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Abstract

This paper describes a solver on the simulation of overtopping of water waves over sloping and vertical structures in

a numerical wave tank (NWT). It involves a time-implicit cell-staggered approximately factored VOF finite volume

(FV) approach for solution of unsteady incompressible Navier–Stokes (NS) equations with a free surface on non-

uniform Cartesian cut-cell grids. The Godunov-type high-order upwind schemes are introduced for discretization of the

convective fluxes, while the coupling of the pressure with the velocity is realized by a projection method. The effects of

turbulence are incorporated with a subgrid-scale (SGS) model. A novel VOF solver is proposed for the capture of a free

surface undergoing severe topological deformation related with breaking waves. Only an approximation for the free-

surface boundary conditions neglects the viscous stress but surface tension is modelled as a body force. A blend of

second- and fourth-order artificial damping terms is designed for enhancement of the numerical stability. Additionally,

the cut-cell techniques are utilized for handling an arbitrary geometry, and an absorbing-generating boundary condition

for a wave generator is applied. The calculated results are represented in terms of the surface elevation versus time at

certain locations and the velocity fields created by regular and irregular waves. Furthermore, the convergence behavior,

the grid refinement effects, the study of different SGS models, the surface tension and Reynolds number effects and the

role of a turbulence model under breaking waves are discussed, including a comparison with measurements available.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Overtopping of waves over a sea dike is a violently natural phenomenon that may cause the structural

failure of the sea defence. Owing to the presence of breaking waves, flows become highly turbulent, often

subjected to rapid deformation of the free-surface. Of particular interest is the capture of breaking waves in

the surf zone and elsewhere, which needs an investigation of the behavior of the moving air–water interface

referred to as the free surface. A study on overtopping of waves in complex flows with high turbulence is
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one of the challenging topics. An elucidation of the more detailed mechanism is essential and always de-

sirable in research and engineering.

Theoretically, the relevant study involves the solution of moving boundary problems, where the effects of
the free surface are distributed over a region proportional to several grids. Only its initial location and

geometry are known a priori but the final location has to be determined as part of the solution. Conse-

quently, the gross topology change undergoing the processes of merging and breakup amplifies wave-

structure coupling problems. In particular, it tends to be more difficult in the presence of surface tension,

including the treatment of the viscous dynamic free-surface boundary conditions [26], while the free surface

is assigned as one of the boundaries in the computational domain. A powerful numerical tool, therefore, is

preferred for handling the arbitrarily shaped interfaces naturally. Many approaches are available for

studying flows of immiscible fluids with interfaces (see, for example, the density function method [38], a
front-tracking approach [55], the smoothed particle hydrodynamics (SPH) [35], the level set method [37,49]

and VOF plus their coupled approach [51]). Comprehensive reviews on breaking waves in the surf zone can

be found in Christensen [6], Watanabe and Saeki [59] and Lin [32], based on a large-eddy simulation (LES)

and the Reynolds-averaged Navier–Stokes (RANS) approximation, respectively. The volume-of-fluid

(VOF) method is one of the most popular schemes so far. Its intrinsic feature is to identify the mass

conservation, especially without special attention for modelling of topological changes of the front. On a

stationary grid, one tracks the volume of each material in cells that contain a portion of an interface

(defined as mixed cells), as long as the data a are specified according to the shape and location of an initial
interface, where the volume fractions (denoted as a hereafter) satisfy 0 < a < 1, in which the value of a ¼ 1

2

is supposed to represent the interfaces. It is shown that an iterative course of a includes a two-stage process:

one is referred to as an interface reconstruction algorithm and one an advection algorithm for a.

1.1. An interface reconstruction algorithm

Typically, it is classified in two basic categories: an explicit/implicit interface reconstruction. For the

former, the current many approaches [42] are to design an approximate interface (i.e., an Eulerian repre-
sentation), dependent on the distributions of a at each time, called the modern PLIC (piecewise linear

interface calculation) methods. By predefining various possible orientations, those can provide more exact

approximation to the interfaces [40,61]. Alternative is to move the PLIC-type interfaces, for example, by

virtue of a local velocity at a certain cell face, called Lagrangian interface reconstruction methods in the

Lagrangian sense. In this way, the stretching or compression of the interface can be taken into account

naturally during each single fractional step [14], consequently, it is thought as a more robust approach. For

the latter, one assigns a piecewise-constant representation of the interface (e.g., the original Hirt and

Nichols�s VOF method [17]), named a purely Eulerian representation. Its significant advantage is that the
interfaces arbitrarily orientated with respect to the computational grids are allowed.

1.2. An advection algorithm for a

One has to resolve the following transport equation:

oa
ot

þ oðuaÞ
ox

þ oðvaÞ
oy

þ oðwaÞ
oz

¼ 0 ð1Þ

provided that the underlying velocity fields and the reconstructed interface are given simultaneously. Ac-

tually, a is a scalar quantity carrying the material information, therefore, Eq. (1) updates a over mixed cells

but maintains a ¼ 1 or 0 in the water or air, respectively. Given an explicit interface reconstruction, it is

relatively straightforward in its implementation for the evaluation of the convective fluxes of a, due to the

geometrical information available. Such approaches, without diffusion of the front, are more promising
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than the original VOF method but at the cost of algorithmic complexity [42], especially in three-dimen-

sional (3D) situations, where the operations to be performed could be more complicated in the context of

mergers and breakups, as compared with purely Eulerian methods [54]. With the interfaces reconstructed
implicitly, the critical issue is to treat the convective terms but this faces fundamental difficulties when the

hyperbolic nonlinear partial differential equation of a (see Eq. (1)) is discretized on a finite grid. The use of

regular high-resolution schemes, for example, leads to more or less diffusive on the evolution of a so that

non-physical shape of the interface occurs over a few cells when the excessive diffusion is generated

[15,24,46]. A similar phenomenon holds for the original VOF method, that is, a very popular one, because

of its simplicity. Some reasons may be interpreted as the fact that it does not preserve local boundedness.

To suppress such problem, a high resolution method with bounding treatments, called as CICSM [53]

(compressive interface capturing scheme for arbitrary meshes), is proposed. The relevant study can be
found in Rudman [46] and Xiao [60], respectively.

In this paper, we develop a new solver for modelling of overtopping of waves over vertical and sloping

coastal structures. Applications to the capture of breaking waves are emphasized in our solver for illustration

of its particular feature to case studies related to wave overtopping. This solver includes an operator-split

implicit-time differencing scheme for resolution of theNS equations on nonuniformCartesian cut-cell meshes

with the help of a cell-staggered finite volume (FV)method, while incompressibility is realized by enforcing an

iterative Poisson solver for the pressure. A sharp interface in topologically complex wave-induced flows is

tracked with the VOF-based algorithm easy to use but to well describe the physical behavior of practical
problems. All that is necessary involves the need for eliminating the knowledge of detailed interface infor-

mation at each iteration plus an implicit treatment for the surface pressure. In the latter case, this considers the

contribution from the air, only applying the pressure on the water. Additionally, surface tension is enforced as

a body force according to the continuum surface force (CSF)model [4]. This allows to significantly simplify the

normal dynamic free-surface boundary condition. In our study, the pressure atmixed cells is incorporated into

the corresponding field equation. In particular, no explicit expression for the interface reconstruction is re-

quired during tracking, which is similar to the level set method widely applied to many fields. As expected, it

can be generalized well to 3D and used for several industrial applications as well. Our work in this area is to
develop an approach that preserves the smoothness of the interface andmaintains its sharp definition over one

cell, indicating that numerical diffusion related with upwind schemes should not be excessive (that is, without

dispersing or wrinkling). It is composed of a weighted upwind scheme with the help of an operator-split

second-order explicit Adams–Bashforth advection algorithm plus a blending scheme. For two test cases that

involve complex wave-induced flows, our computation demonstrates that the approach proposed is simple

and computationally efficient.

This paper is organized as follows. First, we outline the numerical methods that include the mathe-

matical model, a fully implicit cell-staggered FV approach on nonuniform Cartesian cut-cell grids, the
modelling of surface tension, a novel solution for the volume fractions a and a static Smagorinsky model

with a constant coefficient, respectively. The calculated results and discussions, such as some convergence

properties, the study of grid refinement effects, the investigation of two different SGS models, the Reynolds

number and surface tension effects, and the wave-induced flows plus comparison with the experimental date

available, are represented next, followed by the concluding remarks.
2. Methodology

2.1. Mathematical model

For sea dike problems, a right-handed coordinate system ðx; y; zÞ is set up, as illustrated in Fig. 1, where

the origin is fixed at the intersection of the inlet with the still water level (SWL), and three coordinates
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Fig. 1. A reference coordinate system for sea dike problems.
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ðx; y; zÞ are defined as positive in the direction of the wave propagation, towards the width of a dike and

upwards, respectively. Assuming that the mathematical model is based on unsteady incompressible Navier–
Stokes (NS) equations in a conservative form on Cartesian grids, thus one has

ou
ot

þ oF
ox

þ oG
oy

þ oH
oz

¼ Q; ð2Þ

where variables u ¼ ð0; u; v;wÞT. ðF ;G;HÞ ¼ ðFi � Fv þ Fa;Gi � Gv þ Ga;Hi � Hv þ HaÞ are expressed as,
respectively,

Fi ¼

0

u2

vu
wu

0BB@
1CCA; Gi ¼

0

uv
v2

wv

0BB@
1CCA; Hi ¼

0

uw
vw
w2

0BB@
1CCA ð3Þ

for the inviscid fluxes ðFi;Gi;HiÞ,

Fv ¼

0

meff ou
ox

meff ov
ox

meff ow
ox

0BBBB@
1CCCCA; Gv ¼

0

meff ouoy

meff ov
oy

meff ow
oy

0BBBBB@

1CCCCCA; Hv ¼

0

meff ou
oz

meff ov
oz

meff ow
oz

0BBBB@
1CCCCA ð4Þ

for the viscous fluxes ðFv;Gv;HvÞ,

Fa ¼

u
1
q p
0
0

0BB@
1CCA; Ga ¼

v
0
1
q p
0

0BB@
1CCA; Ha ¼

w
0

0
1
q p

0BB@
1CCA ð5Þ
for the acoustic fluxes ðFa;Ga;HaÞ, and
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0

1
q F

x
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z
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for the source term ðQÞ. ðu; v;wÞ are the components of the velocity in the x-, y- and z-directions, respec-
tively, p is the total pressure, and g is the gravitational acceleration. ðF x

b ; F
y
b ; F

z
bÞ are three components of a

body force ~F b in the ðx; y; zÞ-directions, respectively. meff is the effective viscous coefficient by setting
meff ¼ mþ mt, in which m is the molecular kinematic viscosity and the eddy viscosity mt has to be determined

with a turbulence model. The local density q and viscosity meff are given as in terms of a

q ¼ aqw þ 1ð � aÞqa; meff ¼ ameffw þ 1ð � aÞmeffa ; ð7Þ

where the subscripts (w, a) denote the water and the air, respectively.

2.2. A fully implicit cell-staggered finite volume method

With a staggered grid arrangement, the pressure is coupled with the velocity naturally. The benefit is that

its use helps to avoid some types of convergence problems and oscillations in the pressure and velocity fields

[9]. In this way, the pressure and a are located at the centre of a cell, while three components ðu; v;wÞ of the
velocity lie in the centre of the ðiþ 1

2
Þ; ðjþ 1

2
Þ and ðk þ 1

2
Þ faces enclosed a cell ðijkÞ, respectively (see Fig. 2).

With an implicit FVmethod, the discretization of the integral form of Eq. (2) over each cell may be written by

ou
ot

� �nþ1

þ 1

V

X
faces

F
nþ1 ¼ Qnþ1 ð8Þ
*
(i-1/2)

*

(i+1/2)
uijk

*
(j-1/2)

*(j+1/2)

vijk

*
(k-1/2)

*
(k+1/2)

wijk

*(ijk)

pijk, αijk

x

y
z

Fig. 2. A staggered grid system. (pijk ; aijk) are defined at the center of a cell (i; j; k); (uijk ; vijk ;wijk) at the faces ðiþ 1=2; j; kÞ; ði; jþ 1=2; kÞ
and ði; j; k þ 1=2Þ, respectively.
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for an arbitrary fixed volume V with a cell face S. The subscript faces represents the summation over all cell

faces surrounding a hexahedral cell. F ¼ ðFnx þ Gny þ HnzÞS, where ðnx; ny ; nzÞ are the unit normal com-

ponents of the cell face outwards in the x-, y- and z-directions, respectively.
Since there is no restriction of time step level, in principle, an implicit approach provides a more ef-

ficient way in studying slowly transient flows. Nevertheless, it is not realistic to resolve a large coupled set

of non-linear equations at each time step. Consequently, various approaches are proposed for an ap-

proximation of Eq. (8). In this study, the variation of the unknown fluxes at the ðnþ 1Þth time step is

obtained with the introduction of the so-called Delta form [25,34,44], indicating that a local linearization

of the fluxes created by the convective and diffusion terms, respectively, is enforced. As a result, the fluxes

at the ðnþ 1Þth time step is formulated by a Taylor series extension to first-order accuracy in terms of the

time t. Namely

F
nþ1 ¼ F

n þ oF
ot

Dt ¼ F
n þ oF

ou
ou
ot

Dt ¼ F
n þ oF

ou
du;

where the Delta form du ¼ unþ1 � un. Hence, one has

duþ Dt
V

X
faces

oF
ou

� �
du ¼ DtR:

By setting F ¼ F i � F v, it can be derived by

duþ Dt
V

oF i

ou

��(
� oF v

ou

�
du

�
iþ1

2

� oF i

ou

��
� oF v

ou

�
du

�
i�1

2

)
þ Dt

V
oF i

ou

��(
� oF v

ou

�
du

�
jþ1

2

� oF i

ou

��
� oF v

ou

�
du

�
j�1

2

)
þ Dt

V
oF i

ou

��(
� oF v

ou

�
du

�
kþ1

2

� oF i

ou

��
� oF v

ou

�
du

�
k�1

2

)
¼ DtR ð9Þ

with the residual of the momentum equations R defined as

R ¼ � 1

V

X
faces

F
n

(
� Qn

)
¼ � 1

V

X
faces

F
n
i

�(
� F

n
v

�
� Qn

)
; ð10Þ

where F i ¼ Finx þ Giny þ Hinz and F v ¼ Fvnx þ Gvny þ Hvnz. Clearly, F i and F v represent the contributions

from the inviscid and viscid fluxes in the ðx; y; zÞ-directions, respectively. This implies that the body force ~F b

and the acoustic fluxes are not involved in the currently implicit process, except for the source terms,

Qnþ1 ¼ Qn ¼ ð0; 0; 0;�gÞT. In this case, the summation is taken over six cell faces surrounding a cell ðijkÞ
via

P
faces ¼ ð Þiþ1

2
� ð Þi�1

2
þ ð Þjþ1

2
� ð Þj�1

2
þ ð Þkþ1

2
� ð Þk�1

2
, as shown in Fig. 2.

2.2.1. Evaluation of the derivatives oF i

ou and oF v

ou at a certain face

In our implicit stage, the derivative oF
ou is decomposed as two terms oF i

ou and oF v

ou , respectively. For the

evaluation of the corresponding values, we adopt the two different approximations: one [25,44] is to use an

one-order upwind scheme for achievement of oF i

ou ; one [25,34] is to neglect the cross derivatives related with

the viscid fluxes, when calculating oF v

ou with a central-difference scheme. The former maintains the bandwidth

of tridiagonal block in the linear equation, resulting in lower memory for the solution of Eq. (9); the latter

allows to significantly simplify the expression in the matrix.
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2.2.1.1. Computation of oF i

ou . The convective fluxes in the x-momentum equation, for example, may be derived by

ouu
ox

þ ovu
oy

þ owu
oz

¼ 1

V

X
faces

unuS ¼ 1

V

X
faces

_Mu ¼ 1

V

X
faces

F i; ð11Þ

where the normal face velocity un is defined as

un ¼ unx þ vny þ wnz ð12Þ

so that the inviscid volumetric _M and momentum fluxes F i across a certain face are, respectively,

_M ¼ unS and F i ¼ _Mu:

The latter results in the derivative oF i

ou , such as at the ðiþ 1
2
Þ face, as

oF i

ou

� �
iþ1

2

¼ _Miþ1
2

on the assumption that _Miþ1
2
is unchanged at one currently iterative cycle. With an one-order upwind

scheme, therefore,

oF i

ou
du

� �
iþ1

2

can be given as

oF i

ou
du

� �
iþ1

2

¼ _Mdu
� �

iþ1
2

¼ _Mþ
iþ1

2

dui � _M�
iþ1

2
duiþ1 ð13Þ

in which _Mþ
iþ1

2

and _M�
iþ1

2

are formulated by, respectively,

_Mþ
iþ1

2

¼ max _Miþ1
2
; 0

� �
; _M�

iþ1
2
¼ max

�
� _Miþ1

2
; 0
�
:

The subscripts ði; iþ 1Þ represent cells, respectively, as shown in Fig. 3. Owing tomaxðx; 0Þ ¼maxð�x; 0Þ þ x,
for example, _Mþ

iþ1
2

can be split as _Mþ
iþ1

2

¼ _Miþ1
2
þ _M�

iþ1
2

, which is useful when one arranges Eq. (17).

2.2.1.2. Evaluation of oF v

ou . For the viscous fluxes in the x-momentum equation (i.e., u ¼ u), it reads as

meff
o2u
ox2

�
þ o2u

oy2
þ o2u

oz2

�
¼ meff

V

X
faces

ou
on

S ¼ 1

V

X
faces

F v; ð14Þ

where ou
on is the normal gradient at a certain face defined by

ou
on

¼ ou
ox

nx þ
ou
oy

ny þ
ou
oz

nz

so that the viscous momentum flux F v is

F v ¼ meff
ou
on

S: ð15Þ

With a central difference scheme,

oF v

ou
du

� �
iþ1

2

;



*i-1*i-2 i-1/2 *i *i+1 *i+2i+1/2

di

i+3/2

ϕL
i+1/2 ϕR

i+1/2

at (i+1/2) face

Fig. 3. Denotation of the variable values of the left (uL
iþ1

2

) and right (uR
iþ1

2

) states at the ðiþ 1
2
Þ face over a cell ðiÞ.

ði� 2; i� 1; iþ 1; iþ 2Þ represent the corresponding cells, respectively.
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such as at the ðiþ 1
2
Þ face, can be written as

oF v

ou
du

� �
iþ1

2

¼ meff
o

ou
ou
on

S
� �

iþ1
2

du ¼ duiþ1

�
� dui

�
Kiþ1

2
; ð16Þ

where Kiþ1
2
¼ ðmeffSDx Þiþ1

2
is the viscous volumetric fluxes, in which Dx is the corresponding cell thickness (see

Fig. 4). In this way, the bandwidth of the linear equation is kept as a set of tridiagonal block that may be

resolved by the alternative directional implicit (ADI) approach.

2.2.2. Solution of the Delta form du
Owing to F ¼ F i � F v, Aði�1Þ may be defined as a blend of two nondimensional coefficients associated

with the inviscid volumetric fluxes ð _MÞ and the viscous fluxes ðKÞ, respectively,

Aiþ1 ¼
Dt
V

Kiþ1
2

�
þ _M�

iþ1
2

�
;Ai�1 ¼

Dt
V

Ki�1
2

�
þ _Mþ

i�1
2

�
:

Substituting Eqs. (13) and (16) into Eq. (9), it can be factored into the following three one-dimensional

equations:

� Ai�1du
��
i�1 þ Að1Þ

p du�� � Aiþ1du
��
iþ1 ¼ DtR;

� Aj�1du
�
j�1 þ Að2Þ

p du� � Ajþ1du
�
jþ1 ¼ du��;

� Ak�1duk�1 þ Að3Þ
p du� Akþ1dukþ1 ¼ du�;

ð17Þ
*

i-1/2 i

o Pi+1,j,k

i+1/2 i+1

*
ui,j,k ui+1,j,k

∆ x
(i+1) face(i) face

Fig. 4. A shifted control volume surrounding Piþ1;j;k for discretization of the gradient ou
on at the face ðiþ 1

2
Þ. ði; iþ 1Þ represent its cell face

in the principal direction, respectively.
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according to the ADI algorithm. The mainly diagonal coefficients Að1Þ
p ;Að2Þ

p and Að3Þ
p in Eq. (17) are expressed

as, respectively,

Að1Þ
p ¼ 1þ Aiþ1 þ Ai�1 þ

Dt
V

_Miþ1
2

�
� _Mi�1

2

�
;

Að2Þ
p ¼ 1þ Ajþ1 þ Aj�1 þ

Dt
V

_Mjþ1
2

�
� _Mj�1

2

�
;

Að3Þ
p ¼ 1þ Akþ1 þ Ak�1 þ

Dt
V

_Mkþ1
2

�
� _Mk�1

2

�
;

where ði; j; kÞ denote the cell number in the x-, y- and z-directions, respectively. ðiþ 1Þ and ði� 1Þ are two
neighbours of cell i (see Fig. 3). Similar definition is for Aj�1 and Ak�1 by index substitution. For

achievement of du, one requires to resolve the tridiagonal systems (see Eq. (17)), which may be accom-

plished with ease based on TDMA (tridiagonal matrix algorithm).

2.2.3. Evaluation of the temporal velocity ~u
The following temporal velocity ~u is renewed

~u ¼ un þ duþ 1

q
F i
b ð18Þ

provided that du is available from Eq. (17). The last term 1
q F

i
b in Eq. (18) is to account for the contribution

of surface tension. It may be simulated with the help of the CSF model. ðF 1
b ; F

2
b ; F

3
b Þ ¼

ðF x
b ; F

y
b ; F

z
bÞ; i ¼ 1; 2; 3.
2.2.4. A Poisson equation for the pressure

The temporal velocity ~u ¼ ð~u;~v; ~wÞ is not, in general, divergence-free but always used to update the

pressure according to the projected algorithm [7]. Consequently, the final velocity field is enforced to satisfy

the continuity equation: r �~u ¼ 0. Accordingly, substituting the resulting velocity (i.e., with a backward

Euler method)

unþ1 ¼ ~u� Dt
q

op
ox

nþ1

;

vnþ1 ¼ ~v� Dt
q

op
oy

nþ1

;

wnþ1 ¼ ~w� Dt
q

op
oz

nþ1

ð19Þ

into the following continuity equation,X
faces

unþ1nx
�	

þ vnþ1ny þ wnþ1nz
�
S


¼ 0 ð20Þ

this yields

X
faces

1

q
op
ox

nþ1

nx

��
þ op

oy

nþ1

ny þ
op
oz

nþ1

nz

�
S
�

¼ 1

Dt

X
faces

~unx
�n

þ ~vny þ ~wnz
�
S
o
:
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Furthermore, it may be rewritten as

1

q
op
on

nþ1� �
S

� �
iþ1

2

� 1

q
op
on

nþ1� �
S

� �
i�1

2

1

q
op
on

nþ1� �
S

� �
jþ1

2

� 1

q
op
on

nþ1� �
S

� �
j�1

2

1

q
op
on

nþ1� �
S

� �
kþ1

2

� 1

q
op
on

nþ1� �
S

� �
k�1

2

¼ bR
ð21Þ

with the following source term bR
bR ¼ 1

Dt
bunSð Þiþ1

2

n
� bunSð Þi�1

2
þ bunSð Þjþ1

2
� bunSð Þj�1

2
þ bunSð Þkþ1

2
� bunSð Þk�1

2

o
;

where bun ¼ ~unx þ ~vny þ ~wnz and
op
on ¼

op
ox nx þ

op
oy ny þ

op
oz nz are the normal face velocity and the pressure gra-

dient at a certain face, respectively.

Using a central-difference scheme, Eq. (21) is discretized with respect to the pressure gradients on the cell

faces so that it can be cast into the following seven-point stencil form:

Ai;j;kpnþ1
i;j;k þ Bl

i�1;j;kp
nþ1
i�1;j;k þ Bu

iþ1;j;kp
nþ1
iþ1;j;k þ Cl

i;j�1;kp
nþ1
i;j�1;k

þ Cu
i;jþ1;kp

nþ1
i;jþ1;k þ Dl

i;j;k�1p
nþ1
i;j;k�1 þ Du

i;j;kþ1p
nþ1
i;j;kþ1 ¼ bR: ð22Þ

Eq. (22) may be thought as a discrete version of the Poisson-type equation for the pressure. Its relevant

coefficients are

Ai;j;k ¼ � A1

qiþ1
2

 
þ A3

qi�1
2

þ B1

qjþ1
2

þ B3

qj�1
2

þ C1

qkþ1
2

þ C3

qk�1
2

!
;

Bl
i�1;j;k ¼

A3

qi�1
2

; Bu
iþ1;j;k ¼

A1

qiþ1
2

; Cl
i;j�1;k ¼

B3

qj�1
2

;

Cu
i;jþ1;k ¼

B1

qjþ1
2

; Dl
i;j;k�1 ¼

C3

qk�1
2

; Du
i;j;kþ1 ¼

C1

qkþ1
2

;

where the multipliers (A1 to C3) are defined as A1 ¼ Siþ1
2
d�1
i ; A3 ¼ Si�1

2
d�1
i�1; B1 ¼ Sjþ1

2
d�1
j ; B3 ¼

Sj�1
2
d�1
j�1; C1 ¼Skþ1

2
d�1
k and C3 ¼ Sk�1

2
d�1
k�1, respectively. The subscripts, such as ði� 1; i; iþ 1Þ and di, are

shown in Fig. 3. (qi�1
2
; Si�1

2
) represent the corresponding face density and area, respectively. For the former,

it may be determined with a weighted approach, since q is located at the center of a cell. The superscripts

(l,u) denote the lower and upper diagonals, respectively.

On Cartesian grids, the discrete approximation to the derivatives forms a seven-point stencil in the linear

system diagonally dominant. Owing to be positive definite and sparsity, it may be resolved by the iterative

solution methods like the ICCG (incomplete Cholesky conjugate gradient) algorithm [22] or the SOR

(successive over-relaxation) scheme.

Based on a quadratic backward approximation in time, an implicit three-level second-order scheme is
implemented for the time derivative:

ou
ot

� �nþ1

¼ 3unþ1 � 4un þ un�1

2Dt
¼

3
2
unþ1 � 2un þ 1

2
un�1

Dt
;
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where the superscripts ðnþ 1; n; n� 1Þ stand for the next, current and previous time levels, respectively.

Instead of Eq. (19), therefore, the resulting velocity at the ðnþ 1Þth time level is rewritten as (by setting

2un ’ un þ ~u)

unþ1 ¼ 2

3
un

�
� 1

2
un�1 þ ~u� Dt

q
op
oxi

�
ð23Þ

provided that the pressure from the Poisson solver is available. With the tensor notation,
xi ¼ ðx1; x2; x3Þ ¼ ðx; y; zÞ; i ¼ 1; 2; 3. Owing to the strong coupling of the velocity with the pressure under

waves breaking, one under-relaxation technique is implemented for the final velocity.
2.2.5. Evaluation of the explicit inviscid and viscid fluxes

2.2.5.1. Explicit inviscid fluxes F
n
i . At the nth time step, for example, the explicit inviscid fluxes,

P
faces F

n
i

(see Eq. (10)) at the face ðiþ 1
2
Þ, are evaluated by the flux-difference splitting approach [43]:

F i

� �
iþ1

2

¼ 1

2
F i uR

iþ1
2

� �n
þ F i uL

iþ1
2

� �o
� 1

2
jAj uR

iþ1
2

�
� uL

iþ1
2

�
ð24Þ

with

F i uR
iþ1

2

� �
¼ _MuR
� �

iþ1
2

; F i uL
iþ1

2

� �
¼ _MuL
� �

iþ1
2

and A ¼ oF i

ou

� �
iþ1

2

indicating that the value of uiþ1
2
at the face ðiþ 1

2
Þ is given by

uiþ1
2
¼

uR
iþ1

2

if _Miþ1
2
< 0;

uL
iþ1

2

otherwise;

(

where uL
iþ1

2

and uR
iþ1

2

are the variable values of the left and right states at the ðiþ 1
2
Þ face over one cell ðiÞ,

respectively, as illustrated in Fig. 3. These may be obtained with the MUSCL (monotone upstream-centred
scheme for conservation laws)-type TVD (total variation diminishing) scheme [56] or a second-order ENO

(essential nonoscillation) scheme [49]. In the former case, uL
iþ1

2

and uR
iþ1

2

for one-dimensional problem are

formulated by the k (k ¼ 1
3
, a value we adopted) family of the MUSCL scheme:

uL
iþ1

2
¼ ui þ

1

4
1ð � kÞ uið � ui�1Þ þ

1

4
1ð þ kÞ uiþ1

�
� ui

�
;

uR
iþ1

2
¼ uiþ1 �

1

4
1ð þ kÞ uiþ1

�
� ui

�
� 1

4
1ð � kÞ uiþ2

�
� uiþ1

�
:

ð25Þ

In the latter case, these are expressed as:

uL
iþ1

2
¼ ui þ

1

2
m uiþ1

�
� ui;ui � ui�1

�
;

uR
iþ1

2
¼ uiþ1 �

1

2
m uiþ2

�
� uiþ1;uiþ1 � ui

�
;

ð26Þ

where the subscripts ði� 1; i; iþ 1; iþ 2Þ used are shown in Fig. 3, and the function mða; bÞ is defined

as

mða; bÞ ¼ a if ja j 6 jb j;
b otherwise:

�
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In the smooth regions, the MUSCL scheme and the ENO one approximate the convective flux differencing

with a second-order accuracy. Instead of the two approaches, the following one-order upwind scheme is

imposed in cells adjoining the interface and the wall:

uL
iþ1

2
¼ ui;

uR
iþ1

2
¼ uiþ1:

ð27Þ
2.2.5.2. Explicit viscid fluxes F
n
v. For the evaluation of the explicit viscid fluxes in the x-momentum equation

at the ðiþ 1
2
Þ face, i.e.,

P
faces F

n
v (see Eq. (10)), we only account for the contribution of the gradient in the x-

direction over a shifted control volume surrounding a cell Piþ1;j;k (see Fig. 4). It is referred to as the principal

direction due to dropping its cross-derivative. In fact, this is equivalent to a common simplification like the
so-called thin shear layer (TSL) approximation. With a central difference scheme, hence, one can

obtain

1

V
F

n
v

� �
iþ1

2

¼ meff
V

ou
ox

nx

��
þ ou

oy
ny þ

ou
oz

nz

�
S
�

iþ1
2

¼
meffSiþ1

2

V ~V

X
faces

nx~nx
�

þ ny~ny þ nz~nz
�
u~S

¼
meffSiþ1

2

V ~V
u~S
� �

iþ1

�
� u~S
� �

i

�
¼ meff

diDx
uiþ1;j;k

�
� ui;j;k

�
ð28Þ

according to Eq. (15). The subscripts ði; iþ 1Þ stand for the cell faces of a shifted control volume with the

face area ~S surrounding the volume ~V (see Fig. 4), respectively. Dx ¼ ~V
~S
(see Fig. 4) and d�1

i ¼
S
iþ1

2

V (see Fig. 3)

are the corresponding thickness of a cell, respectively. nx~nx þ ny~ny þ nz~nz ¼ 1 in this case. It is obvious that

Eq. (16) and the pressure Poisson equation of Eq. (22) can be derived in a manner similar to the above

procedure.

2.2.6. An artificial damping term

The normal face velocity un (see Eq. (12)) at a certain face is obtained by

unð Þiþ1
2
¼ 1

2
unð Þi

	
þ unð Þiþ1



� diþ1

2
ð29Þ

for the evaluation of the volumetric flux _Miþ1
2
at ðiþ 1

2
Þ face. ðunÞi and ðunÞiþ1 are the values of the normal

velocity at cells ðiÞ and ðiþ 1Þ (see Fig. 3), respectively. diþ1
2
is the so-called damping terms introduced at the

corresponding face.

The linear interpolation of the face value is of a second-order accuracy (with central differencing) but

results in an unbounded solution for problems of the convective domination. Owing to lack of numerical
dissipation, high-order upwind schemes may lead to unphysical oscillations at high Reynolds number. To

cope with such problems, one approach is to apply van Leer�s limiter for the fluxes [56]. Alternative is to

introduce the artificial dissipation terms that may remove the high frequency oscillations and prevent the

occurrence of unphysical situation around discontinuities [16], which acts as a blend of 2nd and 4th order

artificial dissipations in terms of the velocity [20], where the corresponding two constants kð2Þ and kð4Þ are
fixed equal to 1.0 and 0.03 [11], respectively. Probably, a popular way is the momentum-based interpolation

[41] that may be derived as an expression similar to 4th order artificial dissipation with respect of the

pressure. In this study, we absorb an idea like a combination of the second- and fourth-order artificial
dissipation terms but it is concerned with the pressure rather than the velocity. Furthermore, it corrects

directly the normal face velocity un (see Eq. (29)), which makes a code more compact in writing. The major

benefit is that it can suppress the oscillatory behaviour in regions with the sharp gradients (such as near
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shocks) and damp the numerical disturbance induced by short wavelengths. Consequently, numerical

stability can be enhanced.

We design diþ1
2
as the compact form in terms of variables (i.e., the pressure) of the right ðRÞ and left ðLÞ

sides at a certain face. Namely

diþ1
2
¼ 1

2qw2c2
pRiþ1

2

�
� pLiþ1

2

�
1
� 1

2qw4c4
pRiþ1

2

�
� pLiþ1

2

�
3
; ð30Þ

which represents a blend of the second- and fourth-order artificial damping terms at the face ðiþ 1
2
Þ. The

subscripts ð1; 3Þ imply the use of an one-order upwind (see Eq. (27)) and a third-order upwind scheme (see

Eq. (25)) for achievement of values of the left and the right at the ðiþ 1
2
Þ face, respectively. Generally, the

first- and third-derivative terms in the pressure (see Eq. (30)) add numerical dissipations similar to those

created by the second- and fourth-order dissipation terms. Moreover, the high-order scheme may adjust

amount of the numerical diffusion induced by the low-order scheme like the flux-corrected transport (FCT)

algorithms [62], when it is active as an anti-diffusive term. Both become negligible with the smooth pressure

fields but suppress oscillations in the region of the strong pressure gradients, because of their high-
frequency damping capability. In our study, the corresponding coefficients that control the artificial dis-

sipation (see Eq. (30)) are given adaptively in terms of the velocity, the local time step and the diagonal

coefficients, except for c2 ¼ 1 be enforced artificially.

2.2.6.1. A choice of w2 and w4. w2 or w4 is of the same order as the velocity fields. Consequently, one can

scale with a local velocity for w4:

w4 ¼
min Dx;Dy;Dzð Þ

Dt
;

where ðDx;Dy;DzÞ are the thickness of a cell in the x-, y- and z-directions (see Fig. 4), respectively.
Alternative is to consider the local diffusion velocity meff

Dd , in case it becomes important [33]. Namely

w2 ¼ umax þ vw þ 2
meff
Dd

;

where umax is the maximum velocity within the flowfield at each time step. In the present case, it is essential

to take into account the contribution from motions of the waves, indicating that the velocity of the wave

train vw (see Eq. (47)) should be incorporated Dd ¼ ðDx2 þ Dy2 þ Dz2Þ1=2.

2.2.6.2. Determination of c2 and c4. For the two non-dimensional coefficients c2 and c4, a simple way is to set
as c2 ¼ 1 and c4 ¼ 1þ ðAð1Þ

p � 1Þ þ ðAð2Þ
p � 1Þ þ ðAð3Þ

p � 1Þ, respectively. Actually, the latter is given as the

diagonal coefficients from Eq. (17).

To investigate the numerical behavior of the damping terms (see Eq. (30)), one way is to discuss the local

diffusion velocity meff
Dd with varying mt and m, based on meff ¼ mt þ m. Obviously, this involves the effects of the

SGS models and the Reynolds number, respectively. When using two different SGS models and increasing

the Reynolds number, therefore, it is seen that the influence of mt on the wave-induced flows is relatively

large, as compared with that of m, as shown in Figs. 18 and 21.

2.3. Operator split advection algorithm for a

At each time step, interfaces over mixed cells are enforced to align with mesh coordinates, dependent on

the local distributions of discrete a. This directly borrows the general idea of Hirt–Nichols�s algorithm [17].

Its strength is of great simplicity for an interface reconstruction algorithm (named as a piecewise-constant
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reconstruction of the interface), indicating that no explicit interface reconstruction is required in compu-

tations. We emphasize mainly, therefore, how to achieve a with the advection algorithm as follows.

2.3.1. An advection algorithm for a
Given an approximation to interfaces over mixed cells horizontally or vertically or both under

the underlying velocity, the following advective equation is discretized within the whole computational

domain:

oa
ot

þ oðuaÞ
ox

þ oðvaÞ
oy

þ oðwaÞ
oz

¼ a
ou
ox

�
þ ov
oy

þ ow
oz

�
ð31Þ

instead of Eq. (1). This is because the presence of the additional term (see Eq. (31)) captures the effects of

individual derivatives, such as ou
ox ;

ov
oy and

ow
oz , in each spatial direction. Such consideration helps to achieve an

accurate simulation, especially with an operator split advection algorithm, as illustrated in Fig. 5, where the

calculated results look better, with the inclusion of r �~u. One reason may be explained as the fact that local

and global volume-filling constraints are adhered to much more closely [2,42,47].
Using an explicit FV approach, this yields

anþ1 � an

Dt
¼ � 1

V

X
faces

_Man
� �

þ an

V

X
faces

_M : ð32Þ

On the basis of a second-order explicit Adams–Bashforth formulation and the ADI algorithm, Eq. (32) is

split as three one-dimensional equations as follows:

að1Þ ¼ an � Dt
V

3

2
nn

�
� 1

2
nn�1

�
;

að2Þ ¼ að1Þ � Dt
V

3

2
gn

�
� 1

2
gn�1

�
;

anþ1 ¼ að2Þ � Dt
V

3

2
fn

�
� 1

2
fn�1

� ð33Þ

in which n; g and f denote as, respectively,
-0.1

-0.05

 0

 0.05

 0.1

 10  12  14  16  18  20  22  24

η 
(m

)

t (s)

Fig. 5. Comparison with and without r �~u for time history of the surface elevation at WG2 (x ¼ 2:02 m) using grids (251� 40) for a

sea dike. (—) with r �~u; (–––) without; (�) measurement.
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n ¼ _Man
� �

iþ1
2

� _Man
� �

i�1
2

� an _Miþ1
2

�
� _Mi�1

2

�
;

g ¼ _Mað1Þ
� �

jþ1
2

� _Mað1Þ
� �

j�1
2

� að1Þ _Mjþ1
2

�
� _Mj�1

2

�
;

f ¼ _Mað2Þ
� �

kþ1
2

� _Mað2Þ
� �

k�1
2

� að2Þ _Mkþ1
2

�
� _Mk�1

2

�
;

where að1Þ and að2Þ represent the corresponding values of a at the end of each sweeping fractional step,

respectively. This involves the sweep in the x-direction for updating að1Þ, and then followed the sweeps in y�
and z�directions, respectively, for updating að2Þ and anþ1. Indices, ðj� 1

2
Þ and ðk � 1

2
Þ, stand for the cor-

responding cell face in the y� and z�directions (see Fig. 2), respectively. In addition, their iterative order in

the x-, y- and z-directions is inverted to alleviate the introduction of the systematic error.

2.3.2. A weighted upwind and blending schemes

With the present Eulerian interface, the interfaces are allowed for arbitrary orientation with respect to

the computational grid. Hence, the volume fluxes _M at a certain face over mixed cells, for example, _Miþ1
2
at

the face ðiþ 1
2
Þ, can be expressed as

_Miþ1
2
¼ ðunSÞiþ1

2
;

where S is the cell face area at the ðiþ 1
2
Þ face. Owing to un ¼ unx þ vny þ wnz, the face velocities ðu; v;wÞ at

mixed cells need to be determined. As described in the Section 2.8.2, they may be achieved with the cor-

responding momentum equations or the tangential dynamic free-surface boundary conditions, dependent
on the relation of a with its neighbouring cell. An essential point, therefore, is to evaluate the volume

fraction aiþ1
2
at the corresponding face in case the sharpness and the shape of the interface are maintained.

We attempt to apply high-order upwind schemes (such as the MUSCL scheme and the ENO one) for the

evaluation of the value of aiþ1
2
at the face ðiþ 1

2
Þ. Unfortunately, both fail due to rapid generation of un-

physical volume fraction a over several cells in the interior of the fluid. But with a hybrid approach that

includes a weighted upwind scheme and a blending one, we found that it did well. Additionally, the cor-

responding code has to be developed in a compressive discretization manner, indicating that only the

absolute fluxes across the face ðiþ 1
2
Þ; ðjþ 1

2
Þ and ðk þ 1

2
Þ, respectively, are involved, while the volume

fractions at cell ðiÞ and its neighbour are renewed simultaneously. In this way, the latter will be activated for

achievement of aiþ1
2
as long as one of its two neighbors becomes an empty cell having a ¼ 0. Otherwise, the

former is active. Consequently, two separated approaches are constructed for the advection of a step profile

of a, dependent of its distributions. In our study, the weighted upwind scheme consists of an one-order

upwind differencing plus a high-order upwind one. It can guarantee a bounded solution, while a portion of

high-order upwind fluxes is incorporated to counteract numerical diffusion created by the low-order upwind

scheme [3]. On the other hand, the blending scheme helps to steepen the resolution of the interface when

using an appropriately weighting coefficient [53].
For the calculation of an intermediate að1Þ, for example, aiþ1

2
at the face ðiþ 1

2
Þ is evaluated by

aiþ1
2
¼

1� bð Þani þ 1þ bð Þaniþ1 if ani�1or a
n
iþ1 ¼ 0;

Cani þ 1� Cð Þð�aL
iþ1

2

Þ otherwise;

�
ð34Þ

when _Miþ1
2
P 0. The subscripts ði� 1; iþ 1Þ represent two neighbours of cell ðiÞ, respectively, as illustrated

in Fig. 3, in which the corresponding subscripts used are labelled. C stands for a flux-limiter that combines a

high-order convective flux-function aL
iþ1

2

, well behaved in the smooth region of flows, with a low-order one

ani , working well near the sharp gradients. According to general information on the resolved velocity fields,

it is achieved with the monotone methods, which can actually be viewed large-eddy simulation models with
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an intrinsic subgrid-scale algorithm. As a result, this leads to arise naturally from the nonlinear monoto-

nicity preserving the flux limiting feature [8]. In this study, van Leer limiter [56] is introduced and it is given

by

C ¼ max 0:5;min C1;C2; 1:0ð Þf g ð35Þ

indicating that the limiter involves as much as possible of the anti-diffusion term but without increase of the

variation of the solution so that physical principals of monotonicity and positivity are complied with [3].

The coefficients (C1;C2) are expressed as, respectively,

C1 ¼
umax �min uiþ1

2
; umax

� �
max �; ugmax � uiþ1

2

� � ; C2 ¼
max uiþ1

2
; umin

� �
� umin

max �; uiþ1
2
� ugmin

� � :

To avoid zero divides, a very small value (e ¼ 10�25) is used. It is clear that the velocities in any three

neighboring cells are monotonic once the van Leer limiter C is restricted within 0:56C6 1. Accordingly,

the local minimum and maximum velocities umin and umax are set by umin ¼ minðui�1
2
; uiþ3

2
Þ and umax ¼

maxðui�1
2
; uiþ3

2
Þ, respectively, when ugmin ¼ minðugiþ1; u

g
i Þ and ugmax ¼ maxðugiþ1; u

g
i Þ, where ugiþ1 and ugi are ob-

tained with the Taylor expansions:

ugiþ1 ¼ uiþ1
2
þ 1

4
uiþ3

2

�
� ui�1

2

�
; ugi ¼ uiþ1

2
� 1

4
uiþ3

2

�
� ui�1

2

�
according to a central-difference discretization for the derivative ðou

oxÞiþ1
2
. Naturally, the value at the face

ðiþ 1
2
Þ always takes its left state aL

iþ1
2

due to the presently compressive discretization manner, which may be

evaluated with the ENO scheme (see Eq. (26)). The weighting factor b is expressed by

b ¼ au � ~ai
1� ~ai

:

This is a simplified case relative to the original one with the different blending scheme used [53]. au and ~ai are
given by, respectively,

au ¼ min
~ai
c
; 1

 !
and ~ai ¼

ani � ani�1

aniþ1 � ani�1

;

where c is a constant (c ¼ 0:2 in this case) and the last term on the right of Eq. (32) is taken away. Finally,

að2Þ is estimated and then anþ1 at the next time step is renewed, which is analogous to the process described
above. Due to round-off error, the volume fraction a may vary slightly below 0 or above 1. To circumvent

any error in a, we truncate a as follows:

anþ1
i ¼ 0 if anþ1

i 6 0;
1 if anþ1

i P 1

�
for the numerical overshoot and undershoot.

This procedure can be made second-order simply by alternating the sweep direction at each time step. Its

advantage lies in that this approach is simple (easy to write a source code) and effective because it can keep

the front sharp and provide such desirable properties during tracking the interfaces. By comparison, the

original VOF method [17] gives incorrect information in the surf zone, where the fluid film on the slope

tends to be too thick, as illustrated in Fig. 6. But the current approach captures well this one, which is

confirmed by comparison with measurements available. In particular, two state motions, for example, at

t ¼ 17:0 and 33.0 (s) almost maintain to be periodic, indicating that our computations are stable.
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Fig. 6. Comparison of the present approach (right) with the original VOF method (left) for the wave-induced velocity field and the

surface elevation versus time at one point (x ¼ 3:81 m) with grids (251� 40) for a sea dike. (—) the present approach; (–––) the original

VOF approach; (�) measurement.
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2.4. A subgrid-scale model

In the context of conventional LES, a Smagorinsky-type isotropic eddy-viscosity model is widely ap-

plied, for example, in the field related to the free-surface [6,59], where the effects of the SGS stresses are

considered in a statistical sense only. Theoretically, its use tends to be diffusive in the course of the process
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that has dissipated a portion of its kinetic energy into the turbulent energy. With this model, an attractive

benefit is without the need of the boundary conditions at the free surface specified.

According to Smagorinsky�s model [48], the eddy viscosity mt is evaluated by

mt ¼ Cs lvDð Þ2j�Sj; ð36Þ

where Cs is Smagorinsky�s constant (Cs ¼ 0.01 in this case), D is a characteristic length scale of the small

eddies given by D ¼ minðDx;Dy;DzÞ, which is slightly different from the formulation adopted in the original

Smagorinsky�s model, D ¼ ðDxDyDzÞ1=3, and j�Sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

p
(i; j ¼ 1; 2; 3) with the strain rate tensor Sij

defined as Sij ¼ 1
2
ðoui
oxj

þ ouj
oxi
Þ: Since the subgrid eddy-viscosity will reduce to zero in the vicinity of the wall, the

so-called van Driest damping function lv (lv ¼ 1� e�
yþ
26 instead of lv ¼ 1) is employed, when approaching

the wall. The nondimensional distance yþ can be written as yþ ¼ d us
m ¼ d

ffiffiffiffiffi
s=q

p
m ¼ dfjr�~V j

m g1=2w , where d is the

distance normal to the wall, us is the friction velocity (us ¼
ffiffiffiffiffiffiffiffi
s=q

p
, s is the stress acting on a wall) and

~V ¼ u~iþ v~jþ w~k. The subscript w stands for the wall. As expected, the eddy viscosity mt is calculated once

the final velocity is available at each time step.
2.5. A local time step Dt

A local time step Dt involves the variation of the flow and the subgrid spacing. Normally, it may be

determined on the basis of the so-called Courant–Friedrichs–Lewy (CFL) constraint, dependent on the

various options: the convective and viscous terms together with the stiff source terms (e.g., gravity and
surface tension force).

To obey the CFL conditions, a common way to define a local time step Dt1 for the inviscid fluxes is

Dt1 ¼
1

2

V

j _Miþ1
2
j þ j _Mjþ1

2
j þ j _Mkþ1

2
j þ cj _Mwj

CFL

by setting CFL ¼ 0:3. An additional feature in this expression is to involve the wave fluxes expressed by

_Mw ¼ vwS; S ¼ S2
iþ1

2

�
þ S2

jþ1
2
þ S2

kþ1
2

�1=2
;

where vw is the celerity of the incident wave determined by a linear wave theory (see Eq. (47)), and the

constant c (c ¼ 10 in this case) is introduced in order to enhance the stability in computations. Some

reasons may be attributed to the fact that the presence of the gravitational term requires a more restrictive

time step in the fluids initially at rest, especially when Eq. (31) for a is resolved.
Owing to the presence of the viscous fluxes, the time step Dt2 is evaluated as

Dt2 ¼
d2

4m
; d ¼ V

max Siþ1
2
; Sjþ1

2
; Skþ1

2

� � :
Under the surface tension effects, on the other hand, the time step Dt3 is given as

Dt3 ¼
qV
4pr

� �1=2

:

Thus, the finial time step Dt will depend on their minimum values:

Dt ¼ min Dt1;Dt2;Dt3ð Þ:
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2.6. A cut-cell Cartesian technology

With TDMA and ICCG, the resulting matrix equations for the Delta form and the pressure should be
resolved on each cell in the whole computational domain, regardless of whether a cell represents fluid,

mixed, void or an obstacle that involves with and without a cut boundary (see Fig. 7 for five types of cells).

It is no problem to find the solution over a fluid, cut or mixed cell. However, singularities occur in ‘‘bad’’

cells such as void and whole obstacle cells, where q is zero for the former and undefined for the latter. One

approach to avoid such a problem is to enforce a considerable value to the mainly diagonal coefficients in

the linear equation (see Eqs. (17) and (22)), when the sweep points to the bad cells. With the well-condi-

tioned matrices (such as diagonal dominant), it can be shown that both algorithms will always converge.

For Eq. (17), for example, by multiplying the diagonal coefficients ðAi�1;Að1Þ
p ;Aiþ1Þ with a very large value

relative to 1 and zero over the bad cells, respectively, one hasbAi�1 ¼ Ai�1 � zero; bAð1Þ
p ¼ coef ; bAiþ1 ¼ Aiþ1 � zero; bR ¼ R� zero;

where coef ¼ 1:0� 1025 and zero ¼ 0. Additionally, void and whole obstacle cells are thought as internal

Dirichlet and Neumann boundaries, respectively. Hence, the coefficients have to be rearranged in the

operator matrix by manipulating the corresponding elements according to Dirichlet and Neumann

boundaries, once the neighbour adjacent a computational cell becomes the bad cells.

On the other hand, the effect of a structure over a cut cell is incorporated through the introduction of

variables that represent an effective geometry space covered a fluid. Also, arbitrarily small cut cells are
treated carefully, especially when decreasing mesh size. Owing to the current implicit approach, the pres-

ence of small cells near a wall seems not to restrict the time step. Only the pressure over such cells is handled

with a mirror symmetry, because it is located at the center of a cell. Additionally, the pressure and a at the

intersection of a free surface with a wall are also evaluated in the same way.

2.7. Flowchart of the current approach

With a staggered-grid arrangement, a cut-cell implicit finite volume VOF approach is applied for res-
olution of the NS equations with interfaces, provided that the initial conditions and all the boundary
(1)

(2)

(3)

(4)

(5)

a free surface

a dike

(1): a fluid cell
(2): a mixed cell
(3): a cut cell
(4): a void cell
(5): a whole obstacle cell

Fig. 7. Denotaton of five types of cells over a Cartesian cut-cell mesh.
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conditions are given explicitly. The computational flowchart of the present solver is illustrated in Fig. 8,

which displays that the solution is advanced in time. The following is to describe its major procedure.

With the ENO scheme (Eq. (26)), the corresponding face values are estimated, which may be used for
achievement of the inviscid fluxes by means of the flux-difference splitting approach (Eq. (24)), while the

explicit viscous fluxes are evaluated with a central-difference scheme according to Eq. (28). Given the ex-

plicit fluxes, the Delta form of the velocity is updated through ADI factorization with a local time step (Eq.

(17)). This defines a temporal velocity under the surface tension effects (Eq. (18)). Consequently, the

pressure can be realized with a projected algorithm according to the velocity distributions. Finally, the

volume fraction a is achieved with the help of the final velocity (Eq. (23)) at the end of the outer iteration.

When approaching the normal face velocity, a blend of the second- and fourth-order artificial damping

terms is activated, where the MUSCL scheme (Eq. (25)) is employed for discretization of the third-order
derivative terms.

To deal with an arbitrary geometry, a cut-cell treatment technology over a fixed mesh is implemented. A

few parameters in the INPUT file (such as the period, the wave evaluation and the grid numbers together

with a running time) are specified by a user. Each outer iteration only repeats three times but during the

inner iteration, iterative number for the pressure is completely dependent on the residual norm less than a

given error tolerance e (e ¼ 10�8 in this case) based on the ICCG method. Note that the solution of the

discretizated pressure Poisson equation is the most time-consuming part. It is shown that the number will
Fig. 8. Flowchart of the present algorithmic steps.
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significantly increase with respect to mesh refinement. The description in more detail can be found in our

current work [28].

2.8. Initial and boundary conditions

2.8.1. Initial conditions

All simulations started from complete rest so that the unsteady motion characteristics of waves evolved

naturally. At t ¼ 0, u ¼ v ¼ w ¼ 0, and the volume fractions a (an indicator function að~r; tÞ;~r ¼ x; y; z) are
initially assigned by

að~r; tÞ ¼
1; in the fluid;
a; over mixed cells;
0; in a void

8<:
with respect to SWL, where a over mixed cell is calculated by Eq. (46). The hydrostatic pressure is used as

an initial state for the pressure. This is a most general situation in a numerical (or physical) wave tank, as

illustrated in Fig. 9 for free-surface configurations starting from the initial stage (a flat at t ¼ 0) to the first

period T ¼ 2 (s). At the beginning, an initially flat free surface is perturbed by imposing a wavemaker

placed at the inlet. As time progresses, the waves propagate towards a dike at t ¼ 0:5 (s). After that, the

wave shape tends to be asymmetric at t ¼ 1:0 (s) until the amplitude varies slightly at t ¼ 2 (s), as compared

with that at t ¼ 1:5 (s).

2.8.2. Boundary conditions

For the pressure, it is unnecessary to specify the boundary conditions with the ICCG algorithm, except

at the free surface. The wall effect is incorporated by enforcing the slip boundary conditions for a cut cell or

no-slip conditions for a mesh boundary. At the free surface, the viscous effect is ignored but surface tension

is modelled with a localized volume force by the CSF model. It leads to simplify the normal dynamic free-

surface boundary condition:

p ¼ 0 ð37Þ

at a free surface. To comply with this condition over mixed cells, the matrix of the pressure Poisson

equation in the x–z plane is dealt with by setting the corresponding coefficient to zero. According to Eq.

(22), the matrix M for each cell is expressed as
-0.2

-0.1

0

 0.1

 0.2

0 1 2 3 4 5 6

η 
(m

)

x (m)

t =0.0

0.5

1.0
1.5 2.0

Dike

Fig. 9. Development of waves from its initial stage t ¼ 0 to the first period T ¼ 2 (s) (magnified view) with grids (251� 40).
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M ¼
0 Du

i;j;kþ1 0

Bl
i�1;j;k Ai;j;k Bu

iþ1;j;k

0 Dl
i;j;k�1 0

0@ 1A; ð38Þ

where A to D are diagonals with functions of the metric terms and the density, dependent on the actual grid

distribution (that is, the cell thickness and the corresponding face area). When a cell at ði; j; k þ 1Þ becomes

an empty cell (see Fig. 10), for example, the main diagonal A and the diagonal Du
i;j;kþ1 in the matrix M with

its nearest neighbors (that is, all neighbor shares one face in Eq. (38)) are arranged with

A�
i;j;k ¼ Ai;j;k � Du

i;j;kþ1 and Du
i;j;kþ1 ¼ 0 ð39Þ

during the inner iteration. The treatment is quite simple without the need for the extrapolated pressure like

the so-called irregular star [5] or the weighted length interpolation [17] over mixed cells.

Instead of the use of the momentum equation, the corresponding three components of the velocities over

mixed cells (or void cells adjacent to mixed cells) may be extrapolated with the gradients of the zero-normal

velocity from the interior of the flow:

ou
on

¼ 0; u ¼ ðu; v;wÞ

once its neighbour is an empty cell. n is the component normal to the free surface. This is the so-called

inviscid tangential dynamic free-surface boundary conditions under negligence of the surface viscosity [26].

Since wi;j;k etc. are calculated with the momentum equation, only the velocity ui;j;k over mixed cells exposed

to the air (see Fig. 10), for example, is enforced by the continuity equation but ui;j;kþ1 is evaluated with the

mirror approach: ui;j;kþ1 ¼ ui;j;k.

2.8.3. Surface tension

With the CSF model, surface tension is formulated as a localized volume force ~F sv that accounts for the

curvature-dependent interfacial effects. Without the need of detailed interface information, it was incor-

porated to the source term in the momentum equations (see Eq. (6)), while acting on the fluid elements lying

within the finite thickness transition region. In this sense, therefore, a body force defined at the centre of a

cell (see Fig. 11) is given by

~F b ¼ ~F sv ¼ rj~m; ð40Þ
*
ui,j,k

*
wi,j,k

*i,j,k+1

*pi,j,k*
ui-1,j,k

*
wi,j,k-1

*
ui,j,k+1

a free surface

water

air

Fig. 10. Implementation of the tangential dynamic free-surface boundary conditions. ði; j; kÞ and ði; j; k þ 1Þ represent cells,

respectively.



*Fsv, κi,j,k

i,j,k+1

* mi+1/2,j,k+1/2

i+1,j,k

i+1,j,k+1

i-1/2
i-1/2,j,k-1/2

i-1/2,j,k+1/2

i+1/2
i+1/2,j,k-1/2

i i+1

∆lk

∆lk+1

(i-1/2) face

(i+1) face

Fig. 11. Denotation of a body force ~F sv, curvature j and normal ~m over a cell. ð~F sv;jÞ are defined at the center of a cell ði; j; kÞ,
respectively; and ~m defined at the vertex ðiþ 1=2; j; k þ 1=2Þ of a cell ði; j; kÞ. ði� 1=2; iþ 1=2Þ and ði; iþ 1Þ denote the corresponding
cell faces, respectively.
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where the surface tension coefficient r is set as a constant. j and ~m ¼ ðmx;my ;mzÞ are the cell-centred
curvature of a free surface and a normal vector at the vertex ðiþ 1

2
; j; k þ 1

2
Þ, respectively, as illustrated in

Fig. 11,

j ¼ � r � ~m
j~mj

 !
¼ 1

j~mj
~m
j~mj � r

 !
j~mj

(
� r � ~m
� �)

and

~m ¼ ra:

Since j is a function with the second-order spatial derivatives of a, it is dependent strongly on small error in

a. This makes computations with surface tension more difficult, especially under breaking waves. To

mitigate the high wavenumber contributions to j, a has to be filtered when calculating local curvatures [4].

In this way, a blend of a and q is enforced to mollify by

faqð Þi;j;k ¼
36

64
aqð Þi;j;k þ

6

64
aqð Þiþ1;j;k

n
þ aqð Þi;j;kþ1 þ aqð Þi�1;j;k þ aqð Þi;j;k�1

o
þ 1

64
aqð Þiþ1;j;kþ1

n
þ aqð Þi�1;j;kþ1 þ aqð Þi�1;j;k�1 þ aqð Þiþ1;j;k�1

o
;

where the subscripts represent a cell ði; j; kÞ and its 8 surrounding neighbours. Additionally, the value of the

derivative omx
ox at the centre of this cell is evaluated by a FV method

omx

ox

� �
ijk

¼ 1

V

X
faces

mxnxS

¼ 1

V
mxnxSð Þiþ1

2

n
� mxnxSð Þi�1

2

o
þ 1

V
mxnxSð Þjþ1

2

n
� mxnxSð Þj�1

2

o
þ 1

V
mxnxSð Þkþ1

2

n
� mxnxSð Þk�1

2

o
with the face value ðmxÞiþ1

2
at the face ðiþ 1

2
Þ

mxð Þiþ1
2
¼ 1

2
mxð Þiþ1

2
;j;kþ1

2

n
þ mxð Þiþ1

2
;j;k�1

2

o
;
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where mx is the x component of the normal vector ~m. It is computed by

mxð Þiþ1
2
;j;kþ1

2
¼ oa

ox

� �
iþ1

2
;j;kþ1

2

¼ 1

V

X
faces

anxS

¼ 1

V
anxSð Þiþ1

	
� anxSð Þi



þ 1

V
anxSð Þjþ1

n
� anxSð Þj

o
þ 1

V
anxSð Þkþ1

	
� anxSð Þk



:

As shown in Fig. 11, the subscripts ði� 1
2
; iþ 1

2
Þ and ði� 1; iþ 1Þ represent the corresponding cell faces,

respectively. Furthermore, the face value ðaÞiþ1 at the face ðiþ 1Þ is obtained with a linearly weighted

approach. Namely

að Þiþ1 ¼
aiþ1;j;kþ1Dlk þ aiþ1;j;kDlkþ1

Dlk þ Dlkþ1

:

Thus, the body force at the centre of a cell can be achieved once the cell-centred normal is available with the

average of the vertex normal (see Fig. 11)

~mijk ¼
1

4
~miþ1

2
;j;kþ1

2

�
þ ~miþ1

2
;j;k�1

2
þ ~mi�1

2
;j;kþ1

2
þ ~mi�1

2
;j;k�1

2

�
:

2.8.4. An absorbing-generating boundary condition

Many of absorbing boundaries [23,39,52] placed at the inlet are based on the assumption of the linear

superposition of incident and reflected waves at the wave generating-absorbing boundary. A particular

generator is an internal wavemaker that acts as a source function inside the computational domain [31].

Following the usual approach, we attempt to apply the so-called weakly reflecting boundary condition [36],

which generates the incident waves and absorbs the weakly reflected waves simultaneously. Namely

our

ot
� c

our

ox
¼ 0; ð41Þ

where u ¼ ðu; v;w; gÞ. The wave celerity c is estimated by c ¼
ffiffiffiffiffiffi
gd

p
with the finite water depth d. The

subscripts (t; r; i) used represent the total, reflected and incident waves, respectively.

Based on the assumption of the linear waves, the total waves are related to the incident waves via

ur ¼ ut � ui. This leads to Eq. (41) as

out

ot
� c

out

ox
¼ oui

ot
� c

oui

ox
; ð42Þ

which forms the so-called absorbing-generating boundary condition for a wave generator fixed at the inlet.

According to the linear wave theory, the evaluation of the source terms in the right hand of Eq. (42) is

straightforward for regular waves, once the three components ðu; v;wÞ of the velocity at one ghost cell are

given by
ui ¼
H
2
gT

cosh k gi þ dð Þf g
k cosh kdð Þ cos k x

��
þ k
4

�
� xt

�
;

vi ¼ 0;

wi ¼
H
2
gT

sinh k gi þ dð Þf g
k cosh kdð Þ sin k x

��
þ k
4

�
� xt

�
:

ð43Þ
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Since the particle moves periodically in the vertical direction around the origin, the phase departure k
4
has to

be incorporated to the corresponding phase function, as illustrated in Eqs. (43) and (44), where the surface

elevation gi with respect to SWL is obtained by

gi ¼
H
2
cos k x

��
þ k
4

�
� xt

�
: ð44Þ

For the time integration of Eq. (42), a second-order explicit Adams–Bashforth formulation is implemented
as follows (for example, u ¼ gt):

gnþ1
t ¼ gnt þ Dt

3

2
Rn

�
� 1

2
Rn�1

�
¼ gnt þ DtRn þ Dt

2
Rn
�

� Rn�1
�

ð45Þ

with the residual R defined by

R ¼ c
ogt
ox

�
þ ogi

ot
� c

ogi
ox

�
:

For the first term, c ogt
ox , for example, it is calculated by

c
ogt
ox

¼ c
V

X
faces

gtnxS ¼ c
V

gtnxSð Þiþ1
2

n
� gtnxSð Þi�1

2

o
¼ nxcS

V
gt

iþ1
2

�
� gt

i�1
2

�
;

where the values of gt
iþ1

2

and gt
i�1

2

at a certain face are evaluated with an one-order upwind scheme (see Eq.

(27)), respectively. Given the wave characteristics (see Table 1), the total waves gt at the inlet are generated
by the solution of Eq. (45), as illustrated in Fig. 12, where the effects of the reflected waves gr on the incident

ones gi (see Eq. (44)) can be observed. Consequently, this yields a over one mixed cell given by

a ¼
eV
V

¼ gt þ d � zk�1

Dlk
; ð46Þ

where eV is the wet volume, and Dlk and zk�1 are the grid size and the coordinate in the vertical direction,

respectively (see Fig. 11). Similar expression holds for u ¼ ðu; v;wÞ at the inlet together with the application

at the outlet by setting ui ¼ 0 in Eq. (42). The wave number k, the angular pulsation x and the phase

velocity vw are defined as, respectively,

k ¼ 2p
k
; x ¼ 2p

T
and vw ¼ k

T
: ð47Þ

Using the linear wave theory, the wavelength k is obtained by the following dispersion relationship:

k ¼ gT 2

2p
tanh kdð Þ:

To reduce the generation of non-physical high-frequency waves, an adjustment function is implemented for

both the wave elevation and the velocity at the inlet. It smoothly increases to unity at t¼ 1.5 (s) from its

initial value of zero (see Fig. 12).
Table 1

The wave height H , the period T , the wavelength k and the water depth d

H (m) T (s) k (m) d (m)

0.16 2.0 4.62 0.7
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Fig. 12. Development of linear waves created by a wave generator, located at the inlet WG0 ðx ¼ 0Þ. (—) the total waves; (–––) the

incident waves; (– � –) the reflected waves.
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It is clear that Eq. (45) can be regarded as an one-order forward Euler scheme plus the modification of

the current and previous residuals. It is the weakly reflecting boundary condition. One problem is that we
adopt a single wave train (i.e., with one wave celerity) for an approximation of motions induced by the

wave groups [12]. Generally, an effective approach at the open boundary is to combine the open boundary

condition (e.g., Orlanski�s condition) with a numerical damping approach (e.g., the sponge layer method

[19]). We tested this case but implement a blend of the artificial damping terms of Eq. (30) and the Or-

lanski�s open boundary condition (see Eq. (42)). Additionally, we also apply the mirror condition at the

outlet instead of Eq. (45). Both computations are stable, indicating that the damping terms used work well

due to its adaptive performance dependent on the pressure gradient.
3. Test cases

Our numerical model will be validated with two test cases related to overtopping of water waves, which

are well known design problems in coastal and harbor engineering. The first one is over a smooth im-

permeable sea dike, and the second one over a vertical fixed barrier in the front of a pier. Both cases involve

the surface waves breaking during overtopping, while static flows are disturbed by a wave generator, placed

at the inlet, for the regular and irregular waves, respectively. Computations are performed in NWT, where a
typical computational domain overlapping a dike includes a total length of 6.3 (m) and a height of 1 (m), as

depicted in Fig. 13. The surface elevation at five wave gauges (herein abbreviated as WG0 to WG5) are

measured for observation of the variation versus time, in which one of particular interest is on the dike

crest, WG5 at x ¼ 5:9 m (see Fig. 13). Three grid levels are separately implemented in order to study the

grid refinement effects. A relatively fine grid with varying cell sizes, for example, is 251� 40 in the x- and z-
directions, respectively. Generally, each grid approximates one day or more than one week of the CPU

time, dependent on a user-specified running time in the INPUT file. The calculated results are represented

in terms of the wave-induced velocity fields in the x–z plane and time history of the surface elevation g (m)
at a selected wave gauge. In this case, we define x ¼ 0 and 6:3 (m) as the inlet and the outlet, respectively.

3.1. A sea dike

The geometry of the sea dike consists of the seaward slope (1:6), the landward one (1:3) and the dike

crest h (h ¼ 0:8 m) with the width s (s ¼ 0:3 m), as illustrated in Fig. 13, where the corresponding di-

mensions are l1 ¼ 1:0 (m) and l3 ¼ 0:5 (m). With trivial effort, a nonuniform Cartesian cut-cell mesh that

covers the dike is generated and fixed for entire computations (see Fig. 13 with one single block on a typical
mesh: 205� 40). An extra amount is to reconstruct the effectively computational domain by calculating the
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(x=0)

WG2
(x=2.02)
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Fig. 13. Computational domain on a nonuniform Cartesian cut-cell mesh with grids (205� 40) for sea dike problems. WG0 to WG5

represent five wave gauges (WG).
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intersections of the geometric segments overlapping a Cartesian background grid, based on Newton�s it-
eration algorithm, while curves (or surfaces in 3D) to describe the dike profile are approximated with a

biquadratic function. This can be realized by predefining cells that are fully or partially dry, in which the

former (called a whole obstacle or internal obstacle cell) is characterized as zero velocity and the latter is
referred to as a cut cell (see Fig. 7). At the inlet, the characteristics of the regular wave (the wave height H ,

the wave period T and the finite water depth d in this case) are specified by the user (see Table 1).

3.2. Calculated results and discussions

3.2.1. Convergence history

Iterative convergence in this case is assessed by examining the L2 norm of the residuals (Res) for the

momentum equations ðU ;W Þ in the x- and z-directions, and the pressure ðP Þ on the mesh. It is defined as

Resu ¼
XN
m¼1

ðun
i;j;k

(
� un�1

i;j;k Þ
2
=N 2

)1=2

;

where the summation is carried out from m ¼ 1 to N (the total number of cells) and u represents ðU ;W ; P Þ.
Three curves for the residuals ðU ;W ; P Þ are drawn on the two meshes, the coarse mesh (145� 28) and the

fine one (251� 40), as illustrated in Fig. 14. This displays the convergence history of the point method (for

the velocity) and the ICCG method (for the pressure) against time, respectively. As expected, the ICCG

algorithm performs quite well due to its preconditioning technique. This achieves the fast convergence rates

(see Fig. 14). Additionally, our computations show that it needs less computing time for a given level of

convergence, as compared with the SOR scheme (where x ¼ 1:2 for the overrelaxation parameter), when a

Poisson equation for the pressure is resolved with these two approaches. On Cartesian cut-cell grids,
therefore, the ICCG method can be considered as a more efficient iterative solver for updating the pressure.

In our case, the pressure-velocity coupling is not enforced at each iteration. This is classified as a decoupled

approach as opposed to a fully coupled algorithm. Generally, it is relatively straightforward in its imple-

mentation within a flexible framework [18,26], whereas the convergence behavior for the velocity in our test

case is less satisfactory.

3.2.2. Grid refinement effects

The effects of increasing grid resolution on the wave-induced motions are studied with three grid levels,
as illustrated in Fig. 15 for the velocity fields at a given time, and Figs. 16, 17 for the time history of the
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surface elevation at certain locations. By observation, it is found that differences attributed to the grid

effects are relatively small for the surface elevation and mainly limited to the capture of fine structures for

the velocity fields. A relatively fine mesh ð251� 40Þ, therefore, may describe well the development of the

regular waves. The discussion regarding this point is given as follows.

Generally, more detailed physical phenomena of motions can be represented with increased mesh re-

finement, as shown in Fig. 15, which provides an illustrative observation for the wave-induced velocity

fields at t ¼ 4:4 s. A common feature is that waves overtop at any mesh, naturally capturing the breaking

waves in the surf zone. As expected, the shape of the front in this area tends to be more realistic as the mesh
is refined but the localized velocity distributions vary rapidly with the present different grid size (see

Fig. 15). Some reasons are interpreted as the fact that something with the coarsest mesh (145� 28) is

missing. For instance, it does not detect well motions due to insufficient grid resolution but the current two

fine meshes (205� 40, 291� 56) seem to help more or less. A local adaptive mesh [1,50,57] adjacent to

interfaces is also attractive, especially on the crest of the dike, which will be studied in the next stage.

Interestingly, a regular shape of the wave profiles may be resolved adequately on all meshes, as shown in

Figs. 16 and 17, especially for the latter that gives reliable evidence. Both demonstrate the influences of

grids on the time trace of the surface elevation but the former is fixed at WG3 (x ¼ 3:81 m) closer to region
of the breaking waves. As can be observed, the wave trains on three meshes rapidly develop in the par-

ticular direction that the regular waves propagate at starting t ¼ 0. Some discrepancies regarding the phase

leg, however, are obvious under grid refinement (see Fig. 16). And it could be thought that the discrepancy

of the results almost arises from the grid effects, since the reflection of waves from a structure is not sig-

nificant or its appearance is little at shortly run time.

Next let�s further compare with the experimental data available at WG2 (x ¼ 2:02 m), as illustrated in

Fig. 17 with 10 waves on three grid levels, where a grid on the finest mesh is 251� 40 that we recommend.
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First, the shape of waves between two successive cycles almost maintains the regularity, indicating that flows

itself tend to be quasi-stationary. Second, all mesh can detect well the overall shape of the wave profiles that

exhibits a feature of typical non-linearity: higher and narrower peak; and lower and flatter troughs, as shown

in Fig. 17 (also see Figs. 16 and 18). Finally, the results agree well with the experimental data under mesh
refinements, as shown in Fig. 17, which looks much more promising than Fig. 16: top, whereas there is a

slight departure from the phase plus the overestimation for trough. Probably, the large difference between

computations and measurements (see Fig. 16) may be attributed to the fact that the exact normal dynamics

free-surface boundary condition (see Eq. (48)) should be considered, especially when flows become high

turbulent. As a result, the current finest mesh may be suited to capture most of the wave-induced motions. A

significant benefit is the CPU time required does not cost much more for Linux based PC.



-0.2

-0.1

0

 0.1

 0.2

 15  20  25  30  35

η 
(m

)

t (s)

-0.2

-0.1

0

 0.1

 0.2

0 2 4 6 8  10  12  14

η 
(m

)

t (s)

Fig. 16. Grid refinement effects for time history of the surface elevation at one wave gauge, WG3 (x ¼ 3:81 m) for a sea dike. Top: a

global observation (10 waves); bottom: a local view (7 initial waves). (—) 251� 40; (–––) 205� 40; (– � –) 145� 28; (�) measurement.

-0.1

-0.05

 0

 0.05

 0.1

 15  20  25  30  35

η 
(m

)

t (s)

Fig. 17. Comparison of the calculated results with the experimental data for time history of the surface elevation at one wave gauge,

WG2 (x ¼ 2:02 m). (—) 251� 40; (–––) 205� 40; (– � –) 145� 28; (�) measurement.

T. Li et al. / Journal of Computational Physics 198 (2004) 686–726 715
Additionally, an intrinsic feature of our solver is that computations are stable during a long duration of
simulation, indicating that the active damping terms (see Eq. (30)) do not cause excessive energy dissipa-

tion. In contrast, it may suppress the reflected waves like the sponge layer method [19].

3.2.3. Influences of turbulence models, surface tension and Reynolds number on the wave-induced motions

To further elucidate the mechanism and the dissipative features of physical processes involved, the

following is to address the effects of the SGS models, surface tension and Reynolds number on the wave-

induced motions, respectively, including the role of a turbulence model under waves breaking.
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3.2.3.1. The SGS models. Within the eddy-viscosity family, we select two Smagorinsky models for study of

the influence of the SGS models on flows caused by the waves. One is the static Smagorinsky model, re-
ferred as to SSM. One is a dynamic Smagorinsky model [13] that adjusts itself the model constant in SSM

(see Eq. (36)), called DSM. The results obtained with both models are given, as illustrated in Fig. 18 for the

surface elevation against time at two wave gauges of interest: approximately at the surf zone (WG4, x ¼ 5:2
m from the wavemaker, where flows display high turbulence), and on the dike crest (WG5, x ¼ 5:9 m, where

turbulent flows near walls are characterized by much less universal properties). Typically, these two gauges
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directly record a signal from waves breaking and wave overtopping events, respectively. By comparison, the

latter exhibits much more unevenly distributed in space and time (where, the surface elevation is measured

with respect to the dike crest). In particular, it provides useful information for design of a dike like the layer
thickness, the discharge and the cumulative overtopped volume of water.

Broadly, globally similar but distinctly different local features are apparent for these two models: SSM

and DSM. Both reproduce the desirable shape that increases rapidly first and then diminishes slowly at

each period, as shown in Fig. 18, which is similar as observed in the physical model. It is clear that DSM

acts as less dissipative behavior near the wall than SSM with the van Driest damping. By comparison, a

slight improvement is achieved with a dynamic LES, as illustrated in Fig. 19. Details of computations with

DDM plus comparison with our monotonically integrated LES (MILES) approach, can be seen in our

present work [29,30].
Theoretically, the free-surface boundary layer has to be taken into account, especially when waves break.

Instead of p ¼ 0 at the free surface (see Eq. (37)), the viscous normal dynamic free-surface boundary

condition is given by [26]

p ¼ q mð þ mtÞ 2
ow
oz

�
� oh

ox
ou
oz

�
þ ow

ox

�
� oh

oy
ov
oz

�
þ ow

oy

��
ð48Þ

indicating that the effects of the SGS models on the free-surface can be captured via eddy viscosity mt
specified by Eq. (36), as illustrated in Fig. 18, where the shape of contours at t ¼ 7:5 (s) displays the ir-

regularity. As expected, the effects of the SGS models on the wave-induced flows are mainly confined to

strongly turbulent regions, dependent on the distributions of the eddy viscosity. A high value of mt more

than 0.005, for example, is subjected to rapid deformation of the free-surface at about x ¼ 4:56 (m).

Consequently, this provides one possibility for study of the behavior of the LES model at the interface as
done in our study [26,27], in which two turbulence models: Baldwin–Lomax�s model and a k � e one, are
applied for investigation of their effects on three-dimensional turbulent free-surface flows around modern

ships with the help of a moving mesh. h in Eq. (48) represents the wave height, which can be achieved with

the value of a, when using a VOF approach. In this case, the molecular viscosity m ¼ 1:4� 10�4 m2/s.

3.2.3.2. Surface tension. Surface tension can capture the curvature-dependent interfacial effects, as illus-

trated in Fig. 20, which describes the evolution of the front shape at a certain time t ¼ 7:5 (s) with and

without surface tension, labelled (a) and (b), respectively. A magnified view is also included for microscopic
observation. As usual, the surface tension coefficient is assumed as a constant by setting r ¼ 72:8 dynes/cm
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in this case. In addition, we consider a case with high surface tension, that is, r ¼ 145:6 dynes/cm, two times

coefficient larger than the original one, which is labelled (c).

Under surface tension, the effects on the solution are certain: this exhibits the strong hydrodynamic
phenomena of breakup in the region of high turbulence. A feature is that the shape of the front in this area
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is changed drastically, and the strong vortex exists (see Fig. 20). In the presence of higher surface tension

(r ¼ 145:6 dynes/cm), the shape of the front tends to break significantly. Hence, the substantial difference in

small scale structures is obvious when surface tension is present or not, whereas its effect is minor in the
most ranges, dependent on the deformation of the free-surface.

3.2.3.3. Reynolds number. On the assumption that Reynolds number (Rn) that describes a flow characteristic

is defined as Rn ¼ g
1
2d

3
2

m (where, d is the constant finite water depth), thus the effects of Rn on flows can be

realized through the increase of Rn ¼ 1:4� 104 to 1:8� 106, as shown in Fig. 21. No much difference, for

example, is observed for the time history of the surface elevation at WG5, indicating that the effect due to

the change of Rn is weak for the capture of the surface elevation, although complex shear flows caused by

the waves are dominated on the dike crest. A similar conclusion can be drawn as in the case of WG4. It is

clear that the current grid resolution (251� 40) cannot fully describe the boundary layer. Meshes close to

the wall need sufficient refinement, which allows a more accurate prediction for the thin boundary layer, as

Rn increases. In this work, we focus attention on the capture of highly non-linear waves, propagating from
the deep water to the shallow one, although a wall friction that acts as the energy dissipation will alter the

formation of the layer thickness in this area. In particular, LES simulation of wall-bounded flows is pro-

hibitively expensive. Dynamics of the flow in the wall proximity, therefore, are likely to be affected by

inadequately meshing in the near-wall region, once the slip conditions are used on the wall. One approach

to avoid this problem is that LES may be combined with a wall-layer model [45,58], where it may be

conducted on a relatively coarse grid.

3.2.3.4. The role of a turbulence model in the case of breaking waves. Flows become highly turbulent when
waves continuously break in the surf zone. In such a case, the energy of waves accumulated needs to be

dissipated, for example, by turbulence. Since eddies gradually spread, otherwise, spurious currents are

generated in the flowfield, as illustrated in Fig. 22 at two larger time levels: t ¼ 12:9 and 30.3 s for one test

case, which is defined as no viscosity due to meff ¼ 0 to be enforced. But with the introduction of a SGS
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model, it is found that the unphysical currents at the corresponding time transient, which develop a kind of

turbulence, are disappeared. In this way, flows tend to more realistic in the corresponding area. In par-

ticular, the calculated results with a LES look much better than those with no viscosity as compared with
measurements available for sea dike problems. Consequently, it is clear that adequate turbulence model is

required for problems related to simulation of the breakwater, indicating that computations based on
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inviscid flows are not sufficient for accurate description. This is due to the fact that the potential flow

approach without any viscous terms cannot capture energy dissipation by viscous effects under breaking

waves. But it exists in a physical model, and it may be interpreted as turbulence induced by breaking waves.
As expected, a turbulence model-based solver can give a better accuracy than the potential flow solution.

Note that the current case is done for a 2D large-eddy simulation (LES) model. A 3D test case could be

better since simulations may depend on the small-scale 3D flows [10]. Additionally, at this stage we do not

account for the effects of trapped air pockets during and after wave breaking, since the conventional as-

sumption regarding continuous and material surface on a free surface is no longer valid [32]. In case the air

is entrained in the water, whether in the form of small bubbles or a larger air pocket, compressibility effects

become important. The surface capturing approaches [21], therefore, can describe this one naturally.

Moreover, the overtopping zone may be modelled realistically once the wall adhesion effects are involved.
Further study, therefore, is necessary to clarify these issues.

3.2.4. An observation of the wave-induced velocity fields with several stages

With the help of an animation available, one can observe the wave-induced motions in the region of

interest with several stages: the wave attack, the runup, the rundown, the waves breaking to overtopping of

waves. In this paper, just some selected results are provided, as illustrated in Figs. 23–25 for a visualisation

of the velocity fields at a series of given time.

3.2.4.1. Over a sea dike. As more waves pass through the dike crest, the flow becomes fully turbulent and
sustained after an initial transient period so that the features of the flow pattern tend to be very complex,

often subjected to the steepness of the free surface most likely associated with a cycle of splashing and the
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Fig. 23. Velocity fields caused by the regular waves over a sea dike from t ¼ 32:2 to 32.4 (s) on grids (251� 40).
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Fig. 24. Velocity fields caused by the regular waves over a sea dike from t ¼ 33:2 to 33.4 (s) on grids (251� 40).
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vortex formation created by the velocity. Waves continuously break, while the energy of waves is dissipated

by turbulence and convected by vortices.

Now we describe the corresponding motions in Figs. 23 and 24. At t ¼ 32:2 (s), the wave height increases
as it shoals on the front face. A violent overtopping jet will occur again at t ¼ 32:4 s. When it propagates

towards the dike crest, the front of waves declines gradually downstream. Consequently, its further

steepening causes the initiation of wave breaking process and then the rapid decrease of the surface ele-

vation. By 33.2 (s), some particles still move upwards but the major portion of flows on the slope displays

the proceeding of the downwash under the gravitational acceleration, while the next wave is approaching
the dike. This leads to a strong backflow and the waves break on the upper reach of the dike at t ¼ 33:4 (s),

indicating that the free surface is significantly deformed at the intersection (about x ¼ 4:2 m) of the in-

coming waves with the backflow. In the wave front, the particle velocity exceeds the speed limit underneath

the region of flows, forming a layer often referred to as the roll and creating a large hydraulic jump nearby,

which can be considered as a shock wave. Our solver, therefore, captures the major features of flows:

overtopping of surface waves breaking. In particular, the velocity and the pressure interact strongly each

other when the interface undergoes severe topological changes.

3.2.4.2. Over a vertical fixed barrier in front of pier. Finally, we study another case: violent wave overtopping

over a vertical fixed barrier, which shelters coastal structures from the direct impact of steep waves. This is

of particular interest for validation of our VOF-based solver, where surface waves naturally break against

the structure, throwing the water over its top. Results obtained with irregular waves are illustrated in

Fig. 25 for the time history of the surface elevation at one point (x ¼ 3:81 m) close to the barrier and the

corresponding velocity fields at certain time, where the irregular waves are created by superimposing a
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series of regular waves. It is clear that motions caused by the irregular waves look much more complex than
those by the regular waves. As expected, a vortex generated in the vicinity of the barrier characterizes the

dynamics of the wave-induced turbulent motions at the smallest scale in this case. More details of com-

putations regarding this one can be seen in our current work using the same solver based on a dynamic LES

[29].
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4. Conclusions

We developed a novel solver for the simulation of wave overtopping over sloping and vertical structures
in a NWT. Its major advantage is that a simple VOF approach is designed for effective modelling of a very

sharp interface. This has been applied in combination with an unsteady incompressible Navier–Stokes

solver that includes the TVD-type schemes for sharp gradients capturing and fully implicit cell-staggered

FV approaches on nonuniform Cartesian cut-cell meshes. Two essential features in our solver are the ability

to describe overtopping of breaking waves and a computationally efficient algorithm for the coupling of the

pressure with the velocity based on a projected method. The results obtained in complex topology flows

induced by regular and irregular waves are very encouraging, especially since they compared well with the

experimental data available. Overall, our solver is able to yield detailed information for wave-structure
interaction problems. The main conclusions are drawn as follows:

• The grid dependency may be an aspect that is crucial for the VOF solver problems. In our study, it is

found that differences attributed to gridding are weak for the capture of the surface elevation but the

essential details of the resolution can be captured as the mesh is refined, especially for the accurate

description of the wave-induced velocity fields.

• Without excessive energy dissipation, the introduction of a blend of the second- and fourth-order arti-

ficial damping terms helps to eliminate spurious oscillations during lengthy computations, as the corre-

sponding coefficients that control the artificial dissipation are given adaptively.
• With an absorbing-generating boundary condition, an additional feature is that the solution is able to

specify a well-suited boundary value for a, which helps to resolve the volume fractions in VOF.

• Handling implicitly the pressure over mixed cells and modelling of surface tension as a body force sim-

plify significantly the treatment of the normal dynamics free-surface boundary condition, especially

when interfaces undergo severe topological change. It is found that the simulation of breaking waves

looks more realistic under the surface tension effects.

• With implicit interface reconstruction, the solution of the transport equation for the volume fractions is

simple but effective according to the currently proposed approach.
• For problems associated with the simulation of breaking waves, it is found that the introduction of an

adequate turbulence model may be necessary.

Ongoing and future work will incorporate a test case on 3D.
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