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Running title: microbes across seawater pre-treatment 18 

 19 

Abstract 20 

We analysed prokaryotic and eukaryotic communities across the seawater pre-treatment 21 

system of a desalination plant, using 16S and 18S rRNA gene sequencing. The richness of 22 

operational taxonomic units (OTUs) increased downstream of the pre-treatment system (RO 23 

feedwater) compared to raw seawater for Archaea while it decreased for bacteria and protists. 24 

Overall the RO feedwater was found to be enriched in ammonia-oxidising bacteria and 25 

Archaea compared to raw seawater and also contained greater proportions of taxa typically 26 

observed in aquatic biofilms and/or within other water treatment systems. Although, the 27 

microbial load is reduced by the pre-treatment system, the increase in proportion of biofilm-28 

associated microbes suggest the presence of active microbial communities within multimedia 29 

filters and other parts of the pre-treatment system that might increase biofouling risks.  30 

 31 
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Climate change and increase in human population worldwide are likely to exacerbate 34 

freshwater scarcity issues in several regions (Naumann et al. 2018), highlighting the need for 35 

alternative freshwater sources such as desalination. Most desalination plants use reverse 36 

osmosis (RO) membranes for the conversion of seawater into freshwater and brine. To 37 

remove most microbes and particles from the stream, seawater is usually pre-treated by 38 

filtration and UV irradiation prior to RO. Although the microbial load decreases sharply after 39 

seawater filtration, some of the microbes present after seawater pre-treatment are likely to 40 

form biofilms on the RO membranes (Manes et al. 2011). For example, Bacteria are typically 41 

enriched in Proteobacteria (Manes et al. 2011, Levi et al. 2016), whereas pennate diatoms and 42 

other elongated species prevail among eukaryotes (Balzano et al. 2014) after pre-treatment 43 

for SWRO. While bacterial communities have been widely characterised little is known on 44 

Archaea and protists. Here, we assessed the composition of both prokaryotic and eukaryotic 45 

communities occurring upstream (raw seawater) and downstream (RO feedwater) of a pre-46 

treatment system for SWRO by sequencing the V4 fragment of both the 16S and the 18S 47 

rRNA genes.  48 

 Seawater was collected from the Penneshaw SWRO desalination plant, located on the 49 

North-Eastern coast of Kangaroo Island, South Australia (Balzano et al. 2014). The pre-50 

treatment system consists in a medium pressure-ultra violet (MP-UV) disinfection unit, 51 

multimedia and cartridge filters (Balzano et al. 2014). Nutrients were analysed every second 52 

week over one-year period (18/07/2012 to 21/07/2013) from raw seawater, downstream of 53 

the MP-UV treatment unit (Site 2), the multimedia filters (Site 3), the 15 μm cartridge filters 54 

(Site 4), and from the RO feedwater, as described previously (Balzano et al. 2015b).   55 

Molecular analyses were carried out on raw seawater and RO feedwater only, and samples 56 

were collected 5 times over a 13-month period (Oct 2012, Dec 2012, Mar 2013, Jul 2013, 57 

Nov 2013). One hundred-twenty L seawater were concentrated down to 2 L by tangential 58 
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flow filtration (Marie et al. 2010) and the concentrated sample was first pre-filtered using 10 59 

μm cellulose filters and then filtered through 0.22-mm pore size Sterivex units (Millipore, 60 

Billerica, MA). Cells were removed from the Sterivex units, the DNA extracted, the 18S 61 

rRNA gene amplified, and both 18S and 16S rRNA genes sequenced using IonTorrent PGM 62 

as described previously (Balzano et al. 2015a), whereas the V4 region of the 16S rRNA gene 63 

was amplified using slight modifications (Supplementary Table S1) of the universal 64 

prokaryotic primers V341F and 805R (Bowman et al. 2012) and PCR reactions consisted of 65 

an initial denaturation at 98°C for 1 min, 30 cycles of 40 s at 98°C, 40 s at 53°C and 1 min at 66 

72°C, and a final extension at 72°C for 1 min. Raw sequencing data were processed using the 67 

python pipeline Quantitative Insight into Microbial Ecology (QIIME) (Caporaso et al. 2010); 68 

read were filtered, clustered into operational taxonomic units (OTUs), and reads from 69 

different samples were compared as described previously (Balzano et al. 2015a).  70 

Raw seawater temperature ranged from 14.3 ºC (July 2013) to 20.8 ºC (March 2013) and 71 

the salinity was stable around 36 psu (Balzano et al. 2015b). The abundance of both bacteria 72 

and phytoplankton dropped dramatically across the multimedia filter, from Site 2 to Site 3 73 

(Balzano et al. 2014). The concentration of ammonium dropped by half across the 74 

multimedia filters (Fig. 1A), whereas the median concentration of NOx increased from 0.35 to 75 

1.24 μM (Fig. 1B) and both phosphate and silica did not change significantly (data not 76 

shown). The decrease in the concentration of ammonium and the increase in NOx, suggest 77 

that nitrification was taking place within the multimedia filter. The lower ammonium to 78 

nitrate ratios measured downstream the multimedia filters are likely to partially limit 79 

microbial growth: heterotrophic bacteria in the water column are known to preferentially 80 

uptake ammonium over nitrate as nitrogen source (Middelburg and Nieuwenhuize 2000, 81 

Kumar et al. 2018).  82 
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Overall, we sampled a good portion of the microbial community (Supplementary Figure 83 

1). OTU richness and diversity indices were generally lower in raw seawater than in RO 84 

feedwater for Archaea, and higher for bacteria and protists (Table 1). Most taxonomical 85 

changes across the pre-treatment plant were observed for Archaea compared to bacteria and 86 

protists. The proportions of archaeal reads over the total 16S rRNA gene libraries were 87 

significantly lower in raw seawater (0.5 to 3%) compared to RO feedwater (5 to 40%, Fig. 88 

1C-D). Euryarchaeota, that typically dominate surface seawaters (Yin et al. 2013, Zhou et al. 89 

2018), accounted for a large proportion of the genetic libraries of raw seawater, and their 90 

contribution dropped dramatically in RO feedwater. In contrast, Nanoarchaeota and 91 

Nitrosoarchaeum spp. (Thaumarchaeota) dominated the archaeal community in RO 92 

feedwater being represented by 26% and 41% of archaeal reads, respectively (Fig. 1D. 93 

Nitrosoarchaeum spp. are known to oxidise ammonium to nitrite (Konneke et al. 2005, 94 

Pitcher et al. 2011) and the increase in the abundance of reads associated with this genus in 95 

RO feedwater (Fig. 1C-D), suggest a potential role of Nitrosoarchaeum spp. in the 96 

ammonium oxidation observed here (Fig. 1A-B). Nitrosoarchaeum spp. were previously 97 

sequenced in multimedia filters of a drinking water treatment system in which ammonium 98 

oxidation was also found to occur (Bai et al. 2013).  99 

Bacteria were dominated by α-Proteobacteria with high contributions from Bacteroidetes, 100 

Synechococcales, and γ-Proteobacteria. Melainobacteria, γ-Proteobacteria, and 101 

Verrucomicrobia tended to be more represented in genetic libraries from the RO feedwater. 102 

Protists were mostly represented by dinoflagellates, ciliates, Syndiniales, Stramenopiles, 103 

Rhizaria, Archaeplastida, and Opisthokonta, with ciliates, Rhizaria, and Opisthokonta being 104 

more represented in RO feedwater (Supplementary Figure S2, Supplementary Tables S2-S3).  105 

ANOSIM analyses revealed significant differences in Bray-Curtis dissimilarities as well as 106 

unweighted and weighted UniFrac distances, between raw seawater and RO feedwater 107 
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communities for Archaea, bacteria and, to a lesser extent, protists.  In contrast, microbial 108 

communities sampled at different dates did not show significant differences (data not shown). 109 

This indicates that microbial community differences across the SWRO pre-treatment system 110 

were greater than seasonal differences on the same sampling site. Furthermore, taxonomic 111 

differences across Penneshaw seawater pre-treatment system were greater for prokaryotes 112 

compared to eukaryotes.  113 

Most archaeal OTUs (58%) were only detected in RO feedwater whereas this proportion 114 

was lower for bacteria (26%), and protists (26%) (Supplementary Figure S3). Data suggest 115 

that at least some of the archaeal and bacterial taxa sequenced here were likely to stably 116 

persist within Penneshaw SWRO plant during different seasons. Overall, 17 archaeal OTUs, 117 

51 bacterial OTUs, and 6 eukaryotic OTUs were found occur in all RO feedwater samples 118 

and their contribution to the overall community was significantly (p-value > 0.01) higher than 119 

that observed in raw seawater (Fig. 2, Supplementary Table S4). RO feedwater persistent and 120 

enriched OTUs are represented by ammonium oxidising microbes, and biofilm-associated 121 

taxa typically observed in soil, sediment or different water treatment plants.  122 

Ammonium oxidising microbes enriched in RO feedwater include the Archaea 123 

Nitrosoarchaeum and Nitrosopumilus (Fig. 2) that were previously detected within pre-124 

treatment systems of SWRO desalination plants (Hong et al. 2016, Jeong et al. 2016) and the 125 

bacterium Nitrospira sp., which was found in wastewater treatment plants (Keuter et al. 126 

2011) and biofilters of recirculating aquaculture systems (Brown et al. 2013). Current data 127 

thus suggest that Nitrosoarchaeum, Nitrosopumilus, and Nitrospira representatives found 128 

here were likely to colonise the multimedia filters of the seawater pre-treatment being 129 

responsible for the ammonium oxidation measured (Fig. 1). Other OTUs that are significantly 130 

enriched in RO feedwater mostly belong to taxa that have been previously found in RO 131 

membranes or RO feedwater such as Pseudoalteromonas spp. and Cryomorphaceae (Chun et 132 
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al. 2012, Nagaraj et al. 2019) or biofilm forming taxa such as Melainabacteria (Rehman et al. 133 

2020) and Hartmannulidae ciliates (Xu et al. 2014).  134 

Taxa persistent in RO feedwater are likely to either occur in South Australian coastal 135 

waters throughout the year and systematically passing through the pre-treatment system 136 

because of some specific features (size, shape), or to be part of a persistent community 137 

present within Penneshaw pre-treatment system.While some of these taxa, especially 138 

ammonium oxidizers, are likely to derive from multimedia filters, others might be associated 139 

with biofilms present in other surfaces of the pre-treatment system. It has been demonstrated 140 

that biofilm-associated microbes present along pre-treatment systems can behave as microbial 141 

reservoirs potentially enhancing the risks of RO membrane biofouling (Levi et al. 2016).  142 

In spite of the UV treatment and the presence of several multimedia and cartridge filters, 143 

Penneshaw SWRO plant harbours an RO feedwater-specific community which mostly 144 

includes prokaryotic microbes. Some of these microbes are potentially involved in the 145 

oxidation of ammonium to nitrite and nitrate (Nitrosoarchaeum spp., Nitrosopumilus spp., 146 

and Nitrospira spp.) within the multimedia filters. Most RO feedwater-specific microbes 147 

were previously isolated or sequenced from different water treatment facilities and some of 148 

them can potentially cause biofouling on the RO membrane. In contrast with other 149 

desalination plants, chemical disinfection is not applied in Penneshaw SWRO plant to 150 

decrease the environmental impact, thus potentially leading to an increased microbial load in 151 

RO feedwater. Microbial communities similar to the RO feedwater-specific community 152 

found here are likely to occur in other disinfection-free SWRO plants. Our results thus 153 

provide insights on the bacteria and Archaea potentially causing biofouling and can 154 

contribute, to future research, to design effective strategies to minimise biofouling. 155 
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Figure Legend 246 
 247 
 248 
Figure 1. Box and whisker plots highlighting changes in the concentration of (A) 249 
ammonium, as well as (B) nitrate and nitrite within the seawater pre-treatment system of 250 
Penneshaw desalination plant. Each box includes 25th and 75th percentiles from each 251 
parameter and lines within the boxes represent median values, whereas solid lines outside the 252 
boxes correspond to the 10th and the 90th percentiles. Taxonomic composition (left axis) and 253 
total contribution to the total 16S rRNA gene libraries (right axis) of the Archaea sequenced 254 
from (C) raw seawater and (D) RO feedwater in the seawater pre-treatment system of 255 
Penneshaw SWRO plant inferred from 16S rRNA gene sequencing. 256 
 257 
 258 
Figure 2. Distribution of all the OTUs found to be persistent in RO feedwater and enriched 259 
(t-test, p-value > 0.01) compared to raw seawater and recovered from RO feedwater at all 260 
time points (persistent community). The taxonomic affiliation of each OTU is indicated next 261 
to the OTU code.  262 
  263 
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Table 1. Sequencing results and analysis of microbial diversity. OTUs: operational 264 
taxonomic units 265 
 266 

  Sampling site Sampling date No of reads No of OTUs 

Archaeal 16S Raw seawater 24/10/12 117 30 
    19/12/12 168 26 
    27/03/13 385 40 
    03/07/13 56 25 
    27/11/13 387 89 
    Total  1,113 136 
  RO feedwater 24/10/12 1424 74 
    19/12/12 3231 104 
    27/03/13 674 86 
    03/07/13 5252 124 
    27/11/13 1530 133 
    Total  12,111 260 

Bacterial 16S Raw seawater 24/10/12 9390 1036 
    19/12/12 12098 1191 
    27/03/13 9891 1283 
    03/07/13 10071 2047 
    27/11/13 9586 1983 
    Total  51,036 4449 
  RO feedwater 24/10/12 10079 1041 
    19/12/12 10038 1098 
    27/03/13 11928 952 
    03/07/13 7947 1192 
    27/11/13 10608 1226 

Total   Total  50,600 3089 

Protists Raw seawater 24/10/12 17,242 1886 
    19/12/12 17,242 919 
    27/03/13 17,242 1507 
    03/07/13 17,242 1650 
    27/11/13 17,242 2499 
    Total  86,210 5781 
  RO feedwater 24/10/12 17,242 963 
    19/12/12 17,242 410 
    27/03/13 17,242 992 
    03/07/13 17,242 587 
    27/11/13 17,242 1907 
    Total  86,210 3771 

 267 
  268 
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Table 2. Analysis of similarity (ANOSIM) highlighting differences between microbial 269 
communities sampled from raw seawater and RO feed watera 270 
 271 

  Bray Curtis   Unweighted Unifrac Weighted Unifrac 
Community test p-value  test p-value  test p-value 
Archaea (16S) 0.44 0.02 0.89 0.008 0.45 0.007 
Bacteria (16S) 0.4 0.005 1 0.01 0.31 0.036 
Plastidic protists (16S) 0.35 0.029 0.1 0.25 0.21 0.13 
All protists (18S) 0.34 0.012 0.41 0.02 0.42 0.011 

 272 
a Significant (p-value < 0.05) and highly significant (p-value < 0.01) correlations are underlined and in bold, 273 
respectively.  274 
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Supplementary data 
 
Supplementary Figure S1. Accumulation curves, representing the OTU richness in each 
sample, as function of the number of reads sequenced for (A-B) the 16S and (C-D) the 18S 
rRNA gene libraries in (A, C) raw seawater and (B, D) RO feedwater. 
 
Supplementary Figure S2. Venn diagrams representing similarities and differences between 
the microbial communities of (A) Archaea, (B) bacteria, (C) plastidic protists, and (D) total 
protists, identified in raw seawater (light blue circles) and RO feed water (pink circles) of the 
Penneshaw SWRO plant. Values indicate the number of OTUs followed by their percentage 
contribution to total reads. The two small circles within each pink circle represent the OTUs 
found to be persistent (occurring at each time point) in RO feed water as well as in all 
samples (both raw seawater and RO feedwater), respectively.    
 
 
Supplementary Table S1. Details of primers, adapters and barcodes used in the present 
study for Ion Torrent sequencing 
 
 
Supplementary Table S2. Taxonomic affiliation and distribution within the different 
samples for the OTUs (97 % identity) found here within the prokaryotic 16S rRNA gene 
dataset. 
 
Supplementary Table S3. Taxonomic affiliation and distribution within the different 
samples for the OTUs (97 % identity) found here within the 18S dataset 
 
Supplementary Table S4. Statistics of the OTUs from the 16S rRNA gene that were found 
to be significantly more abundant in RO feedwater compared to raw seawater for the 16S 
rRNA gene 
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