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a b s t r a c t

Prediction of run-up level is a key task in design of the coastal structures. For the design of the crest

level of coastal structures, the wave run-up level with a 2% exceedance probability, Ru2%, is most

computing tools, is their easier use and more importantly their understandable mathematical rules.

Experimental data set of Van der Meer and Stam was used for developing model trees. The conventional

governing parameters were selected as the input variables and the obtained results were compared

with Van der Meer and Stam’s formula, recommended by the Coastal Engineering Manual (CEM, 2006).

The predictive accuracy of the model tree approach was found to be superior to that of Van der Meer

and Stam’s empirical formula. Furthermore, to judge the generalization capability of the model tree

method, the model developed based on laboratory data set was validated with the prototype run-up

measurements on the Zeebrugge breakwater, Belgium. Results show that the model tree is more

accurate than empirical formulas and TS Fuzzy approach in estimating the full-scale run-up.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Design of coastal structures such as rubble-mound break-
waters, dikes and revetments is a very important issue in coastal
and ocean engineering. Breakwaters and dikes are generally used
to protect harbors and coasts against wave attack. Design of
coastal structures includes both hydraulic and structural aspects.
Wave run-up is one of the main criteria in the design of the crest
level of rock armored slopes. The wave run-up level (Ru) is
described as the maximum water–surface distance measured
vertically from the still-water level. Crest levels are generally
designed according to the run-up level exceeded by 2% of the
incident waves, Ru2%, on the front face of coastal structure.

A large variety of researches have been conducted on wave
run-up and several empirical formulae have been developed
based on laboratory experiments. Losada and Gimenez-Curto
(1981) developed an exponential model for the analysis of wave
run-up on rough, permeable slopes under regular waves and
proposed the following formula:

Ru ¼ Að1�expðBxÞÞ ð1Þ

where Ru is wave run-up height and x is the surf similarity
parameter based on regular wave defined as

x¼
tanaffiffiffiffiffiffiffiffiffiffiffi

H=Lo

p ð2Þ
ll rights reserved.
where a is the structure slope angle, H is the incident wave height
and Lo is the deepwater wavelength.

Losada and Gimenez-Curto (1981) fit their equation to test
results obtained by various researchers for different armor types
and determined A and B values for various armor types. They
showed that the wave run-up on rip rap slopes is higher than
slopes covered with artificial armor units. Allsop et al. (1985),
based on the equation of Losada and Giménez-Curto (1981),
proposed the following exponential models for determining
relative wave run-up (Ru2%/Hs) on the Tetrapod and Antifer cube
armored slopes for irregular waves.

For the Tetrapod armored slope:

Ru2%

Hs
¼ 1:94ð1�expð�0:3xopÞÞ ð3Þ

And for the Antifer cube armored slope:

Ru2%

Hs
¼ 1:68ð1�expð�0:35xopÞÞ ð4Þ

where Ru2% is wave run-up value exceeded by 2% of the wave run-
up events, Hs is significant wave height and xop is surf similarity
parameter based on peak wave period (Tp).

Van der Meer and Stam (1992) evaluated effects of various
structural and hydraulic parameters on wave run-up using a large
number of laboratory tests. They analyzed the effects of the
permeability, the slope angle, the spectral shape, significant wave
height and mean wave period separately. They showed that the
most significant factors influencing run-up phenomenon on rock
armored slopes are the permeability of the structure and the surf
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similarity parameter. Van der Meer and Stam (1992) suggested
the following formulas for wave run-up on rock armored
structures. For impermeable (P¼0.1) armored structures they
suggested:

Ru2%

Hs
¼ 0:96xm for 1:0oxmr1:5 ð5Þ

Ru2%

Hs
¼ 1:17ðxmÞ

0:46 for xm41:5 ð6Þ

And for permeable (P¼0.5) and homogenous (P¼0.6) rock
armored structures they suggested:

Ru2%

Hs
¼ 0:96xm for 1:0oxmr1:5 ð7Þ

Ru2%

Hs
¼ 1:17ðxmÞ

0:46 for 1:5oxmr3:1 ð8Þ

Ru2%

Hs
¼ 1:97 for 3:1oxmr7:5 ð9Þ

where P is permeability of structure and xm is surf similarity
parameter based on mean wave period defined as

xm ¼
tanaffiffiffiffiffiffiffiffiffiffiffiffiffi
Hs=Lm

p ð10Þ

where Lm is the deepwater wavelength based on the mean
irregular wave period, Tm.

Eq. 9 shows that the permeability of the structure is only
significant for high surf similarity values. These equations are
valid for relatively deep water in front of the structure and for a
Rayleigh distributed wave height distribution (Van de Walle,
2003). The Van der Meer and Stam (1992) formula has been
developed based on laboratory tests mostly with a standard
Pierson–Moskowitz spectrum. Hence, they did not consider the
effects of spectral shape and water depth in their formula. There
still exists some scattering between measured wave run-up and
predicted ones. The uncertainties in empirical formulas inevitably
increase the factor of safety and the construction cost (Kim and
Park, 2005). Therefore, recently, two studies have been carried out
to develop more accurate models for wave run-up. Erdik and Savci
(2008) proposed a new run-up model using TAKAGI-SUGENO
Fuzzy approach. Erdik et al. (2009) improved the accuracy of wave
run-up on rubble-mound prediction using Artificial Neural Net-
work (ANN) method. Both of them developed their models using
experimental data set of Van der Meer and Stam (1992).

In this study, a method called the M50 algorithm (Wang and
Witten, 1997) is used to predict relative wave run-up. M50 model
tree is a popular soft computing method first introduced by
Quinlan (1992). The main advantage of the model trees is that,
they provide rules that are comprehensible and transparent. The
trees obtained from M5, called model trees, are binary decision
trees that can have linear regression equations at the leaves.
Recently, model trees have been employed successfully in
modeling water level discharge relationship (Bhattacharya and
Solomatine, 2005), sediment transport (Bhattacharya et al., 2007),
wind estimating from waves (Daga and Deo, 2009), derivation of
wave spectrum (Sakhare and Deo, 2009), prediction of significant
wave height (Mahjoobi and Etemad-Shahidi, 2008; Etemad-
Shahidi and Mahjoobi, 2009) and design of rubble-mound break-
waters (Etemad-Shahidi and Bonakdar, 2009). However, this
method has not been applied in prediction of wave run-up yet.
The model is trained and tested using 162 data of Van der Meer
and Stam (1992). To verify the capability of the model tree, the
predicted results are compared with those of Van der Meer and
Stam’s (1992) empirical formula. The model is also applied to
predict full scale run-up measurements on the Zeebrugge break-
water, Belgium.

This paper is outlined as follows: Model trees and M50

algorithm are described in Section 2. Building and evaluating
model trees and the results are discussed in Section 3. Then, the
full-scale application is given in Section 4. Finally, the summary of
the work and concluding remarks are presented in Section 5.
2. Model trees

The M5 algorithm is the most commonly used classifier of
decisions trees family. Structurally, a model tree takes the form
of a decision tree with linear regression functions instead of
terminal class values at its leaves. The M5 model tree is a
numerical prediction algorithm and the nodes of the tree are
chosen over the attribute that maximizes the expected error
reduction as a function of the standard deviation of output
parameter (Zhang and Tsai, 2007). M5 model trees were
discovered and brought by Quinlan (1992) and his theory was
expanded in a method called M50 by Wang and Witten (1997).
Model trees have several advantages, making them a suitable
regression method for performance analysis. The prediction
accuracy of model trees is comparable to that of techniques
such as ANNs and is known to be higher than the prediction of
regression trees such as the CART method (Ould-Ahmed-Vall
et al., 2007). Both, the derived tree structure and the regression
models at the leaves, can be used to further the knowledge of
nature and severity of performance problems. Model trees are
also known to efficiently handle large data sets with a high
number of attributes and high dimensions.

At first, M5 model trees algorithm constructs a regression tree
by recursively splitting the instance space. Fig. 1 illustrates a tree
structure of training procedure corresponding to a given 2-D
input parameter domain of x1 and x2. The splitting condition is
used to minimize the intra-subset variability in the values down
from the root through the branch to the node. The variability is
measured by the standard deviation of the values that reach that
node from the root through the branch, with calculating the
expected reduction in error as a result of testing each attribute at
that node. In this way, the attribute that maximizes the expected
error reduction is chosen. The splitting process would be done if
either the output values of all the instances that reach the node
vary slightly or only a few instances remain. The standard
deviation reduction (SDR) is calculated as follows (Quinlan, 1992):

SDR¼ sdðTÞ�
X

i

9Ti9
9T9
� sdðTiÞ ð11Þ

where T is the set of examples that reach the node, Ti are the sets
that are resulted from splitting the node according to the chosen
attribute and sd is the standard deviation (Wang and Witten,
1997). After the tree has been grown, a linear multiple regression
model is built for every inner node, using the data associated with
that node and all the attributes that participate in tests in the sub-
tree rooted at that node. Then linear regression models are
simplified by dropping attributes if it results in a lower expected
error on future data. After this simplification, every sub-tree is
considered for pruning. Pruning occurs if the estimated error for
the linear model at the root of a sub-tree is smaller or equal to the
expected error for the sub-tree. After pruning, there is a
possibility that the pruned tree might have discontinuities
between nearby leaves. Therefore, to compensate discontinuities
among adjacent linear models in the leaves of the tree a
regularization process is made. This process is started once the
tree has been pruned and usually improves the prediction,
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Fig. 1. Example of M5 model tree (Models 1–8 are linear regression models).

Table 1
Input parameters of M50 models.
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especially for models based on training sets containing a small
number of instances (data points) (Zhang and Tsai, 2007).
Model Input parameters

MT1 log(P), log(xm)

MT2 log(P), log(cot a), log(Som), log(h/Hs)

Table 2
Range of input–output parameters used for the prediction of relative wave run-up

in MT1.

Parameter Training data Testing data

P 0.1–0.5 0.1–0.5

xm 1–7.15 1.03–7.11

Ru2%/Hs 0.87–2.94 1.02–2.90

Table 3
Range of input–output parameters used for the prediction of relative wave run-up

in MT2.

Parameter Training data Testing data

P 0.1–0.5 0.1–0.5

cot a 1.5–4 1.5–4

Som 0.0046–0.0636 0.0052–0.0589

(h/Hs) 4.10–17.24 4.05–14.46

Ru2%/Hs 0.87–2.94 0.96–2.90
3. Model tree modeling and results

In this study, M50 algorithm was used for predicting relative
wave run-up (Ru2%/Hs). To compare the performance of model
trees, two M50 models were developed. Table 1 shows the input
parameters used in each model. To have a better comparison of
the models, the same parameters used in Van der Meer and Stam’s
formula (1992) were used in the first model (MT1). The MT1 input
parameters includes surf similarity and permeability of the
structure. Surf similarity parameter includes the wave height,
wave period and slope angle of the structure. Most of phenomena
in the surf zone are described by means of the surf similarity
parameter. The surf similarity parameter describes the type of
wave breaking on a structure or on a beach. Permeability of
structure indicates the behavior of water running up on the
structure. For a permeable structure the water can penetrate into
the structure decreasing the actual run-up, while in an imperme-
able structure all water run up on slope of the structure and do
not sink into the structure (Van der Meer and Stam, 1992). The
second model (MT2) was developed additionally to investigate
the effect of water depth parameter(h/Hs), where h is the water
depth at the toe of the breakwater, on the relative wave run-up.
This parameter is included in the model to consider the possible
effects of wave breaking on the foreshore. Also, surf similarity
parameter was replaced by the slope angle of the structure and
wave steepness in MT2.

Both models were trained and tested using 162 data of Van der
Meer and Stam (1992). Ranges of different parameters of training
and testing data sets for MT1 and MT2 are presented in Tables 2
and 3, respectively. For each model, the data set was split randomly
to training and testing set. Training set includes 2/3 of the whole
data (108 data points) and the rest of data was used as testing set
(54 data points). Models were trained using the training set and then
evaluated with the testing data. The relationship between the used
input and output (Ru2%/Hs) parameters is not necessarily linear;
whereas, the model tree can only produce linear relationship
between them. In order to overcome this limitation, models with
log (inputs) and log (Ru2%/Hs), were developed to reach a nonlinear
model in the form of Ru2%=Hs ¼ aPbxc

m, (a, b and c are constants).
The following statistical parameters were used to evaluate the

performance of the models for predicting the relative wave run-
up: index of agreement (Ia), correlation of coefficient (CC) and root
mean squared error (RMSE).

Ia ¼ 1�

Pn
i ¼ 1 ðxi�yiÞ

2

Sð9xi�my9þ9yi�my9Þ
2

ð12Þ

CC ¼
ð1=nÞ½ðxi�mxÞ

T
ðyi�myÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=nÞðxi�mxÞ
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=nÞðyi�myÞ

2
q ð13Þ



Table 4
Statistical measures of different models.

Model Ia CC RMSE

Van der Meer and Stam’s (1992) (all data set) 0.944 0.902 0.19

MT1 (testing data) 0.943 0.90 0.20

MT1 (all data set) 0.960 0.925 0.167

MT2 (testing data) 0.948 0.92 0.187

MT2 (all data set) 0.972 0.95 0.141
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RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

1

ðyi�xiÞ
2

vuut ð14Þ

where xi and yi denote the predicted and the measured values,
respectively; n is the number of measurements, and T denotes the
transpose of a matrix. mx and my are the corresponding mean
values of the predicted and measured parameters.

Scatter diagrams of measured and predicted relative wave run-
up by MT1 are shown in Figs. 3 (all data) and 4 (testing data). As
seen in these figures, the data points are more concentrated on
optimal line compared to Fig. 2 (Van der Meer and Stam’s). This
shows that the MT1 model is more accurate than Van der Meer
and Stam’s (1992) formula using the input parameters. A
comparison of statistical parameters also indicates that MT1 is
more precise than the empirical formula of Van der Meer and
Stam (1992) in the prediction of the relative wave run-up
(Table 4). Agreement index (for all data set) is 0.96 for MT1 and
the root mean squared error of MT1 is 0.167.

Measured and predicted relative wave run-ups by MT2 are
shown in Figs. 5 (all data set) and 6 (testing data). The MT2 results
show less scatter in the data points than both of MT1 and Van der
Meer and Stam’s. The agreement index of MT2 for all data set has
increased to 0.972 from 0.902 (by Van der Meer and Stam’s
empirical model) and its root mean squared error (RMSE¼0.141)
is less than those of MT1 and Van der Meer and Stam (1992). A
drawback of Van der Meer and Stam’s formula (Fig. 2) is that their
prediction for a vast range of relative wave run-up (approximately
1.5–2.5) is constant (1.97). This has been resulted in more
scattering between the measured and predicted values, while
this is not seen in M5 model tree models (Figs. 3–6). It is also
interesting to note that both M5 model tree and Van der Meer and
Stam’s models slightly underestimate relative wave run-up larger
than 2.5 that could be due to lack of enough data points in this
range.

In addition to higher accuracy level of the models, the other
advantage of the developed M5 models is their ability to generate
simple and meaningful rules that can be easily utilized in run-up
calculations. The developed tree and rules for MT1 are shown in
Fig. 7. The topmost splitting attribute is surf similarity, xm and the
next one is the permeability. It is noteworthy that Pr0.22
represents impermeable structures and PZ0.22 represents
permeable structures. As discussed by Bhattacharya et al.
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Fig. 2. Comparison between measured and predicted relative wave run-up (Ru
(2007), the splitting values do not necessarily have any physical
interpretation and are obtained by minimizing the prediction
error. However, similar to Van der Meer and Stam’s findings, Fig. 7
shows that the permeability of structure would be important
when surf similarity parameter becomes large.

Considering P¼0.1 for impermeable structures and P¼0.5 for
permeable structures, the given rules for MT1 are as follows:

For impermeable structures

Ru2%

Hs
¼ 1:0xm

0:69 xmr2:1 ð15Þ

Ru2%

Hs
¼ 1:3xm

0:31 2:1oxmr3:9 ð16Þ

Ru2%

Hs
¼ 1:5xm

0:29 xm43:9 ð17Þ

For permeable structures

Ru2%

Hs
¼ 0:86xm

0:69 xmr2:1 ð18Þ

Ru2%

Hs
¼ 1:16xm

0:31 2:1oxmr3:9 ð19Þ

Ru2%

Hs
¼ 1:56xm

0:15 xm43:9 ð20Þ

These equations are in good agreement with engineering sense
and Van der Meer and Stam’s (1992) empirical formulas. For
example, when the surf similarity increases, its power decreases
and it becomes insignificant. Furthermore, when xm is less than
3.9, the relative wave run-ups for permeable and impermeable
3.52.5
tive wave run-up 

2%/Hs) by the empirical formula of Van der Meer and Stam 1992, all data.
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Fig. 3. Comparison between measured and predicted relative wave run-up (Ru2%/Hs) by MT1, all data.
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Fig. 4. Comparison between measured and predicted relative wave run-up (Ru2%/Hs) by MT1, testing data.
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structures are nearly the same, but when surf similarity has a
large value (xm43.9) the permeability becomes important. Eq. 20
shows that for a permeable structure, the power of surf similarity
decreases significantly for surging waves. This means that the
relative wave run-up for a permeable structure with a large value
of surf similarity is not so sensitive to surf similarity parameter.
By contrast, for an impermeable structure the relative wave run-
up is higher (Eq. 17) and still depends on the surf similarity
parameter. This is due to the fact that the water running up on the
slope of the structure cannot sink into the structure.

The developed formulas have a better physical interpretation
than those of previous approaches. For instance, in the range of
xmo3.1, the Van der Meer and Stam’s formulas yield the same value
of relative wave run-up for permeable and impermeable structures,
while the developed formulas consider the permeability of struc-
tures on the wave run-up prediction. In addition, the Van der Meer
and Stam’s formula is independent of the surf similarity parameter
for permeable structures with xm43.1, while this is not the case in
the developed formulas. Complexity of the rules is a function of
number of the input parameters and physics of the problem. MT2 is
more complex than MT1, because it has more input parameters and
rules. By adding dimensionless water depth at the toe of the
structure, the number of rules increased to seven in MT2. In this
aspect, MT1 is superior to MT2 because their accuracies are nearly
the same but MT1 represents a fewer number of rules that are as
understandable as empirical formulas.

The major drawback of model trees is that they can only
generate linear formulas at their leaves. Therefore, to achieve a
more accurate and simpler model, transformations of input
parameters may be required. Commonly used soft computing
tools such as ANN and FL need some trial and error for model
optimization. For example, a disadvantage of ANN models is that
the number of hidden layers and the number of nodes per hidden
layer should be found using a trial-and-error approach, while in FL
models the selection of membership functions parameters
and fuzzy subsets is not trivial (Kazeminezhad et al.,2005).
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Fig. 5. Comparison between measured and predicted relative wave run-up (Ru2%/Hs) by MT2, all data.
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Fig. 6. Comparison between measured and predicted relative wave run-up (Ru2%/Hs) by MT2, testing data.
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An advantage of model tree over other soft computing approaches
is that its rules are understandable and they can be easily applied
by another user (Sakhare and Deo, 2009).
4. Application: run-up on the Zeebrugge breakwater

In this section, the M50 model tree is applied to predict full
scale run-up measurements on the Zeebrugge breakwater,
Belgium (Van de Walle, 2003). The prototype example includes
a structure with permeable core (P¼0.5) and the slope of the
breakwater is 1:1.5. The values of surf similarity range from 3.46
to 3.83 (Table 5). Thirteen storm events have been selected out of
all observed heavy weather conditions measured during the
period from 1995 to 2000 along the Belgian coast. It should be
noted that the wave climate during these storm events was
characterized by an almost constant SWL (De Rouck et al., 2007).
The predicted relative wave run-up by MT1 is compared with
the field measurements and those obtained by Van der Meer and
Stam’s (1992), Kingston and Murphy (1996) formula and Erdik
and Savci’s (2008) TS Fuzzy model. Kingston and Murphy (1996)
identified the parameters of the formula of Losada and Gimenez-
Curto (1981) as A¼1.76 and B¼�0.28 for small scale model tests
on a model of the Zeebrugge breakwater (De Rouck et al., 2007). In
Table 5, M50 model tree results are given together with those of
Van der Meer and Stam (1992), Kingston and Murphy (1996) and
Erdik and Savci (2008) predictions. As shown in Table 5, the root
mean squared error of MT1 (RMSE¼0.10) is less than those of Van
der Meer and Stam (1992), Kingston and Murphy (1996) and Erdik
and Savci’s (2008) TS Fuzzy method.

The fact that MT1 predictions are more accurate than other
models for the full-scale data set can be also seen from Fig. 8, which
shows the calculated relative wave run-up by Van der Meer and
Stam’s formula are overestimated (Bias¼my�mx¼0.245). In contrast,
Kingston and Murphy’s formula has remarkably underestimated the
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Table 5
The prediction results of different approaches.

Measurements Predictions

Full-scale measurement on Zeebrugge breakwater Van der Meer and

Stam (1992)

Kingston and

Murphy (1996)

TS-fuzzy by Erdik and

Savci (2008)

Model tree 1

Storm Number xom Ru2%/Hmo Ru2%/Hmo Ru2%/Hmo Ru2%/Hmo Ru2%/Hmo

1 3.58 1.56 1.97 1.11 1.74 1.72

2 3.70 1.54 1.97 1.14 1.78 1.74

3 3.77 1.75 1.97 1.15 1.80 1.75

4 3.67 1.79 1.97 1.13 1.77 1.74

5 3.57 1.71 1.97 1.11 1.74 1.72

6 3.79 1.82 1.97 1.15 1.81 1.75

7 3.57 1.69 1.97 1.11 1.74 1.72

8 3.47 1.90 1.97 1.09 1.71 1.71

9 3.81 1.81 1.97 1.15 1.82 1.76

10 3.46 1.68 1.97 1.09 1.71 1.70

11 3.51 1.80 1.97 1.10 1.72 1.71

12 3.62 1.74 1.97 1.12 1.76 1.73

13 3.83 1.63 1.97 1.16 1.82 1.75

Root mean squared error (RMSE) 0.26 0.61 0.12 0.10
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relative wave run up (Bias¼�0.6). This figure also indicate that, in
comparison with Van der Meer and Stam’s (1992) and Kingston and
Murphy (1996), Erdik and Savci’s model has a better performance
(Bias¼0.038). However, the MT1 is the most accurate model among
all mentioned approaches (Bias¼0.006). This implies that even in
real cases the developed model can be used successfully.

It should be mentioned that the developed models, like
previous approaches, do not consider the effects of factors such
as the direction of wave attack, breaking waves and berm. They
can be easily modified if enough data are available. However, all
of these factors result in decreasing of relative wave run-up.
Hence, it could be said the developed formulas are conservative
for the cases that these effects exist.

5. Summary and conclusion

In this study, the M50 model tree has been applied to predict
the relative wave run-up on rock slopes and its ability was
compared with that of Van der Meer and Stam’s (1992) formula.
The model constructed herein is based on the experimental data
of Van der Meer and Stam (1992).

To compare the performance of the model trees for run-up
prediction, two M50 models were developed. In the first model the
same parameters, used in Van der Meer and Stam’s (1992)
formula, were used. The MT1 input parameters includes perme-
ability of the structure and surf similarity parameter. The second
model was developed to investigate the effect of relative water
depth parameter, (h/Hs) on the relative wave run-up. Statistical
parameters showed that the model tree technique yields more
accurate results than the Van der Meer and Stam’s (1992) formula
in estimating the relative wave run-up on rubble-mound
structures. In addition to the higher accuracy (CC of 0.925–0.95),
the other advantage of the model trees (compared to other data
mining approaches such as ANN) is found to be its ability to
generate simple and understandable formulas.

In addition, the developed model tree was validated with
thirteen prototype run-up measurements on the Zeebrugge
breakwater. The predicted relative wave run-up by MT1 was
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Fig. 8. Comparison between measured and predicted relative wave run-up (Ru2%/Hs) by different approaches, field data.
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compared with those obtained by Van der Meer and Stam’s
(1992), Kingston and Murphy (1996) formula and Erdik and Savci�s
TS Fuzzy method. It was found that the MT1 is more precise than
the previous approaches in the prediction of the full-scale run-up.
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