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There is a considerable body of information regarding bacterially enhanced corrosion, however, this review focuses
on diatoms (unicellular algae) whose contribution to biocorrosion is less well studied. The reasons why diatoms have
been neglected in studies of biocorrosion in natural waters are discussed and the question whether diatoms should be
considered as inert with respect of electrochemical processes is considered. A particular focus is given to the case of
stainless steels (SS), which are widely used in variety of applications in natural waters. Basic information on the cell
biology of diatoms is included in the review, particularly with respect to their ability to ‘sense’ and adhere to
surfaces. Investigations at the nanoscale are reviewed as these studies provide information about the behavior of
cells at interfaces. Recent advances include the use of atomic force microscopy (AFM), although only a few studies
have been applied to diatoms. Regarding the electrochemical behavior of SS, the mechanisms by which diatoms
influence the potential ennoblement process is discussed. Such studies reveal the association of diatoms, in addition
to bacteria, with biocorrosion processes.
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Introduction

Owing to their outstanding resistance to corrosion,
stainless steels (SS) are extensively used in many
applications involving contact with biological com-
pounds/solutions. They are used in the food industry
(Jullien et al. 2003; Whitehead et al. 2011) and in the
manufacture of vascular stents, guide wires, or other
orthopedic implants (Hanawa 2002; Ratner et al.
2004). In addition, SS are frequently utilized in many
structures located in marine and freshwater environ-
ments, including port installations, cooling water
circuits, and ships and related equipment. When
exposed to humid and non-sterile media, SS are
usually colonized by a variety of microorganisms,
which adhere and grow to form biofilms. This fouling
process strongly affects the performance of the
material and may cause its deterioration.

Over the two past decades, considerable progress
has been made towards understanding the nature and
mechanisms relative to (i) the adhesion of microorgan-
isms and (ii) microbiologically influenced corrosion
(MIC). Many experiments in natural media, or
employing strains isolated from natural sources, have
demonstrated the role of bacteria in biocorrosion (for
reviews see Beech 2004; Beech and Sunner 2004;
Mansfeld 2007; Little et al. 2008). By contrast, diatoms

have attracted little interest, either in terms of
biofouling, but particularly with respect to biocorro-
sion, in spite of the fact that they make up the
dominant biomass on all wetted and illuminated
surfaces (Wetherbee et al. 1998).

Understanding the behavior of diatoms on SS
surfaces requires an understanding of the complexity
of the interface. In this review, a description of how
diatoms interact with SS surfaces in a range of aqueous
media is presented, including natural waters (seawater,
estuaries, lakes and freshwater) and other waters
associated with human activities (dam-water, waste-
water, domestic water). Details are presented to
illustrate key points: (i) physico-chemical features of
SS surfaces, (ii) biochemical properties of the diatom
cell surface, including composition, structure and
recognition, and (iii) metabolic activities that influence
the electrochemical response of SS.

Regarding the adhesion of diatoms, relevant
features involved in cell–surface and cell–cell interac-
tions have been gained through the application of
atomic force microscopy (AFM) to probe live cells
at the nanoscale (Hinterdorfer and Dufrene 2006;
Dufrêne 2008; Muller and Dufrene 2008; Dupres et al.
2010). Some studies have reported promising results
implicating diatoms in the electrochemical behavior of
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SS upon immersion in aqueous media. However, there
is a lack of more basic knowledge of the mechanism by
which diatoms, by themselves or via their metabolites,
influence the free corrosion potential of SS. The
following reasons may be relevant: (1) microbiologists
are more familiar with the biology of bacteria and tend
to favor investigations on this class of microorganisms;
(2) bacterial biofilms are a serious cause of persistent
infections (eg Costerton et al. 1999), thus research
focuses on bacteria of biomedical interest compared to
other microorganisms; (3) many bacteria responsible
for an electrochemical effect are already well-known
(Ismail et al. 1999; Shi et al. 2002; Dumas et al. 2008a;
Mansfeld 2007; Parot et al. 2011) while the involve-
ment of diatoms, which may have a key role in these
processes, is still not fully understood.

This review aims to point out particular aspects,
either experimental or conceptual, which are of
primary importance to understanding the behavior of
diatoms on SS surfaces, and more generally, at
interfaces between materials and aqueous media. An
analysis of the different hypotheses reported in the
literature indicate a connection between diatoms and
the electrochemical response of SS. Considering these
aspects is essential in order to make progress in
deciphering interfacial mechanisms involved in fouling
and biocorrosion processes.

Exposure of SS in natural waters

SS passive film

The surface properties of SS depend strongly on the
presence of an oxide passive layer that forms during
exposure of the bare alloy to an oxidising medium.
Passivity results from the thermodynamic instability of
the metal which tends to become covered by a film that
insulates the material from the medium (Pourbaix
1963). Passivity occurs by anodic dissolution followed
by the formation of a thin layer, typically with a
thickness of a few nanometers (Olsson and Landolt
2003). The driving force of passive film growth and
stability is the potential gap between the metal and the
solution, inducing a high electrical field (up to 106 V
cm71) (Baroux et al. 1990). Passive film growth may be
controlled by electrochemical polarization, or may
occur spontaneously in the presence of an oxidising
agent (electron acceptor). Theoretical aspects of the
passivation process were reported in detail by Sato
(1990). Passive film formation slows down ionic
transport and thus metal dissolution, leading to a
substantial resistance to corrosion in conditions to
which the bare metal would react significantly. Details
regarding the properties of passive films (composition,
structure, electronic properties and stability have been
reviewed elsewhere (see Olsson and Landolt 2003, and

references therein). It is now well established that the
high corrosion resistance of SS in a wide range of
aqueous media is due to the ability of the passive film
to adapt to changes induced by physico-chemical
parameters (eg ionic strength, pH, potential) or
microbiological activities.

Regarding physico-chemical properties, in common
with other metals and oxides, SS surfaces exhibit high
surface energy, which can be reduced by the adsorption
of organic species (Kinloch 1990; Mantel et al. 1995;
Caillou et al. 2008). The distribution of surface charge
of the passive film is associated with the presence of the
electrical double layer that implies the dependence of
surface charge on pH (Bockris and Reddy 1970).
Accurate measurement of the surface charge of the
passive film remains difficult due to experimental
considerations (Lefèvre et al. 2006). Values approach-
ing the point of zero charge (PZC) were reported for
many oxides using zeta-potential measurements. The
PZC value obtained on a standard SS was reported to
be around 3–4 (Boulangé-Petermann et al. 1995).
Accordingly, a SS surface is negatively charged in
natural waters (pH *6–8).

Surface conditioning and biofilm formation

In the first seconds to minutes that follow the
immersion of SS or other metal and alloys in natural
waters, the surface becomes covered with inert material
present in the liquid phase, namely ions, macromole-
cules (proteins, polysaccharides, lipids), and inorganic
materials. This leads to the formation of a film,
commonly called the primary or conditioning film
(Loeb and Neihof 1975), which strongly modifies the
physico-chemical properties of the SS surface (Char-
acklis and Cooksey 1983; Little and Jacobus 1984;
Callow and Fletcher 1994; Taylor et al. 1997; Jain
and Boshle 2009). Details of the ways in which the
surface physico-chemistry of SS are changed by the
adsorbed film have been discussed elsewhere (Schnei-
der 1996; Schneider et al. 1997). In the marine
environment, the accumulation of proteins and
carbohydrates was observed on SS surfaces (Com-
père et al. 2001).

Microorganisms interact with the surface and
firmly adhere, owing to the secretion of extracellular
polymeric substances (EPS). This step, usually con-
sidered as irreversible, leads through cell division and
further recruitment, to the formation of biofilm, which
is a highly hydrated polymeric matrix. The formation
of biofilms is detailed in numerous reports (eg
Characklis and Marshall 1990; Flemming and Geesay
1991; Geesey et al. 1994; Flemming et al. 2009). The
influence of the major biochemical compounds which
constitute the conditioning film, ie proteins and
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carbohydrates, on the adhesion of microorganisms was
investigated by Jain and Bhosle (2009). Although
bacteria are considered to be the initial colonizers,
followed by diatoms, other algae and invertebrate
larvae, this trend should be considered carefully as the
relationship may not always be sequential or causally
related. For example, diatoms can attach to clean
surfaces in the absence of bacteria (Cooksey 1981). The
morphology of biofilms has evolved from the uniform
representation of Hamilton (1985) to the 3-D ‘mush-
room-shaped’ model described by Costerton et al.
(1994). The characterization of biofilms in terms of
composition and three-dimensional structure was
made possible by the development of 3-D mapping
techniques, microanalytical devices, new fluorochrome
markers and fiber-optic sensors, which allowed ana-
lyses of the liquid phase within the biofilm to be
performed with minimal disturbance (Stoodley et al.
1994; Strathmann et al. 2002; Grossmann et al. 2007;
Hu et al. 2007; Ganesh and Radhakrishnan 2007).
Even so, making generalizations about biofilm struc-
ture and physiological activities are difficult, although
it is well established that biofilms permit the permea-
tion of nutrients, extracellular enzymes and metabo-
lites that are necessary for the survival of
microorganisms and their growth (Lappin-Scott and
Costerton 1995; Jenkinson and Lappin-Scott 2001;
Sutherland 2001).

The development of biofilms on a SS surface
creates a complex SS/biofilm interface where multiple
and diverse processes take place, including: (1)
modification of the SS passive film in terms of
composition, morphology and physico-chemical prop-
erties as a function of the medium, in particular in
terms of the range of microorganisms and related
biomacromolecules (Ismail et al. 1999; Yuan and
Pehkonen 2007; Landoulsi et al. 2008b); (2) biofilms
may be considered as a multi-compartment system
involving numerous chemical reactions and mass
transport processes and include: (i) a semi-continuous
liquid phase, containing ions, other chemical com-
pounds, and macromolecules, (ii) microorganisms that
may be aggregated, (iii) solid particles, including
cellular debris with a variable level of dispersion and
reactivity, (iv) a macromolecular gel, composed largely
of sugar polymers (eg polymers of glucose, galactose
and mannose) (Christensen and Characklis 1990;
Bhosle et al. 1995) and (v) one or several interfaces
in contact with the metal surface where adsorbed
substances and compounds, originating from metal
dissolution, accumulate. Studying the SS/biofilm inter-
face is thus a challenge. The most promising method
adopted consists of monitoring the electrochemical
behavior of SS during immersion in natural waters.
This approach allows information to be acquired

in situ without noticeable disturbance of the interface.
Recent progress regarding the electrochemical beha-
vior of biofouled SS is detailed below.

Potential ennoblement

The free corrosion potential (Ecorr), also called open
circuit potential (OCP), has been recognized as a
relevant parameter to characterize the electrochemical
behavior of SS in natural waters in situ. Mollica and
Travis (personal communication) were the first to
report that Ecorr shifted towards anodic values upon
immersion of SS in natural waters. This potential shift
considerably exceeds the one related to SS surface
passivation and reaches values higher than þ200 mV/
SCE in most cases. The term ‘ennoblement’ was used
to describe this phenomenon, but it does not mean that
the surface becomes more resistant against corrosion.
When the potential increases towards anodic values it
could come close to the pitting potential (Ep) and
affects the stability of the passive film.

Ennoblement has been observed in seawater,
independent of parameters related to the composition
(eg geographic location, season, immersion depth,
hydrodynamic factors) or to the SS material (SS
composition and microstructure, surface roughness,
geometrical sample form) (Scotto et al. 1985; Bardal
et al. 1993; Scotto and Lai 1998; Feron et al. personal
communication; Fischer et al. personal communica-
tion). It appears that the various parameters only
influence the time which precedes ennoblement and/or
the rate of increase in potential. In contrast to
seawater, a generalization appears to be more difficult
to make for natural freshwaters, including estuaries,
rivers and lakes. This is due to a high variability related
to the composition of the water and microbial activity
as a function of location. Nevertheless, ennoblement
has been reported to occur systematically in natural
rivers (Dickinson and Lewandowski 1996; Dickinson
et al. 1996a; Marconnet et al. 2008; Landoulsi et al.
unpublished data). Ennoblement was also observed in
other low chloride media such as domestic waters
(Percival et al. 1998a, 1998b) and dam-waters (Liao
et al. 2010).

Diatoms: the predominant biofouling community

Although the literature on biofouling and resulting
issues related to biocorrosion is dominated by studies
on bacteria, biofilms formed on SS surfaces and other
metal and alloys are typically dominated by diatoms,
especially when SS surfaces are illuminated. Many
authors have recorded diatoms on a SS surface when
studying ennoblement in a wide range of media. The
main results, summarized in Table 1, show the
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diversity of diatoms, independent of immersion condi-
tions and SS type. In other reports, some authors have
mentioned the presence of diatoms on SS surfaces
without identification of the species (Scotto et al. 1986;
Motoda et al. 1990; Mansfeld et al. 1994; Videla 1994;
Mattila et al. 1997). Cooksey et al. (1980) showed that
the initial colonization of SS coupons by diatoms
exposed in Biscayne Bay (Florida) was light depen-
dent, but after the first cells attached, it was not
possible to distinguish between further colonization
and the division of attached cells that had adhered to
the substratum first. In any event, the number of cells

on the surfaces increased logarithmically during each
light period over 1 week. There was no increase in cell
density at night. In short-term laboratory-based
experiments, adhesion of diatoms in the dark was far
less than in the light. Figure 1 shows SS samples after
immersion in a natural river using environmental
scanning electron microscope (ESEM). The dominat-
ing presence of diatoms either in close contact with the
SS surface (Figure 1A) or when the surface is well
covered with biofilm (Figure 1B) is apparent. In these
cases, Ecorr was observed to reach values ranging
from þ200 to þ400 mV/SCE (Landoulsi et al.

Table 1. The main diatom species identified on stainless steel surface after immersion in natural waters at different locations.

Species Medium Location SS Type Reference

Gomphonema spp. Freshwater (Tasmania, Australia) Not specified Andrewartha et al. (2010)
Freshwater Not specified Rao et al. (1997)

Cymbella Freshwater (Tasmania, Australia) Not specified Andrewartha et al. (2010)
Estuary (India) Not specified Mitbavkar and Anil (2000, 2008)
Freshwater Not specified Rao et al. (1997)
River (Oise, France) 304L, 316L, 254SMO Landoulsi et al. (unpublished data)

T. flocculosa Freshwater (Tasmania, Australia) Not specified Andrewartha et al. (2010)
Synedra Freshwater (Tasmania, Australia) Not specified Andrewartha et al. (2010)
Cylindrocyst Freshwater (Tasmania, Australia) Not specified Andrewartha et al. (2010)
Diploneis Seawater (Indian coast) 316 Eashwar et al. (2009)

Estuary (India) Not specified Mitbavkar and Anil (2000, 2008)
Navicula Seawater (Indian coast) 316 Eashwar et al. (2009)

Seawater (Brazil) 904L, super duplex de Messano et al. (2009)
Estuary (India) Not specified Mitbavkar and Anil (2000, 2008)
Freshwater Not specified Rao et al. (1997)

Climacosphenia Seawater (Indian coast) 316 Eashwar et al. (2009)
Seawater (Brazil) 904L, super duplex de Messano et al. (2009)

Cocconeis River (Seine, France) 304L, 316L, 254SMO Marconnet et al. (2008)
Freshwater Not specified Rao et al. (1997)
Estuary (India) Not specified Mitbavkar and Anil (2000, 2008)
River (Oise, France) 304L, 316L, 254SMO Landoulsi et al. (unpublished data)

Amphora Seawater (Brazil) 904L, super duplex de Messano et al. (2009)
Estuary (India) Not specified Mitbavkar and Anil (2000, 2008)
Freshwater Not specified Rao et al. (1997)
River (Oise, France) 304L, 316L, 254SMO Landoulsi et al. (unpublished data)

Bleakeleya notata Seawater (Brazil) 904L, super duplex de Messano et al. (2009)
Striatella unipunctata Seawater (Brazil) 904L, super duplex de Messano et al. (2009)
Nitzschia Seawater (Brazil) 904L, super duplex de Messano et al. (2009)

Freshwater Not specified Rao et al. (1997)
Estuary (India) Not specified Mitbavkar and Anil (2000, 2008)
River (Oise, France) 304L, 316L, 254SMO Landoulsi et al. (unpublished data)

Manguinea rigida Seawater (Brazil) 904L, super duplex de Messano et al. (2009)
Navicula spp. Seawater (Brazil) 904L, super duplex de Messano et al. (2009)
Licmophora sp. Seawater (Brazil) 904L, super duplex de Messano et al. (2009)

Freshwater Not specified Rao et al. (1997)
Cylindrotheca Seawater (Brazil) 904L, super duplex de Messano et al. (2009)

Estuary (India) Not specified Mitbavkar and Anil (2000, 2008)
Pleurosigma spp. Seawater (Brazil) 904L, super duplex de Messano et al. (2009)
Achnanthes Estuary (India) Not specified Mitbavkar and Anil (2000, 2008)

Freshwater Not specified Rao et al. (1997)
Fragilaria Freshwater Not specified Rao et al. (1997)
Rhoicospheria Freshwater Not specified Rao et al. (1997)

River (Oise, France) 304L, 316L, 254SMO Landoulsi et al. (unpublished data)
River (Oise, France) 304L, 316L, 254SMO Landoulsi et al. (unpublished data)

Gomphoneis olivaceum Freshwater Not specified Sekar et al. (1998)
Melosira varians River (Oise, France) 304L, 316L, 254SMO Landoulsi et al. (unpublished data)
Gyrosigma River (Oise, France) 304L, 316L, 254SMO Landoulsi et al. (unpublished data)
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unpublished data). The presence of bacteria is not
obvious from the images, but cannot be ruled out as
samples were immersed in natural river water. A
heterotrophic bacterial film requires a source of
organic carbon for growth and since the level of free
organic material is relatively low in natural waters, the
initial bacterial film is probably carbon-limited. Dia-
toms, however are autotrophic and thus require only
carbon dioxide and nutrients for growth and these are
usually not limiting. Once the diatom film is estab-
lished, a mutualistic relationship between diatoms and
bacteria will be developed. Although the primary film
is generally dominated by bacteria, especially after
immersion for *1 day, the first major accumulation of
biomass is attributed to diatoms (Cooksey et al. 1980,
1981).

General biology of diatoms

Diatoms are eukaryotic microalgae that form brown
coloured ‘slimes’ on wet illuminated surfaces. They
vary in size from about 2 mm to several hundred mm,
but are most commonly in the range 10–100 mm. The
cell wall (frustule), composed of silicon dioxide,
consists of a top and bottom (hypotheca and epitheca)
valve, the two valves being held together by girdle
bands. Some diatoms have one or two slits (raphes) in
the cell wall. Traditional taxonomists use, among other
criteria, the shape, size and ‘decoration’ of the silica
frustules (eg number of ridges and pores) and presence/
absence of a terminal pore(s) to speciate diatoms
(Figure 2). Since diatom cells respond to stress by
altering their shape, and even in unstressed situations
they change their size when they divide, distinguishing
between diatoms at the species level is challenging.
When compared to similar technology used for
bacteria, molecular taxonomy using 18s-RNA is not
well developed. Although RNA extraction of cells can
be made, the database available for comparisons is still
scarce. Two main groups of diatoms can be designated
viz. centric and the pinnate diatoms. The former shows
radial symmetry of the frustules and the latter exhibits
bilateral symmetry. Diatoms are found in all aquatic

environments either in the water column (planktonic)
or attached to surfaces (episammic or more generally,
benthic). It is the attached organisms that cause
biofouling. Attachment and motility are achieved via
EPS secreted through the raphe slit(s), thus only
raphid diatoms have these attributes (see review by
Molino and Wetherbee 2008). Diatoms are most often
obligately autotrophic, but some are facultative
heterotrophs, many are mixotrophic and a few, having
no chloroplast, are obligately heterotrophic (Chansang
and Cooksey 1977; Werner 1977).

Diatoms at the nanoscale

Diatoms exhibit unusual cell surfaces, compared to
other common fouling microorganisms, which differ-
entiates them when adhered in biofilm. Investigating
diatoms at the nanoscale may help to decipher how
diatoms interact and adhere to SS surfaces. Different
techniques have been successfully used for the char-
acterization of diatoms including scanning electron
microscopy (SEM) and transmission electron micro-
scopy (TEM) (De Stefano et al. 2003; Hildebrand et al.
2008), X-ray photoelectron spectroscopy (XPS) (Tes-
son et al. 2009), small angle X-ray scattering (SAXS)
(Vrieling et al. 1999), confocal microscopy (Groger
et al. 2008), Fourier transform infrared spectroscopy
(FTIR) (Kiefer et al. 1997) and Raman mapping
(Kammer et al. 2010). Traditional SEM and TEM are
the most frequently used and high resolution images
have provided information about the ultrastructure of
diatom surfaces. However, such techniques are per-
formed on dried samples and only provide limited
information regarding adhesion. Recently, a quartz
crystal microbalance with dissipation monitoring
(QCM-D) has been used to this end (Molino et al.

Figure 1. SEM images of diatom fouling of SS surfaces
after exposure in natural river (Oise, France), showing the
presence of (A) Cocconeis and (B) Cymbella sp.

Figure 2. Micrograph of Amphora sp., showing the
presence of EPS on a solid surface. This organism has two
raphes (one is visible) both of which are on the ventral
surface.
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2006, 2008). QCM-D allows the adhesion of diatoms
to solid surfaces to be investigated, but spatial
heterogeneity of the secreted adhesives is difficult to
take into account. The use of atomic force microscopy
(AFM) overcomes the limitation of the aforemen-
tioned methods by allowing a single living cell to be
imaged (Muller and Dufrêne 2008; Dupres et al. 2010).
Although the pioneering AFM experiments on dia-
toms were carried out on dried samples (Linder et al.
1992), imaging of cells in the native and hydrated state
was quickly exploited (Crawford et al. 2001; Higgins
et al. 2002, 2003a; Gebeshuber et al. 2003). In addition
to not requiring a conductive layer that is required for
SEM, AFM enables experiments with minimal pre-
liminary sample preparation. Losic et al. (2007a) used
AFM to reveal details of frustule structure of
Thalassiosira eccentric at the nanoscale, showing that
the frustules are built from silica nanoparticles, with
sizes varying from 20 to 70 nm. In another study,
AFM was used to image the surface structure of
Phaeodactylum (Francius et al. 2008a), a pennate
diatom possessing three different morphotypes (ovoid,
fusiform and triradiate). Fusiform cells were of an
elongated shape in which the girdle region resulting
from the valve overlapping was resolved (Figure 3B).
Examination of the triradiate forms confirmed pre-
vious SEM images and revealed cells with three arms

emerging from a central core and forming a star
(Figure 3D, E). The ovoid morphotype was two to
three times smaller than the two other morphotypes
(Figure 3G). High resolution images revealed a
rougher surface and ‘streaks’ following the scanning
direction (Figure 3I). The authors suggested the
presence of secreted polymers involved in adhesion
and gliding motility, as reported elsewhere (Chiovitti
et al. 2003; Dugdale et al. 2006a). Gebeshuber et al.
(2003) determined the thickness of the layer of EPS
covering the siliceous frustules to be about 10 nm for
benthic species, while more accurate measurements
showed a thickness between 9–24 nm, depending on
the species (Hildebrand et al. 2009).

The elastic properties of the cell surface can also be
obtained from AFM nanoindentation measurements
performed on the siliceous cell walls. For example,
Navicula pelliculosa has an elastic modulus varying
from 7 to hundreds of GPa, depending on the location
on the frustules (Almqvist et al. 2001). These values are
similar to those found for silica. Other results showed
that the elastic modulus varied at different parts of the
frustules of Coscinodiscus sp. ranging from *2 GPa
for the cribrum to *15 GPa for the internal plate
(Losic et al. 2007b). By comparison, the elastic
modulus of EPS secreted from the cell was found to
be much lower, varying from 250 to 750 kPa (Higgins
et al. 2003a, 2003b). Francius et al. (2008a) investi-
gated the cell wall elastic properties of different
morphotypes of P. tricornutum. Elastic modulus values
for the three morphotypes were lower than the GPa
values reported for the walls of siliceous diatoms
(Almqvist et al. 2001; Losic et al. 2007b) and differed
from one morphotype to another. Indeed, the cell wall
of the silicified ovoid form was found to be around
five-fold stiffer (elastic modulus of *500 kPa) than
that of the two non-silicified forms (*100 kPa). In
some situations, elasticity maps revealed heteroge-
neous contrast, as observed in the fusiform cell in
Figure 4. The girdle region appeared softer (*80 kPa)
than the valve (*320 kPa), suggesting that the girdle
has a lower silica content and is enriched in organic
material.

Diatoms in biofilms

Comprehensive reviews of the involvement of diatoms
in marine microfouling have been published elsewhere
(eg Cooksey and Wigglesworth-Cooksey 2001; Cook-
sey et al. 2009). Diatoms form the bulk of the initial
colonizing biomass on surfaces immersed in the marine
environment (Cooksey 1981; Callow 1986; Wetherbee
et al. 1998) and diatom biofilms generate hydrody-
namic drag on vessels (Bohlander 1991; Schultz et al.
2011). A detailed description of the diatom community

Figure 3. AFM deflection images recorded in aqueous
solution for the fusiform (A–C), triradiate (D–F) and ovoid
(G–I) morphotypes of Phaeodactylum tricornutum. Labels V,
G and S correspond to the following features: valve, girdle
region and streaks. The features highlighted by the asterisks
in (H) reflect tip convolution artifacts. Reproduced with
permission from Francius et al. (2008a).
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which adheres to a range of ship hull coatings can be
found in a recent report by Zargiel et al. (2011).
Although there is more information appertaining to
marine than freshwater biofilms, the biology of cell
adhesion is likely to be similar. Attachment of all cells
to surfaces (Berridge et al. 1998) is controlled by
intracellular calcium levels (Cooksey et al. 1980;
Cooksey 1981; Wetherbee et al. 1998). The intracel-
lular calcium concentrations that invoke metabolic
responses in all cells are changes in concentration in
the range 1077–1076 M. A tenfold difference in
environmental calcium levels between freshwater (ca
1 mM) and marine water (ca 10 mM) is not likely to be
significant since intracellular calcium levels are 1000
times smaller. Thus, conclusions based upon studies of
marine organisms are likely to be generally applicable.

Early work on the design of antifouling (AF)
surfaces can be found in the publications of Baier
(1980), Characklis and Cooksey (1983) and Wiggles-
worth-Cooksey et al. (1999). Basic conclusions were
that surfaces of intermediate surface energy (ca 25
dynes cm71) were the least hospitable to cells in
general and diatoms in particular, although cells
attached to all substrata whatever their surface proper-
ties. Since this early work, there have been major
advances stimulated by the need for fouling protection
of marine structures without the release of toxic
materials into the environment. Thus, AF coatings

have become more complex. Recent studies using
different strategies to control slimes dominated by
diatoms can be found in the literature (eg Molino et al.
2009; Dobretsov et al. 2011; Patil and Jagadeesan
2011; Zargiel et al. 2011). Whereas earlier efforts used
simple chemistries to generate differences in wettability
of surfaces, more recent efforts have focused on mixed
polymers. For example, Sommer et al. (2010) used
siloxane-polyurethane coatings based on aminopropyl
terminated polydimethylsiloxane (PDMS). Urethane
polymers alone have little fouling resistance, but
provide mechanical strength whereas siloxanes, which
are not mechanically strong, have fouling-release (FR)
properties. The layering of these two components
provided a coating with the positive properties of each
component resulting in lower adhesion of bacteria,
diatoms and macroalgae. The AF properties of
polysiloxane polymers were also improved by the
inclusion of tethered biocides (quaternary ammonium
compounds (quats)), which were not released from the
coating (Majumbar et al. 2008). Whilst coatings with
18 carbon length quats were effective in inhibiting
bacterial biofilm formation, 14 carbon quats were most
effective in inhibiting growth of the diatom Navicula
sp. This technology demonstrates a two pronged
attack on fouling control; the quat has AF properties,
while the low surface energy surface reduces adhesion
strength ie enhances FR. It has been shown that more
hydraulic force is required to remove diatoms from a
hydrophobic siloxane FR surface than to remove
young plants of the macroalga Ulva (Cassé et al.
2007); the same relationship has been shown for other
coating systems (see Bennett et al. 2010; Finlay et al.
2010). Since the extracellular adhesives of potential
fouling organisms are diverse, it may not be possible to
design a universal FR coating (Cooksey et al. 2009).

There is little information about AF coatings for
application to SS that are specifically designed to resist
diatoms. However studies performed on other surfaces,
as described above, are expected to be generally
applicable to chemically-modified SS surfaces. A wide-
spread procedure to modify SS surfaces consists of
grafting silane coupling agents onto the passive oxide
film to form an anchoring layer (Landoulsi et al. 2011),
and to use the amino-end groups to attach various
molecules of AF interest, especially polymers. Other
procedures of surface functionalistion have been also
applied on SS, including the self-assembly of long chain
aliphatic molecules with different headgroups, such as
carboxylic acids, phosphonic acids and thiols (Shustak
et al. 2004; Mahapatro et al. 2006; Raman and Gawalt
2007; Raman et al. 2010; Kruszewski and Gawalt 2011).

Since it appears that modifications to the surface
energy of substrata, aimed at reducing adhesion do not
prevent the adhesion of all fouling organisms, the

Figure 4. Mechanical properties of the ovoid girdle (G)/
valve (V) interface of Phaeodactylum tricornutum diatom. (A)
Deflection image (dashed line indicates the interface); (B)
elasticity maps (z-range ¼ 1000 kPa) corresponding to the
inset image in (A); (C) typical force-indentation curve; (D)
distribution of elasticity values (n ¼ 1024 force curves).
Reproduced with permission from Francius et al. (2008a).
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question arises what properties of the surface could be
altered to discourage/reduce cellular adhesion, ie what
would be an ideal AF surface? One possible approach
would be to alter the surface chemistry of a coating in
order to induce a specific response by the potential
fouling cell or larva. A number of recent papers have
reported the benefits of using amphiphilic coating
systems that present both hydrophobic and hydro-
philic domains on the surface; such coatings show
excellent AF and FR properties for both diatoms and
macroalgae (eg Dobretsov and Thomason 2011;
Martinelli et al. 2011; Sundaram et al. 2011).

There are also a number of concepts that moderate
diatom adhesion. It has been shown that diatoms can
sense sugars when presented as a concentration
gradient (Wigglesworth-Cooksey and Cooksey 1992)
and that an intracellular calcium concentration flux
may be involved. The ability to sense the presence of a
sugar was investigated using Amphora coffeaeformis
and positive and negative taxis was found, depending
on the sugar used. The ‘conditions’ for sensing
involved orientation of a hydroxyl group at position
2 of the pyranose ring as well as the diatom being able
to move towards a sugar gradient, suggesting the
diatom cell has a sophisticated array of cell surface
receptors. Support for the idea of sensing is found in
the work of Wetherbee et al. (1998), who showed that
cells of Stauroneis decipiens were able to re-orientate so
that the raphe slit in the cell wall is on the ventral side
of the cell, instead of being uppermost. They postu-
lated that surface recognition allowed the cell to
‘search’ for the substratum by strands of polymer
secreted through the raphe slit. The strands then
contract allowing the cell to turn so that motility is
possible. The involvement of calcium transients in
sensing has been shown in Phaeodactylum tricornutum
and A. coffeaeformis (Falciatore et al. 2000; Cooksey
et al. 2009). Further information was provided by
Thompson et al. (2008) who investigated the ability of
diatom cells to detect and respond to the surface
energy of the substratum. Cells adhere more strongly
to hydrophobic surfaces and it would be reasonable to
assume that the adhered state is preferable for survival.
Thompson et al (2008) measured the cellular level of
nitric oxide, a general stress indicator found across the
biological kingdom, in diatom cells on hydrophobic
and hydrophilic surfaces. The level of nitric oxide was
four-fold higher in cells on a hydrophilic surface (glass)
than those on a hydrophobic surface (silicone)
indicating that hydrophobic surfaces were less stress-
ful. Molecules that induce stress in fouling organisms
are candidates for inclusion in AF coatings, especially
if they can be incorporated covalently into the coating.
One such molecule is trans-trans-2,4- decadienal (DD)
which has been implicated as a chemical defense

molecule in that it inhibits invertebrate grazing of
phytoplankton (Ianora et al. 2004, 2006). DD gen-
erates nitric oxide bursts which produce apoptosis, ie
programmed cell death. As DD is produced by
diatoms, it could be the trigger that causes clumps of
diatoms to disperse (Wigglesworth-Cooksey et al.
1999). DD caused a rapid loss in motility and cells
became permeable to Sytox Green 1 (a vital dye) soon
afterwards (Cooksey et al. 2009). Based on the finding
of Thompson et al. (2008), the inhibition of cellular
sensing may be a promising strategy. Since such
molecular control mechanisms are often similar across
biology, sensory inhibition may be a general AF
strategy for organisms from both the plant and animal
kingdoms. Such an approach would be applicable to
metal and alloys, including SS and could provide a new
way to design an efficient AF surface to prevent the
adhesion of diatoms in natural waters. In a review on
diatom adhesion, Molino and Wetherbee (2008)
concluded that ‘many questions remain unanswered’.
Research is especially needed regarding the interac-
tion between biofilm bacteria and diatom adhesion.
It has been suggested that photorespiration in
diatoms caused by a reduced oxygen diffusion in
the biofilm matrix can be controlled by its utilization
by heterotrophic bacteria (Wigglesworth-Cooksey
et al. 2001). Diatom-bacterial interactions have
been investigated by (Murray et al. 1986; Wiggles-
worth-Cooksey et al. 2001, 2005), but more work is
needed in this area.

Diatom adhesion: guidelines for the future

Upon contactwith a surface, adhesion forces aremediated
by the physico-chemical properties of the substratum and
those of the microorganism, eg hydrophobicity and
surface charge. Although substratum properties are easily
measured using traditional techniques of surface char-
acterization, knowledge of cell surface properties at the
single cell level remains challenging.

It is now established that the siliceous cell wall of
diatoms is covered by an organic envelope composed
of polysaccharides, proteins, and glycoproteins (Hecky
et al. 1973; Staats et al. 1999; Chiovitti et al. 2003) and
that adhesion of diatoms on surfaces is associated with
the secretion of mucilaginous material (EPS) (Hoag-
land et al. 1993). Diatom EPS have some common
attributes; most are carbohydrate-based polymers with
some protein content, which provides the ability to
bind to both hydrophilic and hydrophobic substrata.
However, analyses of extracted polymers, eg by time of
flight mass spectroscopy, provides only limited infor-
mation compared to in situ sampling because extrac-
tion techniques may introduce artifacts (de Brouwer
et al. 2006).
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AFM has been used to determine the adhesive and
mechanical properties of individual proteins secreted
by live diatoms cells (Dugdale et al. 2005, 2006a,
2006b). Force curves recorded for the benthic diatom
Toxarium undulatum revealed a regular sawtooth-like
pattern, which is a reliable signature of modular
protein unfolding. Dugdale et al. (2005) hypothesized
that single adhesive nanofibers were each made of a
specific number of modular proteins aligned in
parallel, forming a cohesive unit. The modular and
flexible nature of these proteins conveys both strength
and toughness, making it ideally suited for adhesion to
the substratum. However, one question remains: what
is the contribution of each of these macromolecules in
the attachment of diatoms to a surface? The use of
force spectroscopy with modified tips will provide
insight into the distribution of specific sugar moieties
on live diatoms, while AFM tips functionalized with
specific antibodies should resolve protein mapping.
Such studies will aid understanding of the physical
properties of diatom EPS.

Cell probe

Diatoms can be used as probes to investigate cellular
adhesion. Bowen et al. (1998) were the first to use a
single, living, immobilised cell as a ‘cell probe’ for the
study of cell-surface adhesion. Following this study, a
large variety of cell probes from different microorgan-
isms have been used, including fungal spores (Bowen
et al. 2002; Wargenau and Kwade 2010), yeast cells
(Bowen et al. 2001) and bacteria (Dague et al. 2010). In
the biofouling and biocorrosion contexts, recent experi-
ments have been performed to probe the interaction
between bacteria immobilized on an AFM tip and
different metal surfaces, including SS (Sheng et al. 2007,
2008). Despite the interest in this approach to probe
interactions between cells and surfaces, very few studies
have been reported using diatoms.Arce et al. (2004) used
AFM to compare the adhesion of Navicula sp. to
surfaces of different physico-chemical properties. Live
diatom cells were immobilized at the end of tipless
cantilevers and both hydrophobic and hydrophilic
surfaces were tested with the same diatom probe to
avoid artefacts (Figure 5A). Force vs distance curves
revealed comparable cell adhesion strengths on Inter-
sleek1 and mica, indicating that Navicula secretes EPS
with both hydrophobic and hydrophilic properties
(Figure 5B).

Chemical properties of the cell surface

Ahimou et al. (2002) used AFM tips functionalized
with ionizable carboxyl groups (COO7/COOH) to
probe the surface charges of Saccharomyces cerevisiae

at the nanometer level. Force–distance curves were
strongly influenced by pH: no adhesion was measured
at neutral/alkaline pH, while multiple adhesion forces
were recorded at acidic pH. The change of adhesion
force as a function of pH was interpreted as resulting
from a change of cell surface electrostatic properties.
Using a similar approach, it has been shown that
hydrophilic (OH) and hydrophobic (CH3) tips can be
used to map cell surface hydrophobicity (Dufrêne

Figure 5. Cell probe experiments (A and B). (A) SEM
micrograph of a single diatom cell attached with epoxy glue
to an AFM tipless cantilever; (B) representative force vs
distance curves obtained with bioprobe diatoms in the
stationary phase on Intersleek (a–c) and mica (d–f)
surfaces. The work of detachment, W, is given in fJ units
(10715 J) for each curve. The arrow represents the approach
and retraction directions. Reproduced with permission from
Arce et al. (2004). Nanoscale structure and hydrophobicity of
Aspergillus fumigatus. (C) Deflection image and (D) adhesion
force map obtained with a hydrophobic tip on SDS-treated
conidia, revealing highly correlated structural and
hydrophobic heterogeneities. Reproduced with permission
from Dague et al. (2007). Detecting individual galactose-rich
polysaccharides on LGG bacteria (E and F). (E) AFM
deflection image of single LGG bacteria trapped into porous
polymer membrane and adhesion force map (inset, gray
scale: 200 pN) and (F) representative force curves recorded
with PA–1 tip on LGG wild-type. Reproduced and adapted
with permission from Francius et al. (2008b).
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2000). Moreover, this technique, called chemical force
microscopy (CFM) now makes it possible to map the
spatial arrangement of chemical groups on live cells
(Alsteens et al. 2007; Dague et al. 2007; Hu et al. 2011).
Using CFM with hydrophobic tips Dague et al. (2007)
demonstrated large adhesion forces on the surface of
Aspergillus fumigatus conidia, reflecting strong hydro-
phobic properties, in agreement with the presence of
hydrophobins in the outer rodlet layer. Variations in
hydrophobicity on a single cell could also be resolved,
revealing contrasted hydrophobicity between rodlet
and polysaccharide regions (Figure 5C, D). These
studies demonstrate that chemically functionalized tips
enable quantitative measurement of surface properties
at the subcellular level and could be of interest to
probe the distribution of EPS on live diatoms.

Identifying cell surface proteins and polysaccharides

Force spectroscopy experiments using biospecific tips,
ie tips in which specific biological molecules are
immobilized, have been shown to be particularly useful
in identifying individual polysaccharides and proteins
on living cells, and to measure their adhesion (Dupres
et al. 2005; Dufrêne 2008). Notably, force spectroscopy
offers a means of probing the conformational proper-
ties of microbial polysaccharides (Camesano and Abu-
Lail 2002; Abu-Lail and Camesano 2003; Camesano
et al. 2007). For example, AFM tips modified with
lectins were used to specifically detect, localize and
analyse individual polysaccharides on live Lactobacil-
lus rhamnosus GG (LGG) (Francius et al. 2008b,
2009). Two types of polysaccharides were identified
using AFM tips functionalized with two polysacchar-
ide-specific lectins (Figure 5E, F). Additionally, the
properties of the polysaccharide (distribution, adhe-
sion, extension) of LGG wild-type were markedly
different from those of a derived mutant impaired in
terms of adhesion, biofilm formation and exopolysac-
charide production.

Implication of diatoms in electrochemical processes

Oxygen plays a pivotal role in processes associated
with biocorrosion of SS as it is involved in both abiotic
and biotic mechanisms, which influence the electro-
chemical behavior of these alloys (Landoulsi et al.
2008a). The involvement of diatoms in these processes
may be mediated by photosynthetic activity, which
produces O2 at the SS/biofilm interface. Though this
has not been shown directly in biocorrosion studies,
many reports in the literature suggest that diatoms are
involved. The role of aerobic activities within biofilms
on the electrochemical behavior of SS is detailed
below.

Mechanism of ennoblement involving aerobic activities

Since early observations on the potential ennoblement
of SS in natural seawater (Mollica and Trevis 1976),
many hypotheses have been proposed to explain the
interfacial processes involved in ennoblement. How-
ever, progress which has been gained regarding the
structure and properties of biofilm changed the vision
of researchers regarding its role. Taking into account
the high level of biofilm heterogeneity and thus of the
SS/biofilm interface, some hypotheses have been
revised (for recent reviews see Beech et al. 2005;
Mansfeld 2007; Landoulsi et al. 2008a).

Within the biofilm, oxygen is involved in the
metabolic pathways of many microorganisms. It acts
as a final electron acceptor in the oxidation process of
organic molecules, eg lipids and sugars, or inorganic
species such as manganese. Due to energetic considera-
tions, the reduction reaction of oxygen leads to the
formation of highly reactive free radicals or molecular
species. Such intermediate products, commonly called
reactive oxygen species (ROS), are involved in
biocorrosion because their reactivity is higher than
that of oxygen itself.

Biogenic formation of H2O2

Hydrogen peroxide (H2O2) is one of the main
intermediates of the oxygen reduction reaction. The
presence of H2O2 has been reported within biofilms
formed on SS surfaces immersed in natural seawaters
(Dickinson et al. 1996b; Xu et al. 1998; Washizu et al.
2004) and freshwaters (Marconnet et al. 2008; Liao
et al. 2010; Landoulsi et al. unpublished data). In these
studies, the concentration of H2O2 was detected in the
range of several mM. The generation of H2O2 is
governed by two antagonist processes: (i) production
by enzymes using O2 as electron acceptors (oxidases)
and (ii) degradation by enzymes involved in the defense
of microorganisms against oxidative stress (catalases,
peroxidases).

The generation of H2O2 in biofilms has attracted
much interest in biocorrosion studies, owing to the
ability of H2O2 to influence the electrochemical
behavior of SS. In natural waters, cathodic processes
on SS are mainly due to the oxygen reduction reaction.
However, H2O2 exhibits a redox potential (E8 ¼ 1.776
V/SHE), significantly higher than that of oxygen
(E8 ¼ 1.228 V/SHE), making it a good candidate to
initiate ennoblement.

Enzymatic system

Previously, it has pointed out that the biogenic
generation of H2O2 is at the crossroads of many
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enzymatic reactions and plays a key role in the
ennoblement of SS. Hence, there is growing interest
in using purified enzymes in electrochemical tests to
study SS ennoblement (Landoulsi et al. 2008a). In
particular, an enzymatic system mimicking the genera-
tion of H2O2 in biofilms has been used. To this end,
glucose oxidase (EC. 1.1.3.4) was used, which catalyzes
the formation of H2O2 by converting glucose into
gluconolactone, then spontaneously decomposed in
gluconic acid (Equation (1)):

D-glucose ðC6H12O6Þ þO2þH2O!
D-glucono-1; 5-lactoneðC6H12O7Þ þH2O2

ð1Þ

In addition to practical experimental considera-
tions, the choice of this enzyme was justified by the fact
that glucose, the substrate of the enzyme, is the major
sugar in polysaccharides present in natural waters and
glucose has also been detected in biofilms formed on
SS surfaces (Bhosle et al. 1990). Furthermore, the
amount of H2O2 produced may be adjusted to be in the
range of few mM, as observed in natural biofilms.
Electrochemical tests using this enzyme have been
performed in natural sterilized seawater (Amaya and
Miyuki 1995, 1997, 1999; Dupont et al. 1998), in
artificial seawater (Amaya and Miyuki 1995, 1997,
1999) and artificial freshwater (Landoulsi et al. 2008c;

Marconnet et al. 2008). Experimental parameters
relating to enzymatic activity, including pH and the
ratio of enzyme and substrate, were optimized to be
relevant to biocorrosion studies. Ennoblement oc-
curred similar to that observed in natural waters
reaching values ranging from þ250 to þ350 mV/SCE.
In synthetic freshwater, simulating natural rivers,
ennoblement was observed on SS type 316L whether
H2O2 was generated in situ (ie produced by the
enzymatic reaction) or added to the solution (Figure
6A). By combining electrochemical measurements and
detailed surface characterization by XPS, it was shown
that ennoblement was due to the electrochemical effect
of H2O2. Furthermore, modification of the passive film
during immersion was not sufficient to initiate such
ennoblement (Landoulsi et al. 2008c), even if it
influenced cathodic processes, especially the oxygen
reduction reaction (Le Bozec et al. 2001). These
findings were reinforced by further electrochemical
measurements, which showed an increase in cathodic
current density in the vicinity of Ecorr, when H2O2 was
present in the solution (Figure 6B).

Landoulsi et al. (2008d) elaborated a SS-modified
electrode based on an enzyme immobilization method,
to concentrate enzymatic activity near to the SS
surface. This strategy was aimed at mimicking the
physico-chemical conditions of the SS/biofilms inter-
face (ie depletion of oxygen and production of oxidant
species). Moreover, it allowed the activity of the
immobilized enzymes to be preserved longer, since
the polymer film confined the enzyme in a stable
configuration and thus avoided its inactivation. When
glucose oxidase was immobilized in a polymeric film
coated onto a SS surface (Figure 6C and D) H2O2 was
mainly produced within the polymeric film according
to Equation (1), leading to local accumulation. This
was accompanied by a strong depletion of oxygen near
the SS/film interface, owing to the fact that (i) the
polymeric film partially hindered access of dissolved
oxygen to the SS surface and (ii) the oxygen was
consumed by the entrapped enzymes (Figure 6D).
These experiments provided information about the
cathodic processes and demonstrated the separate roles
of O2 and H2O2 in ennoblement. The same approach
was applied on SS, based on the use of a wire beam
electrode to mimic the heterogeneity of the SS/biofilms
interface (Wang et al. 2009). These authors showed a
heterogeneous distribution of potential and current
due to the generation of H2O2 catalyzed by glucose
oxidase.

Consequences on corrosion behavior

Although the mechanism of ennoblement involving
H2O2 and related species is now known, one issue of

Figure 6. Panel (A) and (B). Electrochemical
measurements in laboratory controlled model (Ecorr

evolution and cathodic polarization curves, respectively).
H2O2-induced ennoblement obtained in synthetic freshwater,
simulating natural rivers, (a) before and after the addition of
(b) H2O2 (2 mM, pH*8), (c) free or (d) immobilized
enzymes. Panels (C) and (D). Schematic representation of
the enzymatic system used to generate H2O2. When enzymes
(designated ‘E’) are free (C), the formation of H2O2 occurs
randomly in the solution, while immobilized enzymes (D)
catalyze the reaction near the SS surface, leading to an
enrichment of H2O2 and depletion of O2.
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primary importance in biocorrosion studies still
remains poorly understood, viz. does ennoblement
lead to localized corrosion of SS?

In natural waters, although the systematic feature
of ennoblement is well established, pitting corrosion or
other forms of localized corrosion, were not always
observed. The correlation between ennoblement and
corrosion is still a topic of debate. On the one hand,
some authors have observed a beneficial effect of
biofilms against corrosion and reported the notion of
inhibition of MIC. This observation stems from the
presence of EPS secreted by bacteria or other micro-
organisms (Mansfeld 2007; Videla and Herrera 2009),
leading to protection against corrosion for several
metal and alloys (Chongdar et al. 2005; Stadler et al.
2008). On the other hand, the pitting corrosion of SS
has been investigated using the enzymatic generation
of H2O2 to mimic aerobic activity of biofilms (Land-
oulsi et al. 2009). The results showed that the presence
of H2O2 may limit pit propagation, leading to a
noticeable shift of the pitting potential. From the
electrochemical point of view, the involvement of H2O2

both in ennoblement and in the pitting corrosion
behavior of SS may be explained on the basis of anodic
and cathodic branches, as depicted in Figure 7. All
these findings enable reappraisal of the commonly
acknowledged hypothesis that ennoblement increases
the risk of localized attacks. Both EPS and dissolved
compounds, such as H2O2 and related species, may
play a beneficial role in protecting SS against localized
corrosion. Hence, ennoblement does not necessarily
increase the susceptibility of the passive film to pitting.

Light-dependent ennoblement

The effect of light on Ecorr evolution has been investigated
by exposing SS to dark conditions (Dexter and Zhang
1991; Little et al. 1991). Little et al. (1991) observed that
immersion of SS in natural seawater lead to the
formation of biofilms which were dominated by diatoms.
However, the presence of the biofilms did not result in an
ennoblement of Ecorr. On the basis of dissolved oxygen
profiles through the biofilm and microprobe pH mea-
surements, the authors suggested that diatoms modify the
interfacial chemical properties by influencing the local
oxygen concentration and the pH.

In a later report, periodic fluctuations of Ecorr were
observed on SS immersed in natural waters (Marutha-
muthu et al. 1993). Interestingly, these variations were
concomitant with the day/night cycle, suggesting a light-
dependence of Ecorr evolution. These findings implicate
diatoms through their photosynthetic metabolism. The
authors suggest that the ‘loss’ of ennoblement is due to a
decrease in the pH induced by a significant proportion of
acidophilic sessile bacteria (*50% of the total aerobic
bacteria), creating an unfavorable pH for enzymatic
reactions. Ennoblement is restored because photosynth-
esis by diatoms produces alkalization within the biofilm
(Maruthamuthu et al. 1993).

An alternative hypothesis to explain ennoblement
through the photosynthetic activity of diatoms was
reported by Eashwar and Maruthamuthu (1995). The
authors proposed a hypothetical model, based on the
work of Little et al. (1991) involving a change in pH
and dissolved oxygen within the biofilm near the SS/
biofilm interface. However, their interpretation is not
straightforward because the heterogeneity of the
biofilms was not taken into account. The authors
used a homogenous layer to describe the microbial
biofilm present on the SS surface, which is now
accepted as too simplistic as the high heterogeneity
of biofilms is now well known. For instance, the use of
microelectrodes demonstrated that the concentration
of oxygen decreased with increasing depth into the
biofilm (Little et al. 1991; Xu et al. 1998). However, the
spatial distribution of oxygen inside the biofilm is
difficult to determine with accuracy. Recently, a three-
dimensional map of oxygen concentration revealed the
existence of some highly concentrated pockets of
oxygen within the biofilm (De La Rosa and Yu 2005).

In more recent studies, the day/night cycle-depen-
dance of Ecorr upon immersion of SS in natural river
and in fresh-dam water has been reported (Marconnet
et al. 2008; Liao et al. 2010). In both studies, the
authors reported the dominating presence of diatoms on
the SS surfaces. It was shown that Ecorr increased at
night and decreased during daytime (Figure 8). The
potential values fluctuated as a function of the day/night

Figure 7. Hypothetical polarization curves of the cathodic
and anodic processes on SS under MIC conditions: before
(t ¼ 0) and after (t) the formation of H2O2, causing a
cathodic and an anodic response. These mechanisms result in
the shift of both the corrosion potential (Ecorr) and the pitting
potential (Ep) towards anodic values.
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cycle with an amplitude 5þ200 mV. In contrast,
without light, the diurnal fluctuations were reduced
and the Ecorr was kept at a value *þ400 mV/SCE.

The correlation between light-dependent ennoble-
ment and corrosion remains obscure. As mentioned
above, the major issue relates to the complexity of the
interface. Furthermore, it must be kept in mind that
sunlight may influence the physical properties of the
passive film, as it behaves as a semiconductor. In the
marine environment, Eashwar et al. (2011) have
demonstrated the influence of exposure to sunlight
on the susceptibility of SS to localized corrosion.

How may diatoms be involved in ennoblement?

Because of the dominant presence of diatoms on SS
surfaces, considerable care in interpreting the

electrochemical behavior of SS, namely potential
ennoblement, is necessary. The light-dependence of
Ecorr evolution suggests the involvement of diatoms on
the ennoblement process. The question of the mechan-
ism by which diatoms, directly or via their metabolism,
influence the potential of SS potential is difficult to
answer because few studies based on electrochemical
tests on SS using pure cultures of diatoms are
documented. Furthermore, as mentioned above the
biofilm ensemble is a heterogeneous complex. An
analysis of data reported in the literature reveals the
possibility of different mechanisms, as follows: (1)
Direct action on Ecorr via photosynthetic metabolic
activity in various aqueous media (Maruthamuthu
et al. 1993; Ishihara and Tsujikawa 1998; Marconnet
et al. 2008; Liao et al. 2010) although photosynthetic
metabolism did not inhibit potential ennoblement
(Liao et al. 2010). The latter was deduced from
observations under reduced illumination (Figure 8A)
and may explain why ennoblement occurred in dark
conditions. Furthermore, the electrochemical response
time of the SS electrode indicated that the variation in
day/light potential could be attributed to enrichment/
depletion cycles of oxygen at the SS/biofilm interface
(Figure 9, process a). It is easily understandable if the
Nernst equation is considered, which predicts that
production of oxygen would increase the electrode
potential and vice versa. A future challenge is to
examine this mechanism by means of real-time
measurements of dissolved oxygen close to the SS/
biofilm interface. (2) Direct action mediated by diatom
metabolites, in particular ROS, that react with the SS

Figure 8. Light-dependent evolution of Ecorr on SS
samples. Panel (A). Potential variation recorded in (a)
natural exposure conditions (dam-water), (b) the same
without light and (c) the same after addition of filter. Panel
(B). Detailed Ecorr variation in a short period: the grey
shaded regions indicate the night periods. Reproduced and
adapted with permission from Liao et al. (2010).

Figure 9. Proposed metabolic pathways to explain the
possible involvement of diatoms in influencing the
electrochemical behavior of SS. (a) Direct action via
photosynthetic metabolic activity, influencing physico-
chemical conditions of the SS/biofilm interface; (b) direct
action via the effect of other diatom metabolic substances:
production of reactive oxygen species (ROS) due to oxidative
stress; (c) Indirect action by providing metabolic products,
namely oxygen, to other microorganisms: potential
metabolic interactions within the biofilms between diatom
(phototrophic) and bacteria (heterotrophic).
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surface. Indeed, as observed in other microorganisms,
the oxidative stress of diatoms may lead to the
production of H2O2 or other ROS (Figure 9, process
b). These processes were observed in diatoms and other
algae that were exposed to various forms of stress
including mechanical stress, variation of light or
temperature, addition of herbicides (Collén et al.
1994; Sundström et al. 1996; Abrahamsson et al.
2003). Although the mechanism remains poorly under-
stood, it was shown that stress induced H2O2 may be
related to the formation of volatile halocarbons
involving haloperoxidase-catalyzed reactions (Wever
et al. 1991). This process was recorded for the diatom
Pleurosira laevis (Abrahamsson et al. 2003). The
generation of ROS was also observed for Nitzschia in
response to the toxic effect of redox-active compounds
and their copper complexes. (Stauber and Florence
1985; Florence and Stauber 1986). The effect appears
to be due to inhibition of the enzyme that breaks down
H2O2 formed during oxidation of copper compounds.
H2O2 may react with lipids to form hydroxyl radicals
or diffuse into the extracellular space. OH. and
superoxide radicals (O2

.) are also generated extra-
cellularly (Florence and Stauber 1986), but they did
not influence the growth of diatoms. The production of
H2O2 and related species in biofilms was reinforced by
recent studies, in which the presence of diatoms on
ennobled SS samples was accompanied by the produc-
tion of a significant amount of H2O2 (Marconnet et al.
2008; Liao et al. 2010; Landoulsi et al. unpublished
data). (3) Indirect action by providing metabolic
products, namely oxygen, to other heterotrophic
microorganisms present in the biofilm. Ishihara and
Tsujikawa (1998, 1999) examined the potential for
ennoblement by incubating SS samples in two stages:
in ‘stage I’, SS was immersed in natural seawater for
several days in a way that potential ennoblement did
not exceed * þ100 mV/SCE. In ‘stage II’, SS samples
were transferred to a diatom-enriched solution in
which ennoblement reached * þ400 mV/SCE. The
authors observed that ‘stage II’ alone could not lead to
significant ennoblement and that ‘stage I’ was needed.
These findings may imply two processes: (i) without
‘stage I’, diatoms are not able to adhere to the SS
surface, possibly due to the physico-chemical proper-
ties of the interface, (ii) ennoblement is the result of the
combined activities of diatoms and bacteria, based on
the production of oxygen by diatoms and its con-
sumption by heterotrophic bacteria as described above
(Figure 9, process c). That heterotrophic bacteria may
influence photorespiration in diatoms supports this
scenario (Wigglesworth-Cooksey et al. 2001). Other
investigations on diatom-bacterial interactions have
also been reported (Murray et al. 1986; Wigglesworth-
Cooksey and Cooksey 2005).

Prospects

It is obvious that diatoms are important in the
biofouling community that develops on SS and other
metals and alloys in natural waters. While the effect of
bacteria in potential ennoblement has been widely
discussed in the literature, diatoms are usually
neglected in investigations of the electrochemical
processes that may lead to biocorrosion. In the present
review, it has been shown that the role of diatoms in
such processes cannot be excluded. The ways in which
diatoms may be involved in the potential ennoblement
of SS have been identified, thereby opening new
possibilities to gain an understanding of the ability of
diatoms to initiate an electrochemical effect on SS
electrodes. Investigating diatoms at the nanoscale will
provide unique insights into how diatoms ‘sense’
surfaces and how they are involved in cell–surface
and cell–cell interactions. Biomimetic systems, based
on the use of either cultured axenic diatoms or in the
presence of both mixed consortia of diatoms and
bacteria, should be used in electrochemical tests.
Furthermore, experiments based on the combination
of AFM and electrochemical tests may pave the way
for new comprehensive approaches to understanding
features regarding diatom–SS and diatom–bacteria
interactions. The ability of diatoms to induce an
electrochemical response when they are in close
contact to an SS electrode may be exploited in many
areas of research, especially in the design of new
microbial fuel cells. Indeed, studies have reported the
construction of microbial fuel cell prototypes based on
the use of marine biofilms and SS electrodes as the
anode or cathode (Bergel et al. 2005; Dumas et al.
2007; Dumas et al. 2008b).
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Nanoscale mapping and functional analysis of indivi-
dual adhesins on living bacteria. Nature Meth 2:515–
520.

Eashwar M, Maruthamuthu S. 1995. Mechanism of biolo-
gically produced ennoblement: ecological perspectives
and a hypothetical model. Biofouling 8:203–213.

Eashwar M, Subramanian G, Palanichamy S, Rajagopal G.
2011. The influence of sunlight on the localized corrosion
of UNS S31600 in natural seawater. Biofouling 27:837–
849.

Eashwar M, Subramanian G, Palanichamy S, Rajagopal G,
Madhu S, Kamaraj P. 2009. Cathodic behaviour of
stainless steel in coastal Indian seawater: calcareous
deposits overwhelm biofilms. Biofouling 25:191–201.

Falciatore A, D’alcala MR, Groot P, Bowler C. 2000.
Perception of environmental signals by a marine diatom.
Science 288:2363–2366.

Finlay JA, Bennett SM, Brewer LH, Sokolova A, Clay G,
Gunari N, Meyer AE, Walker GC, Wendt DE, Callow
ME, et al. 2010. Barnacle settlement and adhesion of
protein and diatom microfouling to xerogel films with
varying wettability. Biofouling 26:657–666.

Flemming H-C, Geesey GG. 1991. Biofouling and biocorro-
sion in industrial water systems. Heidelberg: Springer.
220 pp.

1120 J. Landoulsi et al.



Flemming H-C, Murthy PS, Venkatesan R, Cooksey KE.
2009. Marine and industrial biofouling. Springer Series
on Biofilms Vol. 4. Berlin (Germany): Springer. 334 pp.

Florence TM, Stauber JL. 1986. Toxicity of copper
complexes to the marine diatom Nitzschia closterium.
Aquat Toxicol 8:11–26.

Francius G, Tesson B, Dague E, Martin-Jézéquel V, Dufrêne
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Vandamme P, Bergé M, Roques C, Bergel A. 2011.
Catalysis of the electrochemical reduction of oxygen by
bacteria isolated from electro-active biofilms formed in
seawater. Bioresource Technol 102:304–311.

1122 J. Landoulsi et al.



Patil JS, Jagadeesan V. 2011. Effect of chlorination on the
development of marine biofilms dominated by diatoms.
Biofouling 27:241–254.

Percival SL, Knapp JS, Edyvean RGJ, Wales DS. 1998a.
Biofilm development on stainless steel in mains water.
Water Res 32:243–253.

Percival SL, Knapp JS, Edyvean RGJ, Wales DS. 1998b.
Biofilms, mains water and stainless steel. Water Res
32:2187–2201.

Pourbaix M. 1963. Atlas d’Equilibres Electrochimiques.
Paris (France): Gauthier-Villars. 644 pp.

Raman A, Gawalt ES. 2007. Self-assembled monolayers of
alkanoic acids on the native oxide surface of SS316L by
solution deposition. Langmuir 23:2284–2288.
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