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Abstract This is Part I of two papers on man-induced regime
shifts in small, narrow, and converging estuaries, with focus on
the interaction between effective hydraulic drag, fine sediment
import, and tidal amplification, induced by river engineering
works, e.g., narrowing and deepening. In this part, a simple
linear analytical model is derived, solving the linearized
shallow water equations in exponentially converging tidal
rivers. Distinguishing reflecting and non-reflecting conditions,
a non-dimensional dispersion equation is derived which yields
the real and imaginary wave numbers as a function of the
estuarine convergence number and effective hydraulic drag.
The estuarine convergence number describes the major
geometrical features of a tidal river, e.g., intertidal area,
convergence length, and water depth. This model is used in
Part II analyzing the historical development of the tide in four
rivers. Part I also presents a conceptual model on the response
of tidal rivers to narrowing and deepening. It is argued that,
upon the loss of intertidal area, flood-dominant conditions
prevail, upon which fine sediments are pumped into the river,
reducing its effective hydraulic drag. Then a snowball effect
may be initiated, bringing the river into a hyper-turbid state.
This state is self-maintaining because of entrainment processes,
and favorable from an energetic point of view, and therefore
highly stable. We may refer to an alternative steady state.

Keywords Tidal amplification . Hydraulic drag . Dispersion
equation . Regime shift . Elbe . Ems . Loire . Scheldt

1 Introduction

Figure 1 depicts the evolution of the tidal range over roughly
the last century in five European ports, which are all situated
more than 50 km from the mouth of fairly small and narrow
estuaries. It is generally accepted that this large tidal
amplification is caused by the ongoing deepening and
canalization of these rivers, accommodating ever-larger ships;
though the precise mechanisms behind are not yet
understood. Of course, the increases in high water levels,
and decreases in low water levels form serious problems by
themselves, e.g., enhanced flood levels, lowering of ground
water table. However, it becomes more and more evident that
such deepening and narrowing induce large environmental
problems as well. Infamous are the Ems (Germany) and Loire
(France) Rivers. Today, both rivers can be characterized as
hyper-turbid, with suspended sediment (suspended particulate
matter (SPM)) concentrations of several 10 g/l, and large-
scale occurrences of fluid mud. Strong vertical stratification
causes serious water quality problems, and in the Loire the
enhanced salinity intrusion hampers fresh water intake for
industry and agriculture. The causes of the evolution of Loire
and Ems to these hyper-turbid states are not yet fully
understood (Talke et al 2008, 2009; Chernetsky et al 2010;
Winterwerp 2011), though there is consensus that the large
amplification of the tidal range must have played an
important role.

The aim of this paper is to enhance our understanding on
the evolution of the tidal amplification in narrow estuaries in
general, and the evolution towards a hyper-turbid state in
particular. This is done by analyzing the historical
developments of the tide in four rivers, e.g., the Elbe, Ems,
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Loire, and Scheldt (the only rivers for which sufficient
detailed data are available). Part II of this paper describes the
results of this analysis, which is carried out using the simple
analytical model of the tidal propagation in narrow tidal rivers,
described in the present Part I of this paper.

Themodel presented here is certainly not the first analytical
approach of the water movement equations. In fact, analytical
studies on the behavior of tides in estuaries go back many
decades. Hunt (1964) was probably the first to emphasize the
important role of channel convergence on tidal propagation—
all estuaries treated in the present paper have a converging
plan form. However, the first complete description is most
likely by Dronkers (1964). Since his pioneering work, many
more studies have been published on the analytical solutions
of the shallow water equations in estuaries. LeBlond (1978)
analyzed the tidal propagation and phase speed in the Frazer
and Saint Lawrence Rivers, which were schematized as
straight channels with a rectangular cross-section. When the
friction length is small compared to the tidal wave length, i.e.,
when friction dominates, the wave equations become
diffusive, explaining the observed tidal propagation in these
two rivers.

Prandle and Rahman (1980) pursued a systematic study on
the effects of channel convergence on tidal propagation in
general, and on tidal amplification in response to reflections
against a barrier in particular. The channel convergence was
modeled through power law functions of both river depth and
width, and the friction term was linearized, as in the current
study. Through a series of diagrams, the role of estuarine
parameters on tidal amplification, such as length, location of
the barrier, etc. was studied.

Jay (1991) generalized the solutions even further by
studying the tidal wave propagation in channels with
converging topography, accounting for intertidal areas, river
flow, and reflections and including first-order non-linear
effects with respect to tidal amplitude, advection, and friction.
From his general solutions, Jay established three regimes. The

first two regimes are characterized by small friction effects,
and are described by the “standard solution” of Green’s
model. These regimes are referred to as weakly dissipative
(Lanzoni and Seminara 1998). The first regime is governed by
strong topographic effects (strong convergence of the estuary),
and in the second regime, acceleration effects dominate.When
topographic and acceleration effects balance, friction becomes
progressively more important, and Jay refers to “critical
conditions” (e.g., strongly dissipative, Lanzoni and Seminara
1998). The wave equations become parabolic, and diffusive in
character, contrary to the hyperbolic behavior of frictionless
systems.

The effects of channel convergence in rivers with intertidal
area were further studied by Friedrichs and Aubrey (1994), a
priori assuming that horizontal velocity gradients are small.
This assumption was verified for three tidal rivers, e.g., the
Delaware, the Thames, and the Tamar River. Such conditions
are referred to as synchronous, and we will see later in the
current paper that these are important in understanding the
response of tidal rivers to ongoing deepening. In that case, the
water movement equations simplify considerably, revealing a
90° phase difference between water level and tidal flow. The
tide in such synchronous estuaries is not a classical standing
wave, as emphasized by many authors. Friedrichs and Aubrey
further introduce a proxy for the tidal asymmetry, referred to
as γ, which is the ratio of the wave celerity at high and low
water. For γ >1, the tide is flood-dominant, which was verified
for the three rivers above. An excellent summary of this work
is given in Friedrichs (2010), presenting approximations of
tidal characteristics in estuaries of a wide variety in shapes and
bathymetries.

Lanzoni and Seminara (1998) also study the complete,
non-linear water movement equations, distinguishing four
estuarine regimes, identified by weak and strong dissipation
and weak and strong convergence, respectively. Further to this
distinction, the water movement equations are scaled in
different ways, yielding four different solutions. One
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conclusion, relevant for the current study, is that for strongly
dissipative systems, ebb-dominant conditions would prevail,
whereas in weakly dissipative estuaries, the tide is always
flood dominant.

Toffolon and Savenije (2011) summarize the work by
Savenije (2001) and Toffolon et al. (2006), presenting a
complete solution of the linearized water movement equations
for narrow estuaries with intertidal area, including the effects
of limited length (reflections against a weir). They introduce
an iterative procedure accounting for the non-linear effects of
friction and relatively large tidal amplitude. In case of a
closed-end estuary with non-constant depth, the estuary is
divided in sub-sections, and a set of linear equations is
obtained with internal boundary conditions at the junction of
these sub-sections. Cai et al. (2012) elaborate further on this
work by analyzing the effects of a somewhat different friction
model.

The model by Van Rijn (2011) is basically similar to that of
Toffolon and Savenije (2011), though Van Rijn followed a
somewhat different approach. Further to these linear analyses,
followed by most authors, Van Rijn also elaborates an energy
approach in which non-linearities are explicitly accounted for,
at the cost though of unknown values of phase angle and flow
velocity, which have to be derived from the linear model.

All these studies elaborate more or less on the linearized
water movement equations. However, for (fine) sediment
transport, tidal asymmetry may be an even more important
parameter, which however can only be studied when non-
linear effects in the equations are accounted for. This has been
done for instance by Jay (1991—though with very little
emphasis), Lanzoni and Siminara (1998), Talke et al. (2008),
Talke et al. (2009), Chernetsky et al. (2010), and Schuttelaars
et al. (2012), by maintaining first- and/or second-order non-
linearities in their equations. Speer and Aubrey (1985) and
Friedrichs and Aubrey (1988) presented numerical solutions
of the water movement equations for an idealized, shallow,
and long estuary with a non-converging channel and constant,
rectangular cross-section, but including the non-linear
advection and friction terms, and the effects of intertidal area.
The results were presented in a series of famous diagrams,
indicatingwhen ebb- or flood-dominancy can be expected as a
function of the tidal amplitude relative to the water depth, and
areal of intertidal area.

In the current papers, we study the evolution of the tide and
SPM concentrations in narrow estuaries with intertidal area,
and possibly of limited length (weir) in response to human
interventions, e.g., narrowing and deepening by analyzing
observed changes in tidal properties. For this purpose we need
a simple and transparent model, allowing comparison of the
various rivers under consideration, focusing on tidal damping/
amplification mainly. The analytical models summarized
above are either complete, but not too transparent, or are based
on simplifications which prohibit application over the full

range of conditions considered in the present papers.
Therefore, we derive an alternative solution, which is
basically identical to the work by Jay (1991), Toffolon and
Savenije (2011), and Van Rijn (2011), but contains three
parameters only. This model is derived in Section 4, and then
applied to analyze the response of an estuary to narrowing and
deepening conceptually in Section 5.

A crucial step in our analysis is the influence of suspended
matter (fine sediments) on the effective hydraulic drag in
(tidal) rivers, as a result of which the response of a river to
narrowing and deepening becomes amplified, as explained in
Section 2. This amplification may become so large that the
river develops an alternative steady state—the hyper-turbid
regime. We refer to a regime shift, which is elaborated upon in
the Sections 3 and 6.

In Part II of this paper, the conceptual picture described in
the current Part I is applied to the Elbe, Ems, Loire, and
Scheldt rivers. Historical data on river engineering works
and the tidal response to these interventions are analyzed with
the analytical model of Part I, discussing the effects of SPMon
the effective hydraulic drag, and the effects of tidal reflections
against constructions in the river.

2 Suspended matter and effective hydraulic drag

In this paper, the effective hydraulic drag in a tidal river is
expressed in terms of the Chézy coefficient C , as C relates
directly to the logarithmic law of the wall, and we can use
U=u� ¼ C=

ffiffiffi
g

p
, where U =depth−mean flow velocity,

u*=shear velocity, and g =gravitational acceleration. When
deepening a river by, e.g., dredging, the effective hydraulic drag
is known to be affected in twoways, i.e., by the increase in depth
itself, where the bed structure (roughness height ks) remains
unchanged, and by off-topping possible bed forms in the river.
This can easily be seen from the relation between C and ks:

C ¼ 18log 12h=ksf g ð1Þ

This relation shows that when the water depth is doubled at
constant ks, C increases by at most 5 m1/2/s.

Van Rijn (1993) shows that by reducing bed form heights
in tidal rivers, ks may decrease by a decimeter or so. In that
case, Eq. 1 shows that again C may increase by about another
5 m1/2/s. We show in Part II that such a decrease in bed forms
may have taken place in for instance the Elbe River.

However, there is a third mechanism that may reduce the
effective hydraulic drag, i.e., stratification effects by
suspended matter (Vanoni 1946; Taylor and Dyer 1977;
Soulsby and Wrainwright, 1987; Villaret and Trowbridge
1991, to name a few). Vertical stratification by suspended
matter reduces the vertical exchange of turbulent momentum,
reducing viscous dissipation. In case of fine suspended
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sediments, these stratification effects are well distributed over
the water column (e.g., Soulsby and Wainwright 1987), and
therefore quite effective. Winterwerp et al. (2009) proposed a
simple formula for the reduction in hydraulic drag, induced by
suspended matter:

u

u�
≡
Ceffffiffiffi
g

p ¼ C0ffiffiffi
g

p þ CSPMffiffiffi
g

p ¼ C0ffiffiffi
g

p þ 4hRi�β ð2Þ

where C0 and CSPM are the Chezy values for sediment-free
conditions, and for the sediment-induced effects, respectively
with the bulk Richardson number Ri* and Rouse number β
defined as:

Ri�≡
ρb−ρwð Þgh
ρbu2�

and β ≡
σTWs

κu�
ð3Þ

where ρb and ρw are the bulk density of the suspension and
clear water, respectively, Ws=the effective settling velocity,
σT=Prandtl-Schmidt number (∼0.7–1), and κ =von Kármàn
constant (∼0.4). Relation (2) is depicted in Fig. 2 (after
Winterwerp et al. 2009); the various “data points” reflect the
results of a large number of numerical simulations.

With increasing SPM concentrations, Ri * increases,
whereas for larger particles (flocs), β increases. Basically,
Fig. 2 depicts that with increasing SPM concentrations, Ceff

increases. For the rivers under consideration in Part II, water
depths vary between 5 and 10 m, though the Elbe is
considerably deeper. In that case, Chézy values may increase
by 15–30 m1/2/s, considerably more than for the two other
mechanisms. It is to be noted that such effects may occur at
SPM concentrations as low as several 100 mg/l, provided that
these elevated concentrations are found over a substantial
length of the river (Winterwerp et al. 2009). In the following,
it is hypothesized how this interaction between suspended

matter and turbulent flow may initiate a snowball effect,
leading to the regime shifts observed in, e.g., the Ems and
Loire Rivers.

3 A second estuarine turbidity maximum—
the hyper-turbid state

Most estuaries are characterized by elevated SPM
concentrations at the head of the salinity intrusion. This
phenomenon is known as the estuary turbidity maximum
(ETM). All textbooks on estuarine dynamics explain the
mechanisms behind the occurrence of such ETM (e.g., Dyer
1997), and the general consensus is that this ETM is largely
governed by a balance between river-induced flushing and up-
estuary transport by estuarine circulation (also known as
gravitational circulation). Other, often secondary processes
contributing to the dynamics of an ETM are Stokes’ drift and
its rectification, tidal asymmetry effects, and lag effects (scour
and settling lag). In the following we refer to this turbidity
maximum found at the head of salinity intrusion as ETM1.

However, under special conditions, processes other than
the estuarine circulation may dominate the ETM dynamics, in
which case no correlation with salinity intrusion is found. For
instance, Brenon and LeHir (1999) studied the processes on
the formation of the turbidity maximum in the Seine estuary
with the use of a three-dimensional model, comparing model
output with observations. From a sensitivity analysis they
concluded that in the Seine, the estuarine turbidity maximum
at spring is mainly governed by a process referred to as tidal
pumping, e.g., the asymmetry in peak tidal velocities.

Lin and Kuo (2001) carried out field measurements in the
York River (USA) and found a second ETM, beyond the
salinity-driven ETM1. Lin and Kuo argued that this ETM is
maintained by tidal asymmetry and lag effects, in conjunction
with a large availability of fine sediments in the riverbed.
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Chernetsky et al. (2010) discussed the formation of a
secondary ETM in the Ems River, well beyond the area of
salinity intrusion, which is clearly depicted in Talke et al.
(2009). The dynamics of this ETM are governed by tidal
asymmetry, in response to ongoing deepening of the river.
We refer to this second turbidity maximum as ETM2, and for
simplicity in the following argumentations, we define:

& ETM1 is controlled by a balance between river-induced
flushing and estuarine circulation

& ETM2 is controlled by a balance between river-induced
flushing and asymmetry in peak tidal velocities, in which
we are purposely ignoring other effects.

This picture is sketched in Fig. 3, showing conceptually
that ETM1 and ETM2 can exist together, and that ETM2 is
always found up-estuary of ETM1. However, in practice,
ETM1 and ETM2 may merge, as in the Ems (Talke et al.
2009).

Winterwerp (2011) postulated a sequence of developments
in estuarine dynamics in response to river deepening through
which an ETM2 is formed in rivers which are initially
characterized by a regime with one ETM1 only. It was argued
that, if SPM concentrations become large enough, a self-
maintaining alternative regime would evolve with an ETM2,
dominated by asymmetries in peak velocities and vertical
mixing (internal asymmetry, e.g., Jay and Musiak 1996),
balanced by river-induced flushing.

Hence, a tidal river may be characterized by two alternative
steady states, one state (regime) with only one ETM1, and one
with an ETM2 (possibly in conjunction with an ETM1 as
well). In the following sections, we will argue further how
such a regime shift may develop in response to river
engineering works. Here we summarize two arguments on
the stability of the second regime.

The first argument follows from the stability diagram for
suspensions of fine sediments in open channel flow,
developed by Winterwerp (2001, 2006, e.g., Fig. 4). The
horizontal axis of Fig. 4 depicts the volumetric concentration
ϕ of the suspended sediment particles, which, for fine
sediments, can be large at small mass concentrations because
fine sediment flocs contain large amounts of water. The
vertical axis depicts the flux Richardson number Ri f , a
measure for the efficiency of vertical mixing, which can be
interpreted as the ratio of potential energy required for mixing

of fine sediments over the water column, and the kinetic
energy available for mixing. Experimental evidence shows
that a turbulent flow cannot be stable when Rif exceeds a
critical value, reflected by Ri f ,cr (e.g., Turner 1973;
Winterwerp 2001). Figure 4 shows that at a flow velocity
U2, SPM concentrations may attain values for which Rif>
Ri f ,cr, upon which the turbulent flow field collapses. In
practice, this means that fluid mud is formed.

At larger flow velocity U 1>U 2, the stability curve is
continuous, with two distinctly different branches though. In
the left, rising branch, an increase in ϕ implies an increase in
Rif, hence less favorable conditions from an energetic point of
view. In the right, descending branch, an increase in ϕ yields a
decrease in Rif, hence energetically more favorable conditions.
This branch refers to so-called hyper-concentrated conditions: the
turbulent flow “likes” high concentrations, as a further increase in
ϕ requires less energy to keep the sediment in suspension. It can
be argued that the Ems and Loire Rivers are currently in this
hyper-concentrated state (Winterwerp 2011). The bi-modal
behavior of Fig. 4 is attributed to hindered settling effects—at
higher ϕ—values, the effective settling velocity reduces, and less
energy is required to keep the particles in suspension
(e.g., Winterwerp 2001; Dankers and Winterwerp 2007).

It is noted that in case of asymmetries in peak tidal velocity,
also vertical mixing becomes asymmetric (mixing scales with
velocity squared). For instance, flood conditions may be well-
mixed, whereas ebb conditions may be highly stratified (e.g.,
Winterwerp 2011).

The last important issue on the hyper-concentrated state of
tidal rivers concerns the temporal variation in tidal velocity.
Around slack water, the suspension settles, forming fluid mud,
which then starts to consolidate. So how does the sediment–
water mixture remain fluid? Bruens et al. (2012) suggest that
during accelerating flow, water overlying the fluid mud is
pumped into the fluid mud by entrainment processes. Hence,
twice every tidal cycle, the suspension is more or less entirely

ETM 1
ETM 2

Fig. 3 Cartoon of the turbidity maxima ETM1 and ETM2 in a
converging estuary; ETM1 is governed by river-induced flushing and
estuarine circulation, whereas ETM2 is governed by river-induced
flushing and tidal asymmetry
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mixed over the water column. As consolidation rates scale with
the fluid mud thickness squared, consolidation is only important
over longer time periods, such as the spring-neap cycle.

In this section, we have argued that when conditions would
evolve inducing an ongoing increase in SPM concentrations, a
regime shift may occur leading to hyper-concentrated
conditions. Such a hyper-turbid regime is extremely stable,
as favorable from an energetic point of view. Therefore, a river
in this state would be difficult to reverse to its original state, as
the “energy barrier” of Fig. 4 has to be overcome (or by-
passed).

When the river flow is too small to flush the fine sediments
occasionally out of the river, the development of an ETM2
regime is a likely candidate to set a regime shift intomotion, as
the asymmetries in peak velocity and vertical mixing continue
to pump fine sediments up-estuary (or trap riverine
sediments). Obviously, also the river’s flushing capacity
decreases with increasing water depth. In the two following
sections, we discuss how engineering works may initiate such
events.

4 Dispersion equation for converging estuaries

Basically, all alluvial estuaries have a more or less funnel-
shaped plan form. In the remainder, we limit ourselves to the
evolution of the semi-diurnal tide (T ≈12.5 h) in narrow
estuaries (one channel only) with intertidal area and an
exponentially converging width: bc=b0exp{−x /Lb}, where
b c =width flow-carrying cross-section, b 0=width flow-
carrying cross-section in the mouth of the estuary, and Lb=
convergence length (typical values between ∼20 and ∼40 km).
Furthermore, we assume a more or less rectangular shape of
the flow-carrying cross-section, such that Ac≈hbc, where
Ac=area of flow-carrying cross-section, and h =tide-mean
water depth, and a width of the intertidal area Δb , which is
a constant fraction of bc(x ). The total width b tot is the sum of
bc and Δb . This cross-section is sketched in Fig. 5.

This configuration is fairly similar to the ones studied by
Jay (1991), Lanzoni and Seminara (1998), Friedrichs and
Aubrey (1994), Toffolon and Savenije (2011), and Van Rijn
(2011). The governing equations for conservation of mass and
momentum have been linearized by neglecting the advection

term and linearizing the friction term in the momentum
equation (see also references above):

bc þΔbð Þ∂η
∂t

þ ∂Acu

∂x
¼ 0

∂u
∂t

þ g
∂η
∂x

þ ru

h
¼ 0

ð4Þ

where η =instantaneous water level, u =cross-sectional
averaged flow velocity, r =linear friction term (r =8cDU /
3π [m/s]), cD=drag coefficient, U =characteristic (maximal
velocity), and x and t are longitudinal co-ordinate and time
(x =0 at the estuaries mouth, and x >0 up-estuary). The drag
coefficient cD attains values of 0.001 to 0.003 (corresponding
Chézy values of 100–60 m1/2/s, as r ≈gU /C2), hence r also
varies from around 0.001 to 0.003. In the following, we
assume that the fresh water river flow is so small that its
effects can be neglected. Finally, further to our linear
approach, we also assume that parameters may vary along
the estuary, such as the tidal amplitude, but that these
variations are relatively small, and that the tidal amplitude is
small compared to the water depth.

If we neglect longitudinal gradients in water depth (∂h /∂x ),
the continuity and mass balance equation read:

∂η
∂t

þ Ac

bc þΔb

∂u
∂x

−
Ac

bc þΔb

u

Lb
¼ 0 ð5aÞ

∂u
∂t

þ g
∂η
∂x

þ ru

h
¼ 0 ð5bÞ

We assume that the solution to (5) follows a harmonic
function:

η x; tð Þ ¼ hþ a0exp i ωt−kxð Þf g and u x; tð Þ ¼ U0exp i ωt−kx−φð Þf g
ð6Þ

where a 0=tidal amplitude at x =0 (because of our linear
approach, a0 should be much smaller than the water depth
h ), U0=amplitude flow velocity at x =0, ω =tidal frequency;
ω =2π/T ; T =tidal period, k =complex wave number; k =kr+
ik i, kr=real wave number (kr=2π /λ ), λ =tidal wave length,
k i=imaginary wave number, andφ =phase angle between tide
and velocity. Tidal amplification/damping is then defined as
a (x )=a0exp{k ix}.

Next, we substitute (6) into (5a) and (5b), which reads in
matrix form:

iω −
Ac

bc þΔb
ik þ Ac

bc þΔb

1

Lb

� �
exp −iφf g

igk − iωþ r

h

� �
exp −iφf g

264
375 a0

U0

� �
¼ 0 ð7Þ

bc b

h Ac

u = 0

a

Fig. 5 Schematic cross-section of tidal river with flood plain, and
definition of parameters used
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Requiring the existence of non-trivial solutions, the
determinant of Eq. 7 should be zero, which yields a dispersion
equation implicit in the wave number k :

Lbk
2−ik−

bc þΔb

ghbc
Lbω

2 1−i
r

ωh

� �
¼ 0 or κ2−2iκ−Λe 1−ir�ð Þ ¼ 0

ð8Þ

in which the following dimensionless parameters have been
defined:

κ ¼ κrþ iκi ¼ 2kLb

L� ¼ 2Lbωffiffiffiffiffi
gh

p ¼ 2Lb
Lg

; where Lg≡
ffiffiffiffiffi
gh

p
ω

r� ¼ r

ωh
¼ gU

ωhC2

b� ¼ bc þΔb

bc

Λe ¼ b�L2� ¼
bc þΔb

bc

4L2bω
2

gh
¼ 4L2bω

2

gAc=btot

ð9Þ

Here we introduce the estuarine convergence number Λ e,
through which all geometrical and bathymetrical features of
the rivers are accounted for. Λ e decreases with increasing
water depth and river convergence, and with loss of intertidal
area. Note that the friction parameter bχ introduced by
Toffolon and Savenije (2011) is identical to r *. Another
important length scale is the friction length Lr, which follows
from the non-linearized momentum equation Lr=hC

2/g .
Next, the quadratic dispersion Eq. 8 is resolved (using

MAPLE), yielding the real and imaginary wave number for
the tidal propagation in a converging estuary:

κr ¼ � 1

2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λe−1ð Þ2 þ Λer�ð Þ2

q
þ 2 Λe−1ð Þ

� �1=2
ð10aÞ

and

κi ¼ 1∓
1

2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λe−1ð Þ2 þ Λer�ð Þ2

q
−2 Λe−1ð Þ

� �1=2
ð10bÞ

where the +/− sign represent the incoming wave in Eqs. 10a
and 10b, respectively, and the −/+ sign the reflecting wave.
This solution is identical to the solution presented by Jay
(1991), Toffolon and Savenije (2011) and Van Rijn (2011).
In Part II of this paper, it will become clear why we prefer the
simple three parameter solution of Eq. 10.

Figure 6 shows the variation of the dimensionless real and
imaginary wave number as a function of the estuarine
convergence number Λe for two values of the dimensionless
effective hydraulic drag r*=1 and 6, characteristic for muddy
and sandy beds, respectively. For low Λe and r*, the tide

becomes amplified, for sandy beds, characterized by larger
roughness, not.

Let us first analyze the behavior of these solutions
for an infinitely long estuary. For a non-converging
(L b =∞), frictionless channel (r = 0), Eq. 10—in
dimensional form—converges to the well-known

relations kr ¼ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bc þΔbð Þ=bcgh

p
and k i =0. For a

non-converging channel with friction, we obtain:

kr ¼ �
ffiffiffiffiffiffiffiffiffiffi
b�ω2

2gh

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2�

q
þ 1

� �1=2
and ki ¼ ∓

ffiffiffiffiffiffiffiffiffiffi
b�ω2

2gh

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2�

q
−1

� �1=2
ð11aÞ

Let us next analyze these solutions for a converging estuary
with very high (r =∞) and very low roughness (r ≈0). In the
first case the friction term dominates the expression below the
square root-sign, in the second case, friction can be neglected.
The real and imaginary wave number for a frictionless system
read (assuming shallow water, i.e., h not too large)

κrjr↓0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Λe−1

p
and κijr↓0 ¼ 1 for Λe≥1

κrjr↓0 ¼ 0 and κijr↓0 ¼ 1−
ffiffiffiffiffiffiffiffiffiffiffi
1−Λe

p
for Λe≥1

ð11bÞ

Equation 11b shows that for a smooth bed and Λe≥1, the
tidal wave is amplified with the convergence length k i=1/2Lb;
this is therefore the maximum amplification of the tide
according to linear theory; the estuary is said to be in
synchronous mode (see below—weakly dissipative, Jay
1991; Lanzoni and Seminara 1998).

In case of a rough bed (r =∞), the real and imaginary wave
number become (strongly dissipative):

krjr↑∞ ¼ 1

4Lb

ffiffiffiffiffiffiffiffiffiffiffiffi
2Λer�

p
or κrjr↑∞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λer�=2

p
kijr↑∞ ¼ 1

2Lb
−

1

4Lb

ffiffiffiffiffiffiffiffiffiffiffiffi
2Λer�

p
or κijr↑∞ ¼ 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λer�=2

p ð11cÞ
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From Eq. 7, we can derive the velocity amplitude U0 as a
function of a0:

U 0 ¼ mod
igka0

iþ r�ð Þωexp −iφf g
� �

¼ ga0
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2r þ k2i
r2� þ 1

s
ð12Þ

The phase angle between tidal elevation and velocity
follows from substitution of (6) into (5a), elaborating the real
part only:

iωa0−i
Ac

bc þΔb
kU 0exp −iφf g− Ac

bc þΔb

1

Lb
U0exp −iφf g ¼ 0

ð5a′Þ

tan φf g ¼ Lbki−1
Lbkr

¼ κi−2
κr

ð13aÞ

Note the similarity of (13a) with Van Rijn’s Table 1 (2011).
Substituting from (11b and 11c) yields the phase angle for a
smooth and friction-dominated system (see also Dronkers
2005 and Friedrichs 2010):

tan φf gjr↓0 ¼ −
1ffiffiffiffiffiffiffiffiffiffiffi
Λe−1

p for Λe≥1 and tan φf gjr↓0 ¼ ∞; φ ¼ 90∘ for Λe≤1

tan φf gjr↑∞ ¼ −
ffiffiffiffiffiffiffiffiffi
Λer�

p þ 2ffiffiffiffiffiffiffiffiffi
Λer�

p ≈ −1 for all Λe

ð13bÞ

The celerity c of the tidal wave into the estuary is given by:

c ¼ ω
kr

¼ 2ωLb
κr

ð14aÞ

Substituting from (11a) yields the celerity for a smooth and
friction dominated system (e.g., Le Blond 1978):

cjr↓0 ¼
2ωLbffiffiffiffiffiffiffiffiffiffiffi
Λe−1

p for Λe≥1 and cjr↓0 ¼ ∞ for Λe≤1

cjr↑∞ ¼ 4ωLbffiffiffiffiffiffiffiffiffiffiffiffi
2Λer�

p for all Λe

ð14bÞ

The behavior of the tidal wave for frictionless conditions
and Λ e≤1 (i.e.,Lb≤Lg/2 for Δb =0) needs some further
explanation. For these conditions, the wave length and celerity
become infinite, whereas the phase angle between water level
and velocity becomes 90°. Though these conditions are
identical to those of a standing wave, we have to realize we
did not prescribe any wave reflections in our boundary
conditions. Though this pathological behavior is referred to
as super-critical by Toffolon and Saveneije (2011), and was
also found by Friedrichs and Aubrey (1994), we do not really

understand the physical meaning of these solutions to the
equations, and the conditions at which these occur.

Next, we study the propagation and amplification/damping
of the tide in an estuary of finite length ℓ (for instance by a
weir at x = ℓ ). At the mouth of the estuary we prescribe a
simple cosine tide:

η 0; tð Þ ¼ hþ a0cos ωtf g ð15Þ

in which a0=amplitude of the tide in the river mouth. The
harmonic solution to Eq. 5 than reads:

η x; tð Þ ¼ hþ aþ0 exp i ωt−kþxð Þf g þ a−0exp i ωt−k−xð Þf g and
u x; tð Þ ¼ Uþ

0 exp i ωt−kþx−φð Þf g þ U−
0 exp i ωt−k−x−φð Þf g

ð16aÞ

in which the superscripts ·+ and ·− reflect the incoming and
reflecting tidal wave. In case of an infinitely long river,
Eq. 16a reduces to:

η x; tð Þ ¼ hþ a0exp i ωt−kxð Þf g and u x; tð Þ ¼ U0exp i ωt−kx−φð Þf g
ð16bÞ

as in Eq. 6. The boundary conditions to the solution of Eq. 16a
are given by:

& x =0: a 0
++a 0

−=a 0; this conditions implies that in the
analyses of Part II, for rivers with a weir, the river should
be so long (friction length small) that a0=a0

+,
& x = ℓ : U =0, hence U+=−U−.

Further to Eq. 5b, the latter implies that
& x = ℓ : ∂a +/∂x = − ∂a − /∂x , so that

aþ0 k
þexp −ikþ ℓf g þ a−0k

−exp −ik− ℓf g ¼ 0 .

Hence, we find for the two complex amplitudes of the
incoming and reflecting waves a+ and a−:

aþ ¼ k−exp −ik− ℓf gexp −ikþxf g
k−exp −ik− ℓf g−kþexp −ikþ ℓf ga0 ð17aÞ

a− ¼ k−exp −ikþ ℓf gexp −ik−xf g
kþexp −ikþ ℓf g−k−exp −ik− ℓf ga0 ð17bÞ

As k−=−kr+iki−=−kr+i(p+q) and k+=kr+iki+=kr+i(p−q),
where p and q are dummy variables (see Eq. 10), we can
re-write (17) as:

aþ0 ¼ k−exp ikr ℓf g
k−exp ikr ℓf g−kþexp −ikr ℓf gexp −2q ℓf ga0 ð18aÞ

a−0 ¼ kþexp −ikr ℓf gexp −2q ℓf g
kþexp −ikr ℓf gexp −2q ℓf g−k−exp ikr ℓf ga0 ð18bÞ
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Hence, lim
ℓ →∞

aþ0
	 
 ¼ a0 and lim

ℓ →∞
a−0

	 
 ¼ 0 , retrieving

the simple propagating wave in an infinitely long converging

estuary. Furthermore, Eq. 17 shows that resonance can occur
when:

Re kþexp −ikþ ℓf g−k−exp −ik− ℓf g½ � ¼ 0; i:e:; tan n
π
2
−kþr ℓ

n o
¼ kþr exp k−i ℓ

	 
þ kþr exp kþi ℓ
	 


kþi exp kþi ℓ
	 
þ k−i exp k−i ℓ

	 
 ð19Þ

As Eq. 19 is implicit in ℓ , we cannot determine the
conditions for resonance analytically. However, for a straight
channel, k i

−=−k i+ (e.g., Eq. 10b), tan kr ℓf g ¼ ∞ , which is
the case if ℓ ¼ λ=4 , where λ=wave length in a straight
frictionless channel, e.g., Dronkers (1964). For a very strong
converging channel, e.g., lim

Lb→0
kr ¼ lim

Lb→0
kþi ¼ lim

Lb→0
k−i ¼ 1 ,

tan kr ℓf g ¼ 1 , and ℓ ¼ λ=8 . Of course, the wave length in
a straight and very converging channel are very much
different (in fact if Lb=0, λ =0).

The solution to Eq. 19 is depicted graphically in Fig. 7 (see
also Prandle and Rahman (1980)). Note that typical values for
Λe range from a bit smaller than 1 to about 2 (e.g., Part II).

The effect of reflections will grow rapidly with decreasing
effective hydraulic roughness, as both the tidal amplitude and
friction length will than increase.

Next, we study the dependency of tidal asymmetry on the
estuarine bathymetry. Though we prescribe harmonic
solutions in a linear model (Eqs. 5 and 16a with one frequency
only), we can derive a proxy for the tidal asymmetry by
analyzing the celerity of the tidal wave. In the following, we
limit ourselves to infinitely long channels only. Further to
Friedrichs (2010) and Dronkers (2005), we define an
asymmetry parameter γ=cHW/cLW, where cHW and cLW are
the celerity at high water (i.e., h =h0+a ) and low water (i.e.,
h =h0−a ), respectively:

γ ¼ kr;LW
kr;HW

¼ 1þ a=hð Þ
1−a=hð Þ

� �1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2�− 1−a=hð Þ� �2 þ L2�r�

1−a=hð Þ
� �2

r
þ L2�− 1−a=hð Þ� �" #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b�L2�− 1þ a=hð Þ� �2 þ b�L2�r�

1þa=hð Þ
� �2

r
þ b�L2�− 1þ a=hð Þ� �" #

266664
377775
1=2

ð20Þ
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in which we assume that Δb =0 at low water, and the
dimensionless parameters have been defined in Eq. 9.
Note that this proxy is relevant for progressive waves

only, and loses its meaning in case of a truly standing
wave. Further, for a friction-dominated system we
find:

γjr¼∞ ¼ kr;LW
kr;HW






r¼∞

≈
1

1−a=hð Þ
b�

1þa=hð Þ

1
1−a=hð Þ

1
1þa=hð Þ

" #1=2

¼ 1þ a=h

1−a=h

ffiffiffiffiffi
1

b�

r
≈

1þ a=hð Þ2ffiffiffiffiffi
b�

p ð21aÞ

Of course, this solution can be derived directly from the
general formulation of wave celerity in a straight prismatic

compound channel, e.g., c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gAc=btot

p
. For a frictionless

system we find four solutions, depending whether L*
2 and

b *L *
2 are larger or smaller than (1−a /h ) or (1+a /h ),

respectively. We give one solution:

γjr¼0 ¼
kr;LW
kr;HW






r¼0

≈
1þ a=hð Þ2Λe=b�− 1þ a=hð Þ

Λe− 1þ a=hð Þ

" #1=2

for L2�≥ 1−a=hð Þ and b�L2�≥ 1þ a=hð Þ ð21bÞ

In the next section, we study the behavior of these solutions
graphically, analyzing the response of an estuary to deepening
and narrowing (loosing intertidal area).

5 Conceptual response to narrowing and deepening

In Part II of this paper, we analyze the historical evolution of
four rivers, e.g., the Elbe, Ems, Loire, and Scheldt Rivers. The
length of Ems and Scheldt is restricted by a weir (at Herbrum
and Ghent, respectively), hence the tide is likely to be affected
by reflections. The depth of the Elbe changes so abruptly
beyond Hamburg, that also in the Elbe tidal reflections are to
be expected. Hence, ideally, we should use the full analytical
solution (Eq. 17) to study the tidal properties in these rivers.
However, this is not easy, as the depth along these rivers varies
considerably, and also the convergence length of two rivers
(Elbe and Scheldt) is not constant. Modeling the tide in such
inhomogeneous rivers requires division of the river into sub-
sections. This is indeed done in Part II. From a mathematical
point of view, accounting for reflections of the tide requires
internal boundary conditions between the various sub-
sections. This has been elaborated by, e.g., Prandle and
Rahman (1980), Jay (1991), and Toffolon and Savenije
(2011). However, the extensive set of equations lose their
clarity, while this clarity was the major reason for developing
the current new approach. Therefore, in Part II we analyze
these four rivers, assuming infinite length, and we discuss the
behavior of the solutions of the previous section for infinitely
long rivers as well.

Yet, for the Elbe, Ems, and Scheldt, we assess the effects of
tidal reflections in a qualitative way, and in the following, we

elaborate briefly the behavior of the full solution (Eq. 17) by
studying that solution graphically. First, we analyze the
conditions for resonance in an almost straight channel of
5 m depth, and a weir at 75 km (about 1/4 of the undisturbed
tidal wave length), as discussed by Dronkers (1964). The
results are presented in Fig. 8 for three different friction
coefficients; these results are indeed identical to those found
by Dronkers (1964). As mentioned, tidal amplification by
reflections is expected to grow rapidly with increasing SPM
concentrations, as tidal amplitude and friction length both
increase with decreasing hydraulic drag.

Next, we study the effect of river convergence. Figure 9
presents the computed tidal amplitudes in a 5-m deep
converging river (Lb=33 km, e.g., Ems conditions) with and
without a weir for two values of the friction coefficient, the
smaller representative for high SPM conditions and the larger
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for low SPM concentrations. Though the increase in tidal
amplitude is not too different for both cases, the tide in the
sandy system remains damped, whereas in the muddy system,
the tide becomes amplified.

To check our full solution (e.g., with reflections), we have
also plotted the imaginary wave number (10b), which gives
directly the relative amplitude in an infinitely long channel,
showing exact overlap with Eq. 17 for ℓ =∞.

In the last part of this section, we discuss the behavior of
the solutions of the previous section for an infinitely long
channel, assuming a convergence length of 33 km,
throughout. Figure 10 presents the phase difference between
the flow velocity and tidal elevation φ (e.g., Eq. 13a) as a
function of depth, width of intertidal area, and bed friction.
Figure 11 presents the celerity c of the tidal wave into the
estuary, using Eq. 14a. Because of the rapid increase in c with
depth h and inverse friction 1/r, we have used a logarithmic
axis.

For φ =90° (e.g., Fig. 10), high water slack (HWS) occurs
at high water (HW), as for standing waves. This condition is
met at large water depths, but also at moderate water depths
when the hydraulic drag becomes very small. The latter is the
case in the presence of pronounced concentration of SPM
(several 10 g/l), as in the Ems and Loire Rivers. Figure 10
shows that c then increases rapidly, and can become so large
that high waters along the estuary occur almost
simultaneously. For instance, for h =7 m, and r =0.001, we
find c =100 m/s (e.g., Fig. 11), and high water at 60 km from
the river mouth would occur only 10 min after high water at
that mouth. Note that a “normal” progressive wave approach
c ¼ ffiffiffiffiffi

gh
p

would yield a travel time of almost 2 h.
From Eq. 5a we assess that φ =90° occurs when ∂u /∂x =0

(see also Dronkers 2005 and Friedrichs 2010), and from
Eq. 13a, we conclude that φ =90° implies kr=0. The latter is
true only for a real standing wave, which implies resonant
behavior in the estuary. Note that this solution still represents a
progressive wave, even when reflections become important.
The first observation also implies large flow velocities over
the major part of the estuary. Then, owing to the harmonic
solution prescribed (Eq. 6), also the tidal amplitude is more or
less constant over a large part of the estuary. An estuary with
such conditions is called synchronous (e.g., Dronkers 2005).
Examples are the current conditions in the Ems and Loire
River (e.g., Part II).

Note that the evolution towards a synchronous estuary is
delayed in case of presence of (some) intertidal area, e.g.,
Fig. 10. However, the celerity decrease with Δb /bc (results
not shown), though is not too sensitive to the intertidal area.

Next, we study the conceptual character of the tidal
properties in a tidal river in response to deepening as a
function of the areal of intertidal area and the effective
hydraulic drag, simulating low (r =0.003 m/s; C≈ 60 m1/2/s)
and high SPM concentrations (r =0.001 m/s, C≈ 100 m1/2/s).
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The convergence length is set again at 33 km, and we
prescribe a tidal amplitude in the mouth of the river of 1 m
to depict the tidal response clearly, though this amplitude is
possibly a bit high with respect to our linear assumptions. The
intertidal area is set at Δb =bc or Δb =0.

First we discuss the situation with low SPM concentrations
(r =0.003 m/s). Figure 11 shows that when the river is
deepened, the tidal amplitude increases, as expected.
Without intertidal area, the response is a bit stiffer. For large
water depth, the amplitude for the case with intertidal area is a
bit larger than in the case without intertidal, as in the first case
more water enters the river.

Figure 13 shows that the proxy for tidal asymmetry γ
changes from ebb dominance for all water depths to flood-
dominant conditions in case the intertidal area is removed.
This observation is not new of course (e.g., Friedrichs and
Aubrey 1988), but the implications for fine sediments have
not been elaborated. When the tidal river becomes flood
dominant, marine fine sediments are pumped into the river
and/or riverine fine sediment are kept within the river. Then, if
sufficient fines have accumulated, and are distributed over a

considerable length of the river, the effective hydraulic drag is
expected to decrease (e.g., Section 3 of this paper). In response
to this lower drag (simulatedwith r =0.001m/s), amplification
increases further, as depicted in Fig. 12, accompanied by an
enhancement of flood dominance, e.g., Fig. 13. As a result,
more fines can accumulate in the river, further decreasing the
effective hydraulic drag, setting in motion the snowball effect
suggested in the beginning of this paper.

The next section discusses some implications of this
picture, and in Part II we analyze historical data to study
whether this feed-back can be observed in European rivers.

6 Discussion, summary, and conclusions

This paper presents a conceptual picture on the evolution of a
number of “normal” European tidal rivers into a hyper-turbid
state in response to narrowing and deepening accommodating
ever-larger ships. Part II of this paper describes the actual
analysis of the historical data of four European rivers, e.g.,
the Elbe, Ems, Loire, and Scheldt rivers. In the current Part I,
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the ingredients required for the analysis and interpretation of
the data in Part II are derived and summarized. Our main tool
in this is the analytical solution of the linearized water
movement equations. Though not new, the solution is
formulated in a form that can be used easily to compare the
evolution of the various rivers.

Our analysis of the analytical solution itself suggests that,
after loss of intertidal area, ongoing deepening may enhance
flood dominancy, while decreasing the river’s flushing
capacity. As discussed in Part II, loss of intertidal area has
been considerably in the nineteenth century, reclaiming
intertidal areas and embanking rivers. Thus, conditions may
be induced favorable for the generation of a secondary
turbidity maximum, referred to as ETM2. Then, if large
amounts of fine sediments would accumulate in the river, the
effective hydraulic drag decreases, enhancing the tidal
asymmetry further. It is noted that this feed-back may occur
already at SPM concentrations of several 100 mg/l
(Winterwerp et al. 2009). However, the suspended matter
should be spread over a considerable length of the river to
induce a measurable reduction in drag. As the accumulation of
fines takes time, the time-scale for a regime shift towards
hyper-turbid conditions is expected to take considerable time
after “favorable” conditions for such a regime shift have been
established (the tipping point). When SPM concentrations

continue to increase, entrainment processes re-fluidize the
mud every accelerating tide, preventing consolidation of the
sediment–water mixture. Thus, the ETM2 conditions become
self-maintaining, as the hyper-turbid state is favorable from an
energy point of view as well (e.g., Section 2). These ETM2
conditions can therefore be considered as an alternative state
in relation to the ETM1 state, common in most “normal”
estuaries. This positive feed-back loop is sketched in
Fig. 14, depicting the proposed snowball effect leading to
hyper-turbid conditions.

As high SPM concentrations in the water column are a
necessary condition for the feed-back between tidal
amplif icat ion and reduction in hydraulic drag,
accommodation of fines on intertidal areas may prevent a
regime shift in tidal rivers. Thus, intertidal area has two
functions:

& With sufficient intertidal area, tidal conditions remain ebb-
dominant, preventing the formation of ETM2 conditions.
However, a considerable intertidal area is required,
estimated at least 50 % of the width of the flow-carrying
cross-section (see also Friedrichs and Aubrey 1988).

& Intertidal area can however also accommodate large
amounts of fine sediments, preventing their accumulation
in the water column. The area required to prevent a regime
shift towards hyper-turbid conditions is site-specific, but
likely much smaller than the intertidal areas required to
affect tidal asymmetry.

It is finally noted that in the current paper three important
effects are not being treated (in detail):

& The tidal evolution may be affected by the construction of
a weir, limiting the effective length of the river. The
reflections of the tidal wave are felt over increasing
lengths of the estuary when the effective hydraulic drag
decreases. The underlying increase in roughness length is
not only the result of a decrease in friction coefficient, but
also by the increase in the celerity of the tidal wave.

& Tidal asymmetry in an estuary is not only generated
internally, but may also be “imported” from the estuaries
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Fig. 13 Response of tidal
asymmetry as a function of water
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Fig. 14 Conceptual positive feedback loop inducing hyper-concentrated
conditions in tidal rivers after intertidal area has been lost, which
happened for many rivers in the late nineteenth century
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environment, for instance a shallow sea in which the
estuary flows (e.g., Schuttelaars et al. 2012).

& The effect of river flow with respect to flushing has been
discussed (though not quantified); however, river flows
can affect the tidal propagation as well, which cannot be
elaborated with the linear model in this paper.

In a next phase of this study, we will address these issues,
and other non-linear effects with a numerical model, operated
in the same sense as the analytical model of this paper, as
elaborated upon in Part II of this paper.
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