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Abstract

Blackflies are important macroinvertebrate groups from a public health as well as ecological point of view. Determining the
biological and environmental factors favouring or inhibiting the existence of blackflies could facilitate biomonitoring of
rivers as well as control of disease vectors. The combined use of different predictive modelling techniques is known to
improve identification of presence/absence and abundance of taxa in a given habitat. This approach enables better
identification of the suitable habitat conditions or environmental constraints of a given taxon. Simuliidae larvae are
important biological indicators as they are abundant in tropical aquatic ecosystems. Some of the blackfly groups are also
important disease vectors in poor tropical countries. Our investigations aim to establish a combination of models able to
identify the environmental factors and macroinvertebrate organisms that are favourable or inhibiting blackfly larvae
existence in aquatic ecosystems. The models developed using macroinvertebrate predictors showed better performance
than those based on environmental predictors. The identified environmental and macroinvertebrate parameters can be
used to determine the distribution of blackflies, which in turn can help control river blindness in endemic tropical places.
Through a combination of modelling techniques, a reliable method has been developed that explains environmental and
biological relationships with the target organism, and, thus, can serve as a decision support tool for ecological management
strategies.
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Introduction

It is important to investigate the ecological factors affecting the

distribution of blackflies in order to understand blackfly ecology

and their environmental dynamcis [1,2]. Blackflies are one of the

most frequently occurring aquatic taxa in tropical countries such

as Ethiopia [3,4]. These organisms are important pollution

indicators of running water habitats [5,6]. Because of their

sensitivity to different environmental changes, they have been used

to assess the impact of climate change and other anthropogenic

activities [7]. Some species of blackflies (e.g. Simulium damnosum)

are also known vectors of river blindness (onchocerciasis) in sub-

Saharan Africa [8].

Predictive models are often applied to assess, monitor and

control environmental factors of a given taxon [9,10]. Predictive

modelling is one of the most essential steps in the development of a

standard habitat assessment protocol that links organisms and

habitat information to environmental data [11–13]. Effective

habitat models need to be simple, robust and at the same time

biologically meaningful [14]. The goal of applying different

predictive models is to simplify complex systems and to enable

reliable predictions [15].

Generalized additive models (GAMs) [16] and classification

trees (CTs) [17] are widely used predictive models because they

are fairly simple and transparent to understand, which allow easy

application into an environmental decision support system

[10,18,19]. Such models can be useful for policy and decision-

makers to improve the effectiveness of monitoring and assessment

activities in different ecosystems [20].

Although linear models are attractive because of their simplicity,

they often fail in addressing natural relationships between a species

and biotic and abiotic variables because of their nonlinear nature

[21]. Non-linear and non-monotonic relationships between the

outcome and the set of explanatory variables can be meaningfully

modelled using GAMs. The model accommodates non-normal

data by clearly constructing the distribution as a member of the

exponential family and map the relationship between the predictor
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and the mean of the data [22]. The main advantage of GAMs is

their ability to deal with non-linear and non-monotonic relation-

ships between the predictor and response variables because of the

capability to model non-linear data using non-parametric

smoothers [23–25].

CTs are used as an effective habitat suitability modelling

technique to determine the presence/absence and abundance of

species [9,10,18]. Genetic algorithms (GA) are one of known

techniques to boost model performance and improve the accuracy

and predictive power by minimizing number of irrelevant

attributes [10,26]. GA is widely used optimisation method for

predictive models in the field of aquatic ecology [9,10,27]. Reliable

CT models having best performance can be constructed when it is

combined with GA [10].

The use of CT combined with GA and the application of GAMs

can help to identify the major variables predicting the occurrence

of Simuliidae larvae by minimizing model uncertainty [28]. In

addition to the model combination, the use of environmental as

well as biological predictors in the model construction is known to

minimize prediction errors and ensure reliable model output [29].

Our main aim is to identify biological determinants in terms of

other macroinvertebrate groups and environmental parameters,

which are crucial for the presence/absence and abundance of

blackflies, using GAMs and CTs combined with GAs in order to

fill current knowledge gaps on the blackfly ecology, thus, leading to

a better understanding of the underlying environmental factors.

Methods

Study area
The study was performed in the Gilgel Gibe watershed, which is

part of the Omo-Gibe River basin situated in southwest Ethiopia.

Simuliidae larvae are found in most of the study sites where their

abundance is indicated as a bar graph in Fig. 1. The area is

bounded by latitudes 7u259 and 7u 559 North and longitudes

36u309 and 37u 229 East. The watershed is mainly located in the

Jimma administrative zone, which has an estimated population of

over 2.5 million people (CSA, 2007). The study area receives

annual rainfall in the range of 1200–2800 mm, while the altitude

ranges from 1096 to 3259 m above sea level. The Gilgel Gibe

watershed is located in the tropical afro-alpine ecological region.

The river basin has a catchment area of about 5371 km2 [10]

and the sampling points are distributed along a total length of

186 km from the source to an area further downstream of the

Gilgel Gibe hydropower reservoir. During the last 20 years, the

Gilgel Gibe river basin has received increased attention from the

Ethiopian government for implementing development projects,

specifically for hydropower generation [10]. The Gilgel Gibe

watershed has many rivers and streams from fast flowing forest

streams to stagnant waters and even marshlands. Jimma region is

known to have a high forest cover compared to other parts of the

country though this is currently dramatically changing due to

resettlement and agricultural expansion [30]. The sampling sites

and the distribution of Simuliidae larvae are shown in Fig. 1.

Data collection
Data was collected from different rivers in the Gilgel Gibe river

basin. About 180 samples were collected from 34 study sites in five

sampling campaigns. The governing authority for rivers in

Ethiopia is the Ministry of Water, Irrigation and Energy.

However, to undertake this study, permission from the Ministry

was not required because none of the sampling sites were

protected or needed special permission. Therefore, obtaining the

permission from Jimma University was sufficient to collect samples

from each of the sites as they are authorized to undertake such

activities.

Coordinate points of each of the sampling sites are 36u399

7.853’’E & 7u33946.697’’N, 36u40912.455’’E & 7u34951.858’’N,

36u40912.455’’E & 7u34951.858’’N, 36u40952.675’’E & 7u369

2.288’’N, 36u43959.173’’E & 7u36951.886’’N, 36u44942.679’’E &

7u36914.303’’N, 36u43943.812’’E & 7u3494.363’’N, 36u469

28.268’’E & 7u3699.447’’N, 36u45953.931’’E & 7u4295.768’’N,

36u49919.443’’E & 7u42955.442’’N, 36u4999.523’’E & 7u399

57.136’’N, 36u5093.572’’E & 7u40916.315’’N, 36u50933.787’’E &

7u38950.039’’N, 36u50944.889’’E & 7u38950.549’’N, 36u499

51.072’’E & 7u36950.987’’N, 36u51920.99’’E & 7u34952.595’’N,

36u54931.28’’E & 7u41922.464’’N, 36u53940.939’’E & 7u379

38.038’’N, 37u0930.67’’E & 7u43958.139’’N, 36u59912.895’’E &

7u31937.667’’N, 36u59916.273’’E & 7u29911.822’’N, 37u39

18.938’’E & 7u32938.206’’N, 37u4916.022’’E & 7u41949.515’’N,

37u4942.857’’E & 7u42943.66’’N, 37u6923.256’’E & 7u419

58.186’’N, 37u8916.153’’E & 7u34946.464’’N, 37u9950.927’’E &

7u45913.589’’N, 37u1298.41’’E & 7u47945.456’’N, 37u119

36.415’’E & 7u45946.457’’N, 37u14917.279’’E & 7u41930.491’’N,

37u14928.6’’E & 7u39931.672’’N, 37u17924.483’’E & 7u519

14.785’’N, 37u19924.012’’E & 7u49954.218’’N, and 37u209

26.46’’E & 7u49919.344’’N 36u50944.889’’E 7u38950.549’’N.

Each campaign was carried out at a six-month interval and

samples were taken during dry and wet seasons. The study sites

were selected a priori based on the criteria of accessibility,

geographical distribution, and existing variations of natural and

anthropogenic activities. The collected data are categorized into

three parts: a) physical-chemical data, b) macroinvertebrate data,

and c) physical habitat (physiographic) data (e.g. water depth,

water width, river bed, vegetation cover, etc).

Physical-chemical parameters. Temperature (uC), con-

ductivity (mS.cm21), pH (-), oxygen saturation (%) and turbidity

(NTU) were measured onsite at each sampling location using hand

electrodes. Five day biochemical oxygen demand (BOD5)

(mg.L21), nitrate-nitrogen (described as nitrate) (mg.L21), ammo-

nium-nitrogen (described as ammonium) (mg.L21) and orthophos-

phate-phosphorus (described as phosphate) (mg.L21) were ana-

lysed in the laboratory according to standard methods [31].

Physiographic and habitat data. The water body width,

water depth and flow velocity were assessed according to Ambelu

(2009). The riparian vegetation, river sinuosity, river bank status

and embeddedness were estimated using US-EPA habitat assess-

ment protocol [32].

Biological data. Larvae of Simuliidae and other macroin-

vertebrates were collected using the kick-sampling technique

which consists of a D-frame net having a mesh size of 300 mm

diameter (Ambelu et al., 2010). Kick sampling was performed

along a 10 meter stretch of the river for five minutes including all

the microhabitats within the sampling reach [33]. During

sampling, the river bed was thoroughly disturbed by kicking with

the feet in order to dislodge the macroinvertebrates from the

substrate. All substrates in the sampling reach were thoroughly

checked to capture organisms attached to it. Within the five

minutes of kick sampling, all the possible areas of pool, riffle, edge

and center were sampled. After sampling, macroinvertebrates

were sorted alive onsite and preserved in 70% ethanol. In the

laboratory, the sorted macroinvertebrates were identified to family

level using a stereo-microscope and the identification keys [34,35].

Modelling procedures
The modelling was performed using two groups of predictors,

namely environmental and macroinvertebrate data. The summary

statistics of the response variables in relation to Simuliidae larvae

Prediction of Blackflies
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are presented in Table 1 and Table 2. All the environmental

variables used were log transformed (except pH) and a square root

transformation was done for all macroinvertebrate data. For the

application of GAM, a transformation was necessary in order to

achieve a uniform distribution [24].

Generalized additive models. GAMs were applied in order

to define the set of the environmental parameters and macroin-

vertebrate taxa that best described the habitat condition of

Simuliidae and presence-absence. Additive models are a nonpara-

metric alternative for the more conventionally used generalized

linear models (GLMs). GLMs have been frequently used in

ecology (Guisan et al., 2006) and are defined by

Yi~azb1X1izb2X2iz:::zbjXjizei Where ei~ N 0,s2
� �

ð1Þ

The Yi is the response variable, and Xi represent the

explanatory variable(s). The residuals (ei) capture the unexplained

variation in the data, which is assumed to be normally distributed

with a mean value of 0 and variance s2. The parameters a and b
represent the intercept and slope of the regression respectively. If

multiple explanatory variables are used, the number of products

between b and Xi is equal to the number of explanatory variables.

(1) can be further conceptualized as

g{1½E YiDXij

� �
�~azS(bjXij) ð2Þ

Where g21(?) is a local scoring algorithm that specifies the link

function between the expected value of Yi and the explanatory

variables. A GAM is defined by

g{1 E YiDXij

� �� �
~azSf j xji

� �
ð3Þ

The Yi is the response variable, Xib represents the intercept of

the regression equation, fj(xji) is a smooth function of the jth

explanatory variable, i = 1, …, n, is the number of observations.

The number of knots affects the amount of smoothing applied to

the data [36]. A smoother with two knots is linear, has little

variability and may be biased since there is only one piecewise

function [37]. Increasing the number of knots allows more

flexibility, but may result in over-fitting. For smaller data sets,

below 30, three knots is a good starting point. [37] report that a

number of four to five knots is appropriate for most applications.

In our analysis, the number of knots for the smoothing curves was

fixed to five for macroinvertebrate analysis and 10 for environ-

mental variables as the number of records per substance in our

training dataset varied from below 30 to more than 100.

The ‘mgcv’ library in the R statistical software [38] was used to

select the GAMs smoothing predictors following the method

proposed by Wood and Augustin [36]. The individual models

cannot be tested for significance using the P-values provided by

‘mgcv’ library since the true number of degrees of freedom is

unknown (Giannoulaki et al., 2008; Wood, 2012). Each model fit

was analyzed by the level of deviance explained (0–100%; the

higher the better), and the unbiased risk estimator (UBRE) in

which the lowest value is considered as the best model

performance indicator. The degree of smoothing was also chosen

based on the observed data and the generalized cross validation

method suggested by [25] and incorporated in the ‘mgcv’ library.

To avoid the over-fitting problem, the effective degree of freedom

of each model count in the GCV score was increased by a factor of

c= 1.4 [39].

To increase the model performance and decrease the collin-

earity problem, independent variables were eliminated [22,23,25]

Figure 1. Location of the study area with bar graphs showing the abundance of Simuliidae larvae at each sampling site. The longest
bar represents 33 Simuliidae individuals and the shortest one represents zero individuals.
doi:10.1371/journal.pone.0112221.g001
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and the best model was chosen based on a stepwise backward

selection method. Specifically, models were compared using the

estimated UBRE and percent deviance explained, the environ-

mental variables were ranked and selection of the final model was

based on the minimization of the above criteria. Following the

recommendation forwarded by Wood (2001), during model fitting

manual elimination of attributes was done when all of the

following three criteria are met: the estimated degree of freedom of

the model term is closer to 1; the plotted confidence band from the

model term include zero everywhere; and URBE score is dropped

when the model term (attribute) is eliminated.

The relationship between Simuliidae larvae and the predicting

variables (e.g. pH) with the ith observation in the data, smooth

function s(), constant a, and residual error i is represented by:

Simuliidae½ �i~azs pHð Þzei ð4Þ

Therefore a model with n smooth functions (predictor variables)

in this relationship can be generalized to:

Ai~Sn
j~1sj xið Þzazei ð5Þ

The ith Simuliidae abundance in the data set is Ai. sj(xi) is the

smooth for the jth variable and gives the value of this smooth for

the ith observation. i is the residual error for this observation and a
is a constant.

Classification tree combined with genetic algori-

thms. First, the model was developed based on CT using all

input predictors, while in a next steps the CT was combined with a

genetic algorithm, which was used to select the most relevant input

variables. CTs [17,40] predict the value of a discrete dependent

variable with a finite set of values (called classes) from the values of

a set of independent variables (called attributes), which may be

either continuous or discrete. The J48 algorithm with binary splits

was applied to induce CT. There are a variety of algorithms to

build classification trees that share the desirable quality of

interpretability. A well-known and frequently used algorithm is

the C4.5 which is a java reimplementation of the J48 algorithm in

the WEKA machine learning package [41]. The dependent

variable (output value) consisted of the presence-absence of

Table 2. The median, mean, 3rd quartile (3rd Qu), maximum (Max) and standard deviation (StDv) of macroinvertebrate (MI)
variables used to predict Simuliidae abundance and presence-absence.

MI variables Median Mean 3rd Qu Max StDv

Aeshnidae 0 1 0 10 1

Anthomyidae 0 9 0 74 19

Baetidae 5 15 19 150 25

Belostomatidae 0 1 0 27 3

Caenidae 4 11 14 155 21

Chironomidae 6 11 12 125 17

Coenagrionidae 4 11 13 88 17

Corduliidae 0 1 0 20 2

Corixidae 0 2 2 50 6

Dytiscidae 0 4 2 150 17

Elmidae 0 1 1 43 3

Ephemerellidae 0 1 0 53 3

Glossiphonidae 0 1 0 47 3

Glossosomatidae 0 1 0 62 5

Gomphidae 0 1 2 22 3

Gyrinidae 0 1 0 23 2

Heptagenidae 0 3 2 110 10

Hydrophilidae 0 1 1 26 2

Hydropsychidae 3 15 19 150 26

Libellulidae 1 5 4 100 11

Naucoridae 0 1 1 31 3

Nepidae 0 0 0 4 1

Notonectidae 0 1 0 82 5

Protoneuridae 0 3 3 37 6

Sphaeriidae 0 1 1 41 4

Tipulidae 0 0 0 8 1

Unionidae 0 1 0 21 3

The minimum and the 1st quartile values are not presented in the table because all were zero.
doi:10.1371/journal.pone.0112221.t002
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Simuliidae larvae whereas the independent parameters were the

physical-chemical and MI larvae predictors (Table 1 and 2).

Different folds of cross-validation were tested for the training

and validation of CTs. The maximum stability and model

performance of CT was maximized using a 10-fold cross-

validation in terms of percentage of correctly classified instances

(%CCI) and Kappa statistics (k). In the 10-fold cross-validation,

the original data were randomly partitioned into 10 subsamples of

approximately equal size using WEKA default settings. In

addition, the default values of the J48 algorithm with binary split

were used to find the most important explanatory variables for the

prediction of Simuliidae.

The next step was the application of the GA search method on

the CT to select the best explanatory variables for the Simuliidae

larvae. GAs follow the principle of ‘‘survival of the fittest’’ which

begin with a population of randomly generated chromosomes that

advances towards the selection of better chromosomes [42–44].

Following the principle of natural selection, the population

undergoes evolution with successive generations. During this

process, chromosomes in the population are rated for their fitness

and consequently a new population of chromosomes are formed

depending on the applied selection method.

During CT model development, wrapper subset evaluator was

used on J48 learning algorithm in which the attributes (variables)

are evaluated by using accuracy estimations [45]. During GA

application, we used 20 chromosomes as initial population that

evolved through a maximum of 20 generations [26]. Default

settings of Weka machine learning algorithm was used for

crossover and mutation probability which is 60% and 3.3%,

respectively. Before the GA application, the dataset was random-

ized and then attributes were selected. After the selection of the

successful chromosomes, CTs were run seven to ten times to each

subset (chromosome) after randomization to check the stability of

the model. The subsets of selected attributes by GAs (chromo-

somes) that showed the lowest standard deviation, based on %CCI

and K, were retained. In addition, attributes that appeared most

frequently in the subsequent GA application were finally used for

CT-GA model development.

Results

GAM output
Using the abundance of the response variable (Simuliidae), 11

environmental predictor variables were obtained from the model

after a backward stepwise elimination of the terms. The selected

variables significantly contributed to the prediction of the

Simuliidae larvae (Table 2). All eliminated variables had a very

low value of estimated degrees of freedom and had non-significant

p-values. The GAM has an adjusted R2 of 0.62 and the total

deviance explained was 62% and the un-biased risk estimator

(UBRE) score was 0.345. The relationship between environmental

attributes selected by GAMs and the Simuliidae larvae is shown in

Fig. 2.

However, when GAM prediction of the Simuliidae larvea with

its presence-absence data is made, only three environmental

predictors (distance, flow velocity and water depth) were selected

with significant prediciton (p-value,0.01). The estimated degrees

of freedom for the three environmental predictors were 2.43, 2.06

and 1.51, respectively. The EBRE score, adjusted R2, and percent

deviance explained were respectively 20.462, 0.323 and 33.9.

Among the 27 macroinvertebrate predictors, eight were selected

by the GAMs. After backward stepwise selection of the predicting

variables of macroinvertebrate families, those which showed

significant predicting power were fitted as shown in Fig. 2. The

presence-absence of the Simuliidae larvae was also predicted with

GAMs and only four macroinvertebrate predictors (Beatidae,

Dytiscidae, Hydropsychidae and Libeluliidae) were selected as

important variables. All four variables showed a significant (p-

value,0.05) contribution to the model and have an R2

adjusted = 0.58, percent deviance explained = 63, and UBRE

score = 0.243.

CT-GA output
Classification tree models were built using a genetic search

algorithm. Prior to the selection of the environmental attributes,

the classification tree was built. The tree size was 67 with 34 leaves

whereas the %CCI and k were 69.461.3 and 0.3860.03,

respectively. During the application of the genetic search

algorithm, the distance of the sampling site from the source of

the river appears in all the successful chromosomes. Whereas the

flow velocity and embeddedness appears nine times, river bank

status and DO appear seven times, BOD and ammonium appear

four times, electrical conductivity (EC), flow rate and water depth

appear three times, pH and nitrate appear only one time from the

ten independently identified subset of attributes (chromosomes).

Finally, using the most frequently selected attributes (four to ten

times), a classification tree model was built. The model indicated

that the presence or absence of Simuliidae is primarily determined

by the distance of the site from the stream source. According to the

model, the Simuliidae community are often absent for sites which

are 32 km far from the source. In addition, Simuliidae is absent for

sites whose flow velocity is 0.125 m/s (Fig. 3).

Before the application of GA on the CT, all 28 macroinver-

tebrate variables were used and the average performance in terms

of %CCI and K was 78.2660.02 and 0.5360.02, respectively.

After the application of GA, each chromosome or group of

successful macroinvertebrate variables picked by the GA showed

an average %CCI and K of 80.2–82.46 and 0.60–0.65,

respectively (Fig. 4).

In each chromosome five to nine macroinvertebrates were

chosen by the GA to predict the presence of Simuliidae. Corixidae

(9 times), Hydropsychidae (9 times), Protoneuridae (8 times),

Chironomidae (8 times), and Elmidae (6 times) were the most

frequently selected macroinvertebrate variables. Glossosomatidae,

Aeshnidae, Gyrinidae, Libellulidae, Nepidae, Belostomatidae,

Caenidae, Dytiscidae, Hydrophilidae, Spheariidae, Tipulidae,

Ephemerellidae, and Anthomyidae appeared rarely (one to two

times) among the ten selected chromosomes. The other macro-

invertebrates were not selected by GA. The CT model,

constructed with the most frequently selected macroinvertebrate

predictors by GA, is shown in Fig. 3. The model indicated that

among the macroinvertebrate communities, Hydropsychidae,

Corixidae, Protoneuridae, Chironomidae and Elmidae were the

major determinants of the presence and absence of Simuliidae

larvae.

Discussion

Bio-environmental factors that are influencing blackflies distri-

bution in the Gilgel Gibe watershed has been identified using

combined modelling techniques. This approach enabled us a

better identification of the suitable habitat conditions or environ-

mental constraints for Simuliidae larvae. Characterizing and

modelling the distribution and abundance of taxa is one of the

major tasks of ecologists [46]. The availability of reliable

environmental dataset obtained from wider area of sampling sites

for an extended period of time often encourages prediction of taxa

to identify the environmental requirements so that their distribu-
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tion can be inferred. This is especially helpful for the prediction of

species distribution over large unsampled areas and for reducing

sampling costs. In addition, the model output could provide

important information for decision support of environmental

management systems. Here, we have used two well-established

habitat suitability modelling techniques in order to identify

important predictors that can explain the abundance and

occurrence of Simuliidae larvae.

Simultaneous modelling of Simuliidae using GAMs and CTs

has enabled the identification of the most important environmen-

tal and macroinvertebrate predictors. Among the environmental

predictors, distance from the source, river discharge, water depth,

river bank status, electrical conductivity and nitrate concentration

were selected by both modelling techniques as important variables

determining the occurrence and abundance of black flies in the

region.

The GAM outputs indicate that the model performance

indicators between the presence-absence of Simuliidae larvae

significantly differ from the abundance prediction. The number of

selected predicting variables (both environmental and macroin-

Figure 2. Smooth plot of the GAM output of the selected environmental and macroinvertebrate predictors showing their
relationship with Simuliidae larvae and the fitted nonparametric terms with 95% confidence interval (dashed lines). The y-axis is
scaled to zero and the rug plot on the x-axis indicates number of observations.
doi:10.1371/journal.pone.0112221.g002
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vertebrate predictors) was fewer for presence-absence compared

with the Simuliidae abundance. Except for flow velocity, the other

environmental presence-absence predictors were also identified by

GAM during abundance prediction. A previous study done by

Barry and Welsh (2002) also has indicated that the model pattern

of presence-absence of a species, conditional on the covariates, is

markedly different from the pattern of abundance.

We therefore determined that the abundance of Simuliidae

increases with increasing river flow rate, nitrate concentration and

flow velocity. Nevertheless, Simuliidae abundance regularly

decreases with increasing distance of the sampling site from the

source, electrical conductivity of the water, water depth and

phosphate concentration. The other environmental predictors like

altitude, vegetation cover, river bank status and DO concentra-

tions show irregular patterns with regard to the abundance of

Figure 3. Classification tree constructed by the most frequently selected environmental [A] and macroinvertebrate [B] predictors
using genetic algorithm predicting the presence (p) and absence (a) of Simuliidae larvae.
doi:10.1371/journal.pone.0112221.g003

Figure 4. Model performances of GAMs and classification trees based on environmental (Env) and macroinvertebrate (MI)
predictors. %CCI = percent correctly classified instances, K = kappa statistics, UBRE = unbiased risk estimator.
doi:10.1371/journal.pone.0112221.g004
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Simuliidae. The optimum pH condition for Simuliidae larvae

abundance was found to be approximately between 6.5 and 7.7.

Regarding the selected macroinvertebrate predictors, the occur-

rence of Libellulidae, Baetidae, and Caenidae promotes the

availability of Simuliidae larvae in the river system. However,

higher abundances of Hydropsychidae, Belostomatidae, Naucor-

idae and Nepidae could reduce the availability of the dependent

variable, i.e. Simuliidae larvae. It has been found that the GAMs

prediction using macroinvertebrate communities showed better

performance (in terms of UBRE, adjusted R2 and percent

deviance explained) than the environmental predictors.

Clear model results were obtained when classification tree

models were supported by a genetic search algorithm to select

environmental and macroinvertebrate predictors of Simullidae

larvae. The application of GA to CT significantly improved the

model performance as well as the clarity of the decision tree. The

decision tree model without the application of GA was compli-

cated to understand and describe due to its large tree size.

Recently [10,19,26] have also improved clarity of their classifica-

tion tree models by applying GAs. However, those authors and

many others [4,26,47–50] are often using model boosting

mechanisms such as bagging and boosting, together with the use

of attribute selection tools (GA, greedy stepwise algorism) rather

than combining the model with robust statistical techniques like

that of GAMs. Based on the given data set, the CT-GA has given

clear environmental predictor values for which the Simuliidae

larvae could be present or absent. The majority of environmental

and macroinvertebrate predictors selected by GAM were also

identified by GA as important predictors of the presence-absence

of Simuliidae larvae. The two modelling techniques (GAMs and

CT-GAs) showed reliable predictors which can be very useful for

understanding the distribution of Simuliidae larvae and, thus,

controlling the vector of onchocerchiasis. On the other hand, both

the GAMs and CT-GAs models have indicated that Simuliidae

larvae may be an important water quality indicator in head waters

(with shorter distances from the source), shallow and fast flowing

rivers.

Vector control and patient treatment is a major component of

the Onchocerciasis control program and is based on routine aerial

application of larvicides. This is found to be very expensive to

implement in many developing countries like Ethiopia and Ghana

where the disease is endemic [51]. Therefore, our model outputs

could indicate an alternative means to control the disease vector

larvae based on environmental management and biological

control mechanisms. Environmental management and biological

control of the disease vector may be a much more effective strategy

than the use of pesticides to overcome the residual effects of

chemical applications to the different environmental compart-

ments. The GAMs and CT-GA have been successfully applied to

identify the environmental variables and macroinvertebrates that

can play a detrimental role in the elimination of Simuliidae larvae

from the river system. GAMs and classification trees can even

indicated which areas should be focused on for insecticide

application if it becomes a choice of vector control. Based on

the selected variables it should be possible to map the sites where

Simuliidae is present. Such mapping has been proposed by [51] to

help control the occurrence of onchocerchiasis.

According to GAMs, one of the major environmental manage-

ment strategies that could be applied is minimizing the flow

velocity and increasing the water depth so that the abundance of

Simuliidae larvae would be minimized or eliminated. This could

be achieved by slowing down the flow in the highlands which

would reduce the flow velocity and increase the water depth. This

procedure could benefit communities affected by Onchocerchiasis

because they could utilize the additional water for irrigation to

ensure food security. This is a very relevant issue in arid tropical

countries where farmers cannot dependant on rain water only but

need river water for irrigation. The model outputs based on

macroinvertebrate variables could be an important indication for

when biological control methods need to be applied to Simuliidae.

However, it is recommended to further study the biological

relationship of the identified macroinvertebrates and Simuliidae to

effectively apply such biological control of Simuliidae.

Conclusion

In conclusion, the combination of GAMs and CT-GA

techniques has led to the identification of suitable habitat

conditions of Simuliidae larvae and the macroinvertebrate

families, which are crucial for their existence or disappearance.

Such models are important for conservation purposes as well as for

disease vector control in the tropics because they can be used to

eliminate the suitable environmental conditions of the target

organism [52]. Accurate representation of species distribution

models derived from sampled data is essential for tropical

ecosystem management purposes. Effective prediction of the

habitat suitability of Simuliidae larvae has been obtained by the

combined application of GAMs and CT-GAs. Through this

modelling approach, a more reliable ecological assessment and

Onchocerchiasis disease vector control could be achieved based on

environmental management and biological control techniques.

The results may lead to improved vector control methods using

habitat modification techniques and site specific application of

pesticides.
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