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instruments to simultaneously monitor temperature, salin-
ity, [Chl-a], turbidity, and light. There was a significant dif-
ference in the average monthly valve gape (P value < 0.01), 
with monthly means of 19–84% of the total valve gape 
magnitude. The experimental population was largely inac-
tive October–January, with an average daily gape <23%. 
During this period the clams opened at high amplitude once 
or twice a month for 1–3 days. Seasonal cycles of sea water 
temperature and [Chl-a] were temporally offset from each 
other, with temperature lagging [Chl-a] by about 2 months. 
Multiple regression analyses showed that bivalve gaping 
activity was most closely correlated with variable [Chl-
a], and to a much smaller degree with photoperiod and 
temperature.

Introduction

The bivalve Arctica islandica, also known as the ocean 
quahog, inhabits coastal waters in the North Atlantic (Jones 
1980; Dahlgren et  al. 2000). The species is the longest-
living non-colonial animal yet known, with a longevity 
of >500  years (Butler et  al. 2013). As in other bivalves, 
a history of their growth is retained in their shells. Shell 
growth increments (or growth bands) can provide basic 
biological information on the species including age and 
growth rate. Moreover, the pattern of these bands and 
the composition of the shell material therein can reflect 
environmental conditions when the shell was deposited.

Annual synchronization of band widths among 
individuals in a population has been identified in numerous 
studies (Jones 1980; Witbaard et  al. 1997a; Butler et  al. 
2009; Mette et al. 2016), suggesting that synchronous shell 
growth is influenced by a common environmental signal 
(Marchitto et  al. 2000; Schöne et  al. 2003; Dunca et  al. 
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2009; Marali and Schöne 2015). Temperature alone does 
not always fully explain variations in growth performance 
(Witbaard et  al. 1996). Food availability is considered 
important in explaining the various reports on its growing 
season (Witbaard et al. 1996; Schöne et al. 2003; Witbaard 
et al. 2003). In the Fladen Ground (North Sea), for instance, 
an eddy system led to the import and accumulation of 
organic matter into that area (Witbaard et  al. 1996), and 
this hydrodynamic feature was identified as the factor 
responsible for the growth variation of A. islandica there.

Likewise, high synchrony in valve gape, i.e., the distance 
between a valve pair, has been observed in various bivalve 
species, also suggesting that a common external force with 
a periodicity similar to gaping drives the response (Thorin 
2000; Borcherding 2006; Mat et  al. 2012; García-March 
et  al. 2016). Based on those studies, food, temperature, 
and light conditions are considered key drivers of valve 
activity. Earlier studies on A. islandica (Winter 1969) and 
other bivalves (Higgins 1980; Williams and Pilditch 1997; 
Riisgård et al. 2006) identified the presence of Chl-a as the 
main driver for a sustained opening of their valves. Other 
studies, however, demonstrated that light conditions can 
directly trigger valve gape activity of species such as Pinna 
nobilis and Hippopus hippopus (García-March et al. 2008; 
Schwartzmann et al. 2011).

The confounded roles of temperature, light and food in 
regulating activity patterns and shell growth in A. islandica 
can be disentangled most effectively in populations 
occurring near their biogeographical limits, where small 
variations in environmental conditions can have large 
impacts on physiological functions and performance. In 
the present study, we analyzed A. islandica gaping activity 
patterns in relation to key environmental factors in an 
Arctic region in Northern Norway. The light cycle at this 
latitude (71°N) exhibits extreme seasonal variations in 
light intensity and day length (Kaartvedt 2008), and could 
have a major influence on the seasonal gaping activity of A. 
islandica.

Filter-feeding bivalves must open their valves and 
extend their siphons to filter water, to respire and feed. 
Thus, wide open valves indicate periods of feeding and 
respiration (Møhlenberg and Riisgård 1979; Newell 
et  al. 2001; Riisgård and Larsen 2015). In contrast, 
the reduction of the opening distance or total closure 
of valves implies a retraction of the mantle edges and 
siphons, resulting in a reduction and eventually in a 
cessation of filtration (Møhlenberg and Riisgård 1979; 
Riisgård and Larsen 2015). Witbaard et  al. (1997b) 
measured siphon activity in A. islandica juveniles as the 
number of times an individual had the mantle extended 
with open siphons. It was expressed as the percentage of 
the total number of observations per specimen and then 
they calculated an average of siphon activity for multiple 

individuals per treatment. Siphon activity varied from 
12% in a treatment with no food to 76% in the highest 
food concentration. This study thus also demonstrated 
a positive relationship between high siphon activity and 
growth in all treatments (Witbaard et  al. 1997b). These 
results suggest that valve opening and closing of A. 
islandica can be used as a proxy for active feeding and as 
an indicator of periods of potential growth.

Based on those earlier lab experiments (Møhlenberg 
and Riisgård 1979; Witbaard et  al. 1997b; Newell et  al. 
2001; Riisgård and Larsen 2015), we designed an in  situ 
experiment to link gaping activity to environmental 
factors. We set up a field study of A. islandica at its 
northern geographical limit (Dahlgren et  al. 2000; Mette 
et  al. 2016) to examine environmental regulation of shell 
gaping activity. Locally collected living individuals of A. 
islandica with an electrode array attached to their valves 
were deployed on the sea bottom for various lengths of 
time in the period February 2014–September 2015. Valve 
gaping activity was measured together with environmental 
conditions (temperature, salinity, [Chl-a], turbidity, 
and light) to provide insight into environmental factors 
controlling seasonal changes in A. islandica.

Methods

Site description

The in  situ experiment took place at a 10-m deep site in 
Sanden Bay (71°03′N, 24°05′E), on the east side of Ingøya 
(Finnmark, northern Norway; Fig.  1 Online Resource 1). 
Ingøya is located ~15  km northwest of the Norwegian 
mainland and 60  km west of North Cape. Sanden Bay is 
exposed to the open Barents Sea from the northeast but 
protected from the full oceanic swell by a series of islets 
at its mouth. The seafloor in the bay is a mosaic of rocky 
outcrops covered with kelp, intermixed with patches of 
shell sand and maerl-like soft sediments with a median 
grain size of 400 µm (silt <1%). Arctica islandica densities 
of ~10 m−2 occur within these patches of soft sediments. 
This Sanden Bay population appears to be the northern 
most known (Dahlgren et al. 2000; Mette et al. 2016).

Ingøya is located ~480  km north of the Arctic Circle, 
where there is almost complete darkness, October–mid-
February. Due to rapidly increasing light levels in the 
spring, phytoplankton growth starts at the end of March 
when sea water temperatures are still at their coldest 
(Carroll et al. 2009). In temperate zones, temporal patterns 
of temperature and phytoplankton growth are usually 
strongly linked and distinguishing their impacts on activity 
or growth is not easy. However, in northern Norway, sea 
temperature lags primary productivity by ~2 months.
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Lander description

For the in  situ experiment, we used a benthic lander con-
structed at the Royal Netherlands Institute for Sea Research 
(Texel, Netherlands) (Fig.  1). The lander weighs around 
~150 kg, with lead-weighted legs to ensure stability on the 
sea bottom. It consists of a triangular aluminum frame (Al 
50St) with sides of 1.6 m and height of 1 m. This structure 
was used as a platform for the various instruments. We used 
two valve gape monitors with 8 specimen cups each and an 
array of environmental sensors including a CT (conductiv-
ity and temperature sensor), a turbidity/fluorescence and a 
light sensor (Fig. 1). The lander was placed on the seafloor 
by slowly lowering it with a line from the ship. A buoy 
marked the position for later retrieval.

Valve gape monitors

Two valve gape monitor control units were attached to 
the lower triangular part of the lander frame (Fig.  1), 
30 cm above the seafloor when deployed. Each valve gape 
monitor consists of a waterproof PVC housing with eight 
pairs of electro-coils coated by plastic tubing (1 mH coils 
with self-extinguishing polyolefin sleeve; http://www.
te.com/usa-en/home.html). The electro-coils are connected 
to an electronic circuit board with 0.6-mm coaxial cable. 
The electrical circuit board contains a 2-GB SD memory 
card to store the data. The system is powered by a 5-V 
battery pack.

Each valve gape monitor unit simultaneously records 
the valve gape, or distance between the two valves, of 
eight individual A. islandica specimens. Valve distance is 
defined as the space between the two paired valves at the 
siphon end. The distance is measured by the electro-coils 
based on electromagnetic theory. The electro-coils were 

glued on the siphon side of each valve with light-curing 
dental resin cement (3M ESPE RelyX Unicem 2Clicker).

Each clam was placed in an individual PVC cylinder, 
or specimen cup, filled with local sand. The specimen 
cups were 15  cm high with a diameter of 10  cm. The 
largest specimen had a shell height of 7.8 cm and length 
of 8.8  cm. Thus, the specimens had enough space to 
maneuver in their cups and orient themselves. Each 
cup had a perforated bottom to allow entry of the wires 
with coils from the PVC valve gape monitor housing. 
The wires were long enough to allow movement of the 
individuals within the cup.

The valve gape monitors were programmed so 
that once a minute the active coil generated an 
electromagnetic field which resulted in a current in the 
second responsive coil. The strength of the measured 
electromagnetic field (electrical signal) depends on the 
distance between the two coils and thus the distance 
between the valves (valve gape).

The raw electrical signal data were amplified and 
stored on the internal memory card for later conversion 
into a distance measurement. A calibration indicated that 
the distance between the two coils could be determined 
by the following linear relationship:

where Dt equals the distance in mm between the coils at 
time (t), and St is the electrical signal strength at time (t).

The coils could not be fixed to the shell at exactly the 
same distance from the valve edge or from each other in 
each specimen. To make the results comparable between 
individuals and periods, the measured distance was 
recalculated for each individual separately and expressed 
as a relative valve gape, hereafter called valve gape (Gt):

Dt ∝

√

(

1

St

)

,

Fig. 1   a Benthic lander details (triangular aluminum frame): 1. 
Valve gape recorders, 2. Specimen cups: 16 for valve gape the experi-
ment (within white rectangle), and 12 controls for future growth stud-

ies, 3. ALEC fluorimeter, 4. ALEC PAR sensor, 5. Conductivity and 
temperature. b Benthic lander before deployment

http://www.te.com/usa-en/home.html
http://www.te.com/usa-en/home.html
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With this convention, (Gt) varies between 0 (fully 
closed) and 1 (fully open valves).

We made measurements over 592  days, February 
2014–September 2015, excluding short periods of 
1–3  days when the lander was recovered for servicing 
(Table 1). A total of 21 individuals were monitored during 
four periods, including one for the entire time, ten for the 
first three periods, and seven for at least two consecutive 
periods. The resulting time series of valve gape data thus 
spanned 20 months with a maximum of 1440 data points 
day−1 specimen−1.

Long‑term environmental measurements

Self-logging sensors for temperature (°C), salinity 
(PSU: Practical salinity unit), turbidity (FTU: Formazine 
Turbidity Unit), [Chl-a] (µg  L−1), and light conditions 
(PAR: Photosynthetic Available Radiation measured as 
µmol m−2 s−1), were mounted on the lander over the entire 
deployment period.

Temperature and salinity were measured by a DST CT 
system (STAR-ODDI Data Storage Tag Conductivity and 
Temperature logger; http://www.star-oddi.com/) attached 
to the upper triangle part of the lander, 90  cm above the 

Gt =
Dt −min(Dt)

max(Dt)−min(Dt)
.

seabed. The CT system recorded temperature and salinity 
every 30 min.

Turbidity, [Chl-a], and light conditions were measured 
using two versions of JFE ocean instruments (http://
ocean.jfe-advantech.co.jp). Wipers cleaned the sensor 
surface every 30  min immediately before a burst of 10 
measurements. Light conditions were recorded with an 
upwards facing COMPACT-LW-ALW-CMP. Turbidity 
and [Chl-a] were measured with an Infinity-CLW-
ACLW2-USB which was oriented parallel to the seabed 
90 cm above the bottom.

Sea level records (in cm; reference Lowest 
Astronomical Tide) from the nearest tidal station 
(Hammerfest; http://www.kartverket.no/sehavniva/) were 
examined for the possible influences of tides on valve 
gape activity.

Experimental specimens

In February 2014, adult specimens of A. islandica were 
collected with a 30-cm clam dredge in Sanden Bay, 
Ingøya (Fig.  1 Online Resource 1). Sixteen specimens 
were selected for the valve gape monitoring experiment. 
Another 12 specimens were collected and placed in 
additional cups on the lander next to the valve gape 
monitors for future studies (Fig.  1). Shell heights were 
63.7–78.5  mm (±0.1  mm) at the beginning of the 
experiment. Each specimen was labeled with a shellfish 

Table 1   Deployment periods 
with specimen identity number 
by channel

* Specimen that died (B665). B677–B684 (n =  6) were the smaller replacements collected later in the 
experimental period (Figs. 2, 3 Online Resource 1). Gaps indicate that the channel malfunctioned during 
that period

Deployments D1 (110 days) D2 (82 days) D3 (233 days) D4 (161 days)

Starting day 7/Feb/2014 29/May/2014 22/Aug/2014 15/Apr/2015

Ending day 28/May/2014 19/Aug/2014 12/Apr/2015 9/Sep/2015

Channel 1 B649 B649 B649

Channel 2 B655 B655 B655

Channel 3 B658 B658 B658

Channel 4 B660 B660 B660

Channel 5 B661 B661 B661

Channel 6 B665 B665 B665*

Channel 7 B666 B666 B666

Channel 8 B667 B667 B667

Channel 9 B668 B668 B668 B682

Channel 10 B669 B669 B669 B683

Channel 11 B670 B670 B684

Channel 12 B671 B671 B671 B671

Channel 13 B672 B672

Channel 14 B677 B677

Channel 15 B674 B674 B678 B678

Channel 16 B675 B675 B680 B680

http://www.star-oddi.com/
http://ocean.jfe-advantech.co.jp
http://ocean.jfe-advantech.co.jp
http://www.kartverket.no/sehavniva/
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tag (Glue-On shellfish tags FPN 8  ×  4  mm; http://
www.hallprint.com/). For this, a small portion of the 
periostracum in the umbonal region was abraded away, 
after which the label was adhered with cyanoacrylate 
glue.

During the entire experimental period, a total of 21 
individuals were used (Table  1). One specimen died (A. 
islandica B665) and seven of the larger specimens were 
replaced with smaller ones (SH 50.7–56.6 mm) collected 
from the same population. Some of these individuals 
were used in continuing growth studies.

The lander was deployed for the first time on 7 February 
2014 using a traditional coastal Norwegian fishing boat 
(sjark) “Fjord Strup”. Since this first deployment, the 
benthic lander was retrieved for maintenance and data 
collection twice per year (see Table  1). In the laboratory, 
all shells were measured, the data were downloaded from 
all instruments, and the instruments were cleaned, serviced 
and reprogrammed. Before redeployment, the aluminum 
lander frame was cleaned to remove overgrowth by 
fouling organisms. The time period from lander retrieval 
to redeployment was 1–3  days depending on weather 
conditions (Table  1). During these days, specimens were 
kept in their cups within 80 L baths of aerated sea water at 
ambient temperature, but were not fed.

Statistical analysis

First, the synchrony among individuals was tested by 
calculating the pairwise correlation factor between 
all individuals and then between each of them and the 
average valve gape d−1 of all specimens [mean (Gt1−n)]. 
The number of individuals (n) per time (t) varied among 
periods due to technical problems in some recorder 
channels (Table 1).

Second, we applied a standard multiple regression to 
identify which environmental factors were related to the 
average valve gape of the specimens in the experimental 
setup. A logit transformation of the average valve gape 
d−1 (logit[mean(Gt1−n)]) was applied to fulfill linear 
modeling assumptions (Warton and Hui 2011). To avoid 
collinearity, explanatory variables were included in the 
analyses only when they had a (Pearson) correlation 
coefficient ≤±0.5 (Graham 2003; Duncan 2011; Ieno 
and Zuur 2015).

Third, an alternative approach was employed to address 
possible collinearity among the explanatory variables. 
PCA (Principal Component Analysis) was conducted on 
the environmental explanatory variables and the scores of 
the principal components were used as new explanatory 
variables in a subsequent multiple regression analysis 
(Graham 2003). This method allowed us to include all the 

original variables in the regression model, avoiding the 
subjective process of variable dropping (Graham 2003).

Finally, the two statistical approaches were compared. 
All analyses were done in R version 3.2.2 (www.r-project.
org) and PAST3 (http://folk.uio.no/ohammer/past/).

Results

Environmental records

Sea level

Sea level variation was ±0.5  m for all the experimen-
tal periods, except one day in May 2014 when a single 
1-m variation occurred (Fig.  2a). This indicates that 
storms have an additional effect on sea level in the bay 
beyond the tidal influence (http://www.kartverket.no/
sehavniva/).

Temperature

The daily average water temperature in Sanden Bay over 
the deployment period was 2.4–10.1 °C (Fig. 2b). In both 
2014 and 2015, August was the warmest month with 
an average monthly temperature of 9.0  °C. In 2014, the 
coldest month was March with an average temperature of 
3.7 °C, while in 2015 the coldest month was February with 
an average temperature of 3.3  °C. There were, however, 
individual measurements with recorded temperatures 
<1.6  °C in the first half of February 2015 and >10  °C in 
August 2014 and 2015. The lowest individual temperature 
record of 0.8 °C was recorded on February 3, 2015, and the 
maximum temperature of 10.3  °C occurred on August 9, 
2014 and August 27, 2015.

Salinity

The daily average salinity range was 30.8–34.4 (Fig.  2c). 
The minimum average daily value (30.8) was observed on 
February 10, 2015. However, there were occasional values 
<30 between January 28 and February 16, 2015. A large, 
sustained decrease in salinity occurred in both summers 
following the spring melt. In the summer of 2015, salinity 
decreased from 33.4 on June 21 to 32.3 on September 
21 (Fig.  2c). We observed not only a seasonal change 
in salinity but also a gradual decrease over the entire 
experimental period.

Light

Because Ingøya is ~500  km north of Arctic Circle, there 
are immense seasonal changes in light. Light levels rapidly 

http://www.hallprint.com/
http://www.hallprint.com/
http://www.r-project.org
http://www.r-project.org
http://folk.uio.no/ohammer/past/
http://www.kartverket.no/sehavniva/
http://www.kartverket.no/sehavniva/
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decrease in October and November, while in December 
and early January there is no appreciable daylight at all. 
Light levels increase again in late January and February 
(Fig.  2d). The rapidly increasing light levels in February 
are accompanied by high levels of [Chl-a] in Sanden Bay 
by mid-March (Fig. 2d, e), when sea temperatures still are 
at or near their lowest for the year (Fig. 2b). From mid-May 
to mid-July the sun does not set, providing perpetual day-
light. In May 2014, however, we recorded an artificial light 
reduction due to algal overgrowth on the JFE sensor screen 
(Fig. 2d).

[Chl‑a] and turbidity

Turbidity ([FTU]) values were measured by optical 
backscatter (OBS) to estimate water transparency, and 
[Chl-a] (µg  L−1) by fluorescence as an indication of 
primary productivity in Sanden Bay. There were well 
defined, but episodic [Chl-a] peaks in mid-February 2014 
and in mid-January in 2015 (Fig. 2e). These transient peaks 
during winter, each lasting only 1–2  days, were likely 
due to the effect of winter storms leading to sediment 
resuspension releasing buried [Chl-a]. This is supported 

Fig. 2   Daily averaged time series of the measured environmental 
variables by month. a Sea level (cm); b Temperature (°C); c Salin-
ity (PSU); d Light conditions (log_µmol  m−2  s−1); e [Chl-a] (log_

µg L−1); f Turbidity (log_FTU). Calendar years and months are indi-
cated along horizontal axis (14 = year 2014, and 15 = year 2015). 
Some sensors were fouled prior to lander retrieval in May 2014
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by turbidity values, which also showed transient spikes in 
February 2014 and January 2015, with maximum values of 
44 and 48 FTU, respectively (Fig. 2f). More sustained [Chl-
a] peaks occurred during spring and summer, reaching the 
highest values in May and August, respectively (Fig.  2e). 
In 2014, [Chl-a] varied from 0.1 to 348.1  µg  L−1. The 
extremely high values measured in spring were due to algal 
overgrowth on the JFE sensor screen. In 2015, the sensor 
problem was solved by covering the sensor with a PVC 
cylinder to exclude light and therefore eliminate the algae 
on the sensor. The [Chl-a] in 2015 were 0.1–57.1 µg L−1.

Valve gape monitors

There were significant differences in monthly valve gape 
activity (P < 0.01; one-way ANOVA), with monthly means 
of 0.19–0.84 (19–84% of the valve gape total magnitude, 

respectively; Fig.  3). Valve gape measurements over the 
two calendar years showed a well-defined activity cycle in 
A. islandica (Fig. 3). There were distinct types of gaping 
activity levels that were consistent between years as well 
as among individuals. We discerned two levels of activity, 
i.e., “active” with an average valve gape >0.2, and “inac-
tive” with an average valve gape ≤0.2 (Fig. 3 and Figs. 2, 
3 Online Resource 1). Values <~20% represent >95% 
probability of valves being closed in bivalves (Jou et  al. 
2013).

On average, the sample population of A. islandica indi-
viduals was inactive from the beginning of October to the 
end of January (with an average daily gape <23%; Fig. 3). 
That inactivity period, however, started earlier (mid-Sep-
tember) and/or finished later (end February/early March) 
in some specimens (Figs. 4 and Figs. 2, 3 Online Resource 
1). During that time, they opened widely once or twice a 

Fig. 3   Valve gape daily mean (black line) and SD (gray shadow) by month from all available specimens per unit of time (n = 7–15)
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month for 1–3 days (Fig. 4 and Figs. 2, 3 Online Resource 
1). Furthermore, we observed that all specimens required 
around a week to recover their normal activity after lander 
redeployment (Fig. 4, green line). Consequently, those data 
were not considered in the statistical analysis.

In both 2014 and 2015, a consistent transition from low 
valve gape to high started between February and March. 
The daily mean valve gape then increased considerably 
between the months of March and April, from 0.41 to 0.63 
in 2014, and from 0.36 to 0.56 in 2015 (Fig.  3). During 
summer 2014 (June 21–September 21), the daily average 
valve gape was 0.65 and ranged from a maximum of 0.86 
in mid-August to 0.22 in September. In summer 2015 

the results were quite similar, with a daily average valve 
gape of 0.66, ranging from 0.88 in early August to 0.28 in 
September. During both years, the highest, continuous level 
of activity occurred in late spring to early summer. Valve 
gape monthly means reached their maximum in May 2014 
(0.84) and in July 2015 (0.78; Fig. 3).

Valve gape activity vs. environmental records

When average valve gape activity was compared with 
daily means of the different environmental variables, [Chl-
a] was the variable with the highest correlation (r = 0.8; P 
value < 0.01; Fig.  5a), followed by turbidity (Fig.  5b), sea 

Fig. 4   Gaping activity of six A. islandica specimens (Table 1) Feb-
ruary 2014–April 2015. Green line highlights a week of valve gape 
data after the lander was deployed (excluded from analyses; May and 

August). Gray hashed background highlights common inactive period 
for all the specimens (average valve gape <0.2), which includes peri-
odic gaping lasting 1–3 days
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Fig. 5   Boxplox per month of daily average valve gape of all the specimens vs. key environmental variables: a [Chl-a] b Turbidity, c Light, d 
Temperature

Table 2   Correlation between 
the daily average gaping 
activity of the specimens 
(AvgGape) versus the different 
environmental variables (left 
bottom)

The highest correlation with AvgGape is shown in bold

The top right shows the P values of the corresponding correlations

AvgGape Temperature Salinity Light Sea level Log_[Chla] Log_Turb

AvgGape 0.00 0.01 0.00 0.00 0.00 0.00

Temperature 0.30 0.00 0.08 0.00 0.00 0.00

Salinity 0.12 −0.25 0.00 0.05 0.30 0.09

Light 0.41 0.08 0.18 0.00 0.00 0.00

Sea level −0.48 −0.24 −0.08 −0.28 0.00 0.00

log_[Chla] 0.82 0.53 −0.04 0.20 −0.47 0.00

log_Turb 0.50 0.28 −0.07 −0.18 −0.25 0.71
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level, light (Fig.  5c), temperature (Fig.  5d), and salinity 
(Table 2). The periods with the highest valve gape coincided 
with the highest levels of [Chl-a] (Fig. 5a). It is also apparent 
that the seasonal change in valve gape activity was tempo-
rally offset from temperature, with higher valve gape values 
leading the temperature pattern by 2–3 months (Fig. 5d).

Turbidity was highly correlated with [Chl-a] values 
(r  =  0.71; P value  <  0.01). When primary production 
increased in the bay, water transparency was reduced 
(Fig.  2d, e). Because of the correlation with [Chl-a], this 
variable was removed from the standard multiple regression 
analysis but included in the PCA regression.

Sea level had a negative relationship with gaping activ-
ity due to its influence on other environmental factors 
(Table  2). When sea level increased, there was less [Chl-
a] available (r = −0.47; P value < 0.01) and less light at 
the sea bottom (r = −0.28; P value < 0.01). An increase 
in sea level was furthermore associated with a decrease 
in water temperature (r  =  −0.24; P value  <  0.01) and 
salinity(r  =  −0.08; P value  <  0.01). This illustrates the 
influence of tides and storms on water exchange within 
Sanden Bay and seems to indicate that local primary pro-
duction drives the bay’s productivity.

Synchrony among individuals

There was high synchrony in daily gaping activity among 
all specimens. Further, there was also high synchrony 
between individuals and the average gape of all specimens 
(Fig.  3 and Figs.  4, 5, 6 Online Resource 1). Correlation 
factors ranged 0.5–0.9. Specimen B665 was the only one 
which died (end of August 2014), and which correlated 
poorly with the rest of the population (Fig.  4 Online 
Resource 1).

Multiple regression

After linearity exploration of the environmental variables 
with the dependent variable, we log-transformed the 
variables [Chl-a] and Turbidity. Turbidity was removed 
from the analysis due to high correlation with [Chl-a] 
(r = 0.7; Fig. 7 Online Resources 1). A stepwise variable 
selection procedure (both directions) did not lead to 
exclusion of any other measured explanatory variables. 
Consequently, we modeled the logit of the average daily 
valve gape with a dependency on Temperature, Salinity, log 
[Chl-a], Light, and Sea level:

where yi was the logit of the average valve gape on day i (i 
range 1–592), and εi the model error on day i (εi∼N(0, 1)).

Model M1 explained 75% of the variation in the aver-
age daily valve gape of A. islandica (adjusted R2 =  0.75, 
F1,66 =  328; Table  3). All the variables were statistically 
significant (P value < 0.05). Residual plots showed a good 
fit of the model (Fig.  8 Online Resources 1). We then 
explored the contribution of each variable to the total model 
(M1.1–M1.4; Table 1 Online Resources 1). [Chl-a] was the 
main contributor to M1, individually explaining 66% of 
the gaping activity variance. When the variable light was 

M1 : yi = β0 + β1 × Temperaturei + β2 × Salinityi + β3

× log_[Chlai] + β4 × Lighti + β5 × Sea leveli + εi,

Table 3   Regression table for model M1

M1 
logit(AvgGape)

Coefficient Std. 
error

T value P value

(Intercept) −4.041 1.793 −2.253 0.0246

Salinity 0.143 0.052 2.760 0.0059

Temperature −0.088 0.013 −6.720 4.63E−11

Light 0.021 0.002 9.745 <2E−16

Sea level −0.004 0.002 −2.335 0.0199

log_[Chl-a] 0.903 0.030 29.942 <2E−16

R2-adjusted = 0.75

Table 4   Correlation table 
between key variables and 
principal components (top) and 
multiple regression model M2 
summary (bottom)

Numbers in bold indicate the two main environmental factors driving the principal component (PC)

x***  =  significant variable with P value  =  0, x**  =  significant variable with P value  <  0.01, 
x* = significant variable with P value < 0.05 and, x = not significant variable

Variance explained PC1
(38.7%)

PC2
(22.8%)

PC3
(16.3%)

PC4
(10.4%)

PC5
(9.1%)

PC6
(2.7%)

Temperature 0.45 −0.17 −0.43 0.48 −0.55 0.23

Salinity −0.09 0.57 0.61 0.41 −0.35 0.02

Light 0.13 0.66 −0.44 0.18 0.50 0.25

Sea level −0.41 −0.37 0.01 0.74 0.38 −0.09

log_[Chl-a] 0.61 0.02 0.11 0.15 0.22 −0.74

log_Turbidity 0.49 −0.26 0.49 0.02 0.36 0.57

M2 (R2-adjusted = 0.75) x*** x*** x*** x* x*** x***
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added to the single variable [Chl-a] model, the two varia-
bles explained 72% of the variability in valve gape through 
time. This is roughly equivalent to the full M1 model (75%; 
Table 1 Online Resources 1). Thus [Chl-a] and light were 
the most important explanatory variables for the seasonal 
cycle in valve gape.

PCA regression

First, a PCA was conducted on the observations of the 
explanatory variables to extract the common signal from 
all of them (PCA; Table  4). This approach prevents the 
loss of explanatory power resulting from exclusion of 

variables (Carnes and Slade 1988; James and McCulloch 
1990). PC1 accounted for 38.7% of the variability among 
the variables (λ  =  2.32), with log [Chl-a] driving the 
loadings positively (with a correlation with PC1 =  0.6; 
Fig.  6; Table  4). PC2 explained 22.8% of the remain-
ing variability among the variables (λ =  1.37), and was 
best represented by light conditions (correlation with 
PC2 =  0.7; Fig.  6; Table  4). See Table  4 for principal 
components with Eigenvalue <1.

Ultimately, multiple regression analysis was conducted 
using the scores of the principal components as explanatory 
variables and the logit of average daily valve gape as 
response variable (Graham 2003):

Fig. 6   Maximum signal per month of A. islandica specimens from 
recorder 1 (except specimen B665 which died). Gray dashed back-
ground highlights months with higher average gape valve (>0.5). 
There are different scales on the y-axis to better illustrate the change 

in the monthly maximum signal per specimen. Recorder 2 specimens 
are not shown because R2 was adjusted in August 2014, so raw data 
were not comparable
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where yi was the logit of the average valve gape on day i (i 
range 1–592), and εi the model error on day i (εi∼N(0, 1) ). 
This regression model (M2) explained 75% of the valve 
gape variance (adjusted R2 = 0.75, F1,66 = 273; Table 4 and 
Table 2 Online Resources 1), with significant values for all 
the variables (P value < 0.05; Table 4). Thus, the M2 results 
were identical to those yielded by M1, where 75% of the 
gaping activity variance was also explained. Therefore, 
excluding turbidity from M1, did not influence our results.

In summary, the standard multiple regression results 
(M1) were supported by the PCA regression model (M2). 
These two statistical approaches and the consistency in the 
results from them, clearly suggest that [Chl-a], followed by 
light conditions, are the main environmental drivers of A. 
islandica gaping activity. While other variables may have 
some relevance and have a relationship at a particular time, 
these were generally far less influential in relation to the 
valve gape of this northern Norwegian population (Table 1 
Online Resources 1).

Discussion

Our field experiment addresses the critical need to study A. 
islandica biological activity at several temporal scales. We 
documented the in  situ daily and seasonal gaping activ-
ity of this bivalve in relation to environmental factors that 
drive their rhythms. Valve gape in A. islandica exhibits a 
well-defined seasonal pattern which is mainly driven by 
[Chl-a].

Although the experimental organisms had electro-coils 
attached to the outside of their shells and were each kept in 
individual cups, there is no indication that this experimen-
tal setup impacted the study results or considerably modi-
fied the valve gape behavior. Over the study period only 
one specimen died and we furthermore observed that the 
specimens buried themselves deep into the cups. Moreover, 
an analysis of the body mass index (BMI = Dry Weight-
Ash Weight/Height^3) showed that individuals from the 
experiment had the same or even slightly higher BMI than 
individuals freshly collected from the field at the time the 
lander was recovered. Results from other species show 
that electro-coils attached to the external shell surface had 
no influence on their behavior (Tran et al. 2011; Jou et al. 
2013).

Valve gape vs. growth

Valve gape activity in bivalves is related to important 
physiological processes including feeding and respiration 

M2 : yi = β0 + β1 × PC1i + β2 × PC2i + β3 × PC3i

+ β4PC4i + β5 × PC5i + β5 × PC6i + εi,

(Bayne 1998; Markich 2003; Riisgård et al. 2003; García-
March et  al. 2008). Filter-feeding bivalves open their 
valves to extend their siphons and filter the surrounding 
water. Witbaard et al. (1997b) demonstrated in a labora-
tory experiment that a large proportion of the inter-spec-
imen variation in shell growth of A. islandica could be 
explained by differences in individual feeding activities. 
This suggests a link between valve gape, open siphons, 
and shell growth, i.e., that valve gape is indicative of shell 
growth. Unfortunately, we were unable to collect small 
specimens at the start of the experiment which might 
have enabled a posteriori determination of this relation-
ship. The specimens used were too large and too slow-
growing to measure shell growth with calipers, given 
the measurement error (Thompson et al. 1980). We used 
an alternative method to determine whether the seasons 
with wide open valves (≥50% gape April–September) 
and closed valves (≤20% October–end of January) coin-
cided with periods of shell growth and non-growth. These 
thresholds (20 and 50%) are based on Jou et  al. (2013), 
representing >95% probability of valves being closed or, 
alternately, siphons extended, respectively, in Corbicula 
fluminea. We used the change in monthly maximum (raw) 
valve gape signal, i.e., the minimum measured distance 
of completely closed valves. A progressively decreasing 
signal strength (or drift) indicated that the valves and the 
electro-coils became progressively further apart when 
closed. The growing shell margin pushes the sensors 
away from each other, directly indicating shell growth 
(Schwartzmann et  al. 2011; Massabuau et  al. 2015). 
Six out of seven specimens exhibited a strong trend of 
decreasing signal (maximal) strength between April and 
September 2014 (Fig.  6) followed by a more station-
ary period without a clear trend in the maximum signal. 
These periods coincided with the periods of high and low 
valve gape values, respectively. This suggests that peri-
ods with high valve gape activity and high [Chl-a] cor-
responded to a progressive decline in maximum signal 
strength (increase in minimum valve gape) and therefore 
shell growth. These results are supported by earlier stud-
ies that found the highest shell growth rates for this spe-
cies in spring and early summer (Thompson et al. 1980; 
Schöne et al. 2005; Witbaard and Hippler 2009), and pro-
vide a link between food availability ([Chl-a]), high valve 
gape activity, and shell growth.

The valve gape data presented here, thus, suggest an 
‘active’ growth season of about eight months for this loca-
tion in northern Norway. Some studies have previously 
correlated their A. islandica growth chronologies with Sea 
Surface Temperature (SST) or salinity data from February 
to September (northeast Iceland; Marali and Schöne 2015). 
Our study clarifies the ecological and biological basis for 
using this period.
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In contrast to our findings, Mette et al. (2016) described 
a growing season of 12 months from the same population 
in Sanden Bay (from April to March/April of the following 
year). Their results, however, were based on shell oxygen 
isotopes values from only two subsampled annual incre-
ments. Our results are based on daily averages of gaping 
activity from a minimum of 7 simultaneously measured 
specimens. Although oxygen isotopes are excellent tools 
for reconstructing long time series of environmental annual 
variability, more replication (of individuals and years) and/
or fine scaler sampling of the shell increments is needed 
when addressing sub-annual resolution (DeLong et  al. 
2013; Schöne and Gillikin 2013).

Valve gape vs. environment

Average daily valve gape was highly synchronized (rall 

animals >0.5) and showed clear seasonal differences. High 
synchrony in valve gape has also been observed in other 
bivalves such as Mya arenaria, Dreissena polymorpha, 
Crassostrea gigas, and Pinna nobilis suggesting that a 
common external force with a periodicity similar to the 
activity drives such a response (Thorin 2000; Borcherding 
2006; Mat et al. 2012; García-March et al. 2016).

We measured various environmental variables of which 
[Chl-a], light, and temperature are the most likely to 
explain the seasonal pattern in shell gape. Arctica island-
ica is a poikilotherm and its activity and growth is directly 
dependent on ambient temperature (Winter 1969; Clarke 
2003; Hiebenthal et  al. 2012). There are, however, con-
flicting results on the significance of temperature on A. 
islandica growth and gape activity. In laboratory growth 
experiments, faster growth at higher temperatures was 
reported (Witbaard et  al. 1997b), with an added effect of 
salinity (Hiebenthal et al. 2012). Field studies were, how-
ever, not always conclusive about the role of temperature in 
shell growth. Some found significant correlation between 
SST and shell growth rate of A. islandica (Wanamaker 
et  al. 2008; Butler et  al. 2010; Marali and Schöne 2015), 
while others did not find such a strong relationship (Wit-
baard et al. 1996; Marchitto et al. 2000; Epplé et al. 2006; 
Stott et  al. 2010). In a temperate environment, food and 
temperature are hard to separate as explanatory variables 
for activity or growth. The difficulty in disentangling these 
two variables in a field setting was one of the reasons we 
conducted this study at this northern location (71°N). Our 
results were consistent with other bivalve growth stud-
ies at high latitudes, which also found growth cessation at 
elevated temperatures coincident with low food availability 
(Carroll et al. 2009, 2011; Ambrose et al. 2012).

In this study, we observed that the population started to 
consistently open their valves and become active near the 

coldest period of the year (around March) and conversely 
closed their valves and started to become inactive by mid-
September when temperatures were near their annual maxi-
mum (Fig. 5d). The valve gape records, however, show that 
they were not completely inactive in this winter period. All 
clams opened their valves widely once or twice a month for 
1–3 days, and then closed again. A similar pattern has previ-
ously been observed in experiments and in the field (Taylor 
1976; Strahl et al. 2011). While the reason for this behavior 
is not clear, it could be related to respiration and/or might be 
a type of probing behavior to test whether the environment is 
favorable. Our results showed that once there is food enough, 
the bivalves do not return to a dormant state but start feeding 
continuously with fully open valves. These results agree with 
earlier studies in A. islandica (Winter 1969) and other bivalves 
(Higgins 1980; Williams and Pilditch 1997; Riisgård et  al. 
2006) where the presence of Chl-a appears to be the main 
driver for sustained opening of their valves.

Next to [Chl-a], there was a relatively strong positive cor-
relation between valve gape and light conditions. In some 
bivalve species valve gape behavior is directly triggered by 
light conditions (García-March et  al. 2008; Schwartzmann 
et  al. 2011), whereby variations in sun or moon irradiance 
immediately provoke a response. Arctica islandica is known 
to have a shadow reaction to light (Morton 2011), but our 
results did not indicate an immediate response of valve gape to 
moon phase, day length or hourly variations in light intensity 
(unpubl data). Light could have an indirect effect on A. island-
ica through modulation of food availability (Kaartvedt 2008). 
There is indeed evidence that for some species of bivalves, 
valve gape responds to the presence of algal food (Higgins 
1980; Williams and Pilditch 1997; Riisgård et al. 2003, 2006. 
In laboratory conditions under continuous light exposure, A. 
islandica exhibited a 3–7 min periodicity in valve and mantle 
activity, which could be related to intrinsic drivers such as a 
biological clock (Rodland et al. 2006). The exact role of light 
as driving factor for valve gape of A. islandica remains unre-
solved, and the effect of photoperiod at different algal concen-
trations should be studied to clarify this issue.

In summary, our research found that: (1) gaping activ-
ity of A. islandica is highly synchronized among individu-
als in the studied population (2) [Chl-a] is the main driver 
of valve gaping activity in northern Norway, (3) the clams 
had a period of active gaping of eight months (between 
February and September). These results suggest the length 
of growing season in northern Norway is likely limited to 
about eight months (Weidman et  al. 1994; Schöne et  al. 
2005; Dunca et  al. 2009) starting very early in the spring 
and ending in late summer/early fall (Witbaard et al. 2003; 
Dunca et al. 2009).

Acknowledgements  Thanks to Captain Thorleif Hanssen for his 
indispensable help at the field location at Ingøya, Norway. Thanks to 



	 Mar Biol  (2017) 164:116 

1 3

 116   Page 14 of 15

the NIOZ workshop for their construction work of field equipment. 
Special thanks to William Ambrose Jr, Dmitri Barjitski, Odd Fjelde, 
Aubrey Foulk, Dan Frost, Ann Hansen, Erlend Hesten, Randall 
Hyman, Maddie Mette, Julie and Michael Retelle, and Alan Wanam-
aker for their assistance during the fieldwork. This work was funded 
by the EU within the framework (FP7) of the Marie Curie Interna-
tional Training Network ARAMACC (604802). Support for MLC was 
provided by the Research Council of Norway (Project: #227046).

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of 
interest.

Ethical approval  All applicable international, national, and/or insti-
tutional guidelines for the care and use of animals were followed.

Open Access  This article is distributed under the terms of the 
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted 
use, distribution, and reproduction in any medium, provided you give 
appropriate credit to the original author(s) and the source, provide a 
link to the Creative Commons license, and indicate if changes were 
made.

References

Ambrose WG, Renaud PE, Cottier FR, Berge J, Carroll ML, Levin 
B, Ryan S (2012) Growth line deposition and variability in 
growth of two circumpolar bivalves (Serripes groenlandicus, and 
Clinocardium ciliatum). Polar Biol 35:345–354. doi:10.1007/
s00300-011-1080-4

Bayne BL (1998) The physiology of suspension feeding by bivalve mol-
luscs: an introduction to the Plymouth “TROPHEE” workshop. J 
Exp Mar Biol Ecol 219:1–9. doi:10.1016/S0022-0981(97)00172-X

Borcherding J (2006) Ten years of practical experience with the 
Dreissena-monitor, a biological early warning system for con-
tinuous water quality monitoring. Hydrobiologia 556:417–426. 
doi:10.1007/s10750-005-1203-4

Butler PG, Richardson CA, Scourse JD et al (2009) Accurate incre-
ment identification and the spatial extent of the common signal 
in five Arctica islandica chronologies from the Fladen Ground, 
northern North Sea. Paleoceanography 24:PA2210. doi:10.1029
/2008pa001715

Butler PG, Richardson CA, Scourse JD, Wanamaker AD, Shammon 
TM, Bennell JD (2010) Marine climate in the Irish Sea: analy-
sis of a 489-year marine master chronology derived from growth 
increments in the shell of the clam Arctica islandica. Quat Sci 
Rev 29:1614–1632. doi:10.1016/j.quascirev.2009.07.010

Butler PG, Wanamaker AD, Scourse JD, Richardson CA, Reynolds 
DJ (2013) Variability of marine climate on the North Icelandic 
Shelf in a 1357-year proxy archive based on growth increments 
in the bivalve Arctica islandica. Palaeogeogr Palaeoclimatol 
Palaeoecol 373:141–151. doi:10.1016/j.palaeo.2012.01.016

Carnes BA, Slade NA (1988) The use of regression for detecting 
competition with multicollinear data. Ecology 69:266–274. 
doi:10.2307/1941282

Carroll ML, Johnson BJ, Henkes GA, McMahon KW, Voronkov A, 
Ambrose WG, Denisenko SG (2009) Bivalves as indicators of 
environmental variation and potential anthropogenic impacts 

in the southern Barents Sea. Mar Pollut Bull 59:193–206. 
doi:10.1016/j.marpolbul.2009.02.022

Carroll ML, Ambrose W, Levin B, Ryan S, Ratner A, Henkes G, 
Greenacre M (2011) Climatic regulation of Clinocardium cili-
atum (bivalvia) growth in the northwestern Barents Sea. Pal-
aeogeogr Palaeoclimatol Palaeoecol 302:10–20. doi:10.1016/j.
palaeo.2010.06.001

Clarke A (2003) Costs and consequences of evolutionary tempera-
ture adaptation. Trends Ecol Evol 18:573–581. doi:10.1016/j.
tree.2003.08.007

Dahlgren TG, Weinberg JR, Halanych KM (2000) Phylogeog-
raphy of the ocean quahog (Arctica islandica): influences of 
paleoclimate on genetic diversity and species range. Mar Biol 
137:487–495. doi:10.1007/s002270000342

DeLong KL, Quinn TM, Taylor FW, Shen CC, Lin K (2013) 
Improving coral-base paleoclimate reconstructions by replicat-
ing 350 years of coral Sr/Ca variations. Palaeogeogr Palaeocli-
matol Palaeoecol 373:6–24. doi:10.1016/j.palaeo.2012.08.019

Dunca E, Mutvei H, Göransson P et  al (2009) Using ocean quahog 
(Arctica islandica) shells to reconstruct palaeoenvironment in 
Öresund, Kattegat and Skagerrak, Sweden. Int J Earth Sci 98:3–
17. doi:10.1007/s00531-008-0348-6

Duncan IG (2011) Healthcare risk adjustment and predictive mod-
eling. Actex Publications, Winsted (CT)

Epplé VM, Brey T, Witbaard R, Kuhnert H, Pätzold J (2006) Scle-
rochronological records of Arctica islandica from the inner 
German Bight. Holocene 16:763–769. doi:10.1191/09596836
06hl970rr

García-March JR, Sanchís Solsona MA, García-Carrascosa AM 
(2008) Shell gaping behaviour of Pinna nobilis L., 1758: cir-
cadian and circalunar rhythms revealed by in situ monitoring. 
Mar Biol 153:689–698. doi:10.1007/s00227-007-0842-6

García-March JR, Jiménez S, Sanchís  Solsona MA, Monleon S, 
Lees J, Surge D, Tena-Medialdea J (2016) In  situ biomoni-
toring shows seasonal patterns and environmentally mediated 
gaping activity in the bivalve, Pinna nobilis. Mar Biol 163:1–
2. doi:10.1007/s00227-016-2812-3

Graham MH (2003) Confronting multicollinearity in ecological mul-
tiple regression. Ecology 84:2809–2815. doi:10.1890/02-3114

Hiebenthal C, Philipp EER, Eisenhauer A, Wahl M (2012) Interactive 
effects of temperature and salinity on shell formation and gen-
eral condition in Baltic Sea Mytilus edulis and Arctica islandica. 
Aquat Biol 14:289–298. doi:10.3354/ab00405

Higgins PJ (1980) Effects of food availability on the valve movements 
and feeding behavior of juvenile Crassostrea virginica (Gmelin). 
I. Valve movements and periodic activity. J Exp Mar Biol Ecol 
45:229–244. doi:10.1016/0022-0981(80)90060-X

Ieno EN, Zuur AF (2015) A beginner’s guide to data exploration and 
visualisation with R. Highland Statistics Ltd., Newburgh

James FC, McCulloch CE (1990) Multivariate analysis in ecology 
and systematics: panacea or Pandora’s box? Annu Rev Ecol Syst 
21:129–166. doi:10.1146/annurev.es.21.110190.001021

Jones DS (1980) Annual cycle of shell growth increment formation in 
two continental shelf bivalves and its paleoecologic significance. 
Paleobiology 6:331–340. doi:10.1017/S0094837300006837

Jou LJ, Lin SC, Chen BC, Chen WY, Liao CM (2013) Synthesis 
and measurement of valve activities by an improved online 
clam-based behavioral monitoring system. Comput Electron 
Agric 90:106–118. doi:10.1016/j.compag.2012.09.008

Kaartvedt S (2008) Photoperiod may constrain the effect of global 
warming in arctic marine systems. J Plankton Res 30:1203–
1206. doi:10.1093/plankt/fbn075

Marali S, Schöne BR (2015) Oceanographic control on shell growth 
of Arctica islandica (Bivalvia) in surface waters of North-
east Iceland—implications for paleoclimate reconstructions. 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/s00300-011-1080-4
http://dx.doi.org/10.1007/s00300-011-1080-4
http://dx.doi.org/10.1016/S0022-0981(97)00172-X
http://dx.doi.org/10.1007/s10750-005-1203-4
http://dx.doi.org/10.1029/2008pa001715
http://dx.doi.org/10.1029/2008pa001715
http://dx.doi.org/10.1016/j.quascirev.2009.07.010
http://dx.doi.org/10.1016/j.palaeo.2012.01.016
http://dx.doi.org/10.2307/1941282
http://dx.doi.org/10.1016/j.marpolbul.2009.02.022
http://dx.doi.org/10.1016/j.palaeo.2010.06.001
http://dx.doi.org/10.1016/j.palaeo.2010.06.001
http://dx.doi.org/10.1016/j.tree.2003.08.007
http://dx.doi.org/10.1016/j.tree.2003.08.007
http://dx.doi.org/10.1007/s002270000342
http://dx.doi.org/10.1016/j.palaeo.2012.08.019
http://dx.doi.org/10.1007/s00531-008-0348-6
http://dx.doi.org/10.1191/0959683606hl970rr
http://dx.doi.org/10.1191/0959683606hl970rr
http://dx.doi.org/10.1007/s00227-007-0842-6
http://dx.doi.org/10.1007/s00227-016-2812-3
http://dx.doi.org/10.1890/02-3114
http://dx.doi.org/10.3354/ab00405
http://dx.doi.org/10.1016/0022-0981(80)90060-X
http://dx.doi.org/10.1146/annurev.es.21.110190.001021
http://dx.doi.org/10.1017/S0094837300006837
http://dx.doi.org/10.1016/j.compag.2012.09.008
http://dx.doi.org/10.1093/plankt/fbn075


Mar Biol  (2017) 164:116 	

1 3

Page 15 of 15   116 

Palaeogeogr Palaeoclimatol Palaeoecol 420:138–149. 
doi:10.1016/j.palaeo.2014.12.016

Marchitto TM, Jones GA, Goodfriend GA, Weidman CR (2000) 
Precise temporal correlation of Holocene mollusk shells 
using sclerochronology. Quat Res 53:236–246. doi:10.1006/
qres.1999.2107

Markich SJ (2003) Influence of body size and gender on valve 
movement responses of a freshwater bivalve to uranium. Envi-
ron Toxicol 18:126–136. doi:10.1002/tox.10109

Massabuau JC, Gudimov A, Blanc P (2015) Environmental moni-
toring of Arctic waters with unmanned bivalve biosensor tech-
nology: one year of background data acquisition in the Bar-
ents Sea. Paper presented at the InSPE Russian Petroleum 
Technology Conference., Moscow, Russia, 26–28 October. 
doi:10.2118/176681-MS

Mat AM, Massabuau JC, Ciret P, Tran D (2012) Evidence for a 
plastic dual circadian rhythm in the oyster Crassostrea gigas. 
Chronobiol Int 29:857–867. doi:10.3109/07420528.2012.6991
26

Mette MJ, Wanamaker AD, Carroll ML, Ambrose WG, Retelle MJ 
(2016) Linking large-scale climate variability with Arctica 
islandica shell growth and geochemistry in northern Norway. 
Limnol Oceanogr 61:748–764. doi:10.1002/lno.10252

Møhlenberg F, Riisgård HU (1979) Filtration rate, using a new 
indirect technique, in thirteen species of suspension-feeding 
bivalves. Mar Biol 54:143–147. doi:10.1007/BF00386593

Morton B (2011) The biology and functional morphology of Arc-
tica islandica (Bivalvia: Arcticidae)–A gerontophilic living 
fossil. Mar Biol Res 7:540–553. doi:10.1080/17451000.2010.
535833

Newell CR, Wildish DJ, MacDonald BA (2001) The effects of 
velocity and seston concentration on the exhalant siphon 
area, valve gape and filtration rate of the mussel Myti-
lus edulis. J Exp Mar Biol Ecol 261:91–111. doi:10.1016/
S0022-0981(01)00285-4

Riisgård HU, Larsen PS (2015) Physiologically regulated valve-closure 
makes mussels long-term starvation survivors: test of hypothesis. J 
Molluscan Stud 81(2):303–307. doi:10.1093/mollus/eyu087

Riisgård HU, Kittner C, Seerup DF (2003) Regulation of open-
ing state and filtration rate in filter-feeding bivalves (Cardium 
edule, Mytilus edulis, Mya arenaria) in response to low algal 
concentration. J Exp Mar Biol Ecol 284:105–127. doi:10.1016/
S0022-0981(02)00496-3

Riisgård HU, Lassen J, Kittner C (2006) Valve-gape response 
times in mussels (Mytilus Edulis)—effects of laboratory pre-
ceding-feeding conditions and in  situ tidally induced varia-
tion in phytoplankton biomass. J Shellfish Res 25:901–911. 
doi:10.2983/0730-8000(2006)25[901:vrtimm]2.0.co;2

Rodland DL, Schöne BR, Helama S, Nielsen JK, Baier S (2006) 
A clockwork mollusc: Ultradian rhythms in bivalve activity 
revealed by digital photography. J Exp Mar Biol Ecol 334:316–
323. doi:10.1016/j.jembe.2006.02.012

Schöne BR, Gillikin DP (2013) Unraveling environmental histo-
ries from skeletal diaries—advances in sclerochronology. Pal-
aeogeogr Palaeoclimatol Palaeoecol 373:1–5. doi:10.1016/j.
palaeo.2012.11.026

Schöne BR, Oschmann W, Rössler J et al (2003) North Atlantic Oscil-
lation dynamics recorded in shells of a long-lived bivalve mol-
lusk. Geology 31:1037–1040. doi:10.1130/g20013.1

Schöne BR, Houk SD, Castro AD et al (2005) Daily growth rates in 
shells of Arctica islandica: assessing sub-seasonal environmen-
tal controls on a long-lived bivalve mollusk. Palaios 20:78–92. 
doi:10.2110/palo.2003.p03-101

Schwartzmann C, Durrieu G, Sow M, Ciret P, Lazareth CE, Mass-
abuau JC (2011) In  situ giant clam growth rate behavior in 

relation to temperature: a one-year coupled study of high-fre-
quency noninvasive valvometry and sclerochronology. Limnol 
Oceanogr 56:1940–1951. doi:10.4319/lo.2011.56.5.1940

Stott KJ, Austin WEN, Sayer MDJ, Weidman CR, Cage AG, Wilson 
RJS (2010) The potential of Arctica islandica growth records to 
reconstruct coastal climate in north west Scotland, UK. Quat Sci 
Rev 29:1602–1613. doi:10.1016/j.quascirev.2009.06.016

Strahl J, Brey T, Philipp EE, Thorarinsdottir G, Fischer N, Wessels W, 
Abele D (2011) Physiological responses to self-induced burrow-
ing and metabolic rate depression in the ocean quahog Arctica 
islandica. J Exp Biol 214:4223–4233. doi:10.1242/jeb.055178

Taylor AC (1976) Burrowing behaviour and anaerobiosis in the 
bivalve Arctica islandica (L.). J Mar Biol Assoc UK 56:95–109. 
doi:10.1017/S0025315400020464

Thompson I, Jones D, Dreibelbis D (1980) Annual internal growth 
banding and life history of the ocean quahog Arctica island-
ica (Mollusca: Bivalvia). Mar Biol 57:25–34. doi:10.1007/
BF00420964

Thorin S (2000) Seasonal variations in siphonal activity of Mya 
arenaria (Mollusca). J Mar Biol Assoc UK 80:1135–1136. 
doi:10.1017/S0025315400003258

Tran D, Nadau A, Durrieu G, Ciret P, Parisot JP, Massabuau JC (2011) 
Field chronobiology of a molluscan bivalve: how the moon and 
sun cycles interact to drive oyster activity rhythms. Chronobiol 
Int 28:307–317. doi:10.3109/07420528.2011.565897

Wanamaker AD, Kreutz KJ, Schöne BR et al (2008) Coupled North 
Atlantic slope water forcing on Gulf of Maine temperatures 
over the past millennium. Clim Dyn 31:183–194. doi:10.1007/
s00382-007-0344-8

Warton DI, Hui FK (2011) The arcsine is asinine: the analysis of propor-
tions in ecology. Ecology 92(1):3–10. doi:10.1890/1810-0340.1

Weidman CR, Jones GA, Kyger (1994) The long-lived mollusc 
Arctica islandica: a new paleoceanographic tool for the recon-
struction of bottom temperatures for the continental shelves 
of the northern North Atlantic Ocean. J Geophys Res Oceans 
99:18305–18314. doi:10.1029/94jc01882

Williams BG, Pilditch CA (1997) The entrainment of per-
sistent tidal rhythmicity in a filter-feeding bivalve using 
cycles of food availability. J Biol Rhythms 12:173–181. 
doi:10.1177/074873049701200208

Winter JE (1969) Uber den einflub der nahrungskonzentration und 
anderer faktoren auf filtrierleistung und nahrungsausnutzung der 
Muscheln Arctica islandica und Modiolus modiolus. Mar Biol 
4:87–137

Witbaard R, Hippler D (2009) Seasonal timing of shell and tis-
sue growth in Arctica islandica. Paper presented at the Bivalve 
biomineralisation: archival potential and proxy incorporation, 
Brussels, Belgium, 4–5 May 2009

Witbaard R, Duineveld GC, De Wilde PA (1996) Growth variations 
in Arctica islandica L. (Mollusca): a reflection of hydrography-
related food supply. ICES J Mar Sci 53:981–987

Witbaard R, Duineveld GC, De Wilde PA (1997a) A long-term growth 
record derived from Arctica islandica (Mollusca, Bivalvia) from 
the Fladen Ground (northern North Sea). J Mar Biol Assoc UK 
77:801–816. doi:10.1017/S0025315400036201

Witbaard R, Franken R, Visser B (1997b) Growth of juvenile Arc-
tica islandica under experimental conditions. Helgolaender 
Meeresun 51:417–432

Witbaard R, Jansma E, Klaassen U (2003) Copepods link qua-
hog growth to climate. J Sea Res 50:77–83. doi:10.1016/
S1385-1101(03)00040-6

http://dx.doi.org/10.1016/j.palaeo.2014.12.016
http://dx.doi.org/10.1006/qres.1999.2107
http://dx.doi.org/10.1006/qres.1999.2107
http://dx.doi.org/10.1002/tox.10109
http://dx.doi.org/10.2118/176681-MS
http://dx.doi.org/10.3109/07420528.2012.699126
http://dx.doi.org/10.3109/07420528.2012.699126
http://dx.doi.org/10.1002/lno.10252
http://dx.doi.org/10.1007/BF00386593
http://dx.doi.org/10.1080/17451000.2010.535833
http://dx.doi.org/10.1080/17451000.2010.535833
http://dx.doi.org/10.1016/S0022-0981(01)00285-4
http://dx.doi.org/10.1016/S0022-0981(01)00285-4
http://dx.doi.org/10.1093/mollus/eyu087
http://dx.doi.org/10.1016/S0022-0981(02)00496-3
http://dx.doi.org/10.1016/S0022-0981(02)00496-3
http://dx.doi.org/10.1016/j.jembe.2006.02.012
http://dx.doi.org/10.1016/j.palaeo.2012.11.026
http://dx.doi.org/10.1016/j.palaeo.2012.11.026
http://dx.doi.org/10.1130/g20013.1
http://dx.doi.org/10.2110/palo.2003.p03-101
http://dx.doi.org/10.4319/lo.2011.56.5.1940
http://dx.doi.org/10.1016/j.quascirev.2009.06.016
http://dx.doi.org/10.1242/jeb.055178
http://dx.doi.org/10.1017/S0025315400020464
http://dx.doi.org/10.1007/BF00420964
http://dx.doi.org/10.1007/BF00420964
http://dx.doi.org/10.1017/S0025315400003258
http://dx.doi.org/10.3109/07420528.2011.565897
http://dx.doi.org/10.1007/s00382-007-0344-8
http://dx.doi.org/10.1007/s00382-007-0344-8
http://dx.doi.org/10.1890/1810-0340.1
http://dx.doi.org/10.1029/94jc01882
http://dx.doi.org/10.1177/074873049701200208
http://dx.doi.org/10.1017/S0025315400036201
http://dx.doi.org/10.1016/S1385-1101(03)00040-6
http://dx.doi.org/10.1016/S1385-1101(03)00040-6

	Environmental factors regulating gaping activity of the bivalve Arctica islandica in Northern Norway
	Abstract 
	Introduction
	Methods
	Site description
	Lander description
	Valve gape monitors
	Long-term environmental measurements
	Experimental specimens
	Statistical analysis

	Results
	Environmental records
	Sea level

	Temperature
	Salinity
	Light
	[Chl-a] and turbidity
	Valve gape monitors
	Valve gape activity vs. environmental records
	Synchrony among individuals
	Multiple regression
	PCA regression

	Discussion
	Valve gape vs. growth
	Valve gape vs. environment

	Acknowledgements 
	References




