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ABSTRACT
Kempeneers, P.; Deronde, B.; Provoost, S., and Houthuys, R., 2009. Synergy of airborne digital camera and lidar data to map 
coastal dune vegetation. Journal of Coastal Research, SI(53), 73–82. 

Driven by the successful applications of lidar in forestry and the availability of lidar technology, new research is being carried 
out in other ecosystems. While lidar data have often been used to study tall forest ecosystems, this study explores the utility of 
lidar in the lower-canopy ecosystems of the Belgian coastal dune belt. This area is largely covered by marram dune, moss dune, 
grassland, scrubs and some woodland. Small diameter (0.4 m) footprint lidar was applied to derive the canopy height by analyzing 
the first and last pulse returns simultaneously. The investigation focused on whether the height of low-canopy ecosystems could 
be mapped with adequate accuracy. An error analysis was performed first on flat terrain (i.e., tennis court and parking lot) and 
then on vegetation canopy. The mapping of coastal dune vegetation is necessary to establish the strength of the dune belt. Dune 
vegetation fixes the sand dunes, protecting them from erosion and from possible breakthroughs threatening the historically reclaimed 
land (polders) situated inland from the dunes. Next, multispectral data was acquired from a digital camera with visual and near 
infrared channels. The digital camera overflight was not conducted on the same platform as the lidar. After ortho-rectification 
of the multispectral image, the data of both sources were fused. The limited spectral information delivered by the digital camera 
was not able to provide a sufficiently detailed and accurate vegetation map. The fusion with lidar data provided the extra 
information needed to obtain the desired vegetation and dune strength maps. A total of fourteen classes were defined, of which 
twelve cover vegetation. It was shown that overall classification accuracy improved 16%, from 55% to 71% after data fusion.

ADDITIONAL INDEX WORDS:   lidar, vegetation classification, mapping, digital elevation models, dunes

INTRODUCTION

Conventional ground-based methods can result in accurate 
vegetation maps with a high level of detail on structure and species 
composition. However, they both require substantial financial and 
human resources. If large or inaccessible areas must be covered, 
remote sensing has proven to be a valuable tool (Tueller, 1989). 
Based on their spectral fingerprint, a number of vegetation types can 
be mapped accurately with automatic classification techniques. As 
spectral differences get more subtle, the classification task becomes 
more difficult and more advanced techniques must be applied. One 
approach is to use hyperspectral sensors. Their large number of 
narrow spectral bands are designed to pick up the smallest spectral 
changes. Hyperspectral sensors have been increasingly applied for 
complex classification tasks (Camps-valls and Bruzzone, 2005; 
Melgani and Bruzzone, 2004), including coastal vegetation mapping 
(De Backer et al., 2004; Schmidt et al., 2004).

Still, the classification of vegetation types based only on their 
spectral characteristics is confronted with fundamental constraints. 
First, within a single grid cell or pixel, vegetation often consists of 
a mixture of species. Also, boundaries between patches of different 
vegetation types often occur as smooth transitions rather than sharp 
edges. This complicates the definition of homogeneous classes and, 

consequently, the design of a (supervised) classifier (Duda, Hart, and 
Stork, 2001). Secondly, vegetation with similar species composition 
can be substantially different in terms of physiognomical appearance 
(or vegetation structure). Kumar, Ghosh, and Crawford (2001) 
showed that structure highly influences the reflectance spectrum. 
Thirdly, a combination of viewing and illumination conditions 
increases the variability of the spectral reflectance within the 
same vegetation type (bi-directional effect). Lee and Shan (2003) 
concluded that multispectral data can only solve simple classification 
problems automatically. More complicated mapping tasks require 
other data sources such as lidar.

A number of studies have shown the potential of lidar data to 
provide extra information that can improve classification results. 
A scanning lidar emits laser pulses that are reflected, e.g., from the 
ground. By measuring the elapsed time between pulse emission 
and interception, topography can be mapped in digital elevation 
models (DEMs) (Hodgson et al., 2003; Töyrä and Pietroniro, 
2005). If pulses are reflected by objects above ground, their vertical 
location and horizontal distribution can be calculated (Digital 
Surface Models). As an example, Sohn and Dowman (2007) and 
Rottensteiner et al. (2007) automatically extracted buildings from 
lidar and multispectral data. With respect to vegetation, lidar data 
has been successfully used to measure tree height, canopy structure, 
leaf area index (LAI) and biomass (Drake et al., 2002; Harding et 
al., 2001; Popescu, Wynne, and Nelson, 2002; Riano et al., 2004). 
Most vegetation applications of lidar are in forestry (Magnussen, 
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Eggermont, and LaRiccia, 1999; Hyyppa et al., 2001; Naesset and 
Okland, 2002; Leckie et al., 2003), but as lidar technology becomes 
more available, new research is carried out in other ecosystems. 
Streuker and Genn (2006) determined the capability of lidar to 
detect the presence of sagebrush and other types of low shrub. 
Decimeter accuracy is currently achievable with lidar technology, 
allowing for the discrimination of short vegetation types. This is 
particularly interesting for the low vegetation types in the study area 
(e.g., marram dune, moss dune, grassland and low scrub). However, 
Streuker and Genn (2006) found a lack of correlation between lidar 
and field heights below approximately 20 cm. It was suggested that 
this represents an operational lower limit for height determination. 
The authors also found an overall underestimation of the vegetation 
height. Similar conclusions were drawn by Bork and Su (2007). 
Streuker and Genn (2006) raised the question of whether or not 
the lidar pulse penetrates some distance into the canopy before it is 
reflected and pointed out that the current literature does not discuss 
the minimum detection threshold for common lidar sensors. For this 
study, very high density lidar data were available with an average 
spot density of 5 points m-2.

By combining lidar with multispectral data, both geometric 
and spectral information is available. The two data sources are so 
different that little correlation can be expected. When classification 
is desired, this is essential for the success of data fusion. Lee and 
Shan (2003) combined lidar data with spaceborne multispectral 
imagery to create classification maps for the coastal zone of North 
Carolina. They defined six classes in total: road, water, marsh, roof, 
tree, and sand. These six classes were selected from twelve clusters, 
obtained from an unsupervised classification technique, ISODATA 
(Mather, 1999). It was shown that lidar data can separate classes that 
have similar spectral characteristics, such as roof and road, water 
and marsh. Overall classification errors were reduced by up to 50% 
and it was found that the distribution of geographic features is more 
homogeneous and realistic in the classification results after data 
fusion. 

Bork and Su (2007) followed a different approach. Rather than 
fusing the multispectral imagery with the lidar data, classification 
was conducted on the individual data first. Then the optimal 
classification sequences were manually selected and integrated into 
a final land cover map.

Likewise, Bolstad and Lillesand (1992) and Harris and Ventura 
(1995) introduced a set of rules to integrate classification results. As 
an example, the rules can be based on prior knowledge as in the expert 
system of de Lange, van Til and Dury (2004) or Schmidt et al. (2004). 
These rules then link the ecologists’ knowledge about vegetation 
with the lidar (or other geographical) data available for the study 
area. Bork and Su (2007) tested and compared the suitability of lidar 
and three-band digital data for classifying spatially complex aspen 
parkland vegetation. A first classification distinguished a limited 
number of three vegetation classes (and bare ground), covering only 
the major vegetation formations of deciduous forest, shrub land, and 
grassland. Then, a more detailed classification was performed with 
eight vegetation classes, including upland mixed prairie and fescue 
grasslands, closed and semi-open aspen forests, western snowberry 
and silverberry shrub lands, and fresh and saline riparian (lowland) 
meadows. Subsequent integration of the lidar and digital image 
classification schedules resulted in accuracy improvements of 16% 
to 20%, resulting in a superior final accuracy of 91% and 80.3%, 
respectively, for the general and detailed classes of vegetation (Bork 
and Su, 2007).

METHODS

Study Area and Vegetation Survey

The study area in this work was the Westhoek nature reserve, 
located at the French border (51° 5’ N; 2° 33’ E). It is the largest dune 
site along the Belgian coast (3.4 km2). More than half of the original 
75 km2 of coastal dune habitat has been urbanized during the past 150 
years. However, the remaining sites are of high conservation value 
and contain a rich variety of habitat types and species. Westhoek 
consists of five successive zones, parallel to the coastline.

The foredunes (area I in Figure 1) are formed by a young dune 
ridge, adjacent to the beach. They are largely covered by marram, 
which either occurs as a vital, open Ammophila arenaria vegetation 
or as a semi-fixed marram dune. The latter is a transitional stage to 
moss dune, with Syntrichia ruraliformis as the most abundant moss 
species. At present, the foredunes are strongly invaded by Hippophae 
rhamnoides scrub.

South (inland) of the foredunes, a series of young dune slacks and 
ridges can be found (area II in Figure 1). They show an age gradient 
from NW (oldest) to SE (youngest). The vegetation largely consists 
of Hippophae rhamnoides and Salix repens scrub but as a result 
of nature management, dry dune grassland and short herbaceous 
dune slack vegetation also occurs. This zone is grazed by cattle and 
ponies. In the dry parts of the oldest slack, the grasslands are often 
dominated by Rosa pimpinellifolia.

The third zone (area III in Figure 1), situated in the middle of the 
study area, is formed by a large dune ridge. Until about five years 
ago, this was a mobile dune and the slacks north of it are formed in 
its deflation zone. At present this dune is stabilizing spontaneously 
and covered with Ammophila and Hippophae.

South of the central mobile dunes (area IV in Figure 1), a series 
of old dune slacks occur, which were probably formed in the 16th-
17th centuries. The landscape is a mosaic of dry grassland, wet 
dune slacks, scrub and woodland. It is grazed by cattle and Shetland 
ponies. In this zone, taller shrubs such as Crataegus monogyna 
and Salix cinerea are found. Trees occur as individuals (mostly 
Quercus robur ) or in small woodland patches. Both broadleaf (Acer 
pseudoplatanus, Alnus glutinosa, Populus x canescens, Populus 
canadensis, Quercus robur) and coniferous trees (Pinus nigra) are 
present.

The inner dune ridge, which forms the boundary with the polder 
area, is the last zone (area V in Figure 1). The south slope of this 
ridge is planted with Populus species. The rest of the zone consists 
of scrub, dry dune grassland and moss dune.

Lidar Data

Lidar data were acquired on October 19, 2007 by Eurosense, 
contracted by the Flemish Government (Agency for Maritime and 
Coastal Services, Coastal Division). Two parallel flight lines of 
250 m wide and with 30% overlap were flown perpendicular to the 
coastline. The resulting 0.3 by 1.7 km strip forms the western border 
of the Westhoek nature reserve (Figure 1).

The lidar data were acquired at a height of 300 m, flying 80 m s-1, 
using a LiteMapper 5600 system. This high density scanning laser 
has a wavelength of 1550 nm and a pulse frequency of 200 kHz. The 
footprint on the ground at this altitude is 0.15 m. Mean pulse density 
is 5 m-2 on the ground, but can be over 10 m-2 over vegetation.

The lidar acquisition date was four months after a multispectral 
flight (see section 2.3). In the intervening months, grassland had 
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changed thoroughly by grazing and mowing. Tree leaves were 
already falling by this time.

Two ASCII files (ground and vegetation) were obtained in the 
Belgian Lambert 72 conic conformal projection system, after being 
processed by TerraScan proprietary software (TerraScan, Inc., 
Lincoln, NE). The two files corresponded to the return pulses over 
ground (last return) and vegetation (first return) respectively. Both 
files were rasterized to a single grid with a cell size of 1.5 m. A 
common technique for deriving vegetation height is to subtract last 
pulse (ground channel) from first pulse (ground plus vegetation) 
data. It is assumed that first laser returns originate from the canopy 
top and last pulse returns from the ground. In the rasterizing process, 
it was found that within a certain grid cell, some of the last pulse 
returns were higher than first returns. Similar to Hopkinson et al. 
(2004), two digital elevation model (DEM) images were created. 
The minimum value of all (first and last) pulse returns in a grid cell 
was stored in DEMground. DEMmax contained the maximum value of 
all (first and last) pulse returns. Then, DEMcanopy was calculated as 
the difference image between DEMmax and DEMground.

For non-flat areas, there was an overestimation of the canopy 
height by tan(β)Δx, where β is the slope of the surface and Δx is 
the size of the grid cell. The slope was estimated from a filtered 

version of DEMground. For the area under study, the correction for 
slope did not improve results. Canopy heights were therefore simply 
calculated as the difference between DEMmax and DEMground without 
a correction for slope.

Multispectral Data

The multispectral images were acquired on June 13, 2007 at 
12 am local time (GMT +2), with a digital frame camera from 
Vexcel Imaging, the UltraCam D. Each frame covered 3680 by 
2400 pixels in three visual spectral bands (red, green, and blue) and 
one near infrared spectral band. Flying at an altitude of 800 m, a 
ground resolution of 0.3 m was obtained. The onboard positioning 
system consisted of an Inertial Measurement Unit (IMU) combined 
with a Differential Geographic Positioning System (DGPS). The 
IMU provided accurate attitude parameters (i.e., roll, pitch, yaw), 
whereas the DGPS recorded the aircraft’s altitude and position. Both 
instruments are needed for accurate geometric correction of the 
image.

A single mosaic image over the entire study area was obtained by 
combining the individual image frames. A well-known problem in 
this process is the abrupt transitions between the frames, resulting in 

Belgium
France

The NetherlandsNorth Sea

study area

DEMcanopy

Digital image study areaI

II

III

IV

V

Figure 1. The entire study area is covered by multispectral data. It consists of five successive zones (I to V), parallel to the coastline. Lidar data is only available 
for a small strip, as indicated by the rectangle (dashed).
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a chess patterned output image. The change in brightness between 
the frames can be explained by the difference in acquisition angles 
(relative azimuth and view zenith) and in changes of illumination 
conditions between subsequent tracks. As an example, a thin cirrus 
cloud arrived in the time between the acquisitions of overlapping 
tracks. This inconsistency in the acquired signal is problematic 
for any supervised classifier and causes many errors due to poor 
generalization. In some cases, brightness differences for airborne 
acquisitions are partially compensated by the operator by manually 
tuning gain during the flight. As it is not a true correction, the 
problem still remains. Moreover, this complicates a physically 
based atmospheric correction. Some empirical-derived correction 
equations based on linear regressions have been proposed by Hall 
et al. (1991) and successfully applied by Bork and Su (2007). In the 
current study, a more simple approach was followed. The frames 
were acquired with an overlap of 80% along track and 30% across 
track. By simply averaging the overlapping pixels, a smooth mosaic 
image was obtained.

An advantage of the very high spatial resolution of the multispectral 
image was the superior geometric accuracy of the mosaic image, 
which is a function of the original pixel size. Knowledge of the true 
location of each pixel is crucial to mapping the ground reference data 
exactly to the multispectral image. Furthermore, the full resolution 
image of 0.3 m allowed for recognition of the vegetation patches or 
individual trees and shrubs and verification that the mapping was 
performed correctly. For the final mosaic image of the multispectral 
data, the original resolution was down-sampled by a factor of five 
to match the 1.5 m grid size of the vegetation height image. Some 
ground reference samples were shadowed by taller scrubs or trees. 
These samples were manually removed or shifted towards the crown.

Ground Reference Data

A field campaign was performed during the summer of 2007 

(June until August). The ground reference data were mapped with 
Differential Global Positioning System equipment (DGPS) to the 
common grid (multispectral image and DEMcanopy). The sample unit 
was identical to the grid cell size (1.5 m). Plots were chosen with 
an homogeneous vegetation coverage of at least 5 m diameter. In 
the common area, Ac, where both multispectral and lidar data were 
available, vegetation type (1515 sample units) and height (141 
measurements) were recorded. For the remaining area, Am, another 
5000 sample units were collected, but only vegetation type was 
recorded.

The vegetation types were labeled to fourteen classes. The 
level of detail was chosen individually per class, based on its 
ecological importance in the study area. Marram (MA) and moss 
(MO) characterize the early fixation stages of the sand dunes. 
Grassland (DG), and dune slack (DS) cover a variety of dry and wet 
vegetation types respectively (cfr. section 2.1), but represent the 
major species-rich herbaceous vegetation types found in the dune 
area. Calamagrostis epigeios (CA) is important to monitor grass 
encroachment. Within the dune grassland, Rosa pimpinellifolia (RP) 
was retained because it is largely represented in the area. However, 
confusion with dune slack was to be expected due to its spectral 
similarity. The most dominant scrub types, Hippophae rhamnoides 
(HR) and Salix repens (SR) were further grouped as lower scrub 
(typically less than 3 m) in case of confusion. Similarly, scrub types 
above 3 m were merged: Crataegus monogyna (CM) and Salix 
cinerea (SC). Broadleaf trees (e.g., Acer pseudoplatanus, Alnus 
glutinosa, Populus x canescens, Populus nigra and Quercus robur) 
were merged in a single class (BW). Coniferous woodland (CW) 
only covered the single most dominant type (Pinus nigra). Finally, 
two non-vegetation classes were added: bare sand (BS) and shadow 
(SH). Without the latter class, the majority of shadow areas would 
have been classified as coniferous trees due to their low reflectance 
values.

Data Fusion and Experimental Design

The multispectral imagery and the rasterized elevation data were 
fused prior to classification as proposed by Lee and Shan (2003). 
Fusion was performed relatively simply by treating elevation values 
as if they were spectral data. Together with three visual and one near 
infrared spectral band, a fused image was obtained with five bands. 
This image was then used as input features to a supervised classifier. 
However, the lidar data covered only a small region of the study area, 
Ac (common area). For the remaining part, Am (multispectral area), 
only multispectral imagery was available. It was our goal to assess 
the performance of the classifier after data fusion for the entire study 
area. An experimental setup was therefore proposed (algorithm 1). 
It was assumed that the statistical behavior of the univariate class 
height (mean and standard deviation) can be estimated from a limited 
data set, Ah, held out from the common area (as shown schematically 
in Figure 2). The two neighboring parts Ac and Am belong to the same 
dune site. The assumption that the vegetation height collected in the 
hold out set was representative for the entire area is therefore not too 
restrictive.

The experimental setup starts with training, performed on a subset 
of the common area, Ac\Ah, such that the statistics of the height in Ah 
are hidden from the training step. Lidar heights are then simulated 
for all multispectral samples in Am, by introducing a random height 
variable h

)
 . A Rician distribution (Rice, 1945) was chosen. It has two 

parameters, υ and σ, similar to the mean and standard deviation in 
the case of a Gaussian distribution. Following the Rician distribution, 

Am
(multispectral data only)Ah

(hold-out
set)

Ac \ Ah
(reduced

set)

Ac
(common area)

Figure 2. Schematic overview of the different areas used in the experimental 
setup.
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the probability density function for the height variable h
)

 is defined 
as:

where I0 is the modified Bessel function of the first kind with 
zeroth order. For each class, a different Rice distribution had to 
be estimated. For tall vegetation (υ >> 1), the Rice distribution 
approximates the Gaussian distribution N(υ,σ). Notice that if υ = 
0 (in which case a Rayleigh distribution is obtained), the random 
height variable remains positive at all times (in contrast to the 
Gaussian distribution). The experimental setup is finished when a 
height random variable is assigned to all ground reference samples 
of Am.

The distribution parameters (υ,σ) were estimated from the class 

sample heights (Table 1). The maximum likelihood approach from 
Sijbers et al. (1998) was followed. A probability density distribution 
was thus obtained for all fourteen classes (visualized in Figure 3 A 
and B for low and tall classes respectively). Sample means (third 
column in Table 1) are sometimes different from the first parameter 
(υ) in the Rician distribution. In particular when the sample mean is 
low and the sample standard deviation is relatively large, a zero value 
is obtained. The heights of the shadow class (SH) for example, were 
estimated from lidar data with a large variation. This is probably 
due to an overestimation of the class height. Though the real height 
of shadow was expected to be low (0 m), some lidar pulse returns 
originated from the tall canopy near the shadow.

Design of the Classifier

With fourteen classes, a multiclass classifier becomes complex. 
The multiclass problem was therefore solved as a combination of 
binary classifiers. The advantage of this approach over a direct 
multiclass classifier is the low complexity of binary classification. 

Code Description E[h] s Rice (ν, σ)
MA marram dune 0.76 0.20 Rice (0.74, 0.20)
MO moss dune 0.27 0.10 Rice (0.25, 0.10)
DG dune grassland 0.11 0.07 Rice (0.00, 0.09)
CA Calamagrostis epigeios 0.57 0.32 Rice (0.50, 0.29)
DS dune slack 0.17 0.12 Rice (0.00, 0.15)
RP Rosa pimpinellifolia 0.39 0.27 Rice (0.00, 0.33)
HR Hippophae rhamnoides 1.97 0.57 Rice (1.85, 0.62)
SR Salix repens 1.17 0.78 Rice (0.00, 0.99)
CM Crataegus monogyna 4.10 1.09 Rice (4.05, 0.88)
SC Salix cinerea 5.53 0.63 Rice (5.51, 0.56)
BW broadleaf woodland 13.97 5.15 Rice (12.88, 5.28)
CW coniferous woodland 11.89 2.06 Rice (11.75, 1.93)
BS bare sand 0.09 0.05 Rice (0.00, 0.08)
SH shadow 5.21 3.01 Rice (0.00, 4.24)

Table 1. Definition of the classification labels. English plant nomenclature 
accords to Clapham, Tutin, and Moore (1989). Height sample means (E[h]) 
and sample standard deviations (s) were calculated from lidar elevation 
data. The derived Rician distribution R(ν,σ) is also shown.

Figure 3. Simulated Rician distribution of low (A) and high (B) vegetation heights.
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Algorithm 1 Experimental Setup                                                                          .                                                                      

hold out Ah from common area, Ac (covering 
multispectral and lidar data) 
 
train classifier for the reduced common area Ac \ Ah 
 
for all classes ωi, i = 0, . . . ,C do 
 
  estimate Rician distribution parameters υi, σi from 

d out set Ah hol

  for all ground reference samples of class ωi in 
multispectral area, Am do 
     
    generate random variable h

  from a Rician 
distribution R(υ,σ) 
 
    introduce sample height for sample h ← h


 (create 

fused image mA
 ) 

  end for 

end for 

validate classifier on fused validation set mA
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As in statistical hypothesis testing, a binary classifier starts with a 
null hypothesis and an alternative hypothesis. In the one-against-
all strategy, the classifier assigns a set to some vegetation class 
(accept null hypothesis) or not (reject null hypothesis in favor of 
the alternative). In the one-against-one strategy, it divides a set in 

two specific vegetation classes. The binary approach requires a large 
number of binary classifiers, going from K, the number of classes 
in a one-against-all strategy, up to K(K−1)/2, in a one-against-
one strategy. In this study, the one-against-one strategy was used, 
meaning that all possible pairs of classes were compared. For the 
binary classifiers, a simple linear discriminant classifier was applied 
(Duda, Hart, and Stork, 2001). A binary linear discriminant classifier 
assumes equal covariance matrices for both classes. Based on this 
covariance matrix and the class means, it then finds the optimal 
linear decision boundary.

RESULTS AND DISCUSSION

Vegetation Height

Vegetation heights were estimated accurately, using the first and 
last pulse returns. The average number of pulses for the 1.5 m grid 
cells was 22.5. The regression lines shown in the scatterplots of 
Figure 4 are based on 160 samples covering all vegetation types. 
Heights of lower (herbaceous) vegetation were relatively more 
difficult to estimate using lidar than scrubs and tree heights.

There are many errors involved in the process of estimating 
vegetation height from lidar data (ASPRS, 2004). To better 
understand the origin of errors, the following experiments were 
performed. First, a statistical analysis was performed on a flat area 
to estimate an upper bound of the vertical accuracy of estimated 
heights. A sample of 103 pixels was collected over a tennis court 
and a parking lot in the urban area next to the study area. Without 
random errors (ASPRS, 2004), all points on this flat and hard terrain 
should indicate a zero height difference. The mean value of the 
sample was calculated as 6 cm, with a standard deviation of 1 cm. 
These values represent an upper bound of the absolute and relative 
(vertical) accuracy of the height difference product. However, the 
main interest for this study was in vegetated area. When estimating 
vegetation heights, systematic errors are included as well (ASPRS, 
2004; Hodgson and Bresnahan, 2004). The systematic inability to 
penetrate dense vegetation is one example of a systematic error. A 
sensitivity analysis was therefore performed next.

A large grid cell returns more pulses, but the calculated vegetation 
height might not be representative for the entire grid. In other words, 
the probability that a pulse returned from an object, different than 
the one that was measured in the field, increases with the size of 
the grid. A small grid cell limits the number of return pulses, which 
is problematic for the estimation accuracy in dense vegetation. The 
optimal grid size was experimentally determined from the available 
field measurements. Vegetation heights were calculated for different 
rasters. The grid size was increased from 0.5 m to 2 m in steps 
of 0.5 m. With the mean pulse density of the lidar system equal 
to 5 m-2, the expected number of first pulse returns per grid cell 
corresponds to 1.25, 5, 11.25 and 20 respectively. The optimal grid 
size for this study was 1.5 m (Figure 5 A). A poor choice of the grid 
size can easily double the Root Mean Square Error (RMSE) value. 
Additionally, the correlation coefficient (R2) showed a steep curve to 
its maximum value.

After the grid cell size was fixed to 1.5 m, the effect of the pulse 
density of the lidar system was assessed. The number of pulse returns 
(first and last) per grid cell was lowered from its maximum value (> 
12) to 2. The results (Figure 5 B) showed the large effect of the 
pulse density on the estimation accuracy. As expected, more pulses 
decreased the RMSE and improved R2. Because high pulse densities 
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increase cost and processing time, a good trade-off was found to be 
10 pulses per grid cell.

Underestimation of vegetation heights from lidar data is a common 
problem. Bork and Su (2007) concluded that the underestimation 
of vegetation heights and misclassification of shrub lands into 
grasslands limited the utility of lidar data for classifying shrub lands 
in their study. Streuker and Genn (2006) found underestimations 
up to 50%. It was suggested that this was due to signal threshold 
limits within the lidar sensor, producing heights corresponding to 
the interior of the shrub canopy rather than the top. In this study, a 
regression for vegetation height was calculated using 2, 4, 8 and 12 
pulse returns (first and last) per 1.5 m grid cell (Figure 6 A). This 
experiment showed a relationship between a low pulse density and 
the underestimation of vegetation height. At the highest density, the 
underestimation was reduced to                                          with h

)
  and 

h the lidar estimated and field measured heights respectively (Figure 
6 B).

Vegetation Mapping

Following the proposed experimental setup, training was 

conducted on the small strip where lidar and multispectral data 
were available. The remaining part of the study area was used for 
validation. Two classifiers were tested. The first was classified 
using multispectral imagery only, without fusion with lidar data. 
A confusion matrix (Congalton, 1991) presents the classification 
results (Table 2). Rows represent the ground reference data and 
columns contain the class label results. The user’s accuracy of a class 
is the proportion of correctly classified sample units labeled as this 
class. It quantifies the confidence a user can have on a given thematic 
map. Conversely, the producer’s accuracy of a class is defined as the 
proportion of correctly classified ground reference sample units of 
this class. It expresses the probability that a ground reference sample 
will be correctly identified. From the total number of samples in each 
class (last column in Table 2), it is shown that the representation of 
the classes was imbalanced, i.e., some classes had more samples than 
others. As a consequence, a small proportion of misclassified samples 
of a large class (e.g., Hippophae rhamnoides) greatly reduces the 
user’s accuracy of a smaller class (e.g., Crataegus monogyna). The 
producer’s accuracy is more robust in the imbalanced classes.

Using multispectral data only, there was a lot of confusion 
between the different classes, as expressed by the overall accuracy 
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(55%). Almost half of the pixels were classified incorrectly. Another 
accuracy measure is the Kappa coefficient (κ). Some of the labels 
may have been allocated correctly purely by chance. The Kappa 
coefficient (Cohen, 1960) takes into account the expected agreement 
and is therefore considered as a better single accuracy measure 
(Congalton, 1991). It takes values from 0 (no agreement) to 1 
(perfect agreement). In our case, it was calculated as 0.5, which is 
considered as moderate agreement (Landis and Koch, 1977).

The classification results improved after fusion with lidar data 
(Table 3). The overall classification accuracy increased from 55% to 
71%, while κ increased from moderate (0.5) to substantial agreement 
(0.68). Although classification results are difficult to compare, the 
16% increase in accuracy is in agreement with results of Bork and Su 
(2007), who found an increase of 16 to 20% for four and nine classes, 
respectively. The classification accuracy improved especially where 

classes had a spectral overlap but were much different in height. 
By observing the simulated Rician distributions in Figures 3 A 
and 3 B, some of the improvements can easily be explained. As an 
example, the poor performance of Calamagrostis epigeios due to 
a spectral overlap with Crataegus monogyna was compensated by 
their distinct heights. Rule-based fusion of classifiers is based on this 
kind of observation. However, the design of such rules is not always 
obvious, as shown by the large overlap between the class heights.

A more detailed comparison on a class level is shown in Table 
3. The improvements (numbers in bold) are marked throughout 
the classes, with some minor exceptions. For low vegetation, data 
fusion was most successful for Calamagrostis epigeios (users’ and 
producers’ accuracy increased 24% and almost 47% respectively). 
Dune slack and Salix repens greatly improved (up to 31.8%). Moss 

Table 2. Confusion matrix of the classification results using multispectral data only: κ = 0.50, overall accuracy=55%. Rows are ground reference and columns 
are classification results.

Table 3. Confusion matrix of the classification results after data fusion: κ = 0.68 (+0.18), overall accuracy = 71% (+16%). Rows are ground reference and 
columns are classification results.

Class MA MO DG CA DS RP HR SR CM SC BW CW BS SH samples
MA 143 1 6 0 0 0 0 0 0 0 0 0 0 0 150
MO 10 141 0 0 0 0 0 0 0 0 0 0 0 0 151
DG 2 0 50 14 35 0 0 0 0 0 0 0 0 0 101
CA 0 0 39 36 0 0 0 0 42 0 3 0 0 0 120
DS 7 0 11 100 52 8 0 7 6 0 0 0 0 0 191
RP 0 0 5 6 0 19 0 0 11 1 18 0 0 0 60
HR 39 0 4 4 29 7 429 168 48 128 0 0 0 14 870
SR 52 0 7 28 3 2 62 96 103 101 5 0 0 0 459
CM 0 0 1 1 4 2 0 0 32 1 1 5 0 5 52
SC 0 0 0 0 2 0 2 29 28 173 0 0 0 16 250
BW 0 0 13 52 6 19 0 15 111 10 333 5 0 1 565
CW 0 0 0 0 0 0 0 0 5 0 0 3 0 24 32
BS 0 0 0 0 0 0 0 0 0 0 0 0 273 0 273
SH 0 0 0 0 0 0 0 0 0 0 3 2 0 51 56
User' Acc. 56.5 99.3 36.8 14.9 39.7 33.3 87.0 30.5 8.3 41.8 91.7 20.0 100.0 45.9

Prod. Acc. 95.3 93.4 49.5 30.0 27.2 31.7 49.3 20.9 61.5 69.2 58.9 9.4 100.0 91.1

Class MA MO DG CA DS RP HR SR CM SC BW CW BS SH samples
MA 149 1 0 0 0 0 0 0 0 0 0 0 0 0 150
MO 10 141 0 0 0 0 0 0 0 0 0 0 0 0 151
DG 0 0 53 23 25 0 0 0 0 0 0 0 0 0 101
CA 12 0 6 92 0 0 0 0 10 0 0 0 0 0 120
DS 7 0 36 66 66 10 0 6 0 0 0 0 0 0 191
RP 0 0 4 33 1 18 0 2 2 0 0 0 0 0 60
HR 11 0 0 6 0 1 624 93 111 7 0 0 0 17 870
SR 49 0 0 15 3 0 134 167 89 0 0 0 0 2 459
CM 0 0 0 0 0 0 0 0 35 6 0 3 0 8 52
SC 0 0 0 0 0 0 1 0 17 216 0 0 0 16 250
BW 0 0 0 0 0 0 0 0 36 36 485 6 0 2 565
CW 0 0 0 0 0 0 0 0 0 5 0 10 0 17 32
BS 0 0 0 0 0 0 0 0 0 0 0 0 273 0 273
SH 0 0 0 0 0 0 0 0 0 0 2 3 0 51 56
User' Acc. 62.6 99.3 53.5 39.1 69.5 62.1 82.2 62.3 11.7 80.0 99.6 45.5 100.0 45.1

+6.1 +0.0 +16.8 +24.2 +29.8 +28.7 -4.8 +31.8 +3.4 +38.2 +7.9 +25.5 +0.0 -0.8

Prod. Acc. 99.3 93.4 52.5 76.7 34.6 30.0 71.7 36.4 67.3 86.4 85.8 31.2 100.0 91.1

+4.0 +0.0 +3.0 +46.7 +7.3 -1.7 +22.4 +15.5 +5.8 +17.2 +26.9 +21.9 +0.0 +0.0
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dune did not benefit from lidar information, but its performance was 
already high (accuracies above 90%).

Tall vegetation types benefitted most from the data fusion. There 
can be several reasons for this. First, the success of data fusion for 
lower vegetation was restricted by the inability of the proposed 
method to estimate vegetation heights below 0.4 m. Spectral 
confusion between vegetation types lower than this threshold 
could thus not be resolved using lidar information. Second, the 
tall vegetation was defined with a lower detail (e.g., broadleaf 
trees were grouped), making the classification task easier. Spectral 
confusion that is present between broadleaf woodland (BW) and 
Calamagrostis epigeios as well as Crataegus monogyna was mostly 
resolved, using the difference in heights. On the other hand, classes 
for lower vegetation were chosen with considerable detail. Some 
of the confusion that still remained after data fusion must be put 
in this perspective. Hippophae rhamnoides and Salix repens are the 
two major lower scrub types found in the sand dunes and therefore 
interesting to map. By grouping these types into a single class, ’low 
scrub’, the resulting map would be more accurate, without losing 
much significance for the user with respect to class definition. 
A similar reasoning applies for Rosa pimpinellifolia (RP) and 
Calamagrostis epigeios (CA), which can be merged to grassland 
(DG).

CONCLUSIONS

Airborne digital camera and lidar data can be successfully applied 
to map coastal vegetation. The performance of vegetation height 
estimation from lidar was tested first. High density lidar data were 
obtained over a small strip of a larger study area. Ground reference 
data consisted of 160 samples, covering fourteen vegetation types 
and bare sand. Heights were measured in the field and compared to 
the lidar estimates. Best results were obtained by combining all first 
and last pulses and extracting the minimum and maximum of both. 
The canopy height was then estimated as a filtered version of the 
difference between the maximum and minimum. An optimal grid 
cell size of 1.5 m was found for rasterizing the lidar data. Using the 
full pulse density of 5 m-2 and a grid cell of 1.5 m, a good correlation 
between measured and estimated heights over all vegetation was 
found (R2 = 0.99, RMSE = 0.34). Simulations with lower pulse 
density reproduced the well known problem of underestimation of 
vegetation heights using lidar techniques, showing the importance 
of high pulse density. Correlation decreased for vegetation below 
1.5 m (R2 = 0.84). Vegetation lower than 0.4 m was not estimated 
accurately with the proposed method. This result had an important 
impact on the classification of lower types such as herbaceous 
vegetation and grassland.

Data fusion of lidar data and multispectral imagery was then 
applied for dune vegetation mapping. Multispectral imagery was 
available for the entire study area, including ground reference data 
(vegetation types). Due to the limited amount of lidar data over the 
study area, an original experiment had to be designed. Lidar heights 
were introduced to the remaining part of the study area, using a random 
variable with a Rican distribution. The distribution parameters 
were estimated from a subset of the lidar data. The remaining set 
was then used to train the classifier. Classes consisted of twelve 
vegetation types, bare sand and shadow. Using multispectral data 
only, an overall accuracy of 55% was obtained (κ = 0.5). After fusion 
with lidar data, the overall accuracy increased to 71% (κ = 0.68%). 
Improvements were in evidence throughout all classes, but most 
visible for medium scrub to tall vegetation. It was found that heights 

below 0.2 m were difficult to estimate with high accuracy with lidar 
data. The level of detail was also higher for the low vegetation (i.e., 
covering several classes including herbaceous, grass, and low scrub), 
whereas trees were labeled as broadleaf or coniferous woodland. The 
intention was to define challenging classes and to explore the ability 
of lidar data to resolve spectral confusion data existing between the 
classes. By design, classes could still be merged, if higher accuracies 
were needed.

Future work consists of comparing the proposed classifier design 
with a rule based classifier or expert system. A soil moisture model 
could also improve the classifier performance.
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