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Abstract

This paper describes a solver on the simulation of overtopping of water waves over sloping and vertical structures in
a numerical wave tank (NWT). It involves a time-implicit cell-staggered approximately factored VOF finite volume
(FV) approach for solution of unsteady incompressible Navier—Stokes (NS) equations with a free surface on non-
uniform Cartesian cut-cell grids. The Godunov-type high-order upwind schemes are introduced for discretization of the
convective fluxes, while the coupling of the pressure with the velocity is realized by a projection method. The effects of
turbulence are incorporated with a subgrid-scale (SGS) model. A novel VOF solver is proposed for the capture of a free
surface undergoing severe topological deformation related with breaking waves. Only an approximation for the free-
surface boundary conditions neglects the viscous stress but surface tension is modelled as a body force. A blend of
second- and fourth-order artificial damping terms is designed for enhancement of the numerical stability. Additionally,
the cut-cell techniques are utilized for handling an arbitrary geometry, and an absorbing-generating boundary condition
for a wave generator is applied. The calculated results are represented in terms of the surface elevation versus time at
certain locations and the velocity fields created by regular and irregular waves. Furthermore, the convergence behavior,
the grid refinement effects, the study of different SGS models, the surface tension and Reynolds number effects and the
role of a turbulence model under breaking waves are discussed, including a comparison with measurements available.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Overtopping of waves over a sea dike is a violently natural phenomenon that may cause the structural
failure of the sea defence. Owing to the presence of breaking waves, flows become highly turbulent, often
subjected to rapid deformation of the free-surface. Of particular interest is the capture of breaking waves in
the surf zone and elsewhere, which needs an investigation of the behavior of the moving air—water interface
referred to as the free surface. A study on overtopping of waves in complex flows with high turbulence is
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one of the challenging topics. An elucidation of the more detailed mechanism is essential and always de-
sirable in research and engineering.

Theoretically, the relevant study involves the solution of moving boundary problems, where the effects of
the free surface are distributed over a region proportional to several grids. Only its initial location and
geometry are known a priori but the final location has to be determined as part of the solution. Conse-
quently, the gross topology change undergoing the processes of merging and breakup amplifies wave-
structure coupling problems. In particular, it tends to be more difficult in the presence of surface tension,
including the treatment of the viscous dynamic free-surface boundary conditions [26], while the free surface
is assigned as one of the boundaries in the computational domain. A powerful numerical tool, therefore, is
preferred for handling the arbitrarily shaped interfaces naturally. Many approaches are available for
studying flows of immiscible fluids with interfaces (see, for example, the density function method [38], a
front-tracking approach [55], the smoothed particle hydrodynamics (SPH) [35], the level set method [37,49]
and VOF plus their coupled approach [51]). Comprehensive reviews on breaking waves in the surf zone can
be found in Christensen [6], Watanabe and Saeki [59] and Lin [32], based on a large-eddy simulation (LES)
and the Reynolds-averaged Navier—Stokes (RANS) approximation, respectively. The volume-of-fluid
(VOF) method is one of the most popular schemes so far. Its intrinsic feature is to identify the mass
conservation, especially without special attention for modelling of topological changes of the front. On a
stationary grid, one tracks the volume of each material in cells that contain a portion of an interface
(defined as mixed cells), as long as the data « are specified according to the shape and location of an initial
interface, where the volume fractions (denoted as « hereafter) satisfy 0 < o < 1, in which the value of o = %
is supposed to represent the interfaces. It is shown that an iterative course of o includes a two-stage process:
one is referred to as an interface reconstruction algorithm and one an advection algorithm for «.

1.1. An interface reconstruction algorithm

Typically, it is classified in two basic categories: an explicit/implicit interface reconstruction. For the
former, the current many approaches [42] are to design an approximate interface (i.e., an Eulerian repre-
sentation), dependent on the distributions of o at each time, called the modern PLIC (piecewise linear
interface calculation) methods. By predefining various possible orientations, those can provide more exact
approximation to the interfaces [40,61]. Alternative is to move the PLIC-type interfaces, for example, by
virtue of a local velocity at a certain cell face, called Lagrangian interface reconstruction methods in the
Lagrangian sense. In this way, the stretching or compression of the interface can be taken into account
naturally during each single fractional step [14], consequently, it is thought as a more robust approach. For
the latter, one assigns a piecewise-constant representation of the interface (e.g., the original Hirt and
Nichols’s VOF method [17]), named a purely Eulerian representation. Its significant advantage is that the
interfaces arbitrarily orientated with respect to the computational grids are allowed.

1.2. An advection algorithm for o

One has to resolve the following transport equation:
Ou  O(ua) O(va) O(wor)
ot + Ox + dy + 0z

provided that the underlying velocity fields and the reconstructed interface are given simultaneously. Ac-
tually, « is a scalar quantity carrying the material information, therefore, Eq. (1) updates o over mixed cells
but maintains « = 1 or 0 in the water or air, respectively. Given an explicit interface reconstruction, it is
relatively straightforward in its implementation for the evaluation of the convective fluxes of o, due to the
geometrical information available. Such approaches, without diffusion of the front, are more promising

—0 (1)
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than the original VOF method but at the cost of algorithmic complexity [42], especially in three-dimen-
sional (3D) situations, where the operations to be performed could be more complicated in the context of
mergers and breakups, as compared with purely Eulerian methods [54]. With the interfaces reconstructed
implicitly, the critical issue is to treat the convective terms but this faces fundamental difficulties when the
hyperbolic nonlinear partial differential equation of o (see Eq. (1)) is discretized on a finite grid. The use of
regular high-resolution schemes, for example, leads to more or less diffusive on the evolution of « so that
non-physical shape of the interface occurs over a few cells when the excessive diffusion is generated
[15,24,46]. A similar phenomenon holds for the original VOF method, that is, a very popular one, because
of its simplicity. Some reasons may be interpreted as the fact that it does not preserve local boundedness.
To suppress such problem, a high resolution method with bounding treatments, called as CICSM [53]
(compressive interface capturing scheme for arbitrary meshes), is proposed. The relevant study can be
found in Rudman [46] and Xiao [60], respectively.

In this paper, we develop a new solver for modelling of overtopping of waves over vertical and sloping
coastal structures. Applications to the capture of breaking waves are emphasized in our solver for illustration
of its particular feature to case studies related to wave overtopping. This solver includes an operator-split
implicit-time differencing scheme for resolution of the NS equations on nonuniform Cartesian cut-cell meshes
with the help of a cell-staggered finite volume (FV) method, while incompressibility is realized by enforcing an
iterative Poisson solver for the pressure. A sharp interface in topologically complex wave-induced flows is
tracked with the VOF-based algorithm easy to use but to well describe the physical behavior of practical
problems. All that is necessary involves the need for eliminating the knowledge of detailed interface infor-
mation at each iteration plus an implicit treatment for the surface pressure. In the latter case, this considers the
contribution from the air, only applying the pressure on the water. Additionally, surface tension is enforced as
a body force according to the continuum surface force (CSF) model [4]. This allows to significantly simplify the
normal dynamic free-surface boundary condition. In our study, the pressure at mixed cells is incorporated into
the corresponding field equation. In particular, no explicit expression for the interface reconstruction is re-
quired during tracking, which is similar to the level set method widely applied to many fields. As expected, it
can be generalized well to 3D and used for several industrial applications as well. Our work in this area is to
develop an approach that preserves the smoothness of the interface and maintains its sharp definition over one
cell, indicating that numerical diffusion related with upwind schemes should not be excessive (that is, without
dispersing or wrinkling). It is composed of a weighted upwind scheme with the help of an operator-split
second-order explicit Adams—Bashforth advection algorithm plus a blending scheme. For two test cases that
involve complex wave-induced flows, our computation demonstrates that the approach proposed is simple
and computationally efficient.

This paper is organized as follows. First, we outline the numerical methods that include the mathe-
matical model, a fully implicit cell-staggered FV approach on nonuniform Cartesian cut-cell grids, the
modelling of surface tension, a novel solution for the volume fractions « and a static Smagorinsky model
with a constant coefficient, respectively. The calculated results and discussions, such as some convergence
properties, the study of grid refinement effects, the investigation of two different SGS models, the Reynolds
number and surface tension effects, and the wave-induced flows plus comparison with the experimental date
available, are represented next, followed by the concluding remarks.

2. Methodology
2.1. Mathematical model

For sea dike problems, a right-handed coordinate system (x, y,z) is set up, as illustrated in Fig. 1, where
the origin is fixed at the intersection of the inlet with the still water level (SWL), and three coordinates
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Fig. 1. A reference coordinate system for sea dike problems.

(x,y,z) are defined as positive in the direction of the wave propagation, towards the width of a dike and
upwards, respectively. Assuming that the mathematical model is based on unsteady incompressible Navier—
Stokes (NS) equations in a conservative form on Cartesian grids, thus one has

dp OF 0G 0OH
§+§+@+§—Qv (2)

where variables ¢ = (0,u,v,w)". (F,G,H) = (F, — F, + F,,G; — G, + G, H, — H, + H,) are expressed as,
respectively,

0 0 0
2
F="1 =" #=|" (3)
vu v ow
wu wv w?

for the inviscid fluxes (£, G, H,),

0 0 0
5 u 3
Veff 5o Veff 3y Veff 52
E/ = w 5 Gv = o 5 Hv = o (4)
Veff 5x Veff 3, Veff 5,
w 2 w
Veff 3y Veff G Veff 3,

for the viscous fluxes (Fy, Gy, H,),

u v w
1 0 0
F, = Pé) , G, = %p , H, = 0 (5)
0 0 ip
for the acoustic fluxes (F,, G,, H,), and
0
i
0= lFB" (6)
p

1 oz

oI5 —8
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for the source term (Q). (u,v,w) are the components of the velocity in the x-, y- and z-directions, respec-
tively, p is the total pressure, and g is the gravitational acceleration. (£, F; , F¢) are three components of a
body force Fy, in the (x,y,z)-directions, respectively. ver is the effective viscous coefficient by setting
verr = V + v, in which v is the molecular kinematic viscosity and the eddy viscosity v, has to be determined
with a turbulence model. The local density p and viscosity vy are given as in terms of «

p=0opy + (1 - OC)/% Vet = OVefr,, (1 - OC)Veffa, (7)

where the subscripts (w, a) denote the water and the air, respectively.
2.2. A fully implicit cell-staggered finite volume method

With a staggered grid arrangement, the pressure is coupled with the velocity naturally. The benefit is that
its use helps to avoid some types of convergence problems and oscillations in the pressure and velocity fields
[9]. In this way, the pressure and o are located at the centre of a cell, while three components (u, v, w) of the
velocity lie in the centre of the (i +1), (j +1) and (k +1) faces enclosed a cell (ijk), respectively (see Fig. 2).
With an implicit FV method, the discretization of the integral form of Eq. (2) over each cell may be written by

(%)n+l +i ZFnJr] o Q,Hrl (8)
at V faces
Wik
(k+1/2)
Viik
(i+1/2)
(i-1/2)
Pik, ot
(ijk)
Uji
(im~

Fig. 2. A staggered grid system. (p;u, o) are defined at the center of a cell (7, /, k); (i, Uik, wii) at the faces (i +1/2,,k), (i,j + 1/2,k)
and (i, j, k + 1/2), respectively.
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for an arbitrary fixed volume V with a cell face S. The subscript faces represents the summation over all cell
faces surrounding a hexahedral cell. F = (Fn, + Gn, + Hn.)S, where (n,,n,,n.) are the unit normal com-
ponents of the cell face outwards in the x-, y- and z-directions, respectively.

Since there is no restriction of time step level, in principle, an implicit approach provides a more ef-
ficient way in studying slowly transient flows. Nevertheless, it is not realistic to resolve a large coupled set
of non-linear equations at each time step. Consequently, various approaches are proposed for an ap-
proximation of Eq. (8). In this study, the variation of the unknown fluxes at the (n+ 1)th time step is
obtained with the introduction of the so-called Delta form [25,34,44], indicating that a local linearization
of the fluxes created by the convective and diffusion terms, respectively, is enforced. As a result, the fluxes
at the (n + 1)th time step is formulated by a Taylor series extension to first-order accuracy in terms of the
time ¢. Namely

F —F +67Al‘ +a o —At=F +@5(p,

where the Delta form d¢ = ¢""' — ¢". Hence, one has

At oF
5(p+7z <6q))5(p—AtR

faces

By setting F = F; — F,, it can be derived by

PG5 ) 1G]y LG50 )

q)i% op 0¢ (pi% 14 op 0¢ (pﬂ%
—[(aﬁ-aﬁ)é} UG-, (-5
dp 0o ¢ -4 14 op Q¢ ¢ ek dp 0o ¢ k-4

= AtR )

with the residual of the momentum equations R defined as

{ > F }— {%Z(FT—FZ)—Q"}, (10)

faces faces

where F; = En, + Gin, + Hin, and F, = Fyn, + Gyn, + Hyn,. Clearly, F; and F\, represent the contributions
from the inviscid and viscid fluxes in the (x, y,z)-directions, respectively. This implies that the body force Fy
and the acoustic fluxes are not involved in the currently implicit process, except for the source terms,
o =0"=(0,0,0, —g)T In this case, the summation is taken over six cell faces surrounding a cell (ijk)

vid 3 s = ()it = )iy + () = () + (s — ( )y as shown in Fig. 2.

2.2.1. Evaluation of the derivatives & and aF v

o at a certain face
In our implicit stage, the derlvatlve % is decomposed as two terms a =i and £, respectively. For the
evaluation of the corresponding values, we adopt the two different approxmlatlons one [25,44] is to use an
one-order upwind scheme for achievement of 3 % one [25,34] is to neglect the cross derivatives related with
the viscid fluxes, when calculating 3 E‘F v with a central difference scheme. The former maintains the bandwidth
of tridiagonal block in the linear equatlon, resulting in lower memory for the solution of Eq. (9); the latter

allows to significantly simplify the expression in the matrix.

F; 'OF\
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2.2.1.1. Computation ofi—f‘. The convective fluxes in the x-momentum equation, for example, may be derived by
%—l—%pu awu ZunuS ZMu— ZF” (11)
V V e Ve
where the normal face velocity u, is defined as
u, = un, + vn, + wn, (12)
so that the inviscid volumetric M and momentum fluxes F; across a certain face are, respectively,
M=u,S and F;= Mu.

The latter results in the derivative aa—ii, such as at the (i +3) face, as

OF; .
P =M.
( Ou >i+l o

on the assumption that M, +¢ is unchanged at one currently iterative cycle. With an one-order upwind
scheme, therefore,

can be given as

oF, . . .
(%5 )H% = (M5<P)i+% = M,:%&/’i - M100:, (13)

in which M: , and M_jrl are formulated by, respectively,
i+ i+3

M+

+‘_

max (M.+%,O>, M;rl = max ( ,+1,0>

1

The subscripts (i,7 + 1) represent cells, respectively, as shown in Fig. 3. Owing to max(x, 0) = max(—x, 0) +x
for example, M*l can be split as M*l = M+1 + M, which is useful when one arranges Eq. (17).

i +17

2.2.1.2. Evaluation of %F(p For the viscous fluxes in the x-momentum equation (i.e., ¢ = u), it reads as

o ¢ o Veit a(p
G0 TO TP _ F 14
Veff< o + o + = ) Vo Z Vs (14)

faces

where a—"’ is the normal gradient at a certain face defined by

dp _0¢ 0 O

an al’lx @ny + gﬂz
so that the viscous momentum flux F, is
_ 0¢p
Fy = ver=3S. 15
Veff on ( )

With a central difference scheme,

( oF, (P>
09 i+%7
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% (P |+1/2 (P i+1/2 %
11/2 i |+ﬂ/2 i+1 3|+3/2 i+2

i-2 i-1 i
T~at (i+1/2) face

1
|

1

|

I |
< =
1 1
1 1
1 1
| |
1 1
1 1
| |

Fig. 3. Denotation of the variable values of the left ((p ;) and right (<p+1) states at the (i+1) face over a cell (i).
(i—2,i—1,i+1,i+2) represent the corresponding cells, respectively.

such as at the (i 4 1) face, can be written as

oF, o (¢
5 — v L285) S0 = (5., — 30 )K..., 16
(a(p ¢>i+% foa(p (an )i+% ® ( Dit1 (pl) i+3 ( )

where K, = (sz‘xs) nl is the viscous volumetric fluxes, in which Ax is the corresponding cell thickness (see

Fig. 4). In this way, “the bandwidth of the linear equation is kept as a set of tridiagonal block that may be
resolved by the alternative directional implicit (ADI) approach.

2.2.2. Solution of the Delta form d¢
Owing to F =F; — F,, A may_be defined as a blend of two nondimensional coefficients associated
with the inviscid volumetric fluxes (M) and the viscous fluxes (K), respectively,

At . At
A1 = v (KH% + ZMH%) A = v ( i—3 + NI:%)

Substituting Egs. (13) and (16) into Eq. (9), it can be factored into the following three one-dimensional
equations:

—Ai 100 + ‘E,] 09" — Aip100;;, = AR,
Al

A 1097 + ADS¢" — Aj1 097, = 5™, (17)
('%

— A 100y + A, 00 — Ap10¢ = 097,

! Uijk 3 Uit )k
— o Pijk !
P
(i) face’ | I (i+1) face
i-1/2 i i+1/2 i+1

Fig. 4. A shifted control volume surrounding P, ; for discretization of the gradient gj: at the face (i +1). (i,i + 1) represent its cell face
in the principal direction, respectively.



694 T. Li et al. | Journal of Computational Physics 198 (2004) 686-726

according to the ADI algorithm. The mainly diagonal coefficients 4!, 41> and 4'Y in Eq. (17) are expressed
as, respectively,

At /. .
AV =1+ Aoy + 4, + = (M,-% - M,-,%),

V
At /. .
A}(f) =1 +Aj+l +A‘/’_1 +7 <M+% — Alj,%),

At /. y
AS) =1+A +A4A1 + A (Mk+7 - Mkf%)’

where (i, j, k) denote the cell number in the x-, y- and z-directions, respectively. (i + 1) and (i — 1) are two
neighbours of cell i (see Fig. 3). Similar definition is for 4;;; and 4,4, by index substitution. For
achievement of d¢, one requires to resolve the tridiagonal systems (see Eq. (17)), which may be accom-
plished with ease based on TDMA (tridiagonal matrix algorithm).

2.2.3. Evaluation of the temporal velocity @
The following temporal velocity ¢ is renewed

1,
¢=</>"+5<P+;Fé (18)

provided that ¢ is available from Eq. (17). The last term %Fg in Eq. (18) is to account for the contribution
of surface tension. It may be simulated with the help of the CSF model. (F!,F2 F}) =
(Fr R FD), i=1,2,3.

2.2.4. A Poisson equation for the pressure

The temporal velocity ¢ = (i, 0, w) is not, in general, divergence-free but always used to update the
pressure according to the projected algorithm [7]. Consequently, the final velocity field is enforced to satisfy
the continuity equation: V - i = 0. Accordingly, substituting the resulting velocity (i.e., with a backward
Euler method)

741
un+1 — ﬁ _ & @
p Ox
n+1
Un+1 =p— g a_p , (19)
p Oy
741
wt = — ﬂ @
p Oz

into the following continuity equation,

Z {4+ 0", +w1n)S} =0 (20)

faces

this yields

n+1 n+1 s
S el me s S {(mm m)s)

faces faces
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Furthermore, it may be rewritten as

GGG
G L G, ot

1
2

apn+1 1 apn+1 R
S - - = S =R
{ <an > }k+l {p (an ) }A%

with the following source term R

I, ~ ~ ~ ~ .
At {( S) i+ (“nS)i—% + (unS)j+% - (uVlS)j—% + (u,,S)H% - (uﬂs)k—%}

where u, = in, + vn, + wn, and °” = gi’ n + %’;ny + %’z’nz are the normal face velocity and the pressure gra-
dient at a certain face, respectlvely ’

Using a central-difference scheme, Eq. (21) is discretized with respect to the pressure gradients on the cell
faces so that it can be cast into the following seven-point stencil form:

R=

n+1

1 1 n+1
Aljkp11k+B l/kpt 1/k+Bz+1/kpl+1/k+C/ lkpz/+1k
n+1 1
+ Cu1+1kp1 /++1k +Dz/k 11777/{ 1 +Dz/k+lpz/k+l =R (22)

Eq. (22) may be thought as a discrete version of the Poisson-type equation for the pressure. Its relevant
coefficients are

A A B B C C
Ai,j,k:_< Ly 2 2 2 1y 3),

Pirl Pk Pl Pil Pyl Prd

B 43 oA B

i—Ljk T 0 ik T -k =

Pi- Pit} P-4

c" B, D L3 u - C
ijHlk = ) ijk—1 = ) ijk+l = )
Pjd P-4 P4l

where the multipliers (4, to C3) are defined as A1:S,+la’1 Az = Si,ld 5 Bl = Sr+1dj’1, By =

Sj,rd/ G Sk+1d’ and C; =§,_ ldk \» respectively. The subscrrpts such as (i 1,i,i+ l)j and d;, are
shown in Fig. 3. (pli_, Sii1) represent the corresponding face density and area, respectively. For the former,
it may be determined with a weighted approach, since p is located at the center of a cell. The superscripts
(1,u) denote the lower and upper diagonals, respectively.

On Cartesian grids, the discrete approximation to the derivatives forms a seven-point stencil in the linear
system diagonally dominant. Owing to be positive definite and sparsity, it may be resolved by the iterative
solution methods like the ICCG (incomplete Cholesky conjugate gradient) algorithm [22] or the SOR
(successive over-relaxation) scheme.

Based on a quadratic backward approximation in time, an implicit three-level second-order scheme is
implemented for the time derivative:

(a¢>r1+1_3 n+1 4@ +(/’”1 % n+1 2@ +1 qDnl

ot 2At - At ’
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where the superscripts (n + 1,n,n — 1) stand for the next, current and previous time levels, respectively.
Instead of Eq. (19), therefore, the resulting velocity at the (n + 1)th time level is rewritten as (by setting

20" ~ ¢" + @)
2 1 At dp
ntl _ = n__ ~ - n—l 23
@ 3<¢> A 5 ax,> (23)

provided that the pressure from the Poisson solver is available. With the tensor notation,
x;i = (x1,%2,x3) = (x,3,2),i = 1,2,3. Owing to the strong coupling of the velocity with the pressure under
waves breaking, one under-relaxation technique is implemented for the final velocity.

2.2.5. Evaluation of the explicit inviscid and viscid fluxes
2.2.5.1. Explicit inviscid fluxes F;. At the nth time step, for example, the explicit inviscid fluxes, > .. F;
(see Eq. (10)) at the face (i +1), are evaluated by the flux-difference splitting approach [43]:

)y =5 {Fi(oky) +Fi(ky)} — 5 Hi(ty -~ of) (24)
fi(ﬁl’,i%) = (Mw ) : Fi(%ﬁ%) - (M(PL)Hl and 4= (%i‘) )

7 2

with

indicating that the value of ¢,,, at the face (i + 1) is given by

{ 905_1 if A/[z+% < 0;
2

1= .
Pis} @, otherwise,
3

where ¢- ;, and R iy are the variable values of the left and right states at the (i + 1) face over one cell (i),
respectlvefy, as illustrated in Fig. 3. These may be obtained with the MUSCL (monotone upstream-centred
scheme for conservation laws)-type TVD (total variation dlmlmshlng) scheme [56] or a second-order ENO

(essential nonoscillation) scheme [49]. In the former case, ¢- ! and (pR+ for one-dimensional problem are
formulated by the & (k =1, a value we adopted) family of the' MUSCL scheme:

1 1
iy =0+ 7(L=F)(oi = 0) + 7 (1+0) (01 — 0,),

1 1 (25)
QDﬁr% = Qi1 — 1(1 Jrk)(%ﬂ - q’f) - Zl(l - k)(@iu - €0f+1)-
In the latter case, these are expressed as:
L 1
Pyt = @i +§m((/’i+1 - @i P — (pi—l)a
(26)

N 1
05y = @it =502 = Pty Pt — 1),

where the subscripts (i —1,i,i+ 1,i+2) used are shown in Fig. 3, and the function m(a,b) is defined
as

m(a,b):{a if |al < |b],

b otherwise.
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In the smooth regions, the MUSCL scheme and the ENO one approximate the convective flux differencing
with a second-order accuracy. Instead of the two approaches, the following one-order upwind scheme is
imposed in cells adjoining the interface and the wall:

L
(/)H,% = @

v 27)
Pirt = Piv1-

2.2.5.2. Explicit viscid fluxes F Z For the evaluation of the explicit viscid fluxes in the x-momentum equation

at the (i + %) face, i, D pes F f (see Eq. (10)), we only account for the contribution of the gradient in the x-
direction over a shifted control volume surrounding a cell P, (see Fig. 4). It is referred to as the principal
direction due to dropping its cross-derivative. In fact, this is equivalent to a common simplification like the
so-called thin shear layer (TSL) approximation. With a central difference scheme, hence, one can
obtain

Veir l7) o Rl VerrsS; 1 _ ~ N -
7 (FU)H% = N2 { <6xnx + @ny —|—§n2 S " = % 2 Z (nxnx + nyn, + nznz) oS

faces

= Vef;51;+% { (905') i (@S)l} = a::%;fx (¢i+l,j,k - (Pi,j,k) (28)

according to Eq. (15). The subscripts (7,7 + 1) stand for the cell faces of a shifted control voslume with the

face area S surrounding the volume 7 (see Fig. 4), respectively. Ax = % (see Fig. 4)and d ' = ';% (see Fig. 3)
are the corresponding thickness of a cell, respectively. n.#, + n,7, + n.ii. = 1 in this case. It is obvious that
Eq. (16) and the pressure Poisson equation of Eq. (22) can be derived in a manner similar to the above

procedure.

2.2.6. An artificial damping term
The normal face velocity u, (see Eq. (12)) at a certain face is obtained by

(”n)i-% B) (u")i + (un)i+1} - d:% (29)

for the evaluation of the volumetric flux M, L at (i +3) face. (u,), and (u,),,, are the values of the normal
velocity at cells (i) and (i + 1) (see Fig. 3), respectively. d, 11 is the so-called damping terms introduced at the
corresponding face.

The linear interpolation of the face value is of a second-order accuracy (with central differencing) but
results in an unbounded solution for problems of the convective domination. Owing to lack of numerical
dissipation, high-order upwind schemes may lead to unphysical oscillations at high Reynolds number. To
cope with such problems, one approach is to apply van Leer’s limiter for the fluxes [56]. Alternative is to
introduce the artificial dissipation terms that may remove the high frequency oscillations and prevent the
occurrence of unphysical situation around discontinuities [16], which acts as a blend of 2nd and 4th order
artificial dissipations in terms of the velocity [20], where the corresponding two constants k> and k) are
fixed equal to 1.0 and 0.03 [11], respectively. Probably, a popular way is the momentum-based interpolation
[41] that may be derived as an expression similar to 4th order artificial dissipation with respect of the
pressure. In this study, we absorb an idea like a combination of the second- and fourth-order artificial
dissipation terms but it is concerned with the pressure rather than the velocity. Furthermore, it corrects
directly the normal face velocity u, (see Eq. (29)), which makes a code more compact in writing. The major
benefit is that it can suppress the oscillatory behaviour in regions with the sharp gradients (such as near
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shocks) and damp the numerical disturbance induced by short wavelengths. Consequently, numerical
stability can be enhanced.

We design d,,, as the compact form in terms of variables (i.c., the pressure) of the right (R) and left (L)
sides at a certain face. Namely

dijy = Zpl/zcz (Pﬁ% —P,-L+%)l ) pl;“ e (Pﬁ% - PZ-L%) 5 (30)

which represents a blend of the second- and fourth-order artificial damping terms at the face (i +1). The
subscripts (1, 3) imply the use of an one-order upwind (see Eq. (27)) and a third-order upwind scheme (see
Eq. (25)) for achievement of values of the left and the right at the (i + %) face, respectively. Generally, the
first- and third-derivative terms in the pressure (see Eq. (30)) add numerical dissipations similar to those
created by the second- and fourth-order dissipation terms. Moreover, the high-order scheme may adjust
amount of the numerical diffusion induced by the low-order scheme like the flux-corrected transport (FCT)
algorithms [62], when it is active as an anti-diffusive term. Both become negligible with the smooth pressure
fields but suppress oscillations in the region of the strong pressure gradients, because of their high-
frequency damping capability. In our study, the corresponding coefficients that control the artificial dis-
sipation (see Eq. (30)) are given adaptively in terms of the velocity, the local time step and the diagonal
coefficients, except for ¢; = 1 be enforced artificially.

2.2.6.1. A choice of Y, and \,. Wy, or Y, is of the same order as the velocity fields. Consequently, one can
scale with a local velocity for ,:

min (Ax, Ay, Az)
Vim T A

where (Ax, Ay, Az) are the thickness of a cell in the x-, y- and z-directions (see Fig. 4), respectively.

Alternative is to consider the local diffusion velocity %, in case it becomes important [33]. Namely

vV
wzzumax“i’vw“i’zALZ,v

where uy,,x 1s the maximum velocity within the flowfield at each time step. In the present case, it is essential
to take into account the contribution from motions of the waves, indicating that the velocity of the wave
train v, (see Eq. (47)) should be incorporated Ad = (Ax? + Ay? + A"/

2.2.6.2. Determination of ¢, and c,. For the two non-dimensional coefficients ¢, and ¢4, a simple way is to set
asc; =1 and ¢ = 1+ (4 — 1) 4 (4P — 1) + (4) — 1), respectively. Actually, the latter is given as the
diagonal coefficients from Eq. (17).

To investigate the numerical behavior of the damping terms (see Eq. (30)), one way is to discuss the local
diffusion velocity 3 with varying v and v, based on v = v + v. Obviously, this involves the effects of the
SGS models and the Reynolds number, respectively. When using two different SGS models and increasing
the Reynolds number, therefore, it is seen that the influence of v, on the wave-induced flows is relatively
large, as compared with that of v, as shown in Figs. 18 and 21.

2.3. Operator split advection algorithm for o
At each time step, interfaces over mixed cells are enforced to align with mesh coordinates, dependent on

the local distributions of discrete «. This directly borrows the general idea of Hirt—Nichols’s algorithm [17].
Its strength is of great simplicity for an interface reconstruction algorithm (named as a piecewise-constant
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reconstruction of the interface), indicating that no explicit interface reconstruction is required in compu-
tations. We emphasize mainly, therefore, how to achieve « with the advection algorithm as follows.

2.3.1. An advection algorithm for o

Given an approximation to interfaces over mixed cells horizontally or vertically or both under
the underlying velocity, the following advective equation is discretized within the whole computational
domain:

%_F@(uoc) +6(voc)+6(wot) —y 67u+@+67w
ot Ox oy oz T |ox 9y oz

(31)

instead of Eq. (1). This is because the presence of the additional term (see Eq. (31)) captures the effects of
individual derivatives, such as gf; , g; and a” , in each spatial direction. Such consideration helps to achieve an
accurate simulation, especially with an operator split advection algorithm, as illustrated in Fig. 5, where the
calculated results look better, with the inclusion of V - #i. One reason may be explained as the fact that local
and global volume-filling constraints are adhered to much more closely [2,42,47].

Using an explicit FV approach, this yields

:__Z( ) ZM (32)

faces faces

Oﬁn+1 ot

On the basis of a second-order explicit Adams—Bashforth formulation and the ADI algorithm, Eq. (32) is
split as three one-dimensional equations as follows:

OC(1>:OCn At( i __én 1)

At 1
a® =oll) — 7 (51’1” - 517”1>, (33)

A
an+1 :a(Z) t( é’ __gn 1)

in which &, 5 and { denote as, respectively,

n (m)

t(s)

Fig. 5. Comparison with and without V - i for time history of the surface elevation at WG2 (x = 2.02 m) using grids (251 x 40) for a
sea dike. (—) with V - #; (——-) without; (®) measurement.
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— (1o _ @ — @ (p _
o () (), o)
where o) and «® represent the corresponding values of « at the end of each sweeping fractional step,

respectively. This involves the sweep in the x-direction for updating "), and then followed the sweeps in y—
and z—directions, respectively, for updating «® and o', Indices, (j j: 1) and (k £1), stand for the cor-
responding cell face in the y— and z—directions (see Fig. 2), respectively. In addition, their iterative order in
the x-, y- and z-directions is inverted to alleviate the introduction of the systematic error.

2.3.2. A weighted upwind and blending schemes

With the present Eulerian interface, the interfaces are allowed for arbitrary orientation with respect to
the computatlonal grid. Hence, the volume fluxes M at a certain face over mixed cells, for example, M, iyl at
the face (i 4 1), can be expressed as

]MH—% = (uﬂS)i+%’

where S is the cell face area at the (i + %) face. Owing to u, = un, + vn, + wn,, the face velocities (u, v, w) at
mixed cells need to be determined. As described in the Section 2.8.2, they may be achieved with the cor-
responding momentum equations or the tangential dynamic free-surface boundary conditions, dependent
on the relation of o with its neighbouring cell. An essential point, therefore, is to evaluate the volume
fraction o;,, at the corresponding face in case the sharpness and the shape of the interface are maintained.

We attempt to apply high-order upwind schemes (such as the MUSCL scheme and the ENO one) for the
evaluation of the value of o, il at the face (i + ) Unfortunately, both fail due to rapid generation of un-
physical volume fraction « over several cells in the interior of the fluid. But with a hybrid approach that
includes a weighted upwind scheme and a blending one, we found that it did well. Additionally, the cor-
responding code has to be developed in a compressive discretization manner, indicating that only the
absolute fluxes across the face (i+1),(j+3) and (k+1), respectively, are involved, while the volume
fractions at cell (i) and its neighbour are renewed simultaneously. In this way, the latter will be activated for
achievement of o; i1 as long as one of its two neighbors becomes an empty cell having o = 0. Otherwise, the
former is active. Consequently, two separated approaches are constructed for the advection of a step profile
of a, dependent of its distributions. In our study, the weighted upwind scheme consists of an one-order
upwind differencing plus a high-order upwind one. It can guarantee a bounded solution, while a portion of
high-order upwind fluxes is incorporated to counteract numerical diffusion created by the low-order upwind
scheme [3]. On the other hand, the blending scheme helps to steepen the resolution of the interface when
using an appropriately weighting coefficient [53].

For the calculation of an intermediate o(!), for example, o, 41 at the face (i + 1) is evaluated by

(=B + (1 + By if of jor o =0, 34
%ty = T+ (1 — I)(—ak,)  otherwise, (34)

when M > 0. The subscripts (i — 1,7 + 1) represent two neighbours of cell (i), respectively, as illustrated
in Fig. 3, in Wthh the corresponding subscrlpts used are labelled. I stands for a flux-limiter that combines a
high-order convective flux-function o e well behaved in the smooth region of flows, with a low-order one
of , working well near the sharp gradients. According to general information on the resolved velocity fields,
1t is achieved with the monotone methods, which can actually be viewed large-eddy simulation models with
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an intrinsic subgrid-scale algorithm. As a result, this leads to arise naturally from the nonlinear monoto-
nicity preserving the flux limiting feature [8]. In this study, van Leer limiter [56] is introduced and it is given
by

I' =max {0.5,min (I';, 5, 1.0)} (35)
indicating that the limiter involves as much as possible of the anti-diffusion term but without increase of the

variation of the solution so that physical principals of monotonicity and positivity are complied with [3].
The coefficients (I'y, I';) are expressed as, respectively,

Umax — MIN (uH—%a umax) max (ui+%a umin) — Umin

I =

’ r,=

max (e, Uhax — uH%) max (e, Upy — uﬁlin)

To avoid zero divides, a very small value (¢ = 10%) is used. It is clear that the velocities in any three
neighboring cells are monotonic once the van Leer limiter I is restricted within 0.5 < T < 1. Accordingly,
the local minimum and maximum velocities i, and wuy,, are set by up;, = min(u;_ _,u, +%) and up =
max (u;_y, u;,3), respectively, when uy,, = min(uf, |, uf) and uf, . = max(uf, |, uf), where uf, and ui are ob-
tained with the Taylor expansions:

il — Uil + Z TUL ) U = Uyl — 4 Uiy — Ui}
Qu

according to a central-difference discretization for the derivative (5), e Naturally, the value at the face
(i+ ) always takes its left state ch+ due to the presently compressive discretization manner, which may be
evaluated with the ENO scheme (see Eq. (26)). The weighting factor f§ is expressed by

u

This is a simplified case relative to the original one with the different blending scheme used [53]. «* and ; are
given by, respectively,

. o - ot — ot
o'=min | —,1| and &=-"—"",
c iy — %y

where ¢ is a constant (¢ = 0.2 in this case) and the last term on the right of Eq. (32) is taken away. Finally,
a? is estimated and then o"*! at the next time step is renewed, which is analogous to the process described
above. Due to round-off error, the volume fraction o may vary slightly below 0 or above 1. To circumvent
any error in o, we truncate o as follows:

o {0 ift o1 <0,
i 1 if ot =1
for the numerical overshoot and undershoot.

This procedure can be made second-order simply by alternating the sweep direction at each time step. Its
advantage lies in that this approach is simple (easy to write a source code) and effective because it can keep
the front sharp and provide such desirable properties during tracking the interfaces. By comparison, the
original VOF method [17] gives incorrect information in the surf zone, where the fluid film on the slope
tends to be too thick, as illustrated in Fig. 6. But the current approach captures well this one, which is
confirmed by comparison with measurements available. In particular, two state motions, for example, at
t = 17.0 and 33.0 (s) almost maintain to be periodic, indicating that our computations are stable.
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Fig. 6. Comparison of the present approach (right) with the original VOF method (left) for the wave-induced velocity field and the
surface elevation versus time at one point (x = 3.81 m) with grids (251 x 40) for a sea dike. (—) the present approach; (———) the original
VOF approach; (®) measurement.

2.4. A subgrid-scale model

In the context of conventional LES, a Smagorinsky-type isotropic eddy-viscosity model is widely ap-

plied, for example, in the field related to the free-surface [6,59], where the effects of the SGS stresses are
considered in a statistical sense only. Theoretically, its use tends to be diffusive in the course of the process
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that has dissipated a portion of its kinetic energy into the turbulent energy. With this model, an attractive
benefit is without the need of the boundary conditions at the free surface specified.
According to Smagorinsky’s model [48], the eddy viscosity v, is evaluated by

v = Cy(1,A))S], (36)

where C; is Smagorinsky’s constant (C; =0.01 in this case), A is a characteristic length scale of the small
eddies given by A = min(Ax, Ay, Az), which is slightly different from the formulation adopted in the original
Smagorinsky’s model, A = (AxAyAz)'”, and |S| = /28,8 (i,j=1,2,3) with the strain rate tensor Sj;
defined as §; = (g;‘ +3 a ) Since the subgrid eddy- VlSCOSlty will reduce to zero in the vicinity of the wall, the
so-called van Drlest dampmg function /, (I, = 1 — e = instead of [, = 1) is employed when approaching

the wall. The nondimensional distance y* can be written as y* = d* =d T = d{M}f/ * where d is the

dlstance normal to the wall, u, is the friction velocity (u, = y/7/p, t is the stress acting on a wall) and
V =ui +vj+ wk. The subscript w stands for the wall. As expected, the eddy viscosity v, is calculated once
the final velocity is available at each time step.

2.5. A local time step At

A local time step At involves the variation of the flow and the subgrid spacing. Normally, it may be
determined on the basis of the so-called Courant-Friedrichs—Lewy (CFL) constraint, dependent on the
various options: the convective and viscous terms together with the stiff source terms (e.g., gravity and
surface tension force).

To obey the CFL conditions, a common way to define a local time step A# for the inviscid fluxes is

1 Vv
2 My + M| + M| + IMI

by setting CFL = 0.3. An additional feature in this expression is to involve the wave fluxes expressed by

. 1/2
My = 0,8, 8= (S2,+ 82, +58,)
where v, is the celerity of the incident wave determined by a linear wave theory (see Eq. (47)), and the
constant ¢ (¢ = 10 in this case) is introduced in order to enhance the stability in computations. Some
reasons may be attributed to the fact that the presence of the gravitational term requires a more restrictive
time step in the fluids initially at rest, especially when Eq. (31) for « is resolved.
Owing to the presence of the viscous fluxes, the time step Az, is evaluated as
d? 14
At = —, d= .
4v max (S,+; S. SH%)

7j+a

Under the surface tension effects, on the other hand, the time step Az is given as

Thus, the finial time step A¢ will depend on their minimum values:

At = min (At, Aty, At).
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2.6. A cut-cell Cartesian technology

With TDMA and ICCG, the resulting matrix equations for the Delta form and the pressure should be
resolved on each cell in the whole computational domain, regardless of whether a cell represents fluid,
mixed, void or an obstacle that involves with and without a cut boundary (see Fig. 7 for five types of cells).
It is no problem to find the solution over a fluid, cut or mixed cell. However, singularities occur in “bad”
cells such as void and whole obstacle cells, where p is zero for the former and undefined for the latter. One
approach to avoid such a problem is to enforce a considerable value to the mainly diagonal coefficients in
the linear equation (see Egs. (17) and (22)), when the sweep points to the bad cells. With the well-condi-
tioned matrices (such as diagonal dominant), it can be shown that both algorithms will always converge.
For Eq. (17), for example, by multiplying the diagonal coefficients (A,-,I,AIE}),A,-H) with a very large value
relative to co and zero over the bad cells, respectively, one has

A;y = A; X zero, ALU =coef, A, =A;1 Xxzero, R =R X zero,

where coef = 1.0 x 10% and zero = 0. Additionally, void and whole obstacle cells are thought as internal
Dirichlet and Neumann boundaries, respectively. Hence, the coefficients have to be rearranged in the
operator matrix by manipulating the corresponding elements according to Dirichlet and Neumann
boundaries, once the neighbour adjacent a computational cell becomes the bad cells.

On the other hand, the effect of a structure over a cut cell is incorporated through the introduction of
variables that represent an effective geometry space covered a fluid. Also, arbitrarily small cut cells are
treated carefully, especially when decreasing mesh size. Owing to the current implicit approach, the pres-
ence of small cells near a wall seems not to restrict the time step. Only the pressure over such cells is handled
with a mirror symmetry, because it is located at the center of a cell. Additionally, the pressure and o at the
intersection of a free surface with a wall are also evaluated in the same way.

2.7. Flowchart of the current approach

With a staggered-grid arrangement, a cut-cell implicit finite volume VOF approach is applied for res-
olution of the NS equations with interfaces, provided that the initial conditions and all the boundary

(1): a fluid cell
(2): a mixed cell
(3): acutcell
f i (4): a void cell
afree surtace (5): a whole obstacle cell
(4) - —
L L1
\/1—// oY —]
(<) T
=
() L]
) (5)
/
—
a dike

Fig. 7. Denotaton of five types of cells over a Cartesian cut-cell mesh.
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conditions are given explicitly. The computational flowchart of the present solver is illustrated in Fig. 8,
which displays that the solution is advanced in time. The following is to describe its major procedure.

With the ENO scheme (Eq. (26)), the corresponding face values are estimated, which may be used for
achievement of the inviscid fluxes by means of the flux-difference splitting approach (Eq. (24)), while the
explicit viscous fluxes are evaluated with a central-difference scheme according to Eq. (28). Given the ex-
plicit fluxes, the Delta form of the velocity is updated through ADI factorization with a local time step (Eq.
(17)). This defines a temporal velocity under the surface tension effects (Eq. (18)). Consequently, the
pressure can be realized with a projected algorithm according to the velocity distributions. Finally, the
volume fraction « is achieved with the help of the final velocity (Eq. (23)) at the end of the outer iteration.
When approaching the normal face velocity, a blend of the second- and fourth-order artificial damping
terms is activated, where the MUSCL scheme (Eq. (25)) is employed for discretization of the third-order
derivative terms.

To deal with an arbitrary geometry, a cut-cell treatment technology over a fixed mesh is implemented. A
few parameters in the INPUT file (such as the period, the wave evaluation and the grid numbers together
with a running time) are specified by a user. Each outer iteration only repeats three times but during the
inner iteration, iterative number for the pressure is completely dependent on the residual norm less than a
given error tolerance ¢ (¢ = 107 in this case) based on the ICCG method. Note that the solution of the
discretizated pressure Poisson equation is the most time-consuming part. It is shown that the number will

—[ Initialisation j

[ Local Time Step 1'7

Exp11c1t Fluxes
(inviscid and viscous)

[Delta Form of Velocityj

Initialisation: [Temporal‘ Velocity ]
[ Surface Tension ]

« INPUT File

@ressure Poisson Equation]‘—

‘ Inner Iteration

[
« Initial Flow Fields Final Velocity ]

[

( VOF Solution
[

@ub-Grid Scale (SGS) Mo@

t=t+At
Cycle = Cycle+1

[ Time to Stop ]L

{ Yes
" ouwpm )

Fig. 8. Flowchart of the present algorithmic steps.

« Mesh Generation

Outer Iteration

o Cut-Cell Treatment




706 T. Li et al. | Journal of Computational Physics 198 (2004) 686-726

significantly increase with respect to mesh refinement. The description in more detail can be found in our
current work [28].

2.8. Initial and boundary conditions

2.8.1. Initial conditions

All simulations started from complete rest so that the unsteady motion characteristics of waves evolved
naturally. At ¢t =0, u = v = w =0, and the volume fractions « (an indicator function (7 ¢),7 = x,y,z) are
initially assigned by

, in the fluid,
a(F t) = ¢ a, over mixed cells,
0, in a void

—

with respect to SWL, where o over mixed cell is calculated by Eq. (46). The hydrostatic pressure is used as
an initial state for the pressure. This is a most general situation in a numerical (or physical) wave tank, as
illustrated in Fig. 9 for free-surface configurations starting from the initial stage (a flat at # = 0) to the first
period T =2 (s). At the beginning, an initially flat free surface is perturbed by imposing a wavemaker
placed at the inlet. As time progresses, the waves propagate towards a dike at ¢t = 0.5 (s). After that, the
wave shape tends to be asymmetric at z = 1.0 (s) until the amplitude varies slightly at # = 2 (s), as compared
with that at r = 1.5 (s).

2.8.2. Boundary conditions

For the pressure, it is unnecessary to specify the boundary conditions with the ICCG algorithm, except
at the free surface. The wall effect is incorporated by enforcing the slip boundary conditions for a cut cell or
no-slip conditions for a mesh boundary. At the free surface, the viscous effect is ignored but surface tension
is modelled with a localized volume force by the CSF model. It leads to simplify the normal dynamic free-
surface boundary condition:

p=0 (37)

at a free surface. To comply with this condition over mixed cells, the matrix of the pressure Poisson
equation in the x—z plane is dealt with by setting the corresponding coefficient to zero. According to Eq.
(22), the matrix M for each cell is expressed as

0.2
01 1.0 1
15 2.0
= o8

- © t=0.0 ]

Dike
041 7

0.2 | | | | |

0 1 2 3 4 5 6

x (m)

Fig. 9. Development of waves from its initial stage # = 0 to the first period 7 = 2 (s) (magnified view) with grids (251 x 40).
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10 Dtl‘%j‘kﬂ 0
M = Bi—l,j,k Ai,j-,k B;l+17j,k ) (38)
0 Dz“j‘k—l 0

where 4 to D are diagonals with functions of the metric terms and the density, dependent on the actual grid
distribution (that is, the cell thickness and the corresponding face area). When a cell at (i, j, k + 1) becomes
an empty cell (see Fig. 10), for example, the main diagonal 4 and the diagonal D}, , in the matrix M with
its nearest neighbors (that is, all neighbor shares one face in Eq. (38)) are arranged with

_ u
ijk i,j.k+1 ijk+1

during the inner iteration. The treatment is quite simple without the need for the extrapolated pressure like
the so-called irregular star [5] or the weighted length interpolation [17] over mixed cells.

Instead of the use of the momentum equation, the corresponding three components of the velocities over
mixed cells (or void cells adjacent to mixed cells) may be extrapolated with the gradients of the zero-normal
velocity from the interior of the flow:

Z—Z: 0, o= (u,v,w)

once its neighbour is an empty cell. n is the component normal to the free surface. This is the so-called
inviscid tangential dynamic free-surface boundary conditions under negligence of the surface viscosity [26].
Since w; ;. etc. are calculated with the momentum equation, only the velocity u; ;, over mixed cells exposed
to the air (see Fig. 10), for example, is enforced by the continuity equation but u; ;4. is evaluated with the
mirror approach: u; ;1 = u;jx.

2.8.3. Surface tension

With the CSF model, surface tension is formulated as a localized volume force Fy, that accounts for the
curvature-dependent interfacial effects. Without the need of detailed interface information, it was incor-
porated to the source term in the momentum equations (see Eq. (6)), while acting on the fluid elements lying
within the finite thickness transition region. In this sense, therefore, a body force defined at the centre of a
cell (see Fig. 11) is given by

Fy, =Fy, = okm, (40)
- "
sk arr ijk+1
Wijk
Yi-1,jk . Yijk
Pijk

Witr—_|aiteo suriace

water

Fig. 10. Implementation of the tangential dynamic free-surface boundary conditions. (i, k) and (i,j,k+ 1) represent cells,
respectively.
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ijk+11> ”””””””””” ""1 i+1,j,k+1 AIk+1

7777777777 3””” o i\(i+1)face

/2 k12 T L Mitzjkerz | i+

= e 4 1)k Al

| Fsv Kijik | +1.) k
i i-1/2,j,k- [i+1/2,j,k-
(-1/2) face iqppjk-12 ir1/2,,k-1/2

i-1/2 i+1/2

Fig. 11. Denotation of a body force F,,, curvature x and normal 7 over a cell. (F" w, k) are defined at the center of a cell (i, j, k),
respectively; and 7 defined at the vertex (i + 1/2,/,k+ 1/2) of a cell (i,j,k). (i — 1/2,i+ 1/2) and (i,i + 1) denote the corresponding
cell faces, respectively.

where the surface tension coefficient ¢ is set as a constant. x and 7 = (m,, m,,m;) are the cell-centred
curvature of a free surface and a normal vector at the vertex (i + % Ik + %), respectively, as illustrated in

Fig. 11,
m 1 m
( |m|> |m|{<|m| )" ( )}
and
m = Vo.

Since « is a function with the second-order spatial derivatives of «, it is dependent strongly on small error in
o. This makes computations with surface tension more difficult, especially under breaking waves. To
mitigate the high wavenumber contributions to x, o has to be filtered when calculating local curvatures [4].
In this way, a blend of o and p is enforced to mollify by

— 36 6
(510 = 3 0Dy + g3 { @)isria + @)y s + (00), i+ (30),50 |
1
+6_4 {(ap)i+1‘j,k+l + (ocp)i—l,j‘kJrl + (ap)i—l.j,k—l + (“P)m‘j,kq }v

where the subscripts represent a cell (i, j, k) and its 8 surrounding neighbours. Additionally, the value of the
derivative aalx at the centre of this cell is evaluated by a FV method

amv) 1
- =— men,S

— %{(mxnxS)H% - (mxnxS)[,%} + Il/ {(mxnxS) e (mxnxS)jf%}

1
+ 7 {(mxnxS)k% - (mxnxS)k_l}

2

with the face value (m,), L1 at the face (i + %)

1

(Mg =5 {(mx)i+;/,k+% + (mx)i+%j,k—%}7
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where m, is the x component of the normal vector 7. It is computed by

Oa !
(m )z+%,1«,k+% <6x >i+%1./~k+% 4 Z '

faces
= %{(omxS)iJrl — (an,S),} + ! {(ocnxS)]url - (O(nxS)j} —F%{(omxS)k+1 — (omyS), }-

;
As shown in Fig. 11, the subscripts (i —1,i+1) and (i — 1,i+ 1) represent the corresponding cell faces,
respectively. Furthermore, the face value (), , at the face (i + 1) is obtained with a linearly weighted
approach. Namely

. Ol 1 i1 AL + O j i Ay
(a)i+1 - Al + Al
k k+1

Thus, the body force at the centre of a cell can be achieved once the cell-centred normal is available with the
average of the vertex normal (see Fig. 11)

1
Myjx = 4 <mi+gj,k+§ + Myl jr-t + MLkl + mi—%,j,k—%)'

2.8.4. An absorbing-generating boundary condition

Many of absorbing boundaries [23,39,52] placed at the inlet are based on the assumption of the linear
superposition of incident and reflected waves at the wave generating-absorbing boundary. A particular
generator is an internal wavemaker that acts as a source function inside the computational domain [31].
Following the usual approach, we attempt to apply the so-called weakly reflecting boundary condition [36],
which generates the incident waves and absorbs the weakly reflected waves simultaneously. Namely

Op, _ 0o, _,

41
ot ox ’ (41)

where ¢ = (u,v,w,n). The wave celerity ¢ is estimated by ¢ = v/gd with the finite water depth d. The
subscripts (¢, 7, i) used represent the total, reflected and incident waves, respectively.

Based on the assumption of the linear waves, the total waves are related to the incident waves via
¢, = @, — ¢,. This leads to Eq. (41) as

Op, _ 99 _0¢; o
ot Ox ot ox’

(42)

which forms the so-called absorbing-generating boundary condition for a wave generator fixed at the inlet.
According to the linear wave theory, the evaluation of the source terms in the right hand of Eq. (42) is
straightforward for regular waves, once the three components (u, v, w) of the velocity at one ghost cell are
given by

_H _cosh{k(n,+d)} A
ui—ng J.cosh (kd) cos | ¥ x+4 e

v; = 07 (43)

 H _sinh{k(n, +d)} . A
Wi—igTWSIH k X+Z —wt ;.
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Since the particle moves periodically in the vertical direction around the origin, the phase departure ﬁ has to
be incorporated to the corresponding phase function, as illustrated in Eqs. (43) and (44), where the surface
elevation #; with respect to SWL is obtained by

ni:§cos{k(x+§> —a)t}. (44)

For the time integration of Eq. (42), a second-order explicit Adams—Bashforth formulation is implemented
as follows (for example, ¢ = n,):

3 1 At
=+ Az(an - 2R"—1> =0+ AR+ = (R =R (45)

with the residual R defined by

on,  On;  On
R<a*a ‘2 )"

For the first term, ¢ 3t ’7‘ , for example, it is calculated by

6n n.cS
—= Z NneS = { ’h”xS)H% - (ﬂt"xS),;;} 7 {mm - 77;1,1}’
- 2 2

faces

where the values of M, and m, , ata certain face are evaluated with an one-order upwind scheme (see Eq.
(27)), respectively. G1vén the wave characteristics (see Table 1), the total waves #, at the inlet are generated
by the solution of Eq. (45), as illustrated in Fig. 12, where the effects of the reflected waves 7, on the incident
ones #; (see Eq. (44)) can be observed. Consequently, this yields « over one mixed cell given by

Vo no+d—zo
== 46
v= AL (46)
where V is the wet volume, and A/, and z;,_; are the grid size and the coordinate in the vertical direction,
respectively (see Fig. 11). Similar expression holds for ¢ = (u, v, w) at the inlet together with the application
at the outlet by setting ¢, =0 in Eq. (42). The wave number £, the angular pulsation w and the phase
velocity vy, are defined as, respectively,
2 2 /
k:f, co:?n and v, =~ 47)

Using the linear wave theory, the wavelength A is obtained by the following dispersion relationship:

To reduce the generation of non-physical high-frequency waves, an adjustment function is implemented for
both the wave elevation and the velocity at the inlet. It smoothly increases to unity at t=1.5 (s) from its
initial value of zero (see Fig. 12).

Table 1
The wave height H, the period T, the wavelength A and the water depth d
H (m) T (s) 4 (m) d (m)

0.16 2.0 4.62 0.7
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0.1

Fig. 12. Development of linear waves created by a wave generator, located at the inlet WGO (x = 0). (—) the total waves; (——-) the
incident waves; (- - —) the reflected waves.

It is clear that Eq. (45) can be regarded as an one-order forward Euler scheme plus the modification of
the current and previous residuals. It is the weakly reflecting boundary condition. One problem is that we
adopt a single wave train (i.e., with one wave celerity) for an approximation of motions induced by the
wave groups [12]. Generally, an effective approach at the open boundary is to combine the open boundary
condition (e.g., Orlanski’s condition) with a numerical damping approach (e.g., the sponge layer method
[19]). We tested this case but implement a blend of the artificial damping terms of Eq. (30) and the Or-
lanski’s open boundary condition (see Eq. (42)). Additionally, we also apply the mirror condition at the
outlet instead of Eq. (45). Both computations are stable, indicating that the damping terms used work well
due to its adaptive performance dependent on the pressure gradient.

3. Test cases

Our numerical model will be validated with two test cases related to overtopping of water waves, which
are well known design problems in coastal and harbor engineering. The first one is over a smooth im-
permeable sea dike, and the second one over a vertical fixed barrier in the front of a pier. Both cases involve
the surface waves breaking during overtopping, while static flows are disturbed by a wave generator, placed
at the inlet, for the regular and irregular waves, respectively. Computations are performed in NWT, where a
typical computational domain overlapping a dike includes a total length of 6.3 (m) and a height of 1 (m), as
depicted in Fig. 13. The surface elevation at five wave gauges (herein abbreviated as WGO0 to WG)S) are
measured for observation of the variation versus time, in which one of particular interest is on the dike
crest, WGS at x = 5.9 m (see Fig. 13). Three grid levels are separately implemented in order to study the
grid refinement effects. A relatively fine grid with varying cell sizes, for example, is 251 x 40 in the x- and z-
directions, respectively. Generally, each grid approximates one day or more than one week of the CPU
time, dependent on a user-specified running time in the INPUT file. The calculated results are represented
in terms of the wave-induced velocity fields in the x—z plane and time history of the surface elevation 5 (m)
at a selected wave gauge. In this case, we define x = 0 and 6.3 (m) as the inlet and the outlet, respectively.

3.1. A sea dike

The geometry of the sea dike consists of the seaward slope (1:6), the landward one (1:3) and the dike
crest & (h = 0.8 m) with the width s (s = 0.3 m), as illustrated in Fig. 13, where the corresponding di-
mensions are /; = 1.0 (m) and /5 = 0.5 (m). With trivial effort, a nonuniform Cartesian cut-cell mesh that
covers the dike is generated and fixed for entire computations (see Fig. 13 with one single block on a typical
mesh: 205 x 40). An extra amount is to reconstruct the effectively computational domain by calculating the
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WGOo WG2 WG3 WG4 WG5
/(x:O) (x=2.02) (x=3.81) (x=5.2) /(x=5.9)
d
1 2 3

Fig. 13. Computational domain on a nonuniform Cartesian cut-cell mesh with grids (205 x 40) for sea dike problems. WG0 to WG5S
represent five wave gauges (WG).

intersections of the geometric segments overlapping a Cartesian background grid, based on Newton’s it-
eration algorithm, while curves (or surfaces in 3D) to describe the dike profile are approximated with a
biquadratic function. This can be realized by predefining cells that are fully or partially dry, in which the
former (called a whole obstacle or internal obstacle cell) is characterized as zero velocity and the latter is
referred to as a cut cell (see Fig. 7). At the inlet, the characteristics of the regular wave (the wave height H,
the wave period 7 and the finite water depth 4 in this case) are specified by the user (see Table 1).

3.2. Calculated results and discussions

3.2.1. Convergence history
Iterative convergence in this case is assessed by examining the L, norm of the residuals (Res) for the
momentum equations (U, W) in the x- and z-directions, and the pressure (P) on the mesh. It is defined as

v 1/2
n n— 2
Res, = { Z((pi,j,k - (pi,ﬂ/l) /Nz} )

m=1

where the summation is carried out from m = 1 to N (the total number of cells) and ¢ represents (U, W, P).

Three curves for the residuals (U, W, P) are drawn on the two meshes, the coarse mesh (145 x 28) and the
fine one (251 x 40), as illustrated in Fig. 14. This displays the convergence history of the point method (for
the velocity) and the ICCG method (for the pressure) against time, respectively. As expected, the ICCG
algorithm performs quite well due to its preconditioning technique. This achieves the fast convergence rates
(see Fig. 14). Additionally, our computations show that it needs less computing time for a given level of
convergence, as compared with the SOR scheme (where w = 1.2 for the overrelaxation parameter), when a
Poisson equation for the pressure is resolved with these two approaches. On Cartesian cut-cell grids,
therefore, the ICCG method can be considered as a more efficient iterative solver for updating the pressure.
In our case, the pressure-velocity coupling is not enforced at each iteration. This is classified as a decoupled
approach as opposed to a fully coupled algorithm. Generally, it is relatively straightforward in its imple-
mentation within a flexible framework [18,26], whereas the convergence behavior for the velocity in our test
case is less satisfactory.

3.2.2. Grid refinement effects
The effects of increasing grid resolution on the wave-induced motions are studied with three grid levels,
as illustrated in Fig. 15 for the velocity fields at a given time, and Figs. 16, 17 for the time history of the



T. Li et al. | Journal of Computational Physics 198 (2004) 686-726 713

Log,q (Res)

.12 ! ! ! ! !
0 10 20 30 40 50 60

t(s)

o[ \ \ \ i L\J 7777777 ]

2 @'W«’M:LM« W* W e a‘M,W%«MW u{r [ J— ]

Logyq (Res)
A

Fig. 14. Convergence histories of the L, norm of the residuals (U, W, P) on grids 145 x 28 (top) and 251 x 40 (bottom) for sea dike
problems.

surface elevation at certain locations. By observation, it is found that differences attributed to the grid
effects are relatively small for the surface elevation and mainly limited to the capture of fine structures for
the velocity fields. A relatively fine mesh (251 x 40), therefore, may describe well the development of the
regular waves. The discussion regarding this point is given as follows.

Generally, more detailed physical phenomena of motions can be represented with increased mesh re-
finement, as shown in Fig. 15, which provides an illustrative observation for the wave-induced velocity
fields at t = 4.4 s. A common feature is that waves overtop at any mesh, naturally capturing the breaking
waves in the surf zone. As expected, the shape of the front in this area tends to be more realistic as the mesh
is refined but the localized velocity distributions vary rapidly with the present different grid size (see
Fig. 15). Some reasons are interpreted as the fact that something with the coarsest mesh (145 x 28) is
missing. For instance, it does not detect well motions due to insufficient grid resolution but the current two
fine meshes (205 x 40, 291 x 56) seem to help more or less. A local adaptive mesh [1,50,57] adjacent to
interfaces is also attractive, especially on the crest of the dike, which will be studied in the next stage.

Interestingly, a regular shape of the wave profiles may be resolved adequately on all meshes, as shown in
Figs. 16 and 17, especially for the latter that gives reliable evidence. Both demonstrate the influences of
grids on the time trace of the surface elevation but the former is fixed at WG3 (x = 3.81 m) closer to region
of the breaking waves. As can be observed, the wave trains on three meshes rapidly develop in the par-
ticular direction that the regular waves propagate at starting + = 0. Some discrepancies regarding the phase
leg, however, are obvious under grid refinement (see Fig. 16). And it could be thought that the discrepancy
of the results almost arises from the grid effects, since the reflection of waves from a structure is not sig-
nificant or its appearance is little at shortly run time.

Next let’s further compare with the experimental data available at WG2 (x = 2.02 m), as illustrated in
Fig. 17 with 10 waves on three grid levels, where a grid on the finest mesh is 251 x 40 that we recommend.
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Fig. 15. Grid refinement effects for the wave-induced velocity fields at a given time ¢ = 4.4 (s) with the coarsest mesh 145 x 28 (top), the
fine 205 x 40 (middle) and the finest 291 x 56 (bottom).

First, the shape of waves between two successive cycles almost maintains the regularity, indicating that flows
itself tend to be quasi-stationary. Second, all mesh can detect well the overall shape of the wave profiles that
exhibits a feature of typical non-linearity: higher and narrower peak; and lower and flatter troughs, as shown
in Fig. 17 (also see Figs. 16 and 18). Finally, the results agree well with the experimental data under mesh
refinements, as shown in Fig. 17, which looks much more promising than Fig. 16: top, whereas there is a
slight departure from the phase plus the overestimation for trough. Probably, the large difference between
computations and measurements (see Fig. 16) may be attributed to the fact that the exact normal dynamics
free-surface boundary condition (see Eq. (48)) should be considered, especially when flows become high
turbulent. As a result, the current finest mesh may be suited to capture most of the wave-induced motions. A
significant benefit is the CPU time required does not cost much more for Linux based PC.
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0.2 T

Fig. 16. Grid refinement effects for time history of the surface elevation at one wave gauge, WG3 (x = 3.81 m) for a sea dike. Top: a
global observation (10 waves); bottom: a local view (7 initial waves). (—) 251 x 40; (———) 205 x 40; (— - —) 145 x 28; (®) measurement.
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Fig. 17. Comparison of the calculated results with the experimental data for time history of the surface elevation at one wave gauge,
WG2 (x = 2.02 m). (—) 251 x 40; (—-) 205 x 40; (—-—) 145 x 28; (®) measurement.

Additionally, an intrinsic feature of our solver is that computations are stable during a long duration of
simulation, indicating that the active damping terms (see Eq. (30)) do not cause excessive energy dissipa-
tion. In contrast, it may suppress the reflected waves like the sponge layer method [19].

3.2.3. Influences of turbulence models, surface tension and Reynolds number on the wave-induced motions

To further elucidate the mechanism and the dissipative features of physical processes involved, the
following is to address the effects of the SGS models, surface tension and Reynolds number on the wave-
induced motions, respectively, including the role of a turbulence model under waves breaking.
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Fig. 18. SGS model effects on grids (251 x 40). From top to the next: WG4 (x = 5.2 m) and WG5S (x = 5.9 m) for time history of the
surface elevation (SSM (—), DSM (——-)). The last two: the eddy viscosity (v,) contours at ¢t = 7.5 (s) (magnified view: 0.001 to 0.01
with interval 0.0015) using SSM and DSM, respectively.

3.2.3.1. The SGS models. Within the eddy-viscosity family, we select two Smagorinsky models for study of
the influence of the SGS models on flows caused by the waves. One is the static Smagorinsky model, re-
ferred as to SSM. One is a dynamic Smagorinsky model [13] that adjusts itself the model constant in SSM
(see Eq. (36)), called DSM. The results obtained with both models are given, as illustrated in Fig. 18 for the
surface elevation against time at two wave gauges of interest: approximately at the surf zone (WG4, x = 5.2
m from the wavemaker, where flows display high turbulence), and on the dike crest (WGS, x = 5.9 m, where
turbulent flows near walls are characterized by much less universal properties). Typically, these two gauges
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directly record a signal from waves breaking and wave overtopping events, respectively. By comparison, the
latter exhibits much more unevenly distributed in space and time (where, the surface elevation is measured
with respect to the dike crest). In particular, it provides useful information for design of a dike like the layer
thickness, the discharge and the cumulative overtopped volume of water.

Broadly, globally similar but distinctly different local features are apparent for these two models: SSM
and DSM. Both reproduce the desirable shape that increases rapidly first and then diminishes slowly at
each period, as shown in Fig. 18, which is similar as observed in the physical model. It is clear that DSM
acts as less dissipative behavior near the wall than SSM with the van Driest damping. By comparison, a
slight improvement is achieved with a dynamic LES, as illustrated in Fig. 19. Details of computations with
DDM plus comparison with our monotonically integrated LES (MILES) approach, can be seen in our
present work [29,30].

Theoretically, the free-surface boundary layer has to be taken into account, especially when waves break.
Instead of p =0 at the free surface (see Eq. (37)), the viscous normal dynamic free-surface boundary
condition is given by [26]

ow ©Oh (Ou Ow Oh (Ov Ow
p—p(V-i-Vt){zg—&(&-i-a)—a<§+a—y)} (48)

indicating that the effects of the SGS models on the free-surface can be captured via eddy viscosity v,
specified by Eq. (36), as illustrated in Fig. 18, where the shape of contours at ¢ = 7.5 (s) displays the ir-
regularity. As expected, the effects of the SGS models on the wave-induced flows are mainly confined to
strongly turbulent regions, dependent on the distributions of the eddy viscosity. A high value of v, more
than 0.005, for example, is subjected to rapid deformation of the free-surface at about x = 4.56 (m).
Consequently, this provides one possibility for study of the behavior of the LES model at the interface as
done in our study [26,27], in which two turbulence models: Baldwin—Lomax’s model and a k — ¢ one, are
applied for investigation of their effects on three-dimensional turbulent free-surface flows around modern
ships with the help of a moving mesh. / in Eq. (48) represents the wave height, which can be achieved with
the value of «, when using a VOF approach. In this case, the molecular viscosity v = 1.4 x 10™* m?/s.

3.2.3.2. Surface tension. Surface tension can capture the curvature-dependent interfacial effects, as illus-
trated in Fig. 20, which describes the evolution of the front shape at a certain time ¢ = 7.5 (s) with and
without surface tension, labelled (a) and (b), respectively. A magnified view is also included for microscopic
observation. As usual, the surface tension coeflicient is assumed as a constant by setting ¢ = 72.8 dynes/cm
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Fig. 19. Comparison of a dynamic LES with a static one for the surface elevation versus time at one point (x = 2.02 m). (—) a dynamic
LES; (——-) a static LES; (®) measurement.
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in this case. In addition, we consider a case with high surface tension, that is, ¢ = 145.6 dynes/cm, two times
coefficient larger than the original one, which is labelled (c).

Under surface tension, the effects on the solution are certain: this exhibits the strong hydrodynamic
phenomena of breakup in the region of high turbulence. A feature is that the shape of the front in this area

Fig. 20. The surface tension effects on grids (251 x 40) at ¢ = 7.5 (s). (a) ¢ = 0.0; (b) ¢ = 72.8 dynes/cm; (c) ¢ = 145.6 dynes/cm for the
wave-induced velocity fields. Bottom for distributions of the surface elevation in space: (—-—)o = 0.0, (—) ¢ = 72.8, (——)o = 145.6
(magnified view).
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is changed drastically, and the strong vortex exists (see Fig. 20). In the presence of higher surface tension
(0 = 145.6 dynes/cm), the shape of the front tends to break significantly. Hence, the substantial difference in
small scale structures is obvious when surface tension is present or not, whereas its effect is minor in the
most ranges, dependent on the deformation of the free-surface.

3.2.3.3. Reynolds number. On the assumption that Reynolds number (R,) that describes a flow characteristic

1,3
is defined as R, = g (where, d is the constant finite water depth), thus the effects of R, on flows can be
realized through the increase of R, = 1.4 x 10* to 1.8 x 10°, as shown in Fig. 21. No much difference, for
example, is observed for the time history of the surface elevation at WGS, indicating that the effect due to
the change of R, is weak for the capture of the surface elevation, although complex shear flows caused by
the waves are dominated on the dike crest. A similar conclusion can be drawn as in the case of WG4. 1t is
clear that the current grid resolution (251 x 40) cannot fully describe the boundary layer. Meshes close to
the wall need sufficient refinement, which allows a more accurate prediction for the thin boundary layer, as
R, increases. In this work, we focus attention on the capture of highly non-linear waves, propagating from
the deep water to the shallow one, although a wall friction that acts as the energy dissipation will alter the
formation of the layer thickness in this area. In particular, LES simulation of wall-bounded flows is pro-
hibitively expensive. Dynamics of the flow in the wall proximity, therefore, are likely to be affected by
inadequately meshing in the near-wall region, once the slip conditions are used on the wall. One approach
to avoid this problem is that LES may be combined with a wall-layer model [45,58], where it may be
conducted on a relatively coarse grid.

3.2.3.4. The role of a turbulence model in the case of breaking waves. Flows become highly turbulent when
waves continuously break in the surf zone. In such a case, the energy of waves accumulated needs to be
dissipated, for example, by turbulence. Since eddies gradually spread, otherwise, spurious currents are
generated in the flowfield, as illustrated in Fig. 22 at two larger time levels: ¢+ = 12.9 and 30.3 s for one test
case, which is defined as no viscosity due to vy = 0 to be enforced. But with the introduction of a SGS
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Fig. 21. The Reynolds number effects at WG4 (top) and WGS (bottom) for the surface elevation versus time on grids (251 x 40). (—)
R, = 1.8 x 10% (—-) 1.8 x 10°; (—--) 1.4 x 10*.
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model, it is found that the unphysical currents at the corresponding time transient, which develop a kind of
turbulence, are disappeared. In this way, flows tend to more realistic in the corresponding area. In par-
ticular, the calculated results with a LES look much better than those with no viscosity as compared with
measurements available for sea dike problems. Consequently, it is clear that adequate turbulence model is
required for problems related to simulation of the breakwater, indicating that computations based on
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Fig. 22. The effects of a LES model on the wave-induced velocity fields at given time levels. Left: no viscosity; right: a static LES.
Bottom: comparison of the surface elevation versus time at a certain point (x = 2.02 m) for sea dike problems. (—) LES; (———) no
viscosity; (©) measurement.
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inviscid flows are not sufficient for accurate description. This is due to the fact that the potential flow
approach without any viscous terms cannot capture energy dissipation by viscous effects under breaking
waves. But it exists in a physical model, and it may be interpreted as turbulence induced by breaking waves.
As expected, a turbulence model-based solver can give a better accuracy than the potential flow solution.
Note that the current case is done for a 2D large-eddy simulation (LES) model. A 3D test case could be
better since simulations may depend on the small-scale 3D flows [10]. Additionally, at this stage we do not
account for the effects of trapped air pockets during and after wave breaking, since the conventional as-
sumption regarding continuous and material surface on a free surface is no longer valid [32]. In case the air
is entrained in the water, whether in the form of small bubbles or a larger air pocket, compressibility effects
become important. The surface capturing approaches [21], therefore, can describe this one naturally.
Moreover, the overtopping zone may be modelled realistically once the wall adhesion effects are involved.
Further study, therefore, is necessary to clarify these issues.

3.2.4. An observation of the wave-induced velocity fields with several stages

With the help of an animation available, one can observe the wave-induced motions in the region of
interest with several stages: the wave attack, the runup, the rundown, the waves breaking to overtopping of
waves. In this paper, just some selected results are provided, as illustrated in Figs. 23-25 for a visualisation
of the velocity fields at a series of given time.

3.2.4.1. Over a sea dike. As more waves pass through the dike crest, the flow becomes fully turbulent and
sustained after an initial transient period so that the features of the flow pattern tend to be very complex,
often subjected to the steepness of the free surface most likely associated with a cycle of splashing and the
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Fig. 23. Velocity fields caused by the regular waves over a sea dike from ¢ = 32.2 to 32.4 (s) on grids (251 x 40).
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Fig. 24. Velocity fields caused by the regular waves over a sea dike from ¢ = 33.2 to 33.4 (s) on grids (251 x 40).

vortex formation created by the velocity. Waves continuously break, while the energy of waves is dissipated
by turbulence and convected by vortices.

Now we describe the corresponding motions in Figs. 23 and 24. At ¢t = 32.2 (s), the wave height increases
as it shoals on the front face. A violent overtopping jet will occur again at ¢ = 32.4 s. When it propagates
towards the dike crest, the front of waves declines gradually downstream. Consequently, its further
steepening causes the initiation of wave breaking process and then the rapid decrease of the surface ele-
vation. By 33.2 (s), some particles still move upwards but the major portion of flows on the slope displays
the proceeding of the downwash under the gravitational acceleration, while the next wave is approaching
the dike. This leads to a strong backflow and the waves break on the upper reach of the dike at z = 33.4 (s),
indicating that the free surface is significantly deformed at the intersection (about x = 4.2 m) of the in-
coming waves with the backflow. In the wave front, the particle velocity exceeds the speed limit underneath
the region of flows, forming a layer often referred to as the roll and creating a large hydraulic jump nearby,
which can be considered as a shock wave. Our solver, therefore, captures the major features of flows:
overtopping of surface waves breaking. In particular, the velocity and the pressure interact strongly each
other when the interface undergoes severe topological changes.

3.2.4.2. Over a vertical fixed barrier in front of pier. Finally, we study another case: violent wave overtopping
over a vertical fixed barrier, which shelters coastal structures from the direct impact of steep waves. This is
of particular interest for validation of our VOF-based solver, where surface waves naturally break against
the structure, throwing the water over its top. Results obtained with irregular waves are illustrated in
Fig. 25 for the time history of the surface elevation at one point (x = 3.81 m) close to the barrier and the
corresponding velocity fields at certain time, where the irregular waves are created by superimposing a
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Fig. 25. Time history of the surface elevation at one point (x = 3.81 m) and velocity fields caused by the irregular waves over a vertical
fixed barrier from ¢ = 32.1 to 33.3 (s) on grids (251 x 40).

series of regular waves. It is clear that motions caused by the irregular waves look much more complex than
those by the regular waves. As expected, a vortex generated in the vicinity of the barrier characterizes the
dynamics of the wave-induced turbulent motions at the smallest scale in this case. More details of com-

putations regarding this one can be seen in our current work using the same solver based on a dynamic LES
[29].
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4. Conclusions

We developed a novel solver for the simulation of wave overtopping over sloping and vertical structures
in a NWT. Its major advantage is that a simple VOF approach is designed for effective modelling of a very
sharp interface. This has been applied in combination with an unsteady incompressible Navier—Stokes
solver that includes the TVD-type schemes for sharp gradients capturing and fully implicit cell-staggered
FV approaches on nonuniform Cartesian cut-cell meshes. Two essential features in our solver are the ability
to describe overtopping of breaking waves and a computationally efficient algorithm for the coupling of the
pressure with the velocity based on a projected method. The results obtained in complex topology flows
induced by regular and irregular waves are very encouraging, especially since they compared well with the
experimental data available. Overall, our solver is able to yield detailed information for wave-structure
interaction problems. The main conclusions are drawn as follows:

e The grid dependency may be an aspect that is crucial for the VOF solver problems. In our study, it is
found that differences attributed to gridding are weak for the capture of the surface elevation but the
essential details of the resolution can be captured as the mesh is refined, especially for the accurate
description of the wave-induced velocity fields.

e Without excessive energy dissipation, the introduction of a blend of the second- and fourth-order arti-
ficial damping terms helps to eliminate spurious oscillations during lengthy computations, as the corre-
sponding coeflicients that control the artificial dissipation are given adaptively.

e With an absorbing-generating boundary condition, an additional feature is that the solution is able to
specify a well-suited boundary value for o, which helps to resolve the volume fractions in VOF.

¢ Handling implicitly the pressure over mixed cells and modelling of surface tension as a body force sim-
plify significantly the treatment of the normal dynamics free-surface boundary condition, especially
when interfaces undergo severe topological change. It is found that the simulation of breaking waves
looks more realistic under the surface tension effects.

e With implicit interface reconstruction, the solution of the transport equation for the volume fractions is
simple but effective according to the currently proposed approach.

e For problems associated with the simulation of breaking waves, it is found that the introduction of an
adequate turbulence model may be necessary.

Ongoing and future work will incorporate a test case on 3D.
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