000) or at least a priori partitions. In all cases, the

homogeneity of biological characteristics (e.g. demersal

assemblages in this paper) in the initial spatial partition

can be assessed by the computation of conditional prob-

abilities. In the example shown here, since the first

regionalization level (2 site groups), the computed aver-

age probability was relatively high (Fig. 3).

Several methods for regionalization have been devel-

oped in other spatially oriented disciplines e.g. soil sci-

ence (Goovaerts 1992), climate science (Comrie & Glenn

1998), water quality management (Boyer & al. 1997)

and recently in the monitoring of coastal ecosystems

(Souissi & al. 2000). The present algorithm can be fur-

ther applied to these studies. However, only

multinormally distributed data can be used in order to

compute the conditional probabilities (Harff & Davis

1990). Several mathematical transformation are proposed

for hydrological and physical parameters (Hernandez

Encinas 1994; Sokal & Rohlf 1995). When species

catches data were used (e.g. the present application) only

dominant species (low percentage of zeroes) were used

to compute conditional probabilities. In most multivariate

analyses, the elimination of secondary species is frequent

(Ibanez & al. 1993; Fromentin & al. 1997; Dufrêne &

Legendre 1997; and others). In this application, the sec-

ondary species matrix was also used in identifying indi-

cator species. It was shown that some secondary species

were indicators of the shallower coastal habitats while

others characterised the deeper habitat (see Table 3). This

remains a good demonstration of the role of considering

both global and local scales in studying the spatial or-

ganisation of demersal and benthic communities.

Instead of using the same cluster analysis approach in

the R mode (classification of species), indicator values

were used to discriminate between abundance in all sites

and the spatial heterogeneity of species distributions. The

added advantages of using indicator values are discussed

in Dufrêne & Legendre (1997).

The objective choice of cut off level of a dendrogram

is a common asked question in ecology. Few methods

are proposed in terms of numerical techniques (Feoli &

Lausi 1980; Legendre & Legendre 1998), and the com-

mon protocol is to use visual criteria and a priori knowl-

edge of the system studied (Hosie & al. 1997). In the

present study the solution of studying several succes-

sive hierarchical levels was adopted (Dufrêne &

Legendre 1991). The first analysis of variation in aver-

age probability value as a function of the hierarchical

level (Fig. 4) allowed for the selection of levels 2 to 8

site groups to take place. Then, the indicator value crite-

ria showed that the only significant hierarchical levels

were those from 2 to 6 site groups (Table 3). The

bathymetry seems to have been the most structuring fac-

tor for the demersal species habitats, with the exception

of the isolation of the southern Celtic Sea group (Fig. 7).

According to the indicator values (Table 3), the last group

was mainly characterised by 5 demersal fish species

(Arnoglossus imperialis, Capros aper and Aspitrigla

cuculus, Molva molva and Raja naevus). The first two

and the fifth are subtropical species, the third is a tem-

perate one and the fourth is boreal. As southern and north-

ern species coexist in this group, biogeography may obvi-

ously not justify the separation of this group from the

other groups of the Bay of Biscay. So, an explanation

must be sought at the ecological level. These 5 species

are most often associated with hard substrate bottoms

such as rock, gravel and sand (in FishBase, Froese and

Pauly 2001). The bottoms of the Bay of Biscay are mainly

muddy while hard bottoms dominate in the Celtic Sea

probably because of the strong hydrodynamical proper-

ties of this sea. Perhaps these species are found in the

Celtic Sea rather than in the Bay of Biscay as a result of

their bottom preferences. The characterisation of the

southern Celtic Sea area by this group of species may

therefore provide evidence for an ecological pattern so

far unnoticed.
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