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ABSTRACT

The physical processes responsible for the formation in a large-scale ice–ocean model of an
offshore polynya near the Greenwich meridian in the Southern Ocean are analysed. In this
area, the brine release during ice formation in autumn is sufficient to destabilise the water
column and trigger convection. This incorporates relatively warm water into the surface layer
which, in a first step, slows down ice formation. In a second step, it gives rise to ice melting
until the total disappearance of the ice at the end of September. Two elements are crucial for
the polynya opening. The first one is a strong ice-transport divergence in fall induced by south-
easterly winds, which enhances the amount of local ice formation and thus of brine release. The
second is an inflow of relatively warm water at depth originating from the Antarctic Circumpolar
Current, that sustains the intense vertical heat flux in the ocean during convection. The simulated
polynya occurs in a region where such features have been frequently observed. Nevertheless,
the model polynya is too wide and persistent. In addition, it develops each year, contrary to
observations. The use of a climatological forcing with no interannual variability is the major
cause of these deficiencies, the simulated too low density in the deep Southern Ocean and the
coarse resolution of the model playing also a role. A passive tracer released in the polynya area
indicates that the water mass produced there contributes significantly to the renewal of deep
water in the Weddell Gyre and that it is a major component of the Antarctic Bottom Water
(AABW) inflow into the model Atlantic.

1. Introduction ice-covered regions. Their presence thus signifi-

cantly affects the local weather and oceanographic
Since the beginning of passive-microwave conditions as well as the large-scale oceanic and

remote sensing of sea ice, polynyas (i.e., large ice- atmospheric circulations and the uptake of atmo-
free areas within the sea-ice pack) have been spheric gases by the ocean (Martinson et al., 1981;
regularly observed in the Southern Ocean (Carsey, Gordon, 1991; Bromwich et al., 1998).
1980; Zwally et al., 1985). These features are kinds The polynya opening can result from two com-
of gate inside the insulating ice blanket in which plementary mechanisms (Comiso and Gordon,
the exchanges of heat, moisture, and gases between 1987; Smith et al., 1990). First, the ice can be
ocean and atmosphere are much stronger than in continually exported out of the polynya area. As

the strong atmospheric heat loss at the ocean–

atmosphere interface in the polynya is compen-
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which melts the ice or forbids its formation. The the wind stirring also contributing to the mixing,
particularly during storms. This water is rapidlypolynyas in which this mechanism is dominant
cooled by direct contact with the polar atmo-are referred to as sensible-heat polynyas.
sphere, becomes denser, and sinks again, thusOffshore polynyas such as the Weddell polynya,
intensifying the convection. Gordon (1991) haswhich covered about 350,000 km2 during the win-
termed this state of the ocean in which the stabilityters of 1974, 1975, and 1976, or the smaller-scale
is low and convection is driven by temperaturerecurring polynyas observed over the Cosmonaut
instability the thermal mode.Sea (~51°E, 62°S) and Maud Rise (~2°E, 64°S)

In the present paper, we investigate the causesare generally considered to be sensible-heat
and consequences of offshore polynya formationpolynyas (Martinson et al., 1981; Motoi et al.,
and open-ocean convection in a global, coarse-1987; Comiso and Gordon, 1987; Smith et al.,
resolution ice–ocean model. As coarse-resolution1990). For the particular case of the Cosmonaut
models are used in simulations of the WorldSea, Comiso and Gordon (1996) suggest that the
Ocean’s circulation and in climate studies, it isoceanic heat flux results from a strong oceanic
helpful to understand their behaviour regardingupwelling enhanced by local topography which
these important processes. The simulations per-injects relatively warm water in the surface layer.
formed with the model could also bring usefulNevertheless, the intense vertical heat transfer in
information on the mechanisms that lead to thethe ocean responsible for the formation of sensible-
polynya opening as well as on the impacts ofheat polynyas is generally attributed to the oceanic
polynyas on the ice–ocean system.deep convection.

After a brief description of the model and of itsThere is some evidence of such a deep convec-
performance in the Southern Ocean (Section 2),tion in the Weddell Sea. For instance, Gordon
the development of a polynya near the Greenwich(1978) found a 4000-m-deep chimney in 1977 at
meridian is analysed in detail in Section 3. In7°W, 67°S probably linked with the Weddell
Section 4, the local conditions that favour thepolynya that occurred the preceding year. The
opening of this polynya are identified by meanscooling and freshening of the water over a great
of a series of sensitivity experiments. The compar-depth (>2000 m) near the Greenwich meridian
ison with observations made in Section 5 revealsbetween pre- and post-polynya years (Gordon,
that the model overestimates the polynya duration1982) is also consistent with the hypothesis of
and extent. This overestimation of the ice-freestrong convection in the Weddell polynya. The
areas in the high latitude of the Southern Oceaneffects of the smaller polynyas on the water column
is a classical problem of current large-scale ice–are more difficult to detect. Some convective
ocean models (Legutke et al., 1997; Goosse et al.,features have been noticed in various regions
1997; Stössel et al., 1998), as well as of some(Bersh, 1988; Muench, 1991), but their association
higher resolution models (Van Ypersele, 1989;with a particular polynya detected from satellite
Häkkinen, 1995), which is associated with a tooobservations is not obvious.
frequent and widespread open-ocean convectionIn the major part of the Southern Ocean, the
in those models. The causes of this unrealisticstability of the water column below sea ice is due
behaviour are investigated in Section 5. Finally,to the low salinity of the surface layer compared
the impact of the polynya formation on the ventila-to the water below. The temperature increases
tion of the model Southern Ocean and on thewith depth, which has a destabilising effect, but
characteristics of the deep-water masses are discus-this is generally counteracted by the salinity
sed in Section 6. In this context, a passive tracerdifference. Gordon (1991) refers to this type of
is released at the surface in the polynya area andstratification as the saline mode. Even though the
its evolution in the ocean is followed. Concludingstratification is weak, it can be maintained thanks
remarks are then presented in Section 7.to strong stabilising feedbacks (Martinson, 1990).

This stratification has to be destroyed to allow
deep convection to happen and to generate an 2. Model description and performance
offshore polynya. In these polynyas, warm water

is incorporated in the surface layer because of the Apart from the inculsion of a more sophisticated
representation of the oceanic vertical mixingstrong vertical exchanges induced by convection,
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(Goosse et al., 1999) and of a parameterization of and temperature to Levitus’ observations at all
depths) from a state of rest with no ice anddensity-driven downslope flows (Campin and

Goosse, 1999), the ice–ocean model used in this horizontally uniform profiles of potential temper-

ature and salinity. The relaxation was then sup-study (called CLIO for Coupled Large-scale Ice–
Ocean) is identical to that of Goosse et al. (1997). pressed, except in the uppermost grid box for

salinity (see above), and the integration was pur-It is made up of a primitive-equation, free-surface

ocean general circulation model coupled to a sued for 1000 years. The results discussed below
are averages over the last 10 years of this experi-thermodynamic–dynamic sea-ice model with

viscous–plastic rheology. The new parameteriz- ment. Actually, this 10-year average is not very

different from a particular year since the experi-ation of vertical mixing is based on a simplified
version of Mellor and Yamada’s (1982) level-2.5 ment displays only a very weak interannual

variability.turbulence-closure scheme with the minimum

values for vertical diffusivity and viscosity follow- The March and September ice concentrations
computed by the model in the Southern Oceaning the vertical profile proposed by Bryan and

Lewis (1979). Whenever the vertical density profile are displayed in Fig. 1. The model results are in

reasonable agreement with observations even ifis unstable, the vertical diffusivity is enhanced to
10 m2 s−1. The horizontal eddy diffusivity and the ice extent is slightly overestimated in the

eastern Weddell Sea during summer. In addition,viscosity are set equal to 150 m2 s−1 and

105 m2 s−1, respectively. The model domain is in September, the ice extent is somewhat under-
estimated in the western Weddell Sea and over-global. The horizontal resolution is of 3°×3°, and

there are 20 unequally spaced vertical levels in estimated in the Bellingshausen and Amundsen
Seas. The modelled winter ice thicknesses in thethe ocean.

The model is dynamically driven by the climato- Southern Ocean are within the range of observa-

tional estimates (Budd, 1991), although probablylogical monthly wind stresses of Hellerman and
Rosenstein (1983) between 15°S and 15°N and of on the high side, with an average value of about

1 m.Trenberth et al. (1989) out of this latitude band.

The surface fluxes of heat are determined from In September, two open-ocean polynyas are
visible (Fig. 1b): one near the 90°E meridian andatmospheric data by using classical bulk formulas.

Input fields consist of monthly climatological sur- the other close to the Greenwich meridian. The

present study turns on the latter polynya only (weface air temperatures (Taljaard et al., 1969;
Crutcher and Meserve, 1970), cloud fractions refer the reader to Goosse (1997) for a discussion

of the processes responsible for the formation of(Berliand and Strokina, 1980), air relative humid-

ities (Trenberth et al., 1989), and surface winds the first one). The diagnostics are performed over
the region going from 9°E to 15°E and from 66°S(same sources as for wind stresses). Evaporation/

sublimation is derived from the turbulent flux of to 69°S (two grid points), which corresponds to

the zone where the polynya appears first in thelatent heat. Precipitation and freshwater inflow
from the largest rivers are prescribed according to model. Even though the polynya covers a wider

area after the initial stage, it can only be consideredthe monthly climatologies of Xie and Arkin (1996)

and Grabs et al. (1996), respectively. For smaller as marginally resolved because of the coarse reso-
lution of the model. This problem is discussedrivers, the annual runoff values of Baumgartner

and Reichel (1975) are utilised. In addition, a in Section 5.

relaxation towards observed annual mean salin-
ities (Levitus, 1982) is applied globally in the
10-m-thick surface grid box with a time constant 3. Polynya opening in the model
of 60 days. This correction is introduced in order
to prevent any salinity drift caused by inaccuracies In January and February, the sea-surface salin-

ity is rather low in the polynya area and the upperin the precipitation and runoff data and in the
evaporation computed by the model. ocean is strongly stratified (Fig. 2a,b) because of

the local melting of the ice imported from sur-The spin-up procedure was the following. The

model was first integrated for 20 years in robust rounding regions (Fig. 3b). At the beginning of
March, the melting weakens and part of the icediagnostic mode (i.e., with restoring of salinity
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destabilisation, but is less important. As a con-
sequence, the mixed layer deepens (Fig. 2c), slowly
in April, but faster as the cold season progresses.

This generates a strong heat flux at the ice bottom
which slows down ice formation (Fig. 3b), in agree-
ment with the observations of Wadhams et al.

(1987) and with the model results of Martinson
(1990). After day 120 (beginning of May), the ice
formation is no more able to compensate for

the strong ice-transport divergence that takes
place at this time (Fig. 3b). Therefore, the mean
ice thickness decreases, initiating the polynya

opening.
The oceanic heat flux becomes large enough

after day 160 to induce local ice melting (Fig. 3b).

The freshwater flux associated with this melting
tends to stabilise the water column (see Martinson,
1990 for a comprehensive description of this sta-

bilising feedback). But, the net buoyancy flux is
still destabilising because of the strong cooling

(Fig. 4), and therefore, the mixed-layer deepening
continues (Fig. 2c). This stage in the evolution of
the ice–ocean system is very close to the ‘‘freeze

melting mode’’ found by Walin (1993) in a 1-D
model, and is characterised by an ‘‘increasing
mixed-layer depth, slowly decreasing ice thickness,

and small but finite stability’’. However, the vertical
stability in our model is periodically destroyed
when the density in the mixed layer becomes

higher than at the top of the pycnocline. These
convective events bring a large amount of rela-
tively warm water towards the surface. This

induces a strong heat flux at the ice base and
hence an intense melting, which tends to re-stratify
the water column. Then, ice melting weakens and

the buoyancy flux becomes destabilising again. As
a result, the mixed layer deepens until a new
convective event occurs and so on. Such oscilla-

Fig. 1. Ice concentrations simulated by the model in the
tions have been observed during periods of intense

Southern Ocean for (a) March and (b) September.
vertical mixing in ice-covered areas (MorawitzSelected contours are 0.15, 0.50, and 0.85. Also shown is
et al., 1996), and Gordon (1991) has included anthe 0.15 ice concentration contour as derived from the

scanning multichannel microwave radiometer (SMMR) oscillatory mode in the stages leading to the
data (Gloersen et al., 1992; thick dashed line). formation of offshore polynyas. The way the model

represents this oscillation has been analysed by

Goosse (1997) using a 1-D convection modelimported can be maintained in the polynya sector
(Fig. 3a) (this is more than one month earlier than similar to the one of Martinson et al. (1981) which

mimics the behaviour of the full 3-D model duringin the observations). At the end of March, ice
starts forming locally (Fig. 3b). The brine release convective events with the advantage of having

an analytical solution. The conclusion of this studyinduces an increase in surface salinity and a desta-

bilisation of the water column (Fig. 4). The oceanic (for more details, see Goosse (1997)) is that
the mechanism simulated by the 3-D model iscooling during this time period plays a role in this
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Fig. 2. Seasonal evolutions in the polynya located near the Greenwich meridian of (a) the potential temperature
(°C), (b) the salinity in psu and, (c) the mixed-layer depth defined as the depth where the potential density exceeds
by 0.01 kg m−3 the surface value.
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Fig. 3. (a) Seasonal evolution of the mean ice thickness in the polynya area expressed as the total ice volume divided
by the area. (b) Seasonal variations of the gain/loss of ice by advection (solid line) and by local freezing/melting
(dashed line) in the polynya area. Positive values correspond to ice convergence and freezing, respectively.

reasonable but the model does not simulate accur- and a stable fresh and warm layer is formed at
surface (Fig. 2).ately the frequency and amplitude of the oscilla-

tion because of the coarse spatio-temporal The shift from the saline mode characteristic of
the autumn and beginning of winter to the thermalresolution. Nevertheless, this bad representation

of the characteristics of the oscillation does not mode has been achieved because of a strong salt

flux at the surface mainly due to ice production.have significant impact on the evolution of the
polynya. Indeed, between day 70 (when the sea-surface

salinity is minimum) and day 180 (when the strati-The ice has totally disappeared from the

polynya area at the end of September. At that fication is weak and the system is well on its way
to the thermal mode), the ice production explainstime, the equivalent of 16 cm of ice is imported in

the polynya area per month (Fig. 3b). This ice more than 80% of the increase in the salt content

of the top 500 m of the water column. This corre-melts locally, but the buoyancy flux associated
with cooling is much higher than the one due to sponds to a net ice production (i.e., freezing minus

melting) of 52 cm of ice, 47% of which is exportedmelting (Fig. 4). Consequently, convection con-
tinues and deepens. After day 270, the heat loss out of the polynya area by ice divergence during

that time (Fig. 3b).significantly decreases because of the spring warm-

ing of the atmosphere. When the buoyancy flux The other components of the freshwater budget
of the upper 500 m have a smaller magnitude forat surface becomes close to zero, convection stops,
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of 98 W m−2 through leads (Andreas and
Makshtas, 1985).

4. Conditions favouring the polynya
development

In the previous section, the mechanisms that
participate in the modelled polynya formation

have been identified. Here, the causes of the
polynya occurrence at this particular place near
the Greenwich meridian are studied by means of

50 year-long sensitivity experiments starting from
the end of the control simulation. In the 1st and

Fig. 4. Seasonal evolutions of the buoyancy flux in the 2nd experiments, the impact of ice-transport diver-
polynya area (solid line). The dashed and dotted lines

gence has been tested by decreasing the wind
represent the contributions of the temperature and salin-

stress by a factor 2 and 4, respectively, in a regionity to this buoyancy flux, respectively. They are com-
centred over the polynya (5°W–23°E, 58°–75°S,puted by using a linearisation of the equation of state
hereafter referred to as region P). When the windaround the sea-surface salinity and temperature in the

polynya area. Fluxes are positive upwards, which means stress is divided by 2, the ice cover thickens
that a positive value tends to destabilise the water significantly in fall because of the weaker ice
column. transport, but the polynya still occurs (Fig. 5). By

contrast, when the wind stress is decreased by a

factor 4, which roughly corresponds to a 50%
reduction in wind speed, no polynya opens. Inthe considered period. Precipitation and evapora-

tion through leads amounts to +4 cm and this case, the amount of brine rejected into the

ocean, which strongly depends on the rate of ice−12 cm of water, respectively, when averaged
over the polynya area, while restoring brings the export, is not sufficient to trigger deep convection

and the subsequent polynya formation.equivalent of+11 cm of water. The total contribu-

tion of these three elements is thus +3 cm of Several authors (Killworth, 1983; Gordon and
Huber, 1990; Gordon, 1991) have suggested thatwater between day 70 and day 180. The exchanges

of water with the shelf located southward (where upwelling in the ocean can predispose a water

column to become unstable. It brings warmer andthe salinity is high because of the strong ice
production prevailing there) contribute to an saltier water into the surface layer and hence
equivalent of −9 cm of freshwater. Finally, the

lateral exchanges with the regions where the ocean
is deep and vertical exchanges with the deep ocean
in the polynya area induce an equivalent flux of

−3 cm. Nevertheless, it must be stressed that the
magnitude of the various components can change
strongly after day 180. First, when convection has

reached 500 m, vertical exchanges become the
main source of salt for the upper layer and explain
why the sea-surface salinity continue to increase

(Fig. 2b) even though freshwater is added at sur-
face (Fig. 4). Second, when ice concentration

Fig. 5. Seasonal evolutions of the mean ice thickness indecreases, the evaporation through leads can be a
the polynya area in the control experiment (thick solid

significant element of the freshwater budget. For
line) and in the sensitivity experiments in which the wind

instance, the evaporation averaged over the stress has been divided by 2 (dashed line with crosses),
polynya area amounts to 9 cm in September, by 4 (dot-dashed line) and in which the stress at the

ocean surface has been reduced by a factor 2 (dotted line).which corresponds to a realistic latent-heat flux
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increases its salinity, which is a necessary condition We have also assessed the possible influence of
the turbulent fluxes of sensible and latent heat onto shift from the saline mode to the thermal mode.

The associated heat can be used to melt ice, which the polynya development by reducing by a

factor 2 the wind speed used in the computationinduces a negative feedback, or can be directly
ventilated to the atmosphere (see also Martinson, of these fluxes over region P. Results indicate that

this perturbation affects the evolution of the ice1990). In the model, the vertical velocity has a

mean value of about 0.1×10−5 m s−1 in the thickness in the region, but does not significantly
modifies the polynya formation process (Fig. 7).Weddell Sea (Fig. 6) and is upward nearly

everywhere except over the continental shelf. In the eastern Weddell Sea, Levitus’(1982) sea-

surface salinities decrease smoothly from aboutNear the Greenwich meridian, a maximum of
0.3×10−5 m s−1 occurs. These values agree well
with the estimates of Gordon and Huber (1990)

for the Weddell Sea.
In the model, the upwelling is mainly wind-

driven, as the vertical velocities are very close to

the Ekman pumping computed from the surface
stress. Therefore, reducing the wind stress, as is
done in the first two sensitvity experiments, has

also a direct impact on the oceanic vertical vel-
ocity. In order to separate the effects of ice trans-

port and upwelling, a third sensitivity experiment
has been carried out in which only the stress at
the ocean surface (in leads and below the ice) has Fig. 7. Seasonal evolutions of the mean ice thickness in
been reduced by a factor 2 in region P, inducing the polynya area in the control experiment (thick solid

line) and in the sensitivity experiments in which the winda reduction of the vertical velocity by about the
speed has been divided by 2 in the computation ofsame factor. In this experiment, the ice is a little
sensible- and latent-heat fluxes (dot-dashed line), inthicker than in the control experiment (Fig. 5),
which the surface salinity has been restored to the aver-

but the polynya opens nearly at the same time.
age value for the Weddell Sea (dotted line), and in which

This demonstrates that a strong local oceanic the exchanges of salt/freshwater between ice and ocean
upwelling is not the major cause of the polynya in the polynya area have been neglected (dashed line

with crosses).opening in our simulation.

Fig. 6. Annual mean vertical velocities simulated by the model in the Weddell Sea sector at a depth of 75 m. A positive
value corresponds to upwelling. Contour interval is 0.1×10−5 m s−1.
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34.1 psu at 60°S to about 33.7 psu at 70°S. In convection, the ocean needs a sufficiently large
heat source at depth. Regarding this point, theorder to assess the influence of the relaxation
area close to the Greenwich meridian is particu-towards those salinities, the model surface salinity
larly well located, since warm water is suppliedin region P has been restored to the average value
by a direct inflow of Circumpolar Deep Waterfor the Weddell Sea (33.9 psu) instead of the local
(CDW) from the ACC to the Weddell Gyredata as in the control run. In this experiment, the
(Fig. 8), and this in general agreement with obser-polynya formed faster than in the control run
vations (Orsi et al., 1993). The signature of this(Fig. 7) because of a lower freshwater flux associ-
strong inflow is also apparent in Fig. 2 as aated with the restoring. Therefore, the location of
temperature increase of more than 0.3°C in thethe polynya is not constrained by the information
depth range 500–2000 m between January and theincluded in the salinity restoring. The same conclu-
beginning of winter.sion is valid for precipitation, which displays no

It has been suggested that the Maud Rise, aparticular structure near the Greenwich meridian.
seamount whose top is at a depth of about 2000 mThese observations do not mean that the fresh-
compared to the 5000-m-deep surrounding ocean,water forcing is not important for the polynya
could have an influence on the location of theformation. They reveal, however, that special fea-
polynya (Gordon and Huber, 1990; Gordon, 1991;tures in the restoring or precipitation fields do not
Bersh et al., 1992; De Veaux et al., 1993; Alversondetermine the location of the modelled polynya.
and Owens, 1996). Unfortunately, the influence ofIf the salt/freshwater exchanges between ice and
this topographic feature is not taken into accountocean are neglected in the polynya area, the ice
in the model since Maud Rise has a too small scaleformation is no longer associated with a destabilis-
to be represented at the coarse resolution used here.ation of the water column. This leads to a much
It corresponds only to a region of smaller depthweaker oceanic heat flux at the ice base, and
(3800 m). In the model, the removal of this featureconsequently, no polynya forms (Fig. 7). This con-
has nearly no impact on the polynya formation.firms the fact that, even if the wind-driven ice-

transport divergence is essential for the polynya

opening, our polynya is not simply a latent-heat 5. Comparison with observations
one. The sensible heat provided by the ocean is
also of prime importance. In order to transfer In this section, we compare the model polynya

to those observed in the Weddell Sea sector. Thesuch a large amount of heat to the surface by

Fig. 8. Annual mean potential temperatures (°C) and horizontal velocities in the Weddell Sea sector at a depth of
120 m from the control run. The maximum vector corresponds to a speed of 11.8 cm s−1.
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simulated polynya is somewhat different from the
Weddell polynya present three consecutive years
in the 1970s. First, our polynya is about a factor 5

smaller in size than this exceptional feature.
Second, the Weddell polynya stayed open nearly
all winter long, while in the model, the polynya

area is first covered by ice, the ice concentration
then decreases gradually until a complete opening
of the polynya occurs at the end of September.

There is a degree of resemblance between the
simulated polynya and the observed Maud Rise
polynya. However, the latter is usually open only

during a few days to a few weeks. Furthermore,
the polynya occurs each year in the model, whereas
the Maud Rise polynya is present only during

particular years. The area located near the
Greenwich meridian is also characterised by an
earlier ice melting than surrounding areas, leading

to the development of a spring polynya at the end
of October–beginning of November nearly each

year (Comiso and Gordon, 1987). Nevertheless,
this is more than 1 month later than in the model.
This comparison shows that, even if large areas of

open water inside the pack have been frequently
observed near the Greenwich meridian, the model
overestimates significantly this area, at least on

average over the period covered by satellite
observations.

The main reason why the model generates
Fig. 9. (a) Time evolutions of the mean ice thickness in

polynyas every year at the same place, in disagree- the polynya area from the experiment forced by wind
ment with observations, is related to the use of stresses of the period 1980–1989 (sold line) and from the
climatological atmospheric conditions, with the control run (dashed line, same curve as Fig. 3a).

(b) Variations of the gain/loss of ice by advection in thesame forcing repeated each year. To verify this
experiment forced by wind stresses of the periodassertion, a sensitivity experiment has been con-
1980–1989.ducted in which the model was driven by the wind

stresses of the period 1980–1989 from which the
climatological fields used in the control run were These winds favour the polynya opening since

they induce a rapid export of the ice formedderived (Trenberth et al., 1989). The other forcing

components were the same as in the control run. locally, while they bring to the polynya area
relatively thin ice originating from the coastalThe model was integrated for 50 years from the

end of the control simulation with the same forcing regions of the eastern Weddell Sea. The second,

sixth, eighth, and ninth years of the sensitivityrepeated every 10 years.
As shown in Fig. 9a, the mean ice thickness in run, which display short periods in early winter

with low mean ice thickness (Fig. 9a), present alsothe polynya area over the last 10 years of the

sensitivity run is generally much higher than in south-easterly winds in the polynya area.
Nevertheless, the polynya is not completely openthe control simulation. An extensive, long-lived

polynya is only present in the first year of the since the wind-stress intensity during those years
is at least a factor 2 smaller than in the first yearsensitivity experiment. During this particular

year, the Trenberth et al.’s (1989) data present (although the wind stresses there are still strong

compared to the ones observed at other locationsin autumn and early winter very strong south-
easterly winds in the polynya area (Fig. 10a). in the Southern Ocean). During the other years,
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events of strong wind-induced ice transport con-
vergence (Fig. 9b) which are able to prevent a
complete opening of the polynya. For instance,

during the ninth year, the ice-transport conver-
gence reaches the equivalent of 0.04 m day−1,
while the maximum in the control run is of

0.02 m day1. This brings large amount of ice in
the polynya area which rapidly melts, suppresses
convection, and induces an increase of the mean

ice thickness.
In addition to the wind stress, other effects

(although weaker) contribute to the overestima-

tion of the polynya extent and duration in the
control experiment. A first one is the memory of
the ice–ocean system that favours the opening of

a polynya at the place where a polynya developed
the preceding year by the following mechanism
(Martinson et al., 1981). The convection has gener-

ated a nearly homogenous water column which
becomes only marginally stable during summer

(Fig. 2). Therefore, a suitable forcing the following
year (as it is the case every year when using a
climatological forcing) is able to destablise this

preconditioned area and to induce the opening of
a polynya. With interannual variability included,
the forcing at this location may be not sufficient

the following year to destabilise even a marginally
stable water column. The stratification of the
water column would then increase, and a more

vigorous forcing would be necessary to create a
polynya the subsequent year. The importance of
this effect has been assessed by means of a one-

year simulation forced by the wind stresses of the
Fig. 10. April–May–June wind stresses over the Weddell second year of the sensitivity experiment but start-
Sea sector. (a) for the year 1980, (b) for the year 1989, ing from the end of year 5 (which displays an
and (c) averaged over the period 1980–1989. The extensive winter ice cover) instead of the end of
maximum vector corresponds to a stress of 0.23 N m−2.

year 1 (in which a large polynya has occurred).
In this simulation, the minimum ice thickness in

winter amounts to 12 cm, compared to 4 cm inthe weak south-easterly winds and moderate
south-westerly winds (Fig. 10b) are not able to the sensitivity run (Fig. 5).

A second contributor is the too weak modelinduce a decrease of the mean ice thickness in

winter below a value of 0.20 cm. stratification in the Southern Ocean (Fig. 11) com-
pared to the already low observed one (Gordon,The wind-stress climatology over the 10 years

exhibits south-easterly winds in the polynya area 1981). As a consequence, vertical mixing is less

constrained by the stratification than in the real(Fig. 10c). They have roughly the same magni-
tude as during the years which have a small- world, and the deepening of the mixed layer is

faster, leading to a too strong and too rapid iceduration polynya in the sensitivity experiment.
Nevertheless, the polynya stays open much longer melting. This low density at depth in the Southern

Ocean is a problem common to a large numberin the control run. One major reason for this

difference is that, because of the 10 year average, of large-scale ice–ocean models (Legutke et al.,
1997; Stössel et al., 1998). It does not explain whythe climatological mean does not incorporate the
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by injecting water with a temperature of about
0°C and a salinity of 34.54 psu at depths greater
than 2000 m (Fig. 2a,b). This water has a temper-

ature close to the one measured in a deep chimney
present in the Weddell Sea in 1977 (Gordon, 1978),
but is more than 0.05 psu fresher. The other source

of deep water at these latitudes is the sinking
along the Antarctic continental margins of a mix-
ture of different water types including salty shelf

water and CDW (Foster and Carmack, 1976;
Gordon, 1991). In accordance with observations
(Gordon, 1978, 1982), the deep waters formed by

this latter mechanism in the model are denser
than the ones produced by open-ocean convection

Fig. 11. Annual mean vertical profiles of zonally aver-
because they have a slightly higher salinity and aaged density relative to a reference water mass (0°C,
temperature well below 0°C close to their region34 psu) at 67°S as simulated by the model (dashed line)

and as observed following Levitus (1982) (solid line). of formation (Fig. 12).
In order to visualise the path followed by the

convection occurs in a particular location sur- water mass produced in the polynya area, the
rounded by relatively well stratified regions. But, control run has been pursued during 300 years
it plays certainly a role in the tendency of the with a passive tracer included in the model. At
model to overestimate the size and duration of the surface, the tracer concentration of this tracer
polynya events since it provides a kind of precon- at the surface was restored with a time scale of
ditioning of the whole model Southern Ocean for 4 days to a value of 1 in the polynya region (see
polynya formation. Section 2) and 0 elsewhere. Thus, a continuous

A third contributor to the overestimation of the source of tracer exists in the polynya area at the
polynya extent and duration is the coarse spatial surface, while a sink of tracer is applied at the
resolution of the model. The polynya area remaining ocean surface (Cox, 1989). No subsur-
increases with the square of the mean radius, while face restoring is used on the tracer concentration.
the ice edge through which ice can be transported After this 300-year integration, the tracer concen-
in the polynya area grows linearly with the radius. tration in the South Atlantic was approximately
As a result, the larger the polynya, the greater equilibrated.
must be the inflow rate to cover the whole polynya At 2300 m, i.e., the deepest level reached by
area and suppress convection. Following this convection, the concentration has logically a max-
reasoning, Comiso and Gordon (1987) have sug- imum in the polynya area (Fig. 13a) since a direct
gested that large polynyas can survive significantly import of tracer from the surface occurs there.
longer than small ones. They propose a diameter The tracer-tagged water is then transported west-
of 100 km as a minimum size to protect the wards by the Weddell Gyre and mixes with ambi-
convection against the freshwater inflow through ent water masses, which include the deep water
the sides, except in case of very strong ice advec- formed along the continental margins of
tion. In the model, the minimum size of polynyas Antarctica. A weaker eastward penetration
is dictated by the resolution, because convection towards the Indian sector of the Southern Ocean
must cover at least one grid point. This corre- is also noticed. However, the tracer is mainly
sponds to an area of 150–300 km at this latitude, confined southwards of the Drake Passage
larger than the critical size proposed by Comiso (Fig. 12a), because the ACC is an efficient barrier
and Gordon (1987). to meridional mass exchanges (Gill and Bryan,

1971; Cox, 1989).
Besides, at the first level where the Drake6. Impact of the polynya on deep waters

Passage is closed (3660 m), a western boundary

current develops in our simulation along theThe oceanic convection in the polynya area
participates in the Weddell Sea deep-water renewal Scotia Ridge (Fig 13b), in qualitative agreement
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Fig. 12. Meridional section of (a) salinity and (b) potential temperature in the model Weddell Sea at 50°W. Contour
intervals are 0.03 psu and 0.2°C, respectively.
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Fig. 13. Concentrations in the southern Atlantic of the passive tracer released at the surface in the polynya area
(a) at 2300 m, (b) at 3660 m, and (c) at 4385 m. Contour interval is 0.05.
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with observations (Whitworth et al., 1991; buoyancy flux is still destabilising since the intense
cooling is able to counteract the stabilising effectGordon, 1991). This current transports north-

wards into the Argentina Basin the water formed of the freshwater flux, and thus convection persists.

(4) This situation continues until ice disappears.in the polynya area, which thus takes part in the
renewal of the Antarctic Bottom Water (AABW) At this time, the instability is caused by the

cooling of the warm, salty deep water which isin the South Atlantic. The tracer concentration in

the Argentina Basin still has a maximum near the incorporated in the surface layer by convection.
(5) Convection stops in spring when the coolingwestern boundary, but as the western boundary

current is relatively diffuse and presents recir- is no longer vigorous enough to destabilise the

water column.culations in the model, the zonal gradients are
relatively weak. A small amount of the tracer- The sensitivity experiments performed with the

model show that the polynya is formed at thistagged water also invades the Atlantic east of the

mid-ocean ridge. particular location near the Greenwich meridian
because of the conjunction of two factors. TheAt 3660 m, the influence of the southward flow-

ing North Atlantic Deep Water is still strong, thus first one is the presence of south-easterly winds in

this area which are among the strongest of therestricting the northward propagation of the
waters of Southern Ocean origin. This influence Southern Ocean in the model. They induce an ice-

transport divergence which leads to an enhancedis much weaker at the next model level, i.e., at

4385 m. As a consequence, the tracer concentra- local ice production and brine release and then to
a destabilisation of the water column. When thetion in the South Atlantic at this depth is about

a factor 2 higher than at 3660 m (Fig. 13c). air–ice stress is significantly reduced (a factor 4 in
our sensitivity study), the amount of brine rejectedThese results reveal that the polynya contributes

significantly to the renewal of deep water in the into the ocean is not sufficient to trigger deep

convection and no polynya forms. It should beWeddell Sea, with tracer concentrations generally
between 10% and 20% there. The tracer propaga- mentioned that ice divergence occurs only in fall

in the polynya area. During the rest of the year,tion to remote regions in the Southern Ocean and

to the other oceanic basins becomes important at convergence prevails. This induces a freshwater
import in the polynya area which has a stabilizinggreat depths (>3660 m). For instance, the concen-

tration at 4385 m is still higher than 10% in the effect on the water column. Nevertheless, the

convection is already well established at the endArgentina Basin at 40°S. These values are only
indicative because of the model limitations, but of fall and is maintained throughout the winter

because of the strong atmospheric cooling. Thethey suggest that open-ocean convection taking

place in offsore polynyas is potentially a powerful second factor that explains the polynya formation
is a direct inflow at depth near the Greenwichmechanism for deep-water renewal.
meridian of relatively warm water originating from

the ACC. This water is then transported to the
ocean surface by convection and is thus respons-7. Summary and conclusions
ible for the strong upward heat flux in the ocean

observed during the different phases of the polynyaThe sequence of events leading to the opening
of a polynya near the Greenwich meridian in the formation. In a sensitivity experiment, the polynya

was unable to form when this vertical heat fluxCLIO model can be described as follows. (1) The

stability of the upper ocean in the polynya region has been artificially reduced.
The polynya is localised in a region whereis high in summer as a result of ice melting, while

the stratification below the seasonal pycnocline is recurring polynyas have been observed, and which

is characterised by an earlier melting in springmuch weaker. (2) In autumn, the salinity of the
surface layer increases owing to the brine release than surrounding areas. This gives credibility to

our results, but the modelled polynya is widerduring ice formation, inducing a mixed-layer
deepening. (3) When the stable surface layer has and more persistent than the observed ones.

Futhermore, the model polynya occurs each yearbeen removed, the mixed-layer deepening is faster.

It brings relatively warm water to the surface, at the same location, while observed polynyas are
episodic and less regular. This is due to the absencewhich tends to melt the ice. Nevertheless, the net
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of interannual variability in the atmospheric for- Convection in the polynya area has a significant
cing used in the control run. When driving the impact on deep-water renewal in the model. This
model with the wind stresses of the period newly formed deep water remains mainly in the
1980–1989 (from which the climatological fields Weddell Gyre down to the depth where the Drake
utilised in the control case were derived), an passage is closed (3660 m in the model). Below
extensive and long-lived polynya is only formed this depth, the water can be exported northwards
one year. Small-duration polynyas are present as a contributor to the inflow of AABW into the
during four other years, while in the remaining Atlantic and, to a smaller extent, into the other
five years, the forcing is not able to induce the basins. A more precise comparison of the amounts
opening of any polynya in the eastern Weddell Sea. of AABW formed by open-ocean convection and

The overestimation of the polynya extent and along the continental slope of Antarctica in the
duration in the model is also partly due to the model will be performed in the near future. The
fact that the stratification of the deep Southern quantitative results of our simulation must be
Ocean is too weak, which promotes unrealistic taken with caution. But, they suggest that open-
downward penetration of the mixed layer. The ocean convection could be a significant source of
coarse horizontal resolution of the model can AABW in the real ocean, at least during years
also play a direct role. Indeed, the minimum when large-scale polynyas are observed.
size of polynyas is one model grid cell
(~150 km×300 km at this latitude), which is
already large compared to observed polynyas.
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