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Abstract 

In the present contribution we will show that scheduling a lock having at least two identical chambers requires solving the 
identical parallel machine scheduling problem with unit processing times, release dates and sequence dependent setup times. The 
lock scheduling problem considers the order in which a number of ships should be transferred through a lock. A lock may have 
one or more parallel chambers of a different size, each requiring a certain amount of time to transfer any possible feasible set of 
ships, called a lockage, through the lock. A mathematical model and meta heuristic are proposed for solving this problem. 

Keywords: Lock scheduling, parallel machine scheduling, (meta) heuristics 

 

1. Introduction 

Sea ships often have to pass one or more locks in order to enter a port. These locks guarantee a constant water 
level at the docks simplifying both loading and unloading of ships. Similarly, inland ships often pass several locks 
when travelling on waterways. These inland locks keep the water at both sides of the lock at a constant, navigable 
level. 

A lock has at least one chamber, but may consist of multiple parallel chambers of different dimensions. Each 
chamber has a limited capacity and lockage duration, i.e. the time needed to change the water level in the chamber 
from one side to the other. Chambers should preferably not go in lockage empty or with only a small part of their 
capacity used, as this could result in excessive water usage and a possible disruption of the water levels. Changing 
the levels too infrequently, however, will result in very long waiting times for many ships, resulting in high costs for 
the shipping companies. The importance of limiting the water usage of a lock may depend on external factors such 
as the season e.g. increased flow due to heavy rainfall, etc. 

Lock scheduling characteristics depend on the type of ship to be transferred. Whereas for sea ships the lockage 
time depends on both size and maneuverability, the lockage time for inland ships on the other hand, can be 
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considered constant. Both cases, however, share the very same ship placement problem, even though different 
approaches for scheduling the lockages are required. 

The lock scheduling problem, besides scheduling, also considers some bin packing objectives and constraints. It 
therefore belongs to the category of structured problems, encompassing characteristics of more than one (known) 
combinatorial optimization problem. 

There are only few publications concerning the lock scheduling problem in academic literature. The optimal 
sequencing of tows/barges for single chamber locks with set-up times (Nauss, 2008) allows one tow/barge to be 
transferred at a time. It considers all tows/barges present at the lock before the first lockage, while reducing the 
water usage is not an issue. The applicability of different queuing models for lock capacity analysis (Wilson, 1978) 
shows that good queuing models exist for single chamber locks, but not for locks with parallel chambers. Different 
congestion solving strategies for the Upper Mississippi river are discussed by Campbell et al. (2007) and Campbell 
et al. (2009). On that river, barges are joined together into tows for transport, which need to be transferred by single 
chamber locks that are often smaller than the tow itself. The tow is split into different groups of barges and these 
groups are transferred one at a time, and are then rejoined for the next phase of their travel. Different strategies are 
considered for increasing the throughput of the locks and a simulation tool is built for validating the strategies. The 
lock scheduling problem with multiple parallel chambers was introduced by Verstichel and Vanden Berghe (2009). 
A problem specific heuristic is used to place ships in a chamber, and lockages are sequenced in a first come first 
served way. These initial results are improved by applying a late acceptance multiple neighborhood meta heuristic. 

In the following contribution, different types of lock scheduling problems with multiple parallel chambers are 
considered from the scheduling point of view. In the first place, such an approach entails the presentation of a 
mathematical model and a performance analysis for the scheduling problem. Later on, a meta heuristic approach for 
solving the problem is presented. In both stages, a high performance packing heuristic for placing ships in chambers 
(Verstichel et al. 2011) is used. 

2. Problem identification 

As indicated in the introduction, the lock scheduling problem can be decomposed into a bin  packing sub problem 
and a scheduling sub problem. The scheduling sub problem can be solved by assigning lockages to chambers. The 
chambers are the physical components of the lock in which ships are transferred from one level of the waterway to 
the other. Each chamber is defined by its type and initial state. The chamber’s type determines its dimensions 
(length and width), lockage duration (i.e. the time the chamber needs to change its water level) and the set of ships 
that can be transferred by the chamber. The chamber’s initial state defines the first available time of the chamber, 
and its state at that time (upstream/downstream). A lock may have multiple chambers, several of which can be of the 
same type. Each chamber type has two associated ship lists (one for each direction) which contain the ships that 
have to be transferred by the chambers of this type. We call a feasible configuration of ships with respect to the size 
of the chamber type a lockage. A lockage also has a direction and an earliest processing time, both depending on the 
ships in the lockage. The initial assignment of ships to the ship lists is based on the width of the ships, but can be 
changed during the solution optimization. An example of a lock scheduling problem is depicted in Figure 1. This 
problem has two identical chambers, six ships travelling upstream and seven ships travelling downstream. 

Figure 1. Visual example of  a lock scheduling problem with two identical parallel chambers.  
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From a scheduling point of view, a chamber can be considered as a machine, with chambers of the same type 
corresponding to identical machines. A lockage can be seen as a job, where each job can be processed on any 
machine of a particular type. As each lockage can be transferred by one chamber type only, the scheduling sub 
problem can be identified as an identical parallel machine scheduling problem. When the lock has chambers of 
different types, this problem will have to be solved for each chamber type individually. 

With respect to the processing times, two different cases need to be considered depending on the type of ship that 
needs to be transferred. When only inland ships need to be transferred, all processing times will be equal, since we 
can consider the time needed for ships to enter and exit the chamber to be constant. The situation changes when sea 
ships are taken into consideration. As these ships may require a long time to enter and exit a chamber depending on 
their size and on the chamber’s dimensions, the processing times will depend on the ships present in the lockage. 

A lockage cannot be processed before all the ships that have been assigned to that lockage have arrived at the 
lock. Therefore, release dates have to be added to the model. 

Due to physical limitations, the only way to change a chamber’s state is by processing a lockage. Therefore, 
consecutive lockages in the same chamber should be in opposite directions, and the addition of sequence dependent 
setup times to our model is required: There is no setup time between lockages in opposite directions and a setup time 
equal to the lockage time of the chamber type between any lockages in the same direction when they are transferred 
by the same chamber. 

Using this information, the scheduling part of the lock scheduling problem for inland ships can be identified as 
the identical parallel machine scheduling problem with unit processing times, release dates and sequence dependent 
setup times or P|ri, pi = p, sij|∑wiTi . When sea ships have to be transferred by the lock, the unit processing times no 
longer apply. 

In order to schedule lockages, ships must be assigned to them first. The set of ships that is assigned to a lockage 
influences the schedule because the ship arrival times determine the release date of the lockage. Using the example 
in Figure 1, a strong reduction of the waiting time for ships 7 and 8 (lockage 4) could be obtained by forcing ship 11 
into a later lockage (for example together with ships 12 and 13). It is clear that the scheduling algorithm should be 
able to influence the ship assignments to lockages. 

The packing heuristic used (Verstichel et al., 2011) employs a first come first served policy based on the position 
of the ships in the ship lists. This way, the ship to lockage assignments can be altered by simply changing the ship 
lists of the different chamber types. 

Two different approaches to scheduling-packing interaction are presented, depending on the properties of the 
scheduling algorithm. 

3. Mathematical model 

The scheduling sub problem of the lock scheduling problem was identified as an identical parallel machine 
scheduling problem with unit processing times, release dates and sequence dependent setup times. As mentioned, 
solving the sub problem requires solving this parallel machine scheduling problem for each chamber type of the 
lock. A mathematical model based on the mixed integer linear programming model of Balakrishnan et al. (1999) is 
explained in detail below. In a lock scheduling setting, their model requires an additional objective term, namely 
maximum tardiness. By combining this additional objective term with a precedence constraint (see constraint 9), we 
are able to obtain a ‘fair’ optimal solution, i.e. the solution with the smallest deviation from the first come first 
served policy with respect to the arrival times of the ships. These additions are necessary because shippers do not 
tolerate excessive waiting times for one individual. 

 
Variables: 
xij : lockage i precedes lockage j on the same machine 
yik : lockage i is transferred by chamber k 
ti : tardiness of lockage i 
ci : completion time of lockage i 
T : maximum tardiness 
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Constants: 
N : the number of lockages 
M : the number of chambers (of the current chamber type) 
ri : release date of lockage i 
di : due date of lockage i 
wi : weight of lockage i, depends on the number of ships that are assigned to lockage i, and their priority 
li : size of lockage i, i.e. the number of ships that are assigned to lockage i 
sij : setup time between lockage i and lockage j 
p : processing time of a lockage 
KT : relative importance of maximum tardiness 
L : large positive number 
 

 

The objective (1) minimizes the total weighted tardiness and the maximal tardiness. The weight of each lockage 
depends on the number of ships that are transferred by this lockage and their priority. Using the example from 
Figure 1 we can see that lockage 1 contains only normal ships, resulting in a weight that is equal to its size. Lockage 
5 on the other hand, contains a priority ship that is 5 times as important as a normal ship, making the lockage’s 
weight equal to 5. 

Constraint (2) expresses that each lockage is processed by exactly one chamber, while constraint (3) makes sure 
that variable xij can only take the value one when lockages i and j are assigned to the same chamber. This way a 
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strong reduction of the number of binary variables is possible, as M times less binary xij variables are needed, 
compared to using xijk. 

Constraints (4) and (5) are disjunctive and establish the relationship between the completion times of two 
lockages i and j iff both lockages are assigned to the same chamber. 

For a more detailed explanation of constraints (3), (4) and (5) we refer to the paper of Balakrishnan et al. (1999). 
The tardiness of each lockage is calculated using constraint (6). This constraint is valid, as the due date of a 

lockage is equal to its release date ri incremented with the processing time p of the chamber type. Constraint (7) 
guarantees that the release dates of the lockages are taken into account, while constraint (8) calculates the maximum 
tardiness over all lockages. Constraint (9) adds the first come first served rule with respect to the release dates of the 
lockages between all lockages that travel in the same direction and transfer the same number of ships. This 
constraint adds fairness to the model, making sure each lockage will be scheduled as close to its release date as 
possible, even if scheduling it later would not affect the objective. When looking at the example from Figure 1, this 
constraint will ensure that lockage 3 is processed before lockage 6. 

Finally, constraints (10) and (11) denote that the real variables are non-negative and (12) and (13) define the 
binary variables. 

While this model is able to solve the scheduling problem to optimality, it cannot directly influence the ship to 
lockage assignments. By changing the ship lists based on the waiting times of each individual ship and the total 
waiting time induced by each lockage, better ship to lockage assignments, with respect to the waiting times, could 
be obtained by the packing algorithm. For example, ships could be assigned to a later lockage, despite sufficient 
spare room in the previous lockage towards the water level aimed at. This could be the case when the arrival time of 
the ship is much later than the arrival time of the other ships in the lockage. Assigning ships or entire lockages to 
another chamber type in order to reduce congestion for a certain chamber type is another way to influence the 
solution quality. However, due to the long calculation times required for solving this mixed integer linear 
programming model (Section 5) this approach could not be investigated any further. 

4. Meta heuristic approach 

Next to the optimal MILP approach, we also developed a ‘simple random’ meta heuristic. This heuristic 
randomly selects one neighborhood at each iteration of the search and performs one move from this neighborhood, 
hence the name ‘simple random’. The following neighborhoods are used to influence the ship lists of the different 
chamber types in order to change the solution that is obtained by the underlying packing heuristic: 
 SwapShips: two ships in the ship lists are swapped, O(N2) 
 ShiftShip: change the position of a single ship within one ship list, O(N2) 
 ChangeChamberType: move a ship to another ship list, changing its chamber type assignment, O(MN2) 
 AddDummyShip: add a DummyShip to a shiplist, forcing the packing heuristic to close the current lockage 
 RemoveDummyShip: remove a DummyShip from a shiplist 

Evaluating any of the first three neighborhoods entirely is very time consuming, especially when the problem size 
increases. Different approaches exist to limit the number of moves that are evaluated at each iteration, without 
losing the possibility to obtain good results. Using tournament selection, a limited number of moves will be 
generated randomly for the selected neighborhood and the best of these moves will be applied to the solution. This 
approach is very fast, but cannot exploit any knowledge of the problem characteristics. Another possibility is the 
usage of the corridor method (Sniedovich and Voss, 2006). A time based corridor will reduce the size of the 
neighborhood by considering only the swaps and moves when the difference in arrival time between the affected 
ship(s) and their new neighbors does not exceed a certain threshold, thus only generating interesting moves. 
Although this method reduces the size of the neighborhoods in a very intelligent way, they may still be quite large 
when taking into account that a new packing must be calculated for every move. A combination of the corridor 
method and tournament selection tackles the disadvantages of both approaches, while keeping all of their benefits. 
By performing a tournament selection on the neighborhood after the corridor method has been applied, a small 
number of interesting moves is generated, allowing a fast and intelligent search. The difference between the three 
approaches is visualized in Figure 2. 



Jannes Verstichel et al. / Procedia Social and Behavioral Sciences 20 (2011) 806–815 811

Figure 2. Behaviour of the different approaches to reducing the size of the neighborhoods. Dashed lines represent the possible moves, full lines 
the selected ones. 

5. Experimental results 

The proposed scheduling approaches were tested on both randomly generated test instances and a test instance 
generated from historical data. The generated test instances from Verstichel and Vanden Berghe (2009) are available 
online. The instance based on historical data contains 2 different problems. The properties of the instances are added 
in Table 1. The exact solutions were obtained using Gurobi 4.0.1 under academic license, the meta heuristic was 
implemented using Java SDK 1.6. 

Table 1. Properties of the test instances. 

 
 
 
 
 
 
 
 
 

 

5.1. Initial solution 

An initial solution is constructed for each test instance based on the width of the ships. Each ship is assigned to a 
single chamber type based on the ratio of its width to that of the chamber. Each ship is assigned to the smallest 
chamber for which this ratio is smaller than the given WidthRatio. 

5.2. Exact approach 

The results on the smallest test instances (20 ships) show that the MILP model is able to decrease the total 
waiting time of the ships with up to 41%, with an average of 7%, compared to using a simple first come first served 

 Traffic properties Generated instances Real-life instances 

Mean inter arrival time (min) 5, 10, 15, 30 20, 10 

Number of ships 20, 100, 1000 258, 821 

Upstream/Downstream traffic 50/50, 30/70 53/47, 52/48 

Lockage duration (min) 16 16 

Lock properties Width (m) Length (m) #Chambers 

ChamberType 1 16 136 2 

ChamberType 2 24 200 1 
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scheduling approach. While this model requires less than 10 seconds to solve a single scheduling iteration for the 
smallest test instances, the solver timed out at 15 hours for most of the medium sized ones (100 ships). Due to these 
unacceptably long calculation times no further experiments were performed with the exact solution approach. 

5.3. Meta heuristic approach 

With respect to the simple random meta heuristic, the combination of tournament selection and the time based 
corridor was used to intelligently decrease the size of the neighborhoods. The parameters used for the meta-heuristic 
search are added in Table 2. The RangeFactor parameter is multiplied by the average inter arrival time of the 
problem to obtain the corridor range. A summary of the test results for a width fraction of 0.5 are shown in Table 3. 
From this table we can see that there is a significant difference in solution quality between the initial solution (first-
come-first-served) and the solution after optimization, both with respect to the number of lockages and the waiting 
times. Similar results are obtained for all instances and all parameter settings. No significant differences can be 
found between the different tournament factors (Table 5), while the heuristic does seem to favor the larger 
RangeFactor values (Table 3). Using a RangeFactor of either 5 or 11 is significantly better than using a RangeFactor 
of 3 (p-value = 0.043 and 0.023 respectively). However, within one RangeFactor setting, none of the tournament 
values proved to be significantly better than the others, and each tournament value obtained at least one best result.  

With respect to the calculation times, we can see from Table 4 that a larger tournament factor results in lower 
calculation times. This difference is significantly larger for the small instances compared to the large ones (42% and 
25% difference respectively). The calculation times do however stay below 3 minutes for all instances. The 
complete results showed that the RangeFactor variable doesn’t have a noticeable influence on the calculation time. 

Comparable results are obtained when applying the meta heuristic to the real life instances (Table 6). 

Table 2. Parameters for the meta heuristic search. 

Parameters  

Solution evaluations 8192 

RangeFactor 3, 5, 11 

Tournament factor 1, 2, 4, 8, 16, 32, 64 

WidthFraction 0.0, 0.5, 1.0 

Lockage cost 10000 

Waiting cost normal 1 

Waiting cost priority 10 
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Table 3. Solution cost for the different RangeFactors. 

  Range 3 Range 5 Range 11 

Instance FCFS Worst Best Worst Best Worst Best 

R-5-20-0.3 90674 90397 90397 80319 80221 80319 80221 

R-5-20-0.5 100456 80343 60468 80291 60462 60489 50392 

R-10-20-0.3 90735 90167 70493 90231 70493 80324 70344 

R-10-20-0.5 70770 70417 70242 70417 60743 70348 60473 

R-15-20-0.3 90790 90329 80323 80352 70739 80447 70477 

R-15-20-0.5 81255 81102 80983 80949 80863 80949 80808 

R-30-20-0.5 92557 81121 61324 80789 61268 70947 61035 

R-30-20-0.3 131002 120451 100777 120451 100777 120451 100773 

R-5-100-0.5 264302 232563 201997 242360 192476 242323 192591 

R-5-100-0.3 334255 312172 282437 301913 272382 292732 272118 

R-10-100-0.5 306679 263541 204271 243963 194486 244131 223677 

R-10-100-0.3 327019 323344 263293 283658 262913 293235 263420 

R-15-100-0.3 370293 334571 294195 334103 304205 314747 264863 

R-15-100-0.5 318765 296218 275780 287334 246970 284920 254591 

R-30-100-0.5 290694 282225 245104 264498 245911 281154 235245 

R-30-100-0.3 341291 301491 283917 309981 274253 312167 279065 

R-5-1000-0.5 2539708 2438786 2357166 2470234 2376183 2469078 2388469 

R-5-1000-0.3 3093681 3000189 2877804 2979889 2839175 3008119 2790620 

R-10-1000-0.3 3088698 2953624 2895618 2964393 2819403 2962412 2851919 

R-10-1000-0.5 2640480 2461824 2337813 2454852 2376227 2439635 2356457 

R-15-1000-0.5 2793050 2555545 2451980 2533703 2417599 2456512 2381604 

R-15-1000-0.3 3123528 2990670 2895380 2955111 2868767 2966380 2854645 

R-30-1000-0.5 2870770 2571033 2503169 2585353 2473281 2609229 2504350 

R-30-1000-0.3 3307445 3149461 3050117 3176708 3053168 3177629 3032352 

Table 4. Average calculation times in seconds for each instance size. (RangeFactor = 3) 

 Tournament 

Instance size 64 32 16 8 4 2 1 

20 ships 1.07 1.32 1.57 1.54 1.57 1.61 1.79 

100 ships 9.92 10.14 10.53 11.51 11.69 12.36 12.51 

1000 ships 121.40 127.87 139.59 143.60 146.07 151.79 162.00 
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Table 5. Results for the different TournamentFactors, best results in Bold (RangeFactor = 3) 

 Tournament 

Instance 64 32 16 8 4 2 1 

R-5-20-0.3 90397 90397 90397 90397 90397 90397 90397 

R-5-20-0.5 60468 60468 60468 60468 80343 70327 60472 

R-10-20-0.3 90167 70528 90167 70493 70528 70493 70493 

R-10-20-0.5 70348 70385 70417 70385 70348 70242 70348 

R-15-20-0.3 80333 80333 80323 80323 80339 80333 90329 

R-15-20-0.5 80983 80983 81043 81043 81102 81043 81043 

R-30-20-0.3 120451 100845 100777 100845 110554 100837 110554 

R-30-20-0.5 71039 81121 71131 71363 61324 81032 71001 

R-5-100-0.3 302034 292123 312172 301983 282437 292224 292627 

R-5-100-0.5 222661 222516 222300 222258 232563 201997 222394 

R-10-100-0.3 283662 263293 283528 263574 283449 323344 283811 

R-10-100-0.5 225681 233334 204271 204851 263472 224504 263541 

R-15-100-0.3 313876 294195 313462 314127 334571 313655 314029 

R-15-100-0.5 287357 285446 286549 286734 285507 296218 275780 

R-30-100-0.3 284034 283917 301491 290560 293126 294133 295227 

R-30-100-0.5 282225 255554 245104 264582 263796 271984 247038 

R-5-1000-0.3 3000189 2980394 2899995 2917470 2919269 2916801 2877804 

R-5-1000-0.5 2393373 2428192 2438172 2357693 2357166 2408063 2438786 

R-10-1000-0.3 2945261 2902087 2896486 2953624 2895618 2898664 2915441 

R-10-1000-0.5 2443210 2418288 2337813 2452318 2436907 2395728 2461824 

R-15-1000-0.3 2990670 2947101 2941368 2927949 2895380 2919649 2929408 

R-15-1000-0.5 2555545 2456129 2507843 2451980 2509993 2489131 2475990 

R-30-1000-0.3 3141672 3149461 3132612 3083649 3140002 3050117 3081737 

R-30-1000-0.5 2571033 2533312 2503169 2509765 2535609 2506795 2527228 

Table 6 : Results on the real life instances. 

  Tournament 

Range Instance 64 32 16 8 4 2 1 

55 min 
1 2565455 2504252 2476326 2538958 2562103 2558631 2603714 

2 749423 721485 760829 742998 752410 714398 759509 

110 min 
1 2511436 2585627 2524617 2520795 2506440 2486312 2526859 

2 722046 726621 743357 739649 760458 764094 725686 

165 min 
1 2510295 2546149 2503074 2508378 2506593 2524941 2467405 

2 686993 755792 765181 740793 721844 710124 767906 

 

6. Conclusion and further research 

We have presented two approaches for the scheduling sub problem of the lock scheduling problem. Besides, two 
different methods for the scheduling algorithms to influence the behavior of the packing algorithm were proposed. 
While it was impossible to solve medium and large problems in an acceptable time period using the MILP model, 
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results of the meta heuristic approach show that considerable improvements of the solution quality can be obtained 
in short computation times. A thorough analysis of experiments on both generated and real life instances did 
however show that there is no specific parameter setting that is significantly better than all others. Such a conclusion 
entails that the combination of a meta heuristic and a high performance packing heuristic is a promising technique 
for solving the lock scheduling problem, but further research is required in order to obtain the best results. 

Further research will first focus on using other meta heuristics and determining the efficiency of each 
neighborhood. These results will be compared to the other results for the lock scheduling problem, available in 
literature. Furthermore, other approaches to the mathematical model will be investigated, in order to obtain better 
relaxations and decrease the computation time. 
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