

This is a pre-copyedited, author-produced version of an article accepted for publication, following peer review.

Balzano, S.; Jamieson, T. & Leterme, S. (2021). Changes in microbial communities during seawater pre-treatment within a desalination plant. *Aquatic Microbial Ecology*, 86: 63-68

Published version: https://doi.org/10.3354/ame01958

NIOZ Repository: http://imis.nioz.nl/imis.php?module=ref&refid=335080

[Article begins on next page]

The NIOZ Repository gives free access to the digital collection of the work of the Royal Netherlands Institute for Sea Research. This archive is managed according to the principles of the <u>Open Access Movement</u>, and the <u>Open Archive Initiative</u>. Each publication should be cited to its original source - please use the reference as presented.

When using parts of, or whole publications in your own work, permission from the author(s) or copyright holder(s) is always needed.

1	
2	Changes in microbial communities during seawater pre-treatment within a
3	desalination plant.
4	
5	Sergio Balzano ^{1,2*} , Tamar Jamieson ^{3,4} , Sophie Leterme ^{3,4}
6	
7	¹ Stazione Zoologica di Napoli Anton Dohrn. Villa Comunale, 80121 Naples (Italy)
8	² Department of Marine Microbiology and Biogeochemistry, Netherland Institute for Sea
9	Research (NIOZ), Landsdiep 4, Texel (Netherlands)
10	³ College of Science and Engineering, Flinders University, Sturt Road, Bedford Park,
11	Adelaide, SA 5042 (Australia)
12	⁴ Institute for Nanoscale Science & Technology, Flinders University, Sturt Road, Bedford
13	Park, Adelaide, SA 5042 (Australia)
14	*Corresponding author: Sergio.balzano@szn.it
15	
16	

Running title: microbes across seawater pre-treatment

19	
20	Abstract
21	We analysed prokaryotic and eukaryotic communities across the seawater pre-treatment
22	system of a desalination plant, using 16S and 18S rRNA gene sequencing. The richness of
23	operational taxonomic units (OTUs) increased downstream of the pre-treatment system (RO
24	feedwater) compared to raw seawater for Archaea while it decreased for bacteria and protists.
25	Overall the RO feedwater was found to be enriched in ammonia-oxidising bacteria and
26	Archaea compared to raw seawater and also contained greater proportions of taxa typically
27	observed in aquatic biofilms and/or within other water treatment systems. Although, the
28	microbial load is reduced by the pre-treatment system, the increase in proportion of biofilm-
29	associated microbes suggest the presence of active microbial communities within multimedia
30	filters and other parts of the pre-treatment system that might increase biofouling risks.
31 32	Keywords: 16S rDNA, 18S rDNA, ammonium oxidation, desalination

Climate change and increase in human population worldwide are likely to exacerbate 34 freshwater scarcity issues in several regions (Naumann et al. 2018), highlighting the need for 35 alternative freshwater sources such as desalination. Most desalination plants use reverse 36 osmosis (RO) membranes for the conversion of seawater into freshwater and brine. To 37 remove most microbes and particles from the stream, seawater is usually pre-treated by 38 filtration and UV irradiation prior to RO. Although the microbial load decreases sharply after 39 40 seawater filtration, some of the microbes present after seawater pre-treatment are likely to form biofilms on the RO membranes (Manes et al. 2011). For example, Bacteria are typically 41 42 enriched in Proteobacteria (Manes et al. 2011, Levi et al. 2016), whereas pennate diatoms and other elongated species prevail among eukaryotes (Balzano et al. 2014) after pre-treatment 43 for SWRO. While bacterial communities have been widely characterised little is known on 44 Archaea and protists. Here, we assessed the composition of both prokaryotic and eukaryotic 45 communities occurring upstream (raw seawater) and downstream (RO feedwater) of a pre-46 treatment system for SWRO by sequencing the V4 fragment of both the 16S and the 18S 47 rRNA genes. 48

Seawater was collected from the Penneshaw SWRO desalination plant, located on the 49 North-Eastern coast of Kangaroo Island, South Australia (Balzano et al. 2014). The pre-50 treatment system consists in a medium pressure-ultra violet (MP-UV) disinfection unit, 51 52 multimedia and cartridge filters (Balzano et al. 2014). Nutrients were analysed every second 53 week over one-year period (18/07/2012 to 21/07/2013) from raw seawater, downstream of the MP-UV treatment unit (Site 2), the multimedia filters (Site 3), the 15 um cartridge filters 54 (Site 4), and from the RO feedwater, as described previously (Balzano et al. 2015b). 55 Molecular analyses were carried out on raw seawater and RO feedwater only, and samples 56 were collected 5 times over a 13-month period (Oct 2012, Dec 2012, Mar 2013, Jul 2013, 57 Nov 2013). One hundred-twenty L seawater were concentrated down to 2 L by tangential 58

59	flow filtration (Marie et al. 2010) and the concentrated sample was first pre-filtered using 10
60	µm cellulose filters and then filtered through 0.22-mm pore size Sterivex units (Millipore,
61	Billerica, MA). Cells were removed from the Sterivex units, the DNA extracted, the 18S
62	rRNA gene amplified, and both 18S and 16S rRNA genes sequenced using IonTorrent PGM
63	as described previously (Balzano et al. 2015a), whereas the V4 region of the 16S rRNA gene
64	was amplified using slight modifications (Supplementary Table S1) of the universal
65	prokaryotic primers V341F and 805R (Bowman et al. 2012) and PCR reactions consisted of
66	an initial denaturation at 98°C for 1 min, 30 cycles of 40 s at 98°C, 40 s at 53°C and 1 min at
67	72°C, and a final extension at 72°C for 1 min. Raw sequencing data were processed using the
68	python pipeline Quantitative Insight into Microbial Ecology (QIIME) (Caporaso et al. 2010);
69	read were filtered, clustered into operational taxonomic units (OTUs), and reads from
70	different samples were compared as described previously (Balzano et al. 2015a).
71	Raw seawater temperature ranged from 14.3 °C (July 2013) to 20.8 °C (March 2013) and
72	the salinity was stable around 36 psu (Balzano et al. 2015b). The abundance of both bacteria
73	and phytoplankton dropped dramatically across the multimedia filter, from Site 2 to Site 3
74	(Balzano et al. 2014). The concentration of ammonium dropped by half across the
75	multimedia filters (Fig. 1A), whereas the median concentration of NO_x increased from 0.35 to
76	1.24 μ M (Fig. 1B) and both phosphate and silica did not change significantly (data not
77	shown). The decrease in the concentration of ammonium and the increase in NO _x , suggest
78	that nitrification was taking place within the multimedia filter. The lower ammonium to
79	nitrate ratios measured downstream the multimedia filters are likely to partially limit
80	microbial growth: heterotrophic bacteria in the water column are known to preferentially
81	uptake ammonium over nitrate as nitrogen source (Middelburg and Nieuwenhuize 2000,
82	Kumar et al. 2018).

Overall, we sampled a good portion of the microbial community (Supplementary Figure 83 1). OTU richness and diversity indices were generally lower in raw seawater than in RO 84 feedwater for Archaea, and higher for bacteria and protists (Table 1). Most taxonomical 85 changes across the pre-treatment plant were observed for Archaea compared to bacteria and 86 protists. The proportions of archaeal reads over the total 16S rRNA gene libraries were 87 significantly lower in raw seawater (0.5 to 3%) compared to RO feedwater (5 to 40%, Fig. 88 89 1C-D). Euryarchaeota, that typically dominate surface seawaters (Yin et al. 2013, Zhou et al. 2018), accounted for a large proportion of the genetic libraries of raw seawater, and their 90 91 contribution dropped dramatically in RO feedwater. In contrast, Nanoarchaeota and Nitrosoarchaeum spp. (Thaumarchaeota) dominated the archaeal community in RO 92 feedwater being represented by 26% and 41% of archaeal reads, respectively (Fig. 1D. 93 Nitrosoarchaeum spp. are known to oxidise ammonium to nitrite (Konneke et al. 2005, 94 95 Pitcher et al. 2011) and the increase in the abundance of reads associated with this genus in RO feedwater (Fig. 1C-D), suggest a potential role of Nitrosoarchaeum spp. in the 96 97 ammonium oxidation observed here (Fig. 1A-B). Nitrosoarchaeum spp. were previously sequenced in multimedia filters of a drinking water treatment system in which ammonium 98 oxidation was also found to occur (Bai et al. 2013). 99 Bacteria were dominated by α-Proteobacteria with high contributions from Bacteroidetes, 100 Synechococcales, and γ -Proteobacteria. Melainobacteria, γ -Proteobacteria, and 101 102 Verrucomicrobia tended to be more represented in genetic libraries from the RO feedwater. Protists were mostly represented by dinoflagellates, ciliates, Syndiniales, Stramenopiles, 103 Rhizaria, Archaeplastida, and Opisthokonta, with ciliates, Rhizaria, and Opisthokonta being 104 more represented in RO feedwater (Supplementary Figure S2, Supplementary Tables S2-S3). 105 ANOSIM analyses revealed significant differences in Bray-Curtis dissimilarities as well as 106 unweighted and weighted UniFrac distances, between raw seawater and RO feedwater 107

communities for Archaea, bacteria and, to a lesser extent, protists. In contrast, microbial
communities sampled at different dates did not show significant differences (data not shown).
This indicates that microbial community differences across the SWRO pre-treatment system
were greater than seasonal differences on the same sampling site. Furthermore, taxonomic
differences across Penneshaw seawater pre-treatment system were greater for prokaryotes
compared to eukaryotes.

114 Most archaeal OTUs (58%) were only detected in RO feedwater whereas this proportion was lower for bacteria (26%), and protists (26%) (Supplementary Figure S3). Data suggest 115 116 that at least some of the archaeal and bacterial taxa sequenced here were likely to stably persist within Penneshaw SWRO plant during different seasons. Overall, 17 archaeal OTUs, 117 51 bacterial OTUs, and 6 eukaryotic OTUs were found occur in all RO feedwater samples 118 and their contribution to the overall community was significantly (p-value > 0.01) higher than 119 that observed in raw seawater (Fig. 2, Supplementary Table S4). RO feedwater persistent and 120 enriched OTUs are represented by ammonium oxidising microbes, and biofilm-associated 121 taxa typically observed in soil, sediment or different water treatment plants. 122 Ammonium oxidising microbes enriched in RO feedwater include the Archaea 123 Nitrosoarchaeum and Nitrosopumilus (Fig. 2) that were previously detected within pre-124 treatment systems of SWRO desalination plants (Hong et al. 2016, Jeong et al. 2016) and the 125 bacterium Nitrospira sp., which was found in wastewater treatment plants (Keuter et al. 126 127 2011) and biofilters of recirculating aquaculture systems (Brown et al. 2013). Current data thus suggest that Nitrosoarchaeum, Nitrosopumilus, and Nitrospira representatives found 128 here were likely to colonise the multimedia filters of the seawater pre-treatment being 129 responsible for the ammonium oxidation measured (Fig. 1). Other OTUs that are significantly 130 enriched in RO feedwater mostly belong to taxa that have been previously found in RO 131 membranes or RO feedwater such as Pseudoalteromonas spp. and Cryomorphaceae (Chun et 132

al. 2012, Nagaraj et al. 2019) or biofilm forming taxa such as Melainabacteria (Rehman et al.
2020) and Hartmannulidae ciliates (Xu et al. 2014).

135 Taxa persistent in RO feedwater are likely to either occur in South Australian coastal waters throughout the year and systematically passing through the pre-treatment system 136 because of some specific features (size, shape), or to be part of a persistent community 137 present within Penneshaw pre-treatment system. While some of these taxa, especially 138 139 ammonium oxidizers, are likely to derive from multimedia filters, others might be associated with biofilms present in other surfaces of the pre-treatment system. It has been demonstrated 140 141 that biofilm-associated microbes present along pre-treatment systems can behave as microbial reservoirs potentially enhancing the risks of RO membrane biofouling (Levi et al. 2016). 142 In spite of the UV treatment and the presence of several multimedia and cartridge filters, 143 Penneshaw SWRO plant harbours an RO feedwater-specific community which mostly 144 145 includes prokaryotic microbes. Some of these microbes are potentially involved in the oxidation of ammonium to nitrite and nitrate (Nitrosoarchaeum spp., Nitrosopumilus spp., 146 and Nitrospira spp.) within the multimedia filters. Most RO feedwater-specific microbes 147 were previously isolated or sequenced from different water treatment facilities and some of 148 them can potentially cause biofouling on the RO membrane. In contrast with other 149 desalination plants, chemical disinfection is not applied in Penneshaw SWRO plant to 150 decrease the environmental impact, thus potentially leading to an increased microbial load in 151 RO feedwater. Microbial communities similar to the RO feedwater-specific community 152 found here are likely to occur in other disinfection-free SWRO plants. Our results thus 153 provide insights on the bacteria and Archaea potentially causing biofouling and can 154 contribute, to future research, to design effective strategies to minimise biofouling. 155 156

157 Acknowledgements

- 158 The authors acknowledge the financial support of the National Centre of Excellence in
- 159 Desalination Australia (NCEDA) which is funded by the Australian Government
- 160 through the National Urban Water and Desalination Plan. The authors are also grateful to P.
- 161 Meacham, T. Kirby, and N. Nedelkov for their assistance in sampling at the Penneshaw
- 162 desalination plant. We also thank Xavier Denis, Camille Moreau and Jan-Georg Jendyk for
- 163 helping with sampling and processing nutrient samples.

165 **References**

- Bai, Y. H., R. P. Liu, J. S. Liang and J. H. Qu (2013). "Integrated Metagenomic and Physiochemical
 Analyses to Evaluate the Potential Role of Microbes in the Sand Filter of a Drinking Water
 Treatment System." Plos One 8(4).
- Balzano, S., E. Abs and S. C. Leterme (2015a). "Protist diversity along a salinity gradient in a coastal
 lagoon." Aquatic Microbial Ecology **74**(3): 263-277.
- Balzano, S., A. V. Ellis, C. Le Lan and S. C. Leterme (2015b). "Seasonal changes in phytoplankton on
 the north-eastern shelf of Kangaroo Island (South Australia) in 2012 and 2013." Oceanologia
 57(3): 251-262.
- Balzano, S., C. Le Lan, A. V. Ellis, H. Compas, K. Newton, T. Jamieson, M. Brown and S. C. Leterme
 (2014). "Evaluation of transparent exopolymer particles and microbial communities found
 post-UV light, multimedia and cartridge filtration pre-treatment in a SWRO plant."
 Desalination and Water Treatment 56(6): 1427-1439.
- Bowman, J. S., S. Rasmussen, N. Blom, J. W. Deming, S. Rysgaard and T. Sicheritz-Ponten (2012).
 "Microbial community structure of Arctic multiyear sea ice and surface seawater by 454
 sequencing of the 16S RNA gene." Isme Journal 6(1): 11-20.
- Brown, M. N., A. Briones, J. Diana and L. Raskin (2013). "Ammonia-oxidizing archaea and nitrite oxidizing nitrospiras in the biofilter of a shrimp recirculating aquaculture system." Fems
 Microbiology Ecology 83(1): 17-25.
- Caporaso, J. G., J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N. Fierer, A. G.
 Pena, J. K. Goodrich, J. I. Gordon, G. A. Huttley, S. T. Kelley, D. Knights, J. E. Koenig, R. E. Ley,
 C. A. Lozupone, D. McDonald, B. D. Muegge, M. Pirrung, J. Reeder, J. R. Sevinsky, P. J.
 Tumbaugh, W. A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld and R. Knight (2010).
 "QIIME allows analysis of high-throughput community sequencing data." Nature Methods **7**(5): 335-336.
- Chun, Y., P. T. Ha, L. Powell, J. Lee, D. Kim, D. Choi, R. W. Lovitt, I. S. Kim, S. S. Mitra and I. S. Chang
 (2012). "Exploring microbial communities and differences of cartridge filters (CFs) and
 reverse osmosis (RO) membranes for seawater desalination processes." Desalination 298:
 85-92.
- Hong, P. Y., N. Moosa and J. Mink (2016). "Dynamics of microbial communities in an integrated
 ultrafiltration-reverse osmosis desalination pilot plant located at theArabian Gulf."
 Desalination and Water Treatment 57(35): 16310-16323.
- Jeong, S., K. Cho, H. Bae, P. Keshvardoust, S. A. Rice, S. Vigneswaran, S. Lee and T. Leiknes (2016).
 "Effect of microbial community structure on organic removal and biofouling in membrane adsorption bioreactor used in seawater pretreatment." Chemical Engineering Journal 294: 30-39.
- Keuter, S., M. Kruse, A. Lipski and E. Spieck (2011). "Relevance of Nitrospira for nitrite oxidation in a
 marine recirculation aquaculture system and physiological features of a Nitrospira marina like isolate." Environmental Microbiology 13(9): 2536-2547.
- Konneke, M., A. E. Bernhard, J. R. de la Torre, C. B. Walker, J. B. Waterbury and D. A. Stahl (2005).
 "Isolation of an autotrophic ammonia-oxidizing marine archaeon." Nature 437(7058): 543546.
- Kumar, S., P. S. Bhavya, R. Ramesh, G. V. M. Gupta, F. Chiriboga, A. Singh, I. Karunasagar, A. Rai, A.-S.
 Rehnstam-Holm, L. Edler and A. Godhe (2018). "Nitrogen uptake potential under different
 temperature-salinity conditions: Implications for nitrogen cycling under climate change
 scenarios." Marine Environmental Research 141: 196-204.
- Levi, A., E. Bar-Zeev, H. Elifantz, T. Berman and I. Berman-Frank (2016). "Characterization of microbial communities in water and biofilms along a large scale SWRO desalination facility: Site-specific prerequisite for biofouling treatments." Desalination **378**: 44-52.

- Manes, C. L. D., N. West, S. Rapenne and P. Lebaron (2011). "Dynamic bacterial communities on
 reverse-osmosis membranes in a full-scale desalination plant." Biofouling 27(1): 47-58.
- Marie, D., X. L. Shi, F. Rigaut-Jalabert and D. Vaulot (2010). "Use of flow cytometric sorting to better
 assess the diversity of small photosynthetic eukaryotes in the English Channel." Fems
 Microbiology Ecology 72(2): 165-178.
- Middelburg, J. J. and J. Nieuwenhuize (2000). "Nitrogen uptake by heterotrophic bacteria and
 phytoplankton in the nitrate-rich Thames estuary." Marine Ecology Progress Series 203: 13 21.
- Nagaraj, V., L. Skillman, D. Li, Z. Xie and G. Ho (2019). "Culturable bacteria from a full-scale
 desalination plant: Identification methods, bacterial diversity and selection of models based
 on membrane-biofilm community." Desalination 457: 103-114.
- Pitcher, A., E. C. Hopmans, A. C. Mosier, S. J. Park, S. K. Rhee, C. A. Francis, S. Schouten and J. S. S.
 Damste (2011). "Core and Intact Polar Glycerol Dibiphytanyl Glycerol Tetraether Lipids of
 Ammonia-Oxidizing Archaea Enriched from Marine and Estuarine Sediments." Applied and
 Environmental Microbiology **77**(10): 3468-3477.
- Rehman, Z. U., L. Fortunato, T. Y. Cheng and T. Leiknes (2020). "Metagenomic analysis of sludge and
 early-stage biofilm communities of a submerged membrane bioreactor." Science of the Total
 Environment **701**: 10.
- Yin, Q., B. B. Fu, B. Y. Li, X. C. Shi, F. Inagaki and X. H. Zhang (2013). "Spatial Variations in Microbial
 Community Composition in Surface Seawater from the Ultra-Oligotrophic Center to Rim of
 the South Pacific Gyre." Plos One 8(2): 12.
- Xu, H. L., W. Zhang, Y. Jiang and E. J. Yang (2014). "Use of biofilm-dwelling ciliate communities to
 determine environmental quality status of coastal waters." Science of the Total Environment
 470: 511-518.
- Zhou, J., X. Song, C. Y. Zhang, G. F. Chen, Y. M. Lao, H. Jin and Z. H. Cai (2018). "Distribution Patterns
 of Microbial Community Structure Along a 7000-Mile Latitudinal Transect from the
 Mediterranean Sea Across the Atlantic Ocean to the Brazilian Coastal Sea." Microbial Ecology
 76(3): 592-609.
- 242

244

246 Figure Legend

- 247
- 248
- 249 Figure 1. Box and whisker plots highlighting changes in the concentration of (A)
- ammonium, as well as (**B**) nitrate and nitrite within the seawater pre-treatment system of
- 251 Penneshaw desalination plant. Each box includes 25th and 75th percentiles from each
- 252 parameter and lines within the boxes represent median values, whereas solid lines outside the
- boxes correspond to the 10th and the 90th percentiles. Taxonomic composition (left axis) and
- total contribution to the total 16S rRNA gene libraries (right axis) of the Archaea sequenced
- 255 from (C) raw seawater and (D) RO feedwater in the seawater pre-treatment system of
- 256 Penneshaw SWRO plant inferred from 16S rRNA gene sequencing.
- 257 258
- **Figure 2.** Distribution of all the OTUs found to be persistent in RO feedwater and enriched
- 260 (t-test, p-value > 0.01) compared to raw seawater and recovered from RO feedwater at all
- time points (persistent community). The taxonomic affiliation of each OTU is indicated next
- to the OTU code.
- 263

Table 1. Sequencing results and analysis of microbial diversity. OTUs: operational
 taxonomic units

	Sampling site	Sampling date	No of reads	No of OTUs
Archaeal 16S	Raw seawater	24/10/12	117	30
		19/12/12	168	26
		27/03/13	385	40
		03/07/13	56	25
		27/11/13	387	89
		Total	1,113	136
	RO feedwater	24/10/12	1424	74
		19/12/12	3231	104
		27/03/13	674	86
		03/07/13	5252	124
		27/11/13	1530	133
		Total	12,111	260
Bacterial 16S	Raw seawater	24/10/12	9390	1036
		19/12/12	12098	1191
		27/03/13	9891	1283
		03/07/13	10071	2047
		27/11/13	9586	1983
		Total	51,036	4449
	RO feedwater	24/10/12	10079	1041
		19/12/12	10038	1098
		27/03/13	11928	952
		03/07/13	7947	1192
		27/11/13	10608	1226
Total		Total	50,600	3089
Protists	Raw seawater	24/10/12	17,242	1886
		19/12/12	17,242	919
		27/03/13	17,242	1507
		03/07/13	17,242	1650
		27/11/13	17,242	2499
		Total	86,210	5781
	RO feedwater	24/10/12	17,242	963
		19/12/12	17,242	410
		27/03/13	17,242	992
		03/07/13	17,242	587
		27/11/13	17,242	1907
		Total	86,210	3771

Table 2. Analysis of similarity (ANOSIM) highlighting differences between r	nicrobial
--	-----------

communities sampled from raw seawater and RO feed water^a

271

	Bray Curtis		Unweighted Unifrac		Weighted Unifrac	
Community	test	p-value	test	p-value	test	p-value
Archaea (16S)	0.44	0.02	0.89	0.008	0.45	0.007
Bacteria (16S)	0.4	0.005	<u>1</u>	0.01	0.31	0.036
Plastidic protists (16S)	0.35	0.029	0.1	0.25	0.21	0.13
All protists (18S)	<u>0.34</u>	0.012	<u>0.41</u>	0.02	<u>0.42</u>	0.011

272

 a Significant (p-value < 0.05) and highly significant (p-value < 0.01) correlations are underlined and in bold,

274 respectively.

		Read count				
		1	10	100	1000	10000
Archaea	Denovo0, Nanoarchaeaeota Denovo9529, Nanoarchaeaeota Denovo16180, Nanoarchaeaeota Denovo17075, Nanoarchaeaeota Denovo2141, <i>Nitrosopumilus</i> Denovo2411, <i>Nitrosoarchaeum</i> Denovo4956, <i>Nitrosopumilus</i> Denovo6708, <i>Nitrosopumilus</i> Denovo12066, <i>Nitrosopumilus</i> Denovo16015, <i>Portibactar</i>					
Bacteroidetes	Denovo17553, Salinirepens Denovo9643, Cryomorphaceae Denovo10818, Cryomorphaceae Denovo13094, Cryomorphaceae				-	
Melainabacteria	Denovo6247, Caenarcaniphilales	1				
Entotheonellaeota	Denovo12656, Caenarcaniphilales		_		_	
Nitrospirae	Denovo6230. Nitrospira					
Patescibacteria	Denovo17137, Peribacteria Denovo11122, Peribacteria Denovo11201, Peribacteria			_		
α-Proteobacteria	Denovo13742, Fodinicurvata Denovo9902, Parvibaculales Denovo5163, Magnetospira Denovo3308, <i>Nucleicultrix</i>			=		
γ-Proteobacteria	Denovo2433, Rickettsiales Denovo987, Coxiella Denovo12217, Coxiella Denovo10358, Francisellaceae Denovo3744, Pseudoalteromonas				-	
δ-Proteobacteria	Denovo15491, Myxococcales Denovo11223, Myxococcales Denovo4789, <i>Nannocystis</i>					
Verrucomicrobia	Denovo17512, Roseibacillus Denovo16312, Roseibacillus		-		•	
Alveolata	Denovo13047, Hartmannulidae Denovo14330, MALV-I-Clade-5 Denovo22561, MALV-I-Clade-5				1	-
Opisthokonta Dhizoria	Denovo13778, <i>Lagenoeca</i> sp.					
Stramenopile	Denovo185, <i>Protaspa</i> Denovo18576, MAST-6]				•

■ raw seawater ■ RO feedwater

Supplementary data

Supplementary Figure S1. Accumulation curves, representing the OTU richness in each sample, as function of the number of reads sequenced for (A-B) the 16S and (C-D) the 18S rRNA gene libraries in (A, C) raw seawater and (B, D) RO feedwater.

Supplementary Figure S2. Venn diagrams representing similarities and differences between the microbial communities of (A) Archaea, (B) bacteria, (C) plastidic protists, and (D) total protists, identified in raw seawater (light blue circles) and RO feed water (pink circles) of the Penneshaw SWRO plant. Values indicate the number of OTUs followed by their percentage contribution to total reads. The two small circles within each pink circle represent the OTUs found to be persistent (occurring at each time point) in RO feed water as well as in all samples (both raw seawater and RO feedwater), respectively.

Supplementary Table S1. Details of primers, adapters and barcodes used in the present study for Ion Torrent sequencing

Supplementary Table S2. Taxonomic affiliation and distribution within the different samples for the OTUs (97 % identity) found here within the prokaryotic 16S rRNA gene dataset.

Supplementary Table S3. Taxonomic affiliation and distribution within the different samples for the OTUs (97 % identity) found here within the 18S dataset

Supplementary Table S4. Statistics of the OTUs from the 16S rRNA gene that were found to be significantly more abundant in RO feedwater compared to raw seawater for the 16S rRNA gene

representing the OTU richness in each sample, as function of the number of reads sequenced for (A-B) the 16S and (A, C) raw seawater and (B, D) RO feedwater.