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DDAANNKKWWOOOORRDD  
 

Toen de mensen me vroegen wat ik later wou worden, antwoordde ik naar het schijnt al 

van jongsaf, mariene bioloog. Toen we vroeger naar zee gingen, kon ik dan ook uren 

doorbrengen op golfbrekers op zoek naar allerlei kleine beestjes of vissend naar 

garnalen met een schepnetje. Waarschijnlijk is toen al de kiem gelegd voor het resultaat 

van vandaag. Natuurlijk stelde ik me toen ‘het mariene bioloog zijn’ wel iets idyllischer 

en exotischer voor dan ploeteren in de modder en slijkgarnalen bestuderen. Nochtans 

kan ik zo’n modderbadje iedereen aanbevelen want in wellness centra moet je daar veel 

geld voor neertellen. Natuurlijk heb ik gedurende de voorbije jaren wel iets meer gedaan 

dan ploeteren in de modder en bij het tot stand komen van dit boekje heb ik dan ook de 

nodige hulp gehad van een heleboel mensen in vette en magere dagen!  

Eerst en vooral wil ik mijn promotor Prof. Dr. Magda Vincx bedanken. Magda, je hebt me 

van bij het prille begin steeds in volle vrijheid laten kiezen welke richting ik zou uitgaan 

en alhoewel dat niet altijd even evident was, heb ik dit ervaren als zeer leerrijk. Toen ik 

vorig jaar besloot om de mariene te verlaten, had je twijfels of dit werk nog ooit zou 

voltooid worden, maar je bent me hierin blijven steunen, waarvoor dank! 

Steven, toen ik met jouw aanwijzingen de allereerste keer richting IJzermonding trok op 

zoek naar Corophiums, was dat bijna het einde van dit verhaal geworden, want van 

‘drijfmodder’ had je me niets verteld… Maar met uitzondering van dit ene feit, ben ik je 

bijzonder dankbaar voor alle nuttige tips, het discussiëren over experimenten en 

resultaten, het verbeteren van mijn schrijfsels en vooral ook het terug richting geven aan 

mijn onderzoek als ik eventjes de pedalen verloor. Verder ook dank voor de positieve 

commentaar het afgelopen jaar, het deed deugd om te horen en gaf me extra energie om 

door te zetten! 

Door de samenwerking met Jaak, Erik en vooral Stefanie hebben begrippen als kritische 

schuifspanning, suspensie erosie snelheid en spectrale reflectantie een praktische 

inhoud gekregen. Het was een fijne en leerrijke samenwerking en met twee kan je altijd 

meer dan alleen, zeker als je 10,000 ‘garnalen’ moet uitpikken! Hulp heb ik ook gekregen 

van twee thesisstudentes. Evy en Fien, jullie werk is voor een groot deel opgenomen in 
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dit doctoraat en ik wil jullie dan ook bedanken voor de inzet en het enthousiasme 

waarmee jullie op dit onderwerp gevlogen zijn. 

Collegialiteit wordt hoog in het vaandel gedragen op de mariene en ik wil daarom alle 

huidige en vroegere marbiollers uit de grond van mijn hart bedanken voor de toffe sfeer 

op het labo! Ik moet eerlijk toegeven dat ik de soms absurd hilarische koffie- en 

middagpauzes en andere feestelijkheden af en toe een beetje mis daar in Oostende. En 

ook al is het nu toch al eventjes niet meer ‘mijn’ labo, toch voelt het telkens weer een 

beetje aan als ‘thuiskomen’. Ik hoop dan ook dat we elkaar nog vaak tegen het lijf zullen 

lopen in de toekomst. Ik heb tijdens mijn marbiol periode ook een paar moeilijke jaren 

gekend op gezondheidsvlak, maar steeds waren er mensen bereid om indien nodig voor 

me in te springen, waarvoor een gemeende dankjewel!! Annick, mijn bureaugenootje, 

wil ik hierbij extra bedanken voor het overnemen van practica en het voorbereiden van 

de Wimereux stage wanneer het nodig was en natuurlijk ook voor de goeie sfeer in ons 

kotje! 10,000’en Corophiums heb ik uitgepikt voor de verschillende experimenten en als 

ik dat alleen had moeten doen, dan was ik nu waarschijnlijk nog bezig. Ik denk dat bijna 

elke marbioller ‘van toen’ wel eens een slijkgarnaal in zijn handen heeft gehad en Annick 

VK, Annick V en Annelien verdienen hierbij een extra vermelding voor de 

uitpikmarathon in Leuven, merci! Verder wil ik iedereen (teveel om op te noemen) die 

meegeweest is op staalname bedanken en Dirk, Daniëlle, Bart en Annelien voor het 

uitvoeren van de analyses die daaruit volgden. Jürgen verdient een dikke merci voor al 

het experimentele materiaal dat hij ineen geknutseld heeft, ook al had ik het soms op het 

laatste nippertje nodig, steeds was je bereid te helpen. Guy, merci voor het oplossen van 

alle computerproblemen! Het was altijd aangenaam werken in de klimaatkamers door 

de toffe babbels met Annick VK en als ik weer eens mijn timers of het juiste darmke of … 

niet vond, of ik had rap effekes een helpende hand nodig, steeds stond Annick met de 

glimlach klaar om te helpen, merci! En Dirk kwam altijd op de proppen met een 

lumineus idee voor praktische problemen. De macrobiollers ‘van in mijn tijd’ (Annick, 

Carl, Joke, Karen, Marijn, Ulrike, Wouter, Jan en Sarah) verdienen hier zeker ook een 

extra vermelding, voor de gezellige babbels en boeiende discussies over uiteenlopende 

onderwerpen. Carl, het deed deugd om mijn ideeën tijdens het schrijven van dit boekje 

eens aan jou te kunnen voorleggen, dat gaf me telkens weer wat extra vertrouwen bij het 

neerpennen van mijn schrijfsels. Uli, partner in bioturbation, merci voor de hulp als ik 

weer eens aan het vloeken was op Rrrrrr en dankzij jou zit er nu ook een ANCOVA in dit 
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boekje ;-). Joke en Wouter, bedankt bij het opstellen van ‘mijn model’ zonder jullie codes 

als voorbeeld was ik nu nog aan ’t prutsen. Marijn, partner in writing, je hebt onze 

wedloop gewonnen, maar dat had wel als voordeel dat ik de afgelopen maanden gebruik 

kon maken van jouw handige tips, dankjewel! Een speciale dankjewel ook aan Sofie, Sas 

en Maarten, het waren steeds gezellige tijden op de mariene, al vanaf ons thesisjaar en er 

zijn veel leuke werk- en minder werkgerelateerde zaken die blijven hangen: een tripje 

naar Tjarnö, zweten in de sauna, een bezoek in Noorwegen, lekkere etentjes, kloppen 

voor dood, … en hopelijk zullen er nog veel leuke herinneringen bijkomen. 

Ik ben ook 5,5 jaar assistent geweest en dat was een bijzonder prettige ervaring, die 

voor leuke afwisseling zorgde en waarvan ik veel opgestoken heb! Ik wil hier dan ook 

van de gelegenheid gebruik maken om iedereen te bedanken (zowel van de Sterre als de 

Ledeganck) die meegeholpen heeft aan één of ander practicum. In het bijzonder Tim, die 

me de kneepjes van het vak leerde en Miranda die ervoor zorgde dat elk practicum 

vlotjes verliep! De Wimereux stages waren telkens memorabel, de nachtelijke 

zwempartijtjes, de fouten avond, de lekkere picon, de excursie door het drijfzand met 

een troep studenten en vooral het gezicht van Edouard toen hij ons zag komen,… zullen 

me altijd bijblijven! 

De NIOO collega’s, Francesc, bedankt voor je gulle gift van luminoforen en een rooie 

thermoskan, voor het demonstreren van je methodes en voor het gebruik van de CSM. 

Pieter, merci voor de beeldverwerkingssoftware en het bioturbatiemodel! Ook Bart van 

de PAE wil ik bedanken om me te leren hoe ik diatomeeën moest kweken en me te tonen 

hoe ik met de PAM moest werken. Jammer genoeg is het bij een test gebleven en is het 

diatomeeënexperiment niet in dit boekje terecht gekomen.  

Natuurlijk mag ik mijn ‘opnieuw’ en nieuwe collega’s van de biomon (Bart, Ellen, Gert, 

Hans, Jan, Jozefien, Karl, Kris en Sofie) niet vergeten omdat zij er mee voor gezorgd 

hebben dat ik de tijd had om dit doctoraat af te werken en zonder morren af en toe wat 

werk van mij overnamen. Ik besef heel goed dat dit niet vanzelfsprekend is! Allemaal 

bedankt, ook voor de interesse en de aanmoediging. Kris, ik ben je enorm dankbaar dat 

je mij de tijd en vrijheid gegeven hebt om dit doctoraat af te werken. Zonder jouw 

toestemming was dit boekje er nooit gekomen, een dikke merci!!!! Jozefien, bedankt om 

mijn samenvatting na te lezen. Hans, computerhulplijn bij lay-out problemen, zelfs in het 

weekend, dankjewel! Gert, merci voor de goede raad van een doctor met ervaring! En 
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vooral ook Sofie, bedankt voor het nalezen van mijn teksten, voor de lay-out van mijn 

voorblad en voor alle andere goede raad, ik apprecieer het enorm! Vanaf nu ben ik terug 

voor de volle 100% paraat en als ik eens iets voor jullie kan doen, héél graag! 

In tijden van inspanning, is ontspanning nodig om stoom af te laten en eens aan iets 

compleet anders te denken. Bedankt aan alle (ex)pluimkloppers en aan mijn volleyteam, 

hopelijk blijven we nog even schitteren en halen we die kampioenenbeker vandejaar! 

Bedankt ook aan alle duikertjes (Tom, Karen, Joke, Dirk, Wim, Sven, Olivier, Wouter en 

Bob) voor de toffe duikreizen (ik wou dat het al terug mei was!), andere duikuitstapje 

naar de OS en niet-duikgerelateerde activiteiten! Lies en Maarten, Val en Jo, Job en 

Machteld en Katrijn, merci voor alle toffe en gezellige momenten die we samen al 

beleefd hebben en nu moeten we echt opnieuw eens werk maken van een ArdennenWE, 

’t is al veel te lang geleden!  

Merci ook aan ‘den Eddie’, die menig 

uurtje lekker languit op mijn bureau, 

op bed, voor het venster,…gesleten 

heeft en waardoor het weekenden 

lang achter mijn bureau zitten, toch 

iets aangenamer en minder eenzaam 

werd!  

Last but not least, supporters van het eerste uur, mama en papa. Jullie begrijpen 

waarschijnlijk nog altijd niet hoe je in godsnaam meer dan 6 jaar kan werken aan een 

verhaaltje over de slijkgarnaal, maar toch hebben jullie me altijd gesteund door dik en 

dun en zelfs op een ijskoude tweede kerstdag trokken we samen naar de IJzermonding 

omdat ik per se stalen moest nemen. Ik wil jullie dan ook met heel mijn hart bedanken 

voor de vele vitamientjes in de vorm van verse soep die mijn geest helder gehouden 

hebben, maar toch ook en vooral voor jullie onvoorwaardelijke steun en liefde! Dit 

boekje is zeker ook jullie verdienste!  

 

 

Annelies 

Maart, 2010 
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SSAAMMEENNVVAATTTTIINNGG  
 

Estuariene slikplaten zijn intergetijdengebieden die ontstaan door sedimentafzetting in 

kustgebieden met beperkte dynamiek. Het zijn zeer productieve ecosystemen die 

gebruikt worden als rust- en foerageergebieden voor vogels, die dienst doen als 

kraamkamers voor platvissen en die een natuurlijke kustbescherming bieden tegen 

stormvloeden. Het sedimenttransport in deze estuariene getijdenplaten wordt 

gedomineerd door fysische processen (hoofdzakelijk getijdenstromingen en golven), die 

de omvang van het sedimenttransport bepalen. De voorbije decennia werd echter 

duidelijk dat ook kleinschalige biotische processen het sediment transport significant 

kunnen beïnvloeden en op die manier de morfologie van intertidale gebieden mee vorm 

kunnen geven. De invloed van biota op de topografie van landschappen is echter nog 

grotendeels onbekend. Daarom zijn sediment transport modellen nodig die de biotische 

effecten expliciet opnemen, om op die manier te bestuderen hoe deze kleinschalige 

biotische processen het intertidale landschap mee vorm kunnen geven. Voordat 

biologische effecten kunnen opgenomen worden in sediment transport modellen, 

moeten deze kleinschalige processen wel eerst bestudeerd worden. Het is geweten dat 

biota erosie zowel kunnen versterken als verzwakken, met respectievelijk destabilisatie 

of stabilisatie als gevolg. Biofilms van kiezelwieren bijvoorbeeld, scheiden een soort 

slijm af en vormen daardoor een beschermende laag die de stabiliteit van het sediment 

bevordert. Macrobenthos daarentegen, kan het sediment en zijn dynamiek op 

verschillende manieren beïnvloeden (bv. door bio-irrigatie, bioturbatie, mucussecretie, 

veranderen van de bodemruwheid,…). Doordat het macrobenthos verschillende 

levenswijzen kan aannemen, kan het het sediment zowel stabiliseren als destabiliseren. 

Daarom zijn gevalsstudies over benthos-sediment interacties nuttig en nodig om detail 

informatie te verstrekken over hoe macrobenthos de kleinschalige biotische processen 

kan beïnvloeden. 

Corophium volutator (Pallas, 1766) (Crustacea, Amphipoda), ook gekend als de 

slijkgarnaal, leeft in U-vormige gangen en is een veel voorkomende soort in slikplaten 

langsheen de kust van de Noord-Atlantische Oceaan, zowel in Noord-Amerika als in 

Europa. De slijkgarnaal vertoont een breed gamma van gedragsactiviteiten afhankelijk 
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van de omstandigheden en bezit de mogelijkheid om zijn fysische omgeving te wijzigen. 

Daarnaast zijn er tegenstrijdige resultaten gekend over zijn effect op sediment stabiliteit. 

Samen met zijn dominant voorkomen, maakt dit alles Corophium een interessant 

modelorganisme voor de studie van biota-sedimentinteracties. De studie naar het 

gedrag van Corophium in slikplaten en naar zijn invloed op sedimenteigenschappen en 

sedimentdynamiek is daarom van groot belang en is het hoofddoel van deze 

doctoraatsstudie. Vermits bioturbatie één van de belangrijkste processen is waardoor 

organismen hun biofysische omgeving beïnvloeden, werden de bioturbatie door 

Corophium en de verschillende factoren die bioturbatie kunnen beïnvloeden in detail 

bestudeerd. Verder werd ook het gevolg van die bioturbatie op de erosiegevoeligheid 

van het sediment onderzocht. 

In hoofdstuk 2 werd een gedragsstudie uitgevoerd waarbij de verschillende 

bovengrondse en ondergrondse activiteiten die bijdragen tot de bioturbatie van 

Corophium tijdens de getijdencyclus in kaart werden gebracht. Hiervoor werd gebruikt 

gemaakt van een labo-opstelling met getijdensimulatie. Er werden negen activiteiten 

geobserveerd, waaronder één tot nog toe onbeschreven activiteit, namelijk het ‘flushen’ 

van de gang wat een belangrijk effect kan hebben op het bioturbatieproces. Globaal 

genomen was de activiteit aan het oppervlak laag (max. 3.7% van de tijd) en nam deze 

heel sterk af tot 0.1% na het blootstellen aan de lucht. Het ondergrondse gedrag werd 

gedomineerd door het ventileren van de gang gepaard gaand met filtervoeding (44% 

van de tijd) en door ondergrondse inactiviteit (51% van de tijd). Er werd een duidelijk 

cyclisch patroon gevonden gerelateerd aan de getijdenwerking: de activiteit piekt 

tijdens overspoeling, neemt daarna snel af tijdens de eerste uren na overspoeling en 

gedurende de laatste uren van blootstelling aan de lucht staat de activiteit op een laag 

pitje. Slechts één activiteit, namelijk het afschrapen van het sedimentoppervlak (= 

depositie voeding), gebeurt tijdens de volledige getijdencyclus (tijdsallocatie ± 1.5%). 

Uit deze studie leidden we af dat het bioturbatiepotentieel van een Corophium populatie 

het hoogst is tijdens overspoeling en dus bepaald kan worden door het aantal uren 

overspoeling. De bioturbatiesnelheid van een aan getijden onderworpen Corophium 

populatie was inderdaad laag, vergeleken met andere studies (hoofdstuk 3). Dit 

suggereerde dat de bioturbatiesnelheid beïnvloed wordt door de getijdenritmiek in het 

gedrag van Corophium. Hoofdstuk 3 had tot hoofddoel de densiteitsafhankelijkheid van 

bioturbatie, het belang van de biologische activiteit van Corophium en het differentiële 



SAMENVATTING 
 

vii 
 

effect op twee korrelgroottes te onderzoeken. De resultaten van de labostudie duidden 

aan dat de activiteiten van Corophium van het allergrootste belang zijn voor het 

herwerken van het sediment en dus de bioturbatiesnelheid beïnvloeden. De 

bioturbatiesnelheid was vijf maal hoger in aanwezigheid van Corophium activiteit 

vergeleken met wanneer enkel passief transport aanwezig is, dat veroorzaakt wordt 

door de statische structuur van Corophium gangen. Densiteit bleek een belangrijke 

factor, aangezien enkel hoge dichtheden van Corophium significant bijdroegen tot het 

deeltjestransport (1.1 cm²/j), terwijl de rol van lage densiteiten in het herwerken van 

het sediment heel beperkt was (0.3 cm²/j). De verschillende sedimentfracties werden op 

een gelijkaardige wijze bewerkt tijdens het deeltjestransport; er trad geen differentiatie 

op tussen de verschillende sedimentfracties. De impact van deze bioturbatie op de 

fysische sedimenteigenschappen werd onderzocht in hoofdstuk 4 en tegelijkertijd werd 

de mogelijkheid onderzocht om deze impact vast te stellen via ‘remote sensing’. 

Conventionele, destructieve technieken toonden een significante stijging van het 

watergehalte (2-3%) en een kleine, maar significante daling van de kleifractie (0.3%) 

aan in de aanwezigheid van hoge densiteiten Corophium. Via het meten van de spectrale 

reflectantie van het sediment oppervlak, kon de impact van Corophium op het 

watergehalte vastgesteld worden op een niet-destructieve manier, namelijk op basis van 

een verhoogde absorptie bij 1450 nm. De impact op het kleigehalte was te klein en kon 

daarom niet op deze manier vastgesteld worden. Deze studie toonde aan dat 

bioturbatie-activiteiten de spectrale reflectantie significant kunnen wijzigen en dat 

remote sensing in het laboratorium kan toegepast worden om de bioturbatie impact op 

sedimenteigenschappen te bepalen. Dit opent nieuwe mogelijkheden voor lange termijn 

experimenten omtrent de rol van bioturbatie in sedimentaire processen. 

Het gevolg van bioturbatie door verschillende densiteiten van Corophium voor de 

erosiegevoeligheid van het sediment werd geëvalueerd in een stroomgoot, zoals 

beschreven in hoofdstuk 5. Erosiegevoeligheid werd uitgedrukt als erosiesnelheid 

gebaseerd op gesuspendeerd materiaal, kritische stroomsnelheid en kritische 

schuifspanning. Een significante stijging in erosiesnelheid met stijgende densiteit werd 

vastgesteld, waarbij de erosiesnelheid voor het sediment met een densiteit van 20,000 

ind./m² vijf maal hoger was dan voor het sediment zonder Corophium. De kritische 

schuifspanning daarentegen bleek onafhankelijk van de densiteit, zeker voor densiteiten 

tot 15,000 ind./m². Voor een densiteit van 20,000 ind./m² werd een sterke daling van de 
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kritische schuifspanning (-30%) gemeten. Vergelijking van de kritische 

stroomsnelheden gemeten in dit experiment met de hydrodynamisch gesimuleerde 

natuurlijke stroomsnelheden van de IJzermonding toonden aan dat het voorkomen van 

sedimenterosie bij natuurlijke stromingsomstandigheden onwaarschijnlijk is, tenzij bij 

stormweer. Deze veronderstelling werd ondersteund door de velddata verzameld in de 

IJzermonding gedurende drie opeenvolgende jaren (juli 2005-juni 2008), zoals 

voorgesteld in hoofdstuk 6. Deze veldstudie toonde aan dat sedimentstabiliteit 

varieerde op een korte (seizoenale) tijdsschaal en dat deze rechtstreeks beïnvloed werd 

door biota. De sedimentmorfologie daarentegen werd vooral beïnvloed door lange 

termijn (jaarlijkse) variabiliteit. De dynamische, korte termijn relaties tussen 

slibgehalte, watergehalte, fucoxanthine en macrobenthosdensiteit resulteren in een 

seizoenale cyclus van slibafzetting en erosie. Deze processen beïnvloeden de 

sedimentstabiliteit rechtstreeks. De aanwezigheid en densiteit van macrobenthos was 

de belangrijkste parameter voor de bepaling van sedimentstabiliteit. Op langere termijn 

werd een verschuiving waargenomen van een situatie met hoge fucoxanthine/chla 

concentratie, hoog slibgehalte en geen tot lage densiteiten aan Corophium, naar een 

situatie met lage fucoxanthine/chla en moddergehalte en hoge Corophium densiteiten. 

Dit leidde tot een overgang van netto accretie tot netto erosie. Nochtans bleken de 

meeste van deze variabelen slechte voorspellers voor lange termijn veranderingen in 

sedimenthoogte. Dit wijst erop dat externe fysische krachten, zoals golven en stormen, 

waarschijnlijk de belangrijkste factoren zijn die de sedimentdynamiek op lange termijn 

bepalen. Toch werd aangenomen dat de biota veranderingen in sedimenthoogte 

onrechtstreeks beïnvloeden doordat ze een rechtstreekse invloed uitoefenen op de 

sedimentstabiliteit op korte termijn en daardoor de erosiegevoeligheid van het sediment 

veranderen. De resultaten suggereren zelfs dat het macrobenthos, en dan vooral de 

slijkgarnaal Corophium, indirect de drijvende destabiliserende factor was in de 

staalnamepunten (hoog intertidaal) in de IJzermonding op de lange termijn. 

Tenslotte werden in hoofdstuk 7 de resultaten van deze thesis bediscussieerd en 

werden enkele mogelijke gevolgen voor de morfologie van slikken besproken. Verder 

werden ook nog enkele beschouwingen omtrent plaats-specifieke kenmerken (vb. de 

aard van het sediment, voedingswijze, overstromingstijd) gegeven. Zowel de 

experimentele data als de velddata van deze thesis bevestigden de significant negatieve 

impact van Corophium op slibgehalte, diatomeeën biofilm en sedimentstabiliteit. Dit 
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alles wijst erop dat de sedimentologische toestand verschuift van een systeem 

gedomineerd door slib naar een systeem gedomineerd door slibbig zand in de 

aanwezigheid van Corophium. Densiteit bleek een belangrijke bepalende factor voor het 

plaatsvinden van de veranderingen in het slikkenecosysteem, want bij lage densiteiten 

was de impact klein. Daarom werd aangenomen dat, indien aanwezig in voldoende hoge 

densiteiten, Corophium een kritische drempel kan zijn die het slikkensysteem (of toch op 

zijn minst de lokale, door Corophium bewoonde plekjes in dit systeem) doet overhellen 

naar een stabiele toestand met een lager slibgehalte en lagere aantallen diatomeëen 

(sensu van de Koppel et al., 2001) door de positieve diatomeëen-slib interactie te 

doorbreken. Op basis daarvan kan gesteld worden dat, indien Corophium inderdaad deze 

omstandigheden met laag slibgehalte, lage diatomeeëndensiteiten en verhoogde 

erosiviteit promoot, dit indirect een zeewaartse uitbreiding van het schor kan 

tegengaan. Op deze manier draagt de slijkgarnaal bij tot een geleidelijke overgang van 

het laag intertidaal naar de schorre. Dit zou de demping van de golfkracht ten goede 

kunnen komen en dit is op zich een belangrijke veronderstelling in het licht van ons 

veranderend klimaat. Verder werd ook gesteld dat Corophium mogelijks een belanrijke 

pionier soort zou kunnen zijn in het herstel van slikken waarbij ze de 

levensomstandigheden voor latere kolonisatoren verbeteren. 

Tot slot, Corophium volutator is een belangrijke ecosysteemingenieur die zijn biofysische 

omgeving vorm geeft door veranderingen in sedimentsamenstelling, watergehalte, 

biofilmproductiviteit en sediment stabiliteit te veroorzaken. Daardoor verbetert hij zijn 

eigen leefomgeving bovenaan in de intergetijdenzone en beïnvloedt hij andere soorten. 

Corophium speelt daarnaast ook een belangrijke rol in het mengen van sediment, wat 

gevolgen heeft voor neerwaarts transport van organisch materiaal en dus de 

decompositie en mineralisatie processen bevordert. Corophium kan dan ook beschouwd 

worden als een essentiële schakel in het functioneren van het slikkenecosysteem. Dit 

alles impliceert ook dat het verdwijnen of de achteruitgang van Corophium grote 

gevolgen zou kunnen hebben voor de slikken, waar deze gravende vlokreeftjes welig 

tieren en tegelijkertijd hun abiotische en biotische omgeving vorm geven. 
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SSUUMMMMAARRYY  
 

Estuarine mudflats are sedimentary intertidal habitats created by sediment deposition 

in low energy coastal environments. They provide essential ecosystem services (e.g. 

natural coastal sea defense) and functions (e.g. high productivity, feeding and resting 

area for birds, nursery ground for flatfish). Sediment transport within estuarine 

intertidal mudflats is dominated by physical processes (mainly tidal currents and 

waves), which are relatively well studied, and which determine the magnitude of 

sediment transport. It became however, increasingly clear that small-scale biological 

processes can also exert significant influences on sediment transport, hence influencing 

the large-scale geomorphology of intertidal habitats. The influence of biota on 

topography and landscapes is, however, still largely unexplored. Sediment transport 

models that explicitly include biotic effects are needed to explore how intrinsically 

small-scale biotic processes can influence the form of entire landscapes. However, to 

include biotic effects into sediment transport models, these small-scale biotic processes 

need to be understood. Biota can either hamper or enhance erosion, resulting in 

respectively bed stabilisation or destabilisation. Diatom biofilms secrete mucus and 

form a protective shield, which enhances stability. Macrobenthos, on the other hand, can 

influence the sediment and its dynamics in several ways (bioirrigation, bioturbation, 

mucus secretion, the alteration of bottom roughness, …) and due to their highly 

diversified life styles, they can either stabilise or destabilise the sediment. Therefore, 

case studies on macrobenthos-sediment interactions are useful and necessary to 

provide in depth information on how macrobenthos may influence small-scale biotic 

processes.  

Corophium volutator (Pallas, 1766) (Crustacea, Amphipoda), also known as the mud 

shrimp, lives in U-shaped burrows and is an abundant species in mudflats on both sides 

of the North Atlantic, along the coasts of North America and Europe. It exhibits a wide 

variety of context-based behaviours, it has the potential to modify the benthic physical 

environment and contrasting results on sediment stability have been observed. Hence, 

Corophium is an interesting exemplary species to study in detail organism-sediment 

interactions. The study of the behaviour of Corophium within intertidal mudflats and its 
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influence on sediment properties and sediment dynamics is therefore of great relevance 

and forms the main objective of this PhD thesis. Since bioturbation is one of the major 

processes through which organisms influence their biophysical environment, 

bioturbation by Corophium volutator, the different factors influencing its bioturbation 

and the resulting effects on sediment erodability were studied in depth. 

In Chapter 2, a behavioural study was performed to discern the different surface and 

subsurface activities that contribute to the bioturbation by Corophium during the tidal 

cycle. The behaviour of Corophium was observed in the laboratory in a tide-simulated 

aquarium, and time allocation of the different activities was quantified. Nine different 

activities were observed, of which‘flushing’ of the burrow during submersion had not 

previously been described. This activity potentially has an important effect on the 

bioturbation process. Overall, the surface activity was low (max. 3.7%) and showed a 

steep decline after submersion to 0.1%. The subsurface activity was dominated by 

ventilating and feeding (time allocation of 44%) and by inactivity (time allocation of 

51%). A clear tide-based cyclic pattern was found, with a boost of activity immediately 

after submersion, continuing during submersion, and shifting over a period with 

decreasing activity towards almost total inactivity at the end of emersion. Only scraping 

of the surface (i.e. deposit feeding) continued during the entire tidal cycle with a time 

allocation of ± 1.5%. From this study, we could deduce that the bioturbation potential of 

Corophium is highest during submersion and the first hours afterwards. Bioturbation 

rates of a tide-subjected Corophium population were indeed low compared to other 

studies (Chapter 3). This suggested an influence of the tidal rhythmicity in the 

behavioural activity of Corophium on the bioturbation rate. Additionally, the study 

described in chapter 3 aimed to investigate the density dependence of bioturbation, the 

importance of biological activity and its differential effect on two sediment size fractions. 

Results from a laboratory study indicated that the behavioural activities of Corophium 

are of the utmost importance in sediment reworking, since they contributed to a five-

fold increase in bioturbation rate compared to the passive transport induced by the 

static structure of the burrows. Density proved to be an important parameter because 

only high densities played a prominent role in particle transport (1.1 cm²/yr), while the 

role of low Corophium densities was limited (0.3 cm²/yr). No evidence for differentiation 

in sediment size fractions was observed.  
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The impact of this bioturbation on physical sediment properties was investigated in 

Chapter 4, together with the ability to detect the bioturbation impact by using remote 

sensing. Results obtained with conventional destructive techniques showed a significant 

increase of water content (2-3%) and a significant, but small decrease of clay content 

(0.3%) in the presence of Corophium. Through measuring the spectral reflectance of the 

sediment surface, the impact of Corophium on water content was detected as an increase 

in absorption at 1450 nm. However, the animals impact on clay content was too small to 

be detected via spectral reflectance. This study demonstrated that spectral reflectance 

data are sensitive for bioturbation activities and that remote sensing can thus be applied 

in the laboratory to address the impact of bioturbation on sediment properties. This 

opens new perspectives for long term experiments concerning the role of bioturbation 

on sedimentary processes.  

The consequence of bioturbation at different densities of Corophium on sediment bed 

erodability was evaluated in a flume study in Chapter 5. Sediment bed erodability was 

expressed in terms of suspension erosion rate, critical flow velocity and critical shear 

stress. A significant increase in suspension erosion rate with density was found, where 

sediment containing 20,000 mud shrimps per m2 showed a five times higher erosion 

rate than sediment without Corophium. On the other hand, critical shear stress was 

found to be independent of Corophium density, at least for densities up to 15,000 

ind./m². At 20,000 ind./m2, a large decrease (-30%) in critical shear stress was 

measured. A comparison between critical flow velocities obtained in this experiment 

and hydrodynamically simulated flow velocities over the mudflat where Corophium was 

collected, indicated that bed erosion is unlikely to happen under natural flow conditions, 

but it might occur under storm conditions. This assumption was supported by field data 

collected in the IJzermonding tidal flat during three consecutive years (July 2005-June 

2008), as described in Chapter 6. This field survey showed that sediment stability 

varied on a short (seasonal) timescale and was directly influenced by biota, while bed 

morphology was mainly influenced by long-term (interannual) variability. The short-

term dynamic relationships between mud content, water content, fucoxanthin and 

macrobenthos density resulted in a seasonal mud deposition and erosion cycle, and 

directly influenced sediment stability. Macrobenthos proved to be the most important 

parameter determining sediment stability. On the longer term, a shift was observed 

from high fucoxanthin/chla concentration, high mud content and zero to moderate 
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densities of Corophium towards low fucoxanthin/chla and mud content and high 

Corophium densities, which resulted in a transition from net accretion to net erosion. 

However, most variables proved to be poor predictors for these long-term bed level 

changes, indicating that external physical forces, such as waves and storminess, 

probably were the most important factors triggering longer-term sediment dynamics. 

Nevertheless, biota indirectly influenced bed level changes by mediating short-term 

changes in sediment stability, thereby influencing the erodability of the sediment. The 

macrobenthos, and especially the mud shrimp Corophium, was suggested as the 

(indirect) driving destabilising factor for the sampling plots in the IIzermonding when 

considering the long-term evolution. 

Finally, Chapter 7 contains the discussion on the thesis results and a description of 

implications for mudflat morphology. Furthermore, some considerations on site-specific 

features (e.g. nature of the sediment, feeding mode, inundation time) were discussed. 

Both the experimental and field data from this thesis confirmed the significant negative 

impact of the presence and activity of Corophium on mud content, diatom biofilm and 

sediment stability, which suggests that the sedimentary system shifts from a mud 

dominated system to a muddy sand system in the presence of Corophium. Since impacts 

at low densities were small, density appeared to be an important parameter triggering 

the changes in the tidal flat ecosystem. This lead to the suggestion that Corophium at 

sufficiently high densities might act as a critical threshold to direct the tidal flat system 

(or at least Corophium patches in this system) towards the stable state with low mud 

content and low diatom cover (sensu van de Koppel et al., 2001) by disrupting the 

positive diatom-silt interactions. Based on the gathered information, it can be postulated 

that, by favouring this low mud, low diatom and more erosive conditions, Corophium can 

indirectly counteract seaward salt marsh expansion. As such, it contributes to a gradual 

transition between the low intertidal and the salt marsh. This might enhance dissipation 

of wave energy, which could be important in view of climate change. Furthermore, it was 

argued that Corophium could possibly be an important pioneer species in recovery of 

mudflats, as such improving the conditions for later colonisers. 

In conclusion, Corophium volutator is an important ecosystem engineer that modifies its 

biophysical environment through changes in sediment composition, water content, 

biofilm productivity and sediment stability. Hereby, it improves its own survival in the 

high intertidal and affects other species. Furthermore, Corophium plays an important 
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role in sediment mixing, which has implications for downward particle and organic 

matter transport, and thus for decomposition and mineralisation processes in the 

sediment. Corophium can thus be considered a vital link in the functioning of the tidal 

flat ecosystem. Hence, the disappearance or density declines of Corophium could have 

huge consequences for tidal flat ecosystems in which these burying amphipods thrive, 

and shape their abiotic and biotic environment.  
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CCHHAAPPTTEERR  11  
GGEENNEERRAALL  IINNTTRROODDUUCCTTIIOONN  

 

1. RATIONALE 

Mudflats provide essential ecosystem services and functions, and therefore contribute to 

human well-being and consequently, are of high ecological and economic value 

(Costanza et al., 1997; Diaz et al., 2006). They are highly productive ecosystems, that 

support a high biomass (McLusky and Elliot, 2004). Mudflats are very important 

habitats for birds and fish, providing feeding and resting areas for waders and waterfowl 

(Dyer et al., 2000), and acting as nursery areas for flatfish and crustaceans (Dyer et al., 

2000; Beck et al., 2001; McLusky and Elliot, 2004). Furthermore, they provide a natural 

coastal defense against storm surges (Cooper, 2005; Wolters, 2005). Nevertheless, 

estuarine mudflats are under increasing threat of climatic (e.g. sea level rise, increased 

wave action) and anthropogenic (e.g. habitat defragmentation, tourism, pollution, 

eutrophication,…) pressures (Worm et al., 2006; Wolanski, 2007; Halpern et al., 2008). 

Estuarine mudflats are sedimentary intertidal habitats created by sediment deposition 

in low energy coastal environments. The sediments of mudflats consist of mixtures of 

sand and mud (van Ledden et al., 2004; Winterwerp and van Kesteren, 2004). Mud is 

composed of clay and silt particles, which interact due to their electrically charged 

nature, resulting in the cohesiveness of the sediment (Paterson and Black, 1999). 

Cohesive sediments do not behave as separate entities like sand particles, but they form 

aggregates or flocs due to strong physico-chemical effects arising from surface ionic 

charges (Berlamont et al., 1993). Sediment transport within estuarine intertidal 

mudflats is dominated by physical processes which are relatively well studied, and 

which are mainly driven by tidal currents during calm, depositional periods (Postma, 

1961; Bell et al., 1997; Ralston and Stacey, 2007) and by wind generated waves during 

stormy, erosional periods (de Jonge and van Beusekom, 1995; Bell et al., 1997, Ralston 

and Stacey, 2007). These physical processes determine the magnitude of sediment 

transport to or from the mudflat (de Brouwer et al., 2000). It became however, 

increasingly clear that small-scale biological processes can also exert significant 

influences on sediment transport (de Brouwer et al., 2000; Widdows et al., 2000a; Le Hir 
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et al., 2007; Montserrat et al., 2008), hence influencing the large-scale geomorphology of 

intertidal habitats (Murray et al., 2002). Biota can modify hydrodynamics, and in turn 

erosion and resuspension, by influencing microtopography via pellet production, track 

formation and different types of constructions such as mounds and pits (Herman et al., 

1999; Friedrichs et al., 2000). Furthermore, biota can also actively resuspend sediment 

and increase turbidity of the water column (e.g. deposit feeding macrobenthos eject 

faeces or pseudofaeces in the water column), conversely biota can induce sediment 

deposition hereby decreasing turbidity (e.g. diatom films increase adhesion of sediments 

by mucus production or filter feeders capture food particles from the water column) 

(Graf and Rosenberg, 1997). The influence of biotic processes on topography is now an 

active field of investigation, and many studies stress the potential impact of small-scale 

interactions on the larger scale of landscapes (Dietrich and Perron, 2006). Yet, for most 

landscapes the importance of the biological imprint compared with the purely physical 

processes remains largely unknown (Meysman et al., 2006). The particular role of 

burrowing organisms, but also other biotic influences remains difficult to quantify owing 

to the complexity of organism-sediment interactions at the microscale and the difficulty 

of extrapolating to a larger scale (Meysman et al., 2006). 

Macrobenthos (i.e. bottom fauna retained on a 0.5 or 1 mm mesh sized sieve) is an 

important and highly abundant group in estuarine ecosystems. Densities in the order of 

104 ind./m² are typically found in estuaries (Heip et al., 1995). Macrobenthic species 

change nutrient fluxes and improve thereby conditions for primary production 

(Emmerson et al., 2001; Lohrer et al., 2004), alter sediment transport processes 

considerably (Solan et al., 2008), stimulate mineralisation (Mermillod-Blondin et al., 

2004), and are an essential component within the estuarine food web, consuming a 

significant part of the primary production by deposit and suspension feeding (Herman et 

al., 2000; Van Oevelen et al., 2006), and acting as a food source for epibenthic 

crustaceans, fish and birds (Daborn et al., 1993; Hampel et al., 2005). Macrobenthic 

bioturbation (i.e. sediment reworking by burrowing animals) and bio-irrigation (i.e. 

enhanced solute transport that results from bioturbation and burrow flushing) can thus 

strongly modify the benthic physical environment, i.e. ecosystem engineering (Jones et 

al., 1994). Ecosystem engineering is now recognised as a critical process in most 

ecosystems (Wright and Jones, 2006), and it may strongly affect other organisms and 

ecosystem functioning (Lohrer et al. 2004; Meysman et al., 2006). Ecosystem engineers 
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tend to be most dominant in stressful habitats (e.g. tidal mudflats; Jones et al., 1997). 

Typically, ecosystem engineers exert a strong influence on ecosystem properties, that 

exceeds what may be expected based on their abundance alone (Hooper et al., 2005). 

Autogenic engineers change the environment via their own physical structures (Jones et 

al. 1994), for instance reef-building filter feeders affect local hydrodynamics and particle 

trapping by their epibenthic structure (Rabaut et al., 2007; Montserrat et al., 2008). 

Allogenic engineers, on the other hand, change the environment by transforming living 

or non-living material from one physical state to the other (Jones et al., 1994), for 

instance bioturbation by the lugworm Arenicola marina and the cockle Cerastoderma 

edule changed sediment properties, sediment stability and resource flows (Volkenborn 

et al., 2007; Montserrat et al., 2009). However, the enormous diversity of macrobenthos, 

each with species-specific traits, ensures that the interpretation of ecosystem 

engineering effects is not straightforward, and even for single species opposite effects 

can exist (Le Hir et al., 2007). Therefore, case studies on organism-sediment interactions 

are necessary to provide basic material that can be integrated in the broad ecosystem 

engineering concept (Wright and Jones, 2006). Corophium volutator is one of these 

macrobenthic species for which opposite phenomena are described. In addition, it is an 

abundant species in many mudflats along the North Atlantic, it exhibits a wide variety of 

context-based behaviours, and it has the potential to modify the benthic physical 

environment. Hence, Corophium is an interesting exemplary species to study in detail 

organism-sediment interactions. The study of the behaviour of Corophium within 

intertidal mudflats and its influence on sediment properties and sediment dynamics is 

therefore of great relevance and forms the basis of the case study in this PhD thesis. 

2. THE MUD SHRIMP COROPHIUM VOLUTATOR  

2.1. Biology and ecology 

Corophium volutator (Pallas, 1766) (Crustacea, Amphipoda), also known as the mud 

shrimp (Fig. 1), is an abundant species present on both sides of the North Atlantic, along 

the coasts of North America and Europe, from Norway, to the Mediteranean and in the 

Baltic and the Black Sea (Lincoln, 1979). The wide distribution of C. volutator can be 

explained by its high tolerance to a wide variety of environmental conditions. It occurs 

over a wide range of inundation times from mean high water neap-tide level, even 



CHAPTER 1 

6 
 

extending sometimes into the subtidal (Linke, 1939; Schmidt, 1951), in both mud and 

muddy-sand bottoms (Peer et al., 1986) and at salinities ranging from 4 to 35 psu 

(McLusky, 1970). It generally occurs in the intertidal zone, where the upper limits are 

set by a minimal duration of immersion (+/- 10% of the time) (Beukema and Flach, 

1995). The highest densities generally occur in the upper part of the tidal flat, as the 

lower distribution limits are determined by interspecific interactions, e.g. in the Wadden 

Sea bioturbation activities by the lugworm Arenicola marina or the cockle Cerastoderma 

edule negatively affected the occurrence of Corophium in the lower intertidal zone 

(Beukema and Flach, 1995). Patchy distribution in the field on scales of meters can also 

be related to biotic interactions e.g. competition between Corophium and other 

bioturbating tidal flat species (e.g. Nereis diversicolor, Olafsson and Persson, 1986; 

Arenicola marina, Flach, 1996; Ilyanassa obsoleta, Drolet et al., 2009) or to differential 

emigration (Drolet and Barbeau, 2008). The distribution of Corophium in the field 

further shows a high degree of small-scale patchiness on the cm scale. This is caused by 

active aggregation or created and maintained by interactions between Corophium 

individuals, as juveniles establish near the maternal burrow in summer and these 

aggregations are maintained over winter (Lawrie et al., 2000). There is no dispersive 

larval phase in the development. Development is direct in the brood pouch of the female 

(Fish and Mills, 1979). The life-cycle is based on one or two reproductive episodes per 

year, depending on the temperature (Wilson and Parker, 1996), and adults live for 

approximately one year (Fish and Mills, 1979). Post-settlement dispersal occurs by 

swimming (Hughes, 1988; Lawrie and Raffaelli, 1998b; Ford and Paterson, 2001). 

Corophium swims upward for periods of 5–10 s, often reaching the surface, before 

sinking to the sediment where burrowing behaviour begins (Meadows and Reid, 1966). 

This process may be repeated until a suitable site for colonisation is found.  

Populations can easily reach densities of 10,000 ind./m² and locally, in summer months, 

densities can increase to 140,000 ind./m² (Gerdol and Hughes, 1994a). These high 

population densities make Corophium a major prey item for a number of migratory 

shorebirds on both sides of the Atlantic (Wilson and Parker, 1996 and references 

therein). For instance Semipalmated Sandpipers (Calidris pusilla) feed extensively on 

Corophium in the upper Bay of Fundy (Canada) during migration (Daborn et al., 1993; 

Hamilton et al., 2006), while Dunlins (Calidris alpina) are important predators of 

Corophium in the Wadden Sea (Damsgaard et al., 2005). Furthermore, Corophium is also 
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important in the diet of a number of fish like sea bass (Dicentrarchus labrax) and 

flounder (Platichthys flesus) (Hampel et al., 2005) and invertebrates, mainly polychaetes 

such as Hediste diversicolor (Wilson and Parker, 1996). 

 

Figure 1: Picture of Corophium volutator. Photographed by SEM, (www.mta.ca/dmf/coroph.jpg, J.M. 
Ehrman, Digital Microscopy Facility, Mount Allison University) 

Corophium lives in U-shaped burrows (Meadows and Reid, 1966 and references 

therein), mainly in the upper 5 cm of the sediment (Flach, 1996). Burrow walls are 

strengthened with mucus secretions (Meadows et al., 1990) and burrow openings can 

protrude 1 to 1.5 mm above the sediment surface, especially in fine mud (Meadows and 

Reid, 1966). When the openings protrude, mud is not drawn in with the respiratory 

current, which is created by the beating of the pleopods, and which also serves as a 

route for the expulsion of faeces and unwanted debris (Meadows and Reid, 1966). 

Møller and Riisgård (2006) and Riisgård and Schotge (2007) observed that Corophium 

can switch between two feeding modes. At low phytoplankton concentration (0.5 - 5 

µg/l), surface deposit feeding is the main feeding mode, and then particles are 

predominantly gathered by scraping the sediment surface with its enlarged second 

antennae (Meadows and Reid, 1966). However, filter feeding can become the main 

feeding mode, when phytoplankton concentrations are sufficiently high. At that time, C. 

volutator extends its body along the burrow wall and pumps large amounts of water 

through a filter basket formed by the finely plumose setae of the second gnathopods 

(Miller, 1984; Møller and Riisgård, 2006, Riisgård and Schotge, 2007). 
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2.2. Biophysical interactions 

Burrowing, feeding and ventilation, all contribute to the effect that Corophium volutator 

has on its biogeophysical environment. Corophium is considered an important 

contributor to the physical sediment structure, when present in high densities (Grant 

and Daborn, 1994). Density appeared also an important factor in the release of nutrients 

to the overlying water column due to bioturbation activities (Emmerson et al., 2001). 

Moreover, Mermillod-Blondin et al. (2004) measured a significant effect of Corophium 

on chemical fluxes, microbial activity and sediment reworking, indicating that 

bioturbation and bioirrigation of C. volutator affect its surrounding habitat. However, its 

bioturbation effect on sediment properties and its effect on sediment stability, are 

contradictory (Le Hir et al., 2007). For instance, both negative (Meadows and Tait, 

1989), positive (Gerdol and Hughes, 1994a) and neutral effects (Grant and Daborn, 

1994; Limia and Raffaelli, 1997; de Deckere et al., 2000) on sediment water content have 

been observed. Similarly, no effect on sediment grain size distribution was observed by 

Limia and Raffaelli (1997) and de Deckere et al. (2003), while Mouritsen et al. (1998) 

observed a decrease in silt content due to the disappearance of Corophium. Furthermore, 

sediment stabilising effects (Mouritsen et al., 1998; Meadows et al., 1990) as well as 

destabilising effects (Grant and Daborn, 1994; Gerdol and Hughes, 1994a; de Deckere et 

al., 2000) have been described. Table 1 gives an overview of the different studies 

measuring the effect of Corophium on sediment stability. This table summarises the 

main findings and shows that in these different studies both stabilising and destabilising 

effects were measured over a whole range of estuaries. By building its burrow, 

Corophium compacts the surrounding sediment and glues the sediment particles to the 

wall with a mucus secretion (Meadows et al., 1990). This reduces the erodability of the 

sediment (Grant and Daborn, 1994) and may result in an elevation of the sea bed 

(Mouritsen et al., 1998), and in an increased resistance to shear stress (Meadows and 

Tait, 1989). On the other hand, shear stress resistance may also decrease through 

indirect resuspension of sediment particles by grazing on the stabilising biofilm 

organisms (Gerdol and Hughes, 1994b; Grant and Daborn, 1994; Hagerthey et al., 2002), 

and directly through resuspension of fine sediment due to feeding and burrowing (de 

Deckere et al., 2000; Biles et al., 2002). 
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The increased sediment suspension appeared to have a further negative effect on 

microphytobenthic biomass because of a reduction in photosynthesis due to attenuating 

light at the sediment surface caused by an increased turbidity (Dyson et al., 2007). 

Furthermore, de Deckere et al. (2003) observed that the presence of protruding 

burrows increased the erosion rate by increasing the roughness of the sediment surface. 

These contrasting results could possibly be attributed to the complex and dynamic 

relationships between all these factors, masking the direct effect of Corophium on its 

physical environment, and resulting in erosion or accretion depending on the dominant 

relationships. Therefore, this thesis attempts to unravel the existing duality and to 

determine the importance of Corophium in tidal flat sediment dynamics. This was mainly 

done by examining the bioturbation process of Corophium and its effect on sediment 

properities in depth in mesocosm experiments. Mesocoms are controlled artificial 

systems, but they provide a mechanistic understanding of ecological processes, and they 

allow for the development of theories that are of fundamental importance to inform 

global ecological issues (Benton et al., 2007). The main relationships studied in this 

thesis are indicated in figure 3 with dashed arrows.  

3. STUDY AREA 

All studies performed in this thesis took place in, or were exerted with sediment and 

animals collected from the IJzermonding Nature Reserve in Nieuwpoort, Belgium 

(51°08’N, 2°44’E) (Fig. 2). The IJzer is a river of 76 km long, originating in the North of 

France and flowing into the North Sea in the West of Belgium, in the proximity of the 

town of Nieuwpoort. The western bank of the IJzer river mouth was already 

consolidated since medieval times, and during the 20th century the western bank got 

completely urbanised by the development of the seaside resort Nieuwpoort-Bad 

(Deboeuf and Herrier, 2002). The eastern bank was still pristine and consisted of a 

sandy beach, mudflats, salt marshes and dunes. However, in the years 1950-1970, a 

military base was established on the eastern bank of the estuary leading to the 

construction of quay walls and docks, and the remaining salt marshes and dunes were 

covered up with 300,000 m³ of dredge sludge, drastically reducing the intertidal surface 

area (Deboeuf and Herrier, 2002; Herrier et al., 2005). In 1993, the military base was 

relocated and the area was declared a protected dune site by the Flemish Government. 
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Therefore, a nature restoration plan was established and in 1996, the ‘Nature 

Restoration Plan for the IJzer river mouth’ was finalised with the general aim to restore 

or create beach-dune-salt marsh ecotones (Herrier et al., 2005; Hoffmann et al., 2005). 

In order to reach this goal, several large buildings and roads were broken down, an 

entire dock was restructured and some 500,000 m³ of dredge material was removed to 

restore or create intertidal and coastal dune habitats and their connecting ecotones. 

These activities took place between September 1999 and March 2004 (Herrier et al., 

2005; Hoffmann et al., 2005). Today, the nature reserve consists of 130 ha of mudflat, 

salt marsh, sandy beach and coastal dune. Since the restoration works, the estuary-dune 

ecotone has been restored, showing continuous natural gradients of e.g. fresh-salt water, 

wet–dry areas, mud-sand habitats, however the estuary has not reached full recovery 

yet (Hoffmann et al., 2005). 

 

Figure 2: Aerial picture of the nature reserve Ijzermonding on the eastern bank of the Ijzer. Image acquired 
by the CASI Sensor (May 29, 2009), financed by the Federal Science Policy Office in the framework of the 

STEREO II program and by the Flemish Ministry of Mobility and Public Works, Coastal Division. 
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The average tide in the estuary is asymmetric with a mean flood duration of 5h34’ and a 

mean ebb duration of 6h51’. Peaks in velocity during flood are about 0.9 m/s at spring 

tide and during neap tides velocities do not exceed 0.3 m/s, whereas peaks in ebb tides 

are about 0.6 m/s. This tidal asymmetry leads to enhancement in resuspension and 

sediment transport during the flood tide, so-called tidal pumping (Giardino et al., 2009). 

Muddy suspended sediment constitutes the dominant source of sediment transport in 

the estuary (Giardino et al., 2009). A morphodynamic model simulated a net overall 

deposition in the estuary after a spring-neap tidal cycle, which ranged between 0.1 and 

0.5 cm on the tidal flat, while deposition in the navigation channel sometimes reached 

values up to 5-6 cm (Giardino et al., 2009). The sediment over the entire area is 

characterised by a high variability in sediment distribution even on a small spatial scale. 

However, three characteristic sediment fractions are found: 1) a fine sand fraction with 

a median diameter of approximately 200 µm, 2) a clay fraction with a characteristic 

median diameter of 10 µm, and 3) a silt fraction with a median diameter of 60 µm 

(Hoffmann et al., 2005). 

Prominent macrobenthos species on the mudflat are the mud shrimp Corophium 

volutator, the oligochaetes Tubifex costatus and Tubificoides benedeni, the polychaetes 

Hediste diversicolor, Eteone longa, Heteromastus filiformis and Pygospio elegans and the 

bivalve Macoma balthica (Wittoeck et al., 2004). In general, lowest densities are 

observed in the lower part (+1 m MLLWS), highest densities in the middle part (+2.5 m 

MLLWS), and intermediate densities in the upper part (+4.5 m MLLWS) of the intertidal 

mudflat. Furthermore, macrobenthos density and species richness are negatively 

correlated with median grain size, indicating the positive correlation between sediment 

silt content and macrobenthic fauna (Wittoeck et al., 2004). 

4. AIMS AND OUTLINE OF THE THESIS 

4.1. Aims 

The general objective of this thesis was to study the impact of the mud shrimp, 

Corophium volutator, on its biophysical environment by focusing on its influence on 

sediment properties and sediment dynamics. This will allow to get insight into small-

scale biotic processes and how they might influence sediment dynamics on a larger 

scale. Since bioturbation is one of the major processes influencing the biophysical 
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environment, bioturbation by Corophium volutator, the different factors influencing it 

and the resulting effects on sediment erodability were studied in depth (Fig. 3). The 

following research questions were assessed based on the ensuing underlying 

hypotheses: 

 What is the time allocation of Corophium volutator during the tidal cycle? 

Species do not just do one thing, they have different behaviours (locomotion, feeding, 

burrowing,…), all contributing to bioturbation to some extent. Furthermore, certain 

behaviours, or the behavioural activity in general, can be context-dependent, e.g. 

temperature-based (Ouellette et al, 2004), food supply-based (Nogaro et al., 2006) or for 

intertidal animals it can also be tide-based (Rosa et al., 2007). This knowledge of 

context-based behaviour can contribute to the interpretation of bioturbation. We 

hypothesised that Corophium, being an intertidal species, would show a tidal 

rhythmicity in its behavioural pattern. This was tested in the laboratory in a tide-

simulated aquarium through observation of surface and subsurface activity.  

 How important is behavioural activity for the bioturbation process? 

Following the study on the behaviour of Corophium, quantification of this total tide-

based activity was the logical next step. Since Corophium is a species living in U-shaped 

burrows, it was assumed that the physical presence of these burrow structures (without 

the animals) would also contribute to downward sediment transport (passive 

bioturbation), in addition to the active bioturbation caused by animal behaviour. To be 

able to distinguish between active (behaviour-driven) bioturbation and passive 

(physically-driven) bioturbation, a mesocosm experiment was constructed with ‘only 

burrow’ treatments and ‘burrow + animal’ treatments. 

 What is the importance of density on the bioturbation process? 

Bioturbation is not only influenced by context-based activity, but also population 

characteristics (e.g. species density, burrowing depth, …) are important in determining 

the intensity of bioturbation (Duport et al., 2006; Braeckman et al., 2010). Density-

dependent effects of Corophium on bioturbation rate were not tested previously, and 

these would allow to estimate the relative importance of low and high Corophium 

densities, and hence the impact of density declines.  
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 How does bioturbation by different densities of Corophium affect sediment 

properties? 

As previously mentioned, species bioturbating the sediment surface can strongly alter 

the benthic physical environment (Jones et al., 1994). Therefore, we hypothesised that 

Corophium, through its bioturbation, can change sediment composition in the surface 

layers. Higher densities were expected to have a more pronounced impact than low 

densities. The change in sediment composition could be accompanied with a change in 

water content, but also the presence of burrows could change water content. These 

possible changes in the physical environment could cause changes in sediment 

erodability, which lead us to the next question. 

 What is the impact of Corophium on sediment erodability? 

Water content and grain size distribution are important factors influencing sediment 

erosion (Winterwerp and van Kesteren, 2004). By inducing changes in these factors, we 

hypothesised that bioturbation could indirectly influence erodability of the sediment. 

Furthermore, protruding burrows can influence the local hydrodynamics, either 

enhancing or hampering shear stress (Friederichs et al., 2000), respectively increasing 

or decreasing the erodability. However, in the field, there are many other factors (e.g. 

biofilms, other species, currents, …) influencing the erosion and accretion of sediments, 

and different processes are dominant at different times. We therefore investigated long-

term and short-term temporal sediment dynamics and the relative importance of 

Corophium in these processes. 
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4.2. Outline 

Apart from the general introduction and the general discussion, this thesis is a compilation 
of research articles (published, currently under revision or submitted). For that reason, the 
outline and output of the chapters resembles almost exactly the published or submitted 
papers. Each chapter is therefore intended to be an autonomous part, which can be read 
separately from the other chapters. Inevitably, there is some overlap between the 
introductions and material and methods sections of the different chapters. Cited literature 
is compiled in a single list at the end of the thesis. The candidate is first author of all 
chapters, except chapter 5. For chapter 5, the candidate provided input for the 
experimental design, interpretation and processing of the results and the candidate wrote 
large parts of the text. 

The impact on the biophysical environment by Corophium volutator is studied by 

focusing on the bioturbation process in Chapters 2, 3 and 4, while in later chapters the 

consequences for sediment erodability are studied, both in the laboratory (in 

cooperation with Hydraulics Laboratory, KULeuven; Chapter 5), and in the field 

(Chapter 6). In Chapter 2, the different surface and subsurface activities that contribute 

to the bioturbation by C. volutator, are investigated, and the time allocation of these 

activities during the tidal cycle is quantified. This chapter has been published as De 

Backer A, Van Ael E, Vincx M and Degraer S (2010) Behaviour and time allocation of the 

mud shrimp, Corophium volutator, during the tidal cycle: a laboratory study. Helgoland 

Marine Research 64: 63-67. Chapter 3 quantifies the bioturbation rate in a mesocosm 

experiment where luminophores (fluorescent sand grains) were added to the sediment-

water interface. Density-dependence of bioturbation is tested, as well as the selectivity 

of the bioturbation process on different sediment fractions. Furthermore, the 

importance of biological activity by Corophium against the physical presence of the 

burrow structures is studied. This chapter is submitted as De Backer A, Van Coillie F, 

Montserrat F, Provoost P, Van Colen C, Vincx M and Degraer S. Bioturbation effects of 

Corophium volutator: importance of density and behavioural activity. Estuarine, Coastal 

and Shelf Sciences. The impact of Corophium bioturbation on the physical sediment 

properties, water content and sediment composition is investigated in Chapter 4. 

Moreover, it is tested if remote sensing was a useful tool to detect the bioturbation 

impact. These results have been published as De Backer A, Adam S, Monbaliu J, Toorman 

E, Vincx M and Degraer S (2009) Remote sensing of biologically reworked sediments: a 

laboratory experiment. Estuaries and Coasts 32(6):1121-1129.  

The consequences of the bioturbation effects on sediment erodability are examined in a 

flume experiment (Chapter 5). Critical current velocities, shear stresses and erosion 
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rates are calculated for a density series of Corophium. The results of chapter 5 are being 

revised as Adam S, De Backer A, Degraer S, Vincx M and Toorman E. Effect of Corophium 

volutator on the erodability of cohesive intertidal sediments. Ocean Dynamics Special Issue. 

In Chapter 6, mesocosm experiments are put aside and the research is taken to the field. 

The whole mudflat ecosystem with its short-term and longer-term sediment dynamics is 

considered and the relative importance of biophysical interactions on sediment 

dynamics is quantified. Moreover, Corophium was highly abundant in the sampling plots, 

which allowed to determine the role of Corophium on longer term sediment dynamics. 

This chapter has been accepted as De Backer A, Van Colen C, Vincx M and Degraer S, The 

role of biophysical interactions within the IJzermonding tidal flat sediment dynamics. 

Continental Shelf Research.  

In the general discussion (Chapter 7), the ecosystem engineering effects of Corophium 

volutator are discussed based on the key issues derived from the different chapters, and 

possible implications for tidal flat morphology are suggested. 
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BEHAVIOUR AND TIME ALLOCATION OF THE MUD 

SHRIMP, COROPHIUM VOLUTATOR, DURING THE 
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CCHHAAPPTTEERR  22  
BBEEHHAAVVIIOOUURR  AANNDD  TTIIMMEE  AALLLLOOCCAATTIIOONN  OOFF  TTHHEE  MMUUDD  SSHHRRIIMMPP,,  

CCOORROOPPHHIIUUMM  VVOOLLUUTTAATTOORR,,  DDUURRIINNGG  TTHHEE  TTIIDDAALL  CCYYCCLLEE::  

AA  LLAABBOORRAATTOORRYY  SSTTUUDDYY  
 

ABSTRACT 

Despite the numerous ecological and behavioural studies, relatively little is known about 
the behavioural dynamics of Corophium volutator during the tidal cycle. In the present 
study, the behaviour of C. volutator was observed in the laboratory in a tide-simulated 
aquarium, and time allocation of the different activities was quantified. Overall, the surface 
activity was low and showed a steep decline after submersion. A clear tide-based cyclic 
pattern was found, with a boost of activity immediately after first submersion, continuing 
during submersion, and shifting over a period with decreasing activity towards almost 
total inactivity at the end of emersion.  

KEY WORDS: Amphipoda, Corophium volutator, behaviour, time allocation 

1. INTRODUCTION 

Corophium volutator (Crustacea, Amphipoda) is an abundant species in many mudflats 

worldwide. Population densities frequently reach >20,000 ind./m2, and in summer 

months densities can locally exceed 100,000 ind./m2 (Gerdol and Hughes, 1994a). The 

high population densities make this amphipod an important species in many mudflat 

ecosystems, where it is a significant prey for migratory shorebirds and juvenile 

flounders (Boates et al., 1995). Corophium volutator lives in U-shaped burrows in the 

upper 5 cm of the sediment. It is known to switch between surface deposit feeding and 

filter feeding depending on the phytoplankton concentration in the water column 

(Riisgård and Schotge, 2007). However, relatively little is known about the behavioural 

dynamics of C. volutator throughout the tidal cycle. Therefore, this study aims to 

quantify the time allocation of the amphipod activities during a simulated tidal cycle.  
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2. MATERIAL AND METHODS 

2.1. Experimental setup 

To quantify the time allocation of the full spectrum of activities of C. volutator, it was 

necessary to perform both surface and subsurface observations. Since it was, however, 

impossible to make simultaneous observations of both the surface and subsurface 

activities of C. volutator, a surface and a subsurface survey were performed in parallel. 

The experimental setup comprised of a main aquarium (L:50 cm x W:10 cm x H:15 cm) 

used for surface and subsurface (animals against the glass wall) observations and a thin 

aquarium (L:30 cm x W:3 mm x H:15 cm) for subsurface observations. Both aquaria 

were placed in a temperature controlled room (15°C) with a 12:12h light:dark regime 

and submitted to a simulated tidal cycle of about 12h1,2. The experimental tidal regime 

was similar to the natural tidal conditions of the C. volutator habitat: 3h of submersion, 

followed by 9h of emersion. 

The sediment and the animals were collected in January 2005 from a mudflat-saltmarsh 

area in Nieuwpoort (Belgium, 51°08’N, 2°44’E). After defaunation by freezing-thawing, 

the sediment was allowed to settle in the aquaria for 24h, before the amphipods were 

added. The test population reflected the natural composition, with a highly skewed sex 

ratio of one male to six females. In both aquaria, C. volutator was introduced at a density 

of 10,000 ind./m2 (average field density = 10,762 ind./m2 ± SE 406)3. Observations 

started three days after incubation of the animals. The test specimens were weekly fed 

ad libitum with benthic diatoms (Navicula sp.)4. 

2.2. Observations 

Based on preliminary observations, nine behavioural activities were defined (Table 1). 

The tidal cycle was divided in 12 1-h observation periods (i.e. 3h of observation when 

submersed and 9h when emersed). Each observation period was replicated five times 

during the length of the experiment. Observations were done during a 3-week period 

with a maximum of five observation hours per day and a maximum of two successive 

observation hours to exclude biases due to fatigue of the observer. This implies that 

                                                           
1 The tidal cycle was initiated immediately after incubation of the test population. 
2
 Seawater was filtered with a 45 µm sand filter, salinity = 32 psu 

3 Mortality during the experimental period did not exceed 3%. 
4 The diatoms were, together with the culture F2 medium, gently poured on the sediment surface during 
emersion. It was not a standardised amount, but just what was available after one week culturing.  
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some animals were possibly observed more than once on consecutive days, especially 

for subsurface observations where the number of observed animals was limited. Owing 

to practical constraints, observations were done during daylight. 

Table 1: Description of the different activities observed under laboratory conditions. Mainly based on 
Meadows and Reid (1966)

5
. 

Activity Description 

Surface activity  
Surface inactivity No visible forward/backward movement. 
Surface crawling The animal pushes itself forward with telson, uropods, second 

antennae, and pereopods.  
Swimming  Mostly done vertical, and resulting from fast beating of the pleopods.  
Scraping  Surface deposit feeding: second antennae are used to scrape surface 

sediment with microphytobenthos into the burrow.  
Flushing 
(undescribed 
previously) 

The pleopods create a faster water movement to get rid of excess 
sand grains and faeces from the burrow. Visible on the surface as a 
dust cloud. 

 
Subsurface activity 

 

Subsurface inactivity No visible motion, Corophium is completely in rest. 
Ventilating and filter 
feeding  

Beating pleopods create water current through the burrow 
(ventilation) and both gnathopods and mouthparts process the sand 
grains. Ventilation and feeding do not necessarily occur at the same 
time.  

Subsurface walking  Walking up and down in the burrow. 
Bulldozing  Pushing excess sand grains out of the burrow with the pleon.  

During each observation period, approximately ten surface active or subsurface 

individuals were randomly selected for a detailed quantification of their surface or 

subsurface time allocation over a 5-min period. Their activities were recorded on a 

dictaphone. During a surface activity survey only surface activities (Table 1) were taken 

into account and vice versa for subsurface activity surveys. Because subsurface 

observations were complicated by logistic problems, more surface activity observations 

were made. The time expenditure for the different activities of each surveyed individual 

was converted to percentages (i.e. time allocation).  

                                                           
5
 Short movies of certain behaviours can be found, when clicking on Video sequences or when using this URL: 

http://picasaweb.google.be/107878000542354590663/CorophiumBehaviour?authkey=Gv1sRgCJP6kuWq8Iu2b

g&feat=directlink. Short explanations are provided under the video sequences. 

 

http://picasaweb.google.be/107878000542354590663/CorophiumBehaviour?authkey=Gv1sRgCJP6kuWq8Iu2bg&feat=directlink
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2.3. Integrating surface and subsurface time allocation patterns 

Each observation period started and ended with a surface scan to determine the relative 

abundance of surface active animals6. The average of both surface scan measurements 

allowed to quantify the average importance of surface activity relative to subsurface 

activity during a given observation period. These values were then used to rescale the 

observed time allocation of both the surface and subsurface surveys. If, for example, on 

average 6% of the individuals in the experimental setup were observed to be surface 

active 1h after flooding and only 4% 1h later, then the time allocation of all surface 

activities between 1h and 2h after flooding were rescaled to 5%, while the time 

allocation of all subsurface activities were rescaled to 95%.  

2.4. Data analysis7 

Count data from the surface scan were square-root transformed to achieve homogeneity 

of variance, and a t-test was performed to test for differences in surface active 

individuals between submersion and emersion.  

All analyses were done using time allocation data. For each individual, the observed 

activities during the 5-min observation period were transformed to time allocation data, 

which implies a data dependency between activities within individuals, but not between 

individuals. The different time allocation data per individual can thus be used as true, 

independent replicates, observed over the course of the three-week experimental 

period, and allow the use of a one-way ANOVA. In most cases (except for subsurface 

inactivity), the data could not be corrected for heteroscedasticity. However, since 

ANOVA is considered robust to lack of homogeneity of variances when sample sizes are 

large, as is the case here, untransformed data were analysed (Underwood, 1997). 

Furthermore, the large sample size allows the statistics to follow a normal distribution 

(Central Limit Theorem) (Sokal and Rohlf, 1981). Tidal period (three periods 

demarcated by visual exploration of the data) was used as explanatory variable with the 

different observed activities as response variables. Significant differences for activities 

between tidal periods were based on p < 0.05. When significant, unequal N Tukey’s HSD 

post-hoc testing was applied.  

                                                           
6
 Relative abundance was calculated based on the total number of individuals added at the start of the 

experiment. 
7
 This section is expanded compared to the published manuscript. 
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3. RESULTS 

Surface counts of active individuals at the start of each observation period showed that 

surface activity rapidly decreased after emersion to 0.1% (± SD 0.1%) 3h after emersion. 

Even during submersion, the total proportion of surface active individuals was low, with 

maximum of 3.7% (Fig. 1). A significant difference in surface activity was found between 

submersion and emersion (t-test, t-value= 7.48, df=58, p<0.0001). Some activities were 

observed frequently but lasted shortly (e.g. scraping, subsurface walk), while others 

were long-lasting in comparison with the frequency of occurrence (e.g. subsurface 

inactivity) (Table 2). During the surveys for surface activity, the animals spent ≥ 80% of 

the time subsurface and especially during emersion often no animals were active on the 

surface. Over 90% of the subsurface time was spent with ventilating and filter feeding 

(44%) and being inactive (51%) (Table 2).  

Table 2: Frequency of occurrence, total time allocation, and average duration of activities, separated for 
surface and subsurface observations. 

 Activity Freq. of occurrence (%) 
( ind. where behaviour observed) 

Total time 
(%) 

Average duration 
± SD (s) 

Surface 
survey 

(total n=443) 

Invisible  62.5 (n=417) 86.9 276 ± 62 
Surface inactivity  6.4 (n=43) 3.9 119 ± 91 
Surface crawl 10.2 (n=68) 6.6 128 ± 81 
Swim 1.3 (n=9) 0.8 120 ± 141 
Scrape 16.0 (n=107) 1.3 16 ± 15 
Flush 3.4 (n=23) 0.6 22 ± 21 

Subsurface 
survey 

(total n=152)  

Subsurface 
inactivity 

37.4 (n=108) 51.4 217 ± 105 

Ventilate and filter 
feed 

33.6 (n=97) 43.8 206 ± 103 

Subsurface walk 27 (n=78) 4.4 26 ± 25 

Bulldoze 0.1 (n=6) 0.4 34 ± 22 

 

Although variability among the observations of the different individuals was high, clear 

patterns could be distinguished. Visual exploration of time allocation data allowed to 

distinguish three periods in the tidal cycle: a period of submersion (0-3h after flooding), 

emersion A (3-6h after flooding) and emersion B (6-12h after flooding) (Fig. 1). This 

distinction was confirmed statistically by a one way ANOVA with ‘tidal period’ as 

independent variable and the activities as dependent variables8. All observed activities, 

except subsurface walking, differed significantly between the submersion period and 

                                                           
8 The full ANOVA table is given in Appendix 1. 
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both emersion periods. During submersion, the diversity of activities and the overall 

activity was highest, while consequently the subsurface inactivity was low (4-13%). 

Swimming, flushing and bulldozing only occurred during submersion (Fig. 1).  

 

 

Figure 1
9
: Behavioural pattern and time allocation of an average C. volutator throughout a simulated tidal 

cycle. The X-axis represents one tidal cycle starting with 3h of submersion followed by 9h of emersion. Time 
allocation for each activity of the different individuals is averaged per hour and is represented in a 2D surface 
area graph. The thick dotted line indicates the relative abundance of surface and subsurface active 
individuals during the tidal cycle (obtained from the surface scans). Beneath the dotted line, surface 
activities are represented, rescaled towards relative abundance of the surface active individuals. Above the 
dotted line, subsurface activities are represented, rescaled towards relative abundance of the subsurface 
active individuals. 

For the majority of activities during emersion (except scraping), significant differences 

were found between the first 3h of emersion (Emersion A) and the last hours of 

emersion (Emersion B). Emersion A can be seen as a transition period between 

submersion and emersion B, in which the activity level dropped and (subsurface) 

                                                           
9 Figure legend is expanded compared to the published manuscript. 
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inactivity showed a steep increase from 13 to 60%. During emersion B, (subsurface) 

inactivity showed a further increase towards 88%, and only three activities (i.e. 

scraping, ventilating and feeding and subsurface walking) remained (Fig. 1). Scraping 

was the only activity that continued at more or less the same frequency during the 

whole emersion period. 

4. DISCUSSION 

Surface activity showed a steep decline the first hours after emersion. During a field 

study, Lawrie and Raffaelli (1998) found similar results and explained this decline by 

the drying of the sediment. Another plausible explanation is the increasing risk of 

predation by shorebirds when the tide is receding (Boates et al., 1995). However, the 

population used in this experiment is not heavily predated under natural conditions 

(Devos and De Groote, 2006), plus predation was absent in this experiment and C. 

volutator shows flexible surface crawling behaviour in relation to predation risk (Boates 

et al., 1995). Hence, in this case, the drying of the sediment is the most likely reason for 

the observed decrease in surface activity10. Even during submersion, the number of 

surface active individuals was very low compared with the one in the sediment and was 

on average restricted to maximum 3.7% of the population. When animals were active on 

the surface, crawling was the dominant activity. Surface crawling can increase 

seasonally, since (large) males crawl around in search of a female (Meadows and Reid, 

1966; Lawrie and Raffaelli, 1998). Since the experiment was done in January, no clear 

observations of reproductive behaviour were seen, but amphipods (both male and 

female) searching for another burrow during crawling were observed, as described in 

Meadows and Reid (1966). As reported in other studies, swimming frequency was low 

and variable patterns were observed in swimming activity, with peaks during periods of 

submersion (Lawrie and Raffaelli, 1998). 

The behaviour of Corophium showed a cyclic pattern following the simulated tidal cycle 

with a boost of activity immediately after flooding, continuing during submersion, and 

shifting over a period with decreasing activity (emersion A) towards almost total 

inactivity at the end of emersion (emersion B). Although the length of the different 

                                                           
10 Resource depletion could possibly cause a decrease in surface activity but there was no indication in 
that direction. Microphytobenthos was refilled every week and could grow under the light regime 
provided. Furthermore, if resource depletion would have caused this decrease in activity, this should have 
been visible as well during submersion, while we observed clearly a decrease with the tidal rhythm. 
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activity periods may vary due to seasonal differences (e.g. temperature, light conditions 

or phytoplankton concentration) or due to different submersion/emersion times 

depending on the origin of the population, a similar cyclic pattern, in which these three 

different periods can be distinguished, is to be expected.  

It is known that C. volutator can switch between feeding modes and that filter feeding is 

common when phytoplankton concentrations are above a certain trigger level (Riisgård 

and Schotge, 2007). However, the amount of time spent on different feeding modes is 

unknown and may greatly vary seasonally and geographically (Riisgård and Schotge, 

2007), depending on the degree of down-mixing of phytoplankton, which is controlled 

by currents and wind mixing (Riisgård et al., 2007). In the present study, the food 

offered consisted of benthic diatoms, and the used sea water was filtered, so 

phytoplankton concentrations were probably below the trigger level and surface deposit 

feeding was the main feeding mode. Nevertheless, filter feeding was observed as well, in 

co-occurrence with burrow ventilation, but since it was difficult to make a distinction 

between both with the naked eye, they were described as a single activity. However, 

because of the lack of phytoplankton, an underestimation of filter feeding during 

submersion is possible.  

We observed that some individuals were deposit feeding at all stages of the tidal cycle, 

just as Gerdol and Hughes (1994b) concluded from chlorophyll a concentrations of the 

gut content. However, unlike them, we found a relation between stage of the tide and 

surface deposit feeding (= scraping), with a higher frequency of scraping during 

submersion.  

To conclude, C. volutator showed a wide range of activities, which all contribute, to a 

greater or lesser extent, to bioturbation and bio-irrigation by this species. For these 

behavioural activities, a tidal pattern was observed with a relatively high rate of activity 

during submersion and a very high rate of inactivity during emersion.  
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CCHHAAPPTTEERR  33  
BBIIOOTTUURRBBAATTIIOONN  OOFF  CCOORROOPPHHIIUUMM  VVOOLLUUTTAATTOORR::  

IIMMPPOORRTTAANNCCEE  OOFF  DDEENNSSIITTYY  AANNDD  BBEEHHAAVVIIOOUURRAALL  AACCTTIIVVIITTYY  
 

ABSTRACT  

Bioturbation is one of the major processes influencing ecosystem functioning. Population 
parameters such as species density, burrow density and species-specific life modes, 
determine the impact of bioturbation on the ecosystem. A laboratory experiment was 
developed, using microcosms mimicking a marine intertidal sediment-water interface 
which allowed for quantification of different population parameters. The vertical 
redistribution, bioturbation rate and maximum penetration depth of two sizes (41 and 129 
µm) of luminophores were measured in five treatments (control, low density of burrows 
with and without Corophium (1,989 ind./m2), and high density of burrows with and 
without Corophium (14,921 ind./m2)) after 1, 7 and 14 days. Results indicate that the 
behavioural activities of Corophium are of the utmost importance in sediment reworking, 
since they contributed to a five-fold increase in bioturbation rate compared to the passive 
transport induced by the static structure of the burrows. Furthermore, density is an 
important parameter because only high densities play a prominent role in particle 
transport and hence in organic matter processing, while the role of low Corophium 
densities is limited in sediment reworking. No evidence for differentiation in sediment size 
fractions was observed. Finally, bioturbation rates in this study were low compared to 
other studies, and these results suggest an influence of the tidal rhythmicity in the 
behavioural activity of Corophium on the bioturbation rate.  

KEY WORDS: behavioural activity, bioturbation, Corophium volutator, density, 

luminophores 

1. INTRODUCTION 

Bioturbation, i.e. sediment reworking and bioirrigation by benthic fauna is recognised as 

one of the major processes that influence the structure and function of aquatic 

sedimentary environments (Lohrer et al., 2004; Meysman et al., 2006). Sediment particle 

reworking results from various activities (i.e. burrowing, feeding and locomotion), and 

strongly affects the physical, chemical and biological characteristics of marine sediments 

(Rhoads, 1974; Aller, 1982; Hall, 1994; Rowden et al., 1998; Solan et al., 2008). Hence, 

macrobenthos-mediated effects on sediment processes are strongly influenced by 

species-specific life modes (Mermillod-Blondin et al., 2005; Norling et al., 2007). The 

intensity of sediment reworking can vary according to population characteristics such as 
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species density, animal size, biovolume, burrowing depth, density of and spacing 

between animal burrows (e.g. Rhoads, 1974; Sandnes et al., 2000; Duport et al., 2006; 

Duport et al., 2007; Gilbert et al., 2007), and environmental factors such as temperature 

and the availability of food (Ouellette et al., 2004; Lecroart et al., 2005; Maire et al., 

2007; Nogaro et al., 2008; Braeckman et al., 2010). 

Bioturbating benthic organisms have been classified in five types of functional groups 

according to their mode of particle mixing, and their main effects on sediment 

geochemistry and the benthic microbial community. Biodiffusers, upward conveyors, 

downward conveyors, regenerators and gallery-diffusers can be distinguished (François 

et al., 2002; Gérino et al., 2003). However, for a lot of bioturbators and bio-irrigators, no 

matter which functional group they belong to, population density is an important 

parameter determining the impact on ecosystem functioning, such as nutrient cycling 

and benthic mineralisation (Ieno et al., 2006; Bulling et al., 2008; Rossi et al., 2008; 

Braeckman et al., 2010). Furthermore, dominant species often contribute most to 

sediment reworking and ecological function (Mugnai et al., 2003; Maire et al., 2007), and 

the loss or density decline of dominant species might have serious repercussions for 

ecosystem functioning (Solan et al., 2004a). Corophium volutator is an abundant species 

in intertidal ecosystems along the North-Atlantic, and population densities are 

frequently recorded at > 20,000 ind./m2, while in summer, densities can locally increase 

to 100,000 – 140,000 ind./m2 (Möller and Rosenberg, 1982; Jensen and Kristensen, 

1990; Gerdol and Hughes, 1994b). Given the densities it can attain, its trophic position in 

the ecosystem (Murdoch et al., 1986; Boates et al., 1995), as well as the ecosystem 

engineering effect on the abiotic environment (Grant and Daborn, 1994), this amphipod 

can be considered a critical species in intertidal ecosystems. To our knowledge, there 

has been no attempt to assess the density effect of C. volutator on sediment reworking, 

and therefore, quantifying the density effect on sediment reworking is one of the 

objectives of the present study. In order to quantify sediment reworking, numerous 

tracer techniques have been developed over the last three decades (Maire et al., 2008), 

and especially the luminophore technique (Mahaut and Graf, 1987) is frequently used in 

bioturbation studies. In most studies, one size class of luminophores is used to track 

vertical redistribution of sediment particles and/or to calculate bioturbation rate 

(Mermillod-Blondin et al., 2004; Solan et al., 2004b; Duport et al., 2006; Gilbert et al., 

2007; Maire et al., 2007). In this study, we used two different size classes of 
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luminophores (median grain size 41 µm and 129 µm) to determine whether 

bioturbation by Corophium differentiates between the mud (< 63 µm) and the sand 

sediment fraction. 

Bioturbation is regarded as a dynamic process caused by the behavioural activities of 

bioturbating species. However, burrowing species often construct an entire network of 

(semi)permanent burrows or tubes, which alter the ‘static’ sediment structure, and 

which could be equally important in (passive) downward sediment transport and 

particle burial (passive bioturbation). Therefore, we aimed at assessing the importance 

of the active contribution of species to bioturbation as compared with the potential 

passive bioturbation caused by changes in the physical sediment structure. 

To achieve our different objectives, a microcosm experiment was set up in the 

laboratory with different density treatments, both ‘passive’ (burrows only) and active 

(burrows with animals), and with two size fractions of inert fluorescent sediment 

tracers (luminophores), to be able to assess density effects, to distinguish between 

passive and active bioturbation and to determine potential size differentiation of the 

bioturbation by Corophium.  

2. MATERIAL AND METHODS 

2.1 Collection of sediment and animals and experimental design 

Sediment and C. volutator were collected in September 2006 in the Flemish nature 

reserve “IJzermonding”, a mudflat-salt marsh area in Nieuwpoort (Belgium, 51°08’N, 

2°44’E). The mudflat had a sediment consisting of muddy sand: 28% of mud (= silt + 

clay; <63 µm), 6% of very fine sand (63-125 µm), 50% of fine sand (125-250 µm) and 

16% of medium sand (250-500 µm). The collected sediment was defaunated by three 

cycles 24h freezing-24h thawing. Freezing-thawing did not alter the sediment grain size 

characteristics (t-test, p>0.05). To reduce natural heterogeneity and to obtain equal 

starting conditions, the sediment was homogenised before use. Sediment microcosms 

were established by transferring the homogenised sediment into PVC cores (15 cm long 

and 8 cm internal diameter) to a depth of 10 cm. The PVC cores had four holes (8 mm Ø), 

covered with a 250 µm mesh, at the same level as the sediment surface (≈ 10 cm) to 

allow gentle inflow of seawater and to avoid escape of the test animals. Sixty cores were 

placed in a large aquarium in a temperature controlled climate room (16±1°C) with a 
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12:12h light:dark regime, and under a simulated tidal regime, resembling the natural 

tidal conditions of the collected C. volutator (i.e. 3h of submersion and 9h of emersion, 

salinity = 32 psu). The seawater was filtered with a 45 µm biological sand filter. 

Corophium volutator was added to the microcosms one day after sediment installation. 

Movement of test animals between microcosms was prevented by the edges of the tubes, 

which protruded 5 cm above the sediment surface.  

Five treatments were performed (n = 4 replicates per treatment per time interval): (1) 

without Corophium and without burrows, i.e. control (C), (2) with 10 Corophiums, i.e. 

low density (LD; 1,989 ind./m²), (3) burrows of 10 Corophiums, but without the animals 

(BLD), (4) with 75 Corophiums, i.e. high density (HD; 14,921 ind./m²), and (5) burrows 

of 75 Corophiums, but without the animals (BHD). All treatments were randomised 

within the aquarium. No biofilm was present or no diatoms were added during the 

course of the experiment, but nevertheless the animals could be seen scraping, crawling 

or swimming. 

To establish the treatments with burrows but without animals, Corophium was 

introduced as for the other treatments, but prior to the start of the experiment (after 

three days burrowing), these treatments were taken out of the aquarium and put 

carefully (without disturbing the sediment surface) in a 1% formaldehyde solution, 

chasing the animals out of their burrows immediately, but leaving the burrows intact. 

After all animals were removed with soft tweezers, the core was placed in seawater to 

dilute the formaldehyde. After ten minutes the cores were placed back in the aquarium. 

We should mention that in these formaldehyde treated cores, an increased oxygen 

penetration was observed after one day, most probably caused due to a change in 

bacterial community. However, this was restored quickly and oxygen penetration was 

relatively similar to the other treatments after seven days11. Furthermore, we are 

convinced that this had no effect on luminophore redistribution.  

 

 

  

                                                           
11 The vertical oxygen profiles, measured with Unisense oxygen microsensors (type ox25) in vertical 

increments of 100 µm, are added as supplementary material in Appendix 1. 
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2.2. Quantifying bioturbation 

Bioturbation in the cores was quantified using the luminophore tracer technique 

(Mahaut and Graf, 1987). Two size types of luminophores were used (Environmental 

Tracing Systems, UK), corresponding to the two main sediment fractions: “UV Blue 

Mostyn” luminophores with 129 µm median grain size (i.e. fine sand, coarse tracer) and 

“Magenta” luminophores with 41 µm median grain size (i.e. mud, fine tracer). Two g of 

129 µm and 1 g of 41 µm luminophores were added to 19 g of natural dried sediment 

and mixed homogeneously. Subsequently, seawater was gently added until a 

homogeneous mix was formed. The mix was poured in moulds of 8 cm diameter (= 

internal diameter of the experimental cores) and 4 mm deep and frozen at -20°C. On day 

0 of the experiment, just after removal of Corophium from the ‘only burrow’ treatments 

and just before the start of submersion, the frozen luminophore slices were placed on 

the sediment surface of the experimental cores to equally distribute the luminophores 

over the sediment surface. 

Sampling of the cores was done at three sampling occasions: one day, seven days and 14 

days after the start of the experiment. At each sampling occasion, 20 cores (5 treatments 

x 4 replicates) were taken out of the aquarium and put immediately in the freezer (-

20°C) to stop macrofaunal reworking. Frozen cores were subsequently sliced in layers of 

2 mm down to 3 cm depth, then in 5 mm slices to 7 cm depth. However, the first two 

slices were combined, because the thickness of the initial luminophore slice was 4 mm. 

The sediment collected within each layer was homogenised thoroughly in a Petri dish, 

and pictures of a fixed surface area were taken under UV light under standardised 

conditions. Petri dish, camera and UV lamp (365 nm) were placed in a fixed setup. 

Pictures were taken with a digital mirror-reflex camera, Canon EOS 350D; aperture 1/8, 

shutter time 1s, ISO 400, manual focus and 46 mm focal length. Images were digitally 

processed in Matlab to count luminophore pixels. Using quadratic discriminant function 

analysis, pixels were classified into three classes (coarse tracer [129 µm; blue], fine 

tracer [41 µm; red] and background) based on their brightness value in the red, green 

and blue bands (Fig. 1). The use of the quadratic discrimant analysis prevented overlap 

between the three colour bands. Luminophore pixel counts of both size types were then 

converted to percentage of tracer in each sediment slice based on the total depth-

integrated pixel counts for each size type. The image analysis revealed that no buried 
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luminophores were present in the layers deeper than 3 cm (except for the artefactual 

one or two), for that reason, these data were not used for further analysis. 

 

Figure 1: Example of a detailed area of an image before (left) and after (right) image analysis. 

2.3. Bioturbation rate 

Bioturbation rate was quantified by using a non-local model of bioturbation, the 

Continuous Time Random Walk model, based on Meysman et al. (2008). This model was 

preferred to the classical biodiffusion model, as the assumptions of the latter are usually 

not fulfilled in short-term bioturbation experiments (Meysman et al., 2008). Particle 

displacement is assumed to be a Poisson process, as the probability distribution of the 

waiting time until the next displacement is an exponential distribution, with a Gaussian 

step-length distribution (see Maire et al., 2007 for mathematical background on this 

model). Values for the two parameters σ (characteristic step-length) and τ (average 

waiting time) were determined by fitting the model to the respective log-transformed 

luminophore profiles using the R package FME (Soetaert and Petzoldt, 2009). Finally, a 

single quantity DbNL, representing the bioturbation rate, was calculated as follows:  

DbNL = σ² / 2 τ 

2.4. Data analysis 

As it is of interest to determine differences in the shape or depth of tracer profiles 

between treatments, a split-plot ANOVA was performed. This allows for comparison of 

vertical tracer profiles between treatments (depth x treatment interaction) and between 

treatments over time (depth x treatment x time interaction). Tracer percentages were 

used as response variable, while time, treatment and tracer size were the ‘between 
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effect’ explanatory variables and depth the ‘within effect’ explanatory variable, since 

depth intervals of the luminophores within cores are not independent. To enable ANOVA 

analysis, core identity was introduced as a new parameter treated as a random factor, 

nested within the time x treatment x tracer size interaction. Significance of the between 

effects (time, treatment and tracer size) and their interactions were tested over the 

mean square between cores within treatment x time x tracer size. Significance of depth 

(within effect) and all interaction terms involving depth were tested over the error 

mean square (Quinn and Keough, 2002). To fulfill homogeneity of variances, tracer 

percentages were arcsine-square root transformed. Because the sphericity assumption 

was violated, adjusted F tests using the Greenhouse-Geisser correction were performed, 

resulting in more conservative p levels (Quinn and Keough, 2002).  

Furthermore, differences in maximum penetration depth (MPD, depth integrating 99.5% 

of the tracer) and bioturbation rates between treatments, sampling times and tracer size 

were tested using a three-way ANOVA. Whenever the homogeneity assumption was not 

met (Bartlett’s test), data (multiplied by a power of 10) were log transformed. Whenever 

appropriate, a Tukey’s post hoc test was used to assess differences between treatments 

and experimental duration. When interactions, e.g. time x treatment, were significant for 

any of the above analyses, interpretation of the main effects was done by splitting the 

original data per treatment and/or sampling occasion to allow for interpretation of the 

main treatment or time effect (Quinn and Keough, 2002). All analyses were performed 

using Statistica 7. 

3. RESULTS 

3.1. Size selectivity 

Corophium reworked the sediment particles irrespective of particle size (Fig. 2). No 

significant differences in vertical distribution or maximum penetration depth (MPD, 

depth integrating 99.5% of the tracer) were found between fine (41 µm) and coarse 

(129 µm) tracers for none of the treatments (Table 1 and 2; Fig. 2 and 3). Furthermore, 

bioturbation rates for both size fraction were not significantly different between similar 

treatments and sampling occasions (Table 3), with for instance for the high-density 

treatment (HD) after 14 days, a bioturbation rate of 0.0035±0.0007 cm²/d for the fine 

tracer and 0.0029±0.0003 cm²/d for the coarse tracer (Fig. 4). 
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Table 1: Time, treatment and tracer size differences for vertical tracer distribution patterns in five treatments 
at three sampling times (Split-plot ANOVA table). Adjusted p-levels were calculated for Depth effects based 
on the Greenhouse-Geisser correction. Tracer % was arcsine-square root transformed. 

Model term df Tracer % 
MS 

Tracer % 
F 

p Adjusted p 
level 

Between effects      
Cte 1 28.11007 72351.01 <0.001  
Time 2 0.01123 28.91 <0.001  
Treatment 4 0.02222 57.20 <0.001  

Size 1 0.00027 0.68 0.411  
Time x Treatment 8 0.00196 5.05 <0.001  
Time x Size 2 0.00006 0.15 0.860  
Treatment x Size 4 0.00021 0.53 0.716  
Time x Treat x Size 8 0.00015 0.38 0.928  
Repl(Ti, Tr, Si) 90 0.00039 1.03 0.402  
Within effects      
Depth 13 221.2888 45217.67 < 0.001 < 0.001 
Depth x Time 26 0.2282 23.31 < 0.001 < 0.001 
Depth x Treatment 52 0.7645 39.06 < 0.001 < 0.001 
Depth x Size 13 0.0033 0.68 0.781 0.479 
Depth x Ti x Tr 104 0.1927 4.92 < 0.001 0.013 
Depth x Ti x Si 26 0.0019 0.19 0.999 0.915 
Depth x Tr x Si 52 0.0026 0.13 1,000 0.994 
Depth x Ti x Tr x Si 104 0.0114 0.29 1,000 0.993 
Depth x Repl(Ti, Tr, Si) 1170 0.4404 - - - 

3.2. Effects of density and biological activity over time 

Bioturbation effects changed significantly between the treatments over time (time x 

treatment x depth, p<0.001; Table 1). As time progressed, differences between 

treatments became more pronounced, and the percentage of luminophores worked 

down with time was higher for most treatments (Fig. 2)12. The empty burrows from the 

BLD and BHD treatments persisted during the experiment (personal observation during 

slicing), and they slightly influenced vertical tracer distribution in the sense that 

significant changes in tracer profile for both were observed over time, when analysing 

treatments separately (Fig. 2, Table 4). Also for the LD and HD treatments, luminophore 

depth profiles differed significantly between the sampling occasions (Table 4), only for 

the C treatment, no differences were found between the sampling occasions. For LD and 

BLD, the 1 day sampling occasion differed significantly from both the 7 days and 14 days 

sampling occasions, while for HD and BHD, the 14 days sampling differed significantly 

from the 1 day and 7 days sampling occasions (Tukey’s post hoc, Table 4).  

                                                           
12 Analysed pictures of some depth slices from all treatments at day 14 are presented in Appendix 1. 
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Table 2: Three-way ANOVA table for the effect of time, treatment and tracer size on the Maximum 

Penetration Depth (MPD). 

 df MPD MS MPD F p 

Cte  1 12040.03 864.8069 <0.001 
Time 2 162.13 11.6457 <0.001 
Treatment 4 419.87 30.1580 <0.001 
Size 1 32.03 2.3009 0.133 
Time x Treatment 8 32.97 2.3679 0.023 
Time x Size 2 5.73 0.4118 0.664 
Treatment x Size 4 9.20 0.6608 0.621 
Ti x Tr x Si 8 6.40 0.4597 0.881 
Error 90 13.92   

Table 3: Three-way ANOVA table for the effect of time, treatment and tracer size on the natural logarithmic 
transformed bioturbation rate (ln(BR)). 

 df Ln(BR) MS Ln(BR) F p 

Cte  1 5708.18 6022.98 <0.001 
Time 2 22.11 23.33 <0.001 
Treatment 4 26.31 27.77 <0.001 
Size 1 0.39 0.45 0.521 
Time x Treatment 8 2.08 2.20 0.036 
Time x Size 2 0.32 0.34 0.714 
Treatment x Size 4 0.63 0.66 0.619 
Ti x Tr x Si 8 0.25 0.26 0.976 
Error 83 0.95   

On each sampling occasion, the depth profile of the HD treatment (14,921 ind./m²) 

differed significantly from the C and LD treatments (Tukey’s post hoc, p<0.005; Table 5), 

except on day 7 (HD not different from LD, p=0.29; Table 5). The LD treatment (1,989 

ind./m²) did not differ significantly from the C treatment in vertical distribution of the 

tracers on day 1 and day 7, but it differed significantly from the C treatment on day 14 

(p=0.015, Tukey’s post hoc; Table 5). Depth profiles from BLD and LD treatment were 

not significantly different from each other on the different sampling occasions (Tukey’s 

post hoc, Table 5). However, for the BHD treatment significant differences were 

observed with the HD treatment at each sampling occasion (Tukey’s post hoc, Table 5), 

with higher amounts of tracer transported downward for the HD treatment (Fig. 2). 
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Table 4: Tukey’s post hoc results for differences in vertical tracer distribution per treatment between 
different sampling occasions. For the C treatment, no overall signicant effect of time was found, so no test 
was performed. 

Treatment Sampling 
occasion 

Day 1 Day 7 

BLD Day 7 0.002  
 Day 14 <0.001 0.980 

LD Day 7 0.039  
 Day 14 0.029 0.994 

BHD Day 7 0.550  
 Day 14 <0.001 <0.001 

HD Day 7 0.998  
 Day 14 <0.001 <0.001 

Table 5: Tukey’s post hoc results for differences in vertical tracer distribution between the different 

treatments per sampling occasion. 

Sampling 
occasion 

Treatment C BLD LD BHD 

Day 1 BLD 0.357    
 LD 0.811 0.948   
 BHD 0.965 0.770 0.993  
 HD <0.001 <0.001 <0.001 <0.001 

Day 7 BLD 0.951    
 LD 0.117 0.454   
 BHD 0.999 0.980 0.168  
 BD <0.001 0.003 0.290 <0.001 

Day 14 BLD 0.929    
 LD 0.015 0.139   
 BHD 0.013 0.121 0.999  
 HD <0.001 <0.001 <0.001 <0.001 

Maximum penetration depth (MPD) was less subject to time (Fig. 3). MPD changed with 

time but this differed between treatments (time x treatment, p= 0.023; Table 4). MPD 

was only significantly different between sampling occasions for the LD and BHD 

treatment (Tukey’s post hoc). MPD was deepest for the HD treatment with 18.5±2.7 mm 

(mean±SE) for the coarse (129 µm) tracer and 20±2.8 mm for the fine (41 µm) tracer 

after 14 days (Fig 3). We observed the same pattern in MPD as for the tracer profiles, 

where the HD treatment differed significantly from C and LD treatments on each 

sampling occasion, except not from the LD treatment on day 7 (p=0.31, Tukey’s post hoc; 

Fig. 3). Furtermore, the HD treatment also differed significantly from the BHD treatment 

at each sampling occasion. The LD treatment (13±4 mm for fine and 11±1 mm for 

coarse) showed only significant differences in MPD with the C treatment (6±1 mm for 
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both fraction sizes) on day 7, no significant differences with BLD treatment were 

observed (Tukey’s post hoc; Fig. 3). 

 

 

Figure 3: Maximum penetration depth (mean ± SE, n=4) for the different treatments (C = Control, BLD = 
Burrows Low Density, LD = Low Density, BHD = Burrows High Density, HD = High Density) from 41 µm (black) 
and 129 µm (grey) luminophores at the different sampling occasions. No significant difference between 
luminophore sizes were observed. 

The bioturbation rate was significantly influenced by time (Table 3). For each treatment, 

except for the BLD treatment, the bioturbation rate at day 1 was significantly higher 

than the rates at day 7 and day 14 (Tukey’s post hoc; Fig. 4). Bioturbation rate was 

usually one order of magnitude higher in the HD treatment compared to the other 

treatments. The HD treatment showed significantly higher values on days 1 and 14 

(resp. 0.02 cm²/d and 0.003 cm²/d for the fine tracer) than the LD treatment (resp. 

0.001 cm²/d and 0.0007 cm²/d) and it differed significantly from the C treatment and 

BHD treatment on all sampling occasions (Table 3, Fig. 4). Again, the BLD and LD 

treatment did not show any significant differences in bioturbation rate. 
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Figure 4: Bioturbation rate (mean ± SE, n= 4) for the different treatments (C = Control, BLD = Burrows Low 
Density, LD = Low Density, BHD = Burrows High Density, HD = High Density) from 41 µm (black) and 129 µm 
(grey) at the different sampling occasions. No significant differences between luminophore sizes were 
observed. 

4. DISCUSSION 

4.1. Size selectivity 

No evidence for differentiation in sediment size fractions during sediment reworking by 

Corophium was observed, meaning that both the mud fraction and fine sediment fraction 

were transported at equal rates and in a similar way. In contrast with our results, high 

Corophium densities have been observed to stimulate loss of fine sediment (< 4 µm) 

from the surface layer in the laboratory (De Backer et al., 2009= Chapter 4), and to 

induce a coarsening of the sediment in the field (Chapter 6). These contrasting results 

can probably be attributed to the fact that in the laboratory a loss of clay particles 

(particle diameter < 4 µm) was observed, while the fine tracer fraction used in this 

experiment had a median grain size of 41 µm. The difference with the field data can 

probably be explained by a large difference in external hydrodynamical forcing between 

laboratory and natural conditions. Furthermore, as Corophium, because of its bio-

irrigating activities in a U-shaped burrow, was expected to induce non-local transport 

(i.e. transport of material from the surface directly to the deep part of the gallery) in 

addition to diffusive mixing, accumulations of (preferably coarse) particles were 

expected at the bottom of the burrow. Our vertical distribution profiles, however, 
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showed no evidence of non-local transport, i.e. a peak of tracers at depth, which is 

consistent with the findings of Mermillod-Blondin et al. (2004). Mermillod-Blondin et al. 

(2004) attributed their results to an insufficient spatial resolution (slices of 5 mm), 

missing a possible luminophore peak at the bottom of the burrow. Our spatial resolution 

was higher (2 mm), but again no tracer peak at depth was observed. Possibly, Corophium 

removes the accumulation of sediment particles at the bottom of the burrow, whilst 

flushing during submersion (De Backer et al., 2010). Further experiments on a very high 

spatial and temporal scale with the use of thin wall aquaria and time lapse camera could 

offer an outcome to actually see what is happening at the bottom of the burrow and to 

see if different sediment fractions are indeed transported in the same way (Solan et al., 

2004b). 

4.2. Density effects and passive versus active bioturbation 

Quantification of bioturbation by tracking the vertical distribution of luminophore 

tracers in different density treatments revealed that density is an important parameter 

determining sediment reworking by Corophium. High Corophium densities (± 15,000 

ind./m²) reworked a significantly higher amount of tracer at each sampling occasion, 

while low densities of Corophium (± 2,000 ind./m²) had only a slight, and mostly 

insignificant, influence on sediment reworking. Furthermore, differences between 

control and density treatments became more pronounced with time. Bioturbation rate 

and maximum penetration depth as well were positively influenced by density. 

Corophium volutator is an important deposit feeder, at least in the absence of 

phytoplankton (Riisgård and Schotge, 2007), and while foraging as deposit feeder, 

Corophium partly leaves the burrow to scrape surface sediment in the burrow (Meadows 

and Reid, 1966; Riisgård and Schotge, 2007; De Backer et al. 2010). This feeding 

behaviour induces a displacement of surface particles down the burrow. If Corophium 

density increases, a larger surface area is occupied with burrows, and consequently the 

total scraping area, which surrounds the burrows, increases. Hence, a higher quantity of 

sediment tracers is buried at high densities. A similar particle displacement through 

feeding behaviour was described for Hediste diversicolor by Duport et al. (2006). It is, 

however, important to mention that no food was added to this experiment, so feeding 

activity might have been reduced and might have resulted in less intensive sediment 

reworking (cf. Nogaro et al., 2008). This density-dependency of sediment reworking was 
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also observed for other taxa and other functional traits, and our results add to the 

recognition that density is an important parameter in sediment mixing (Sun et al., 1999; 

Sandnes et al., 2000; Duport et al., 2006; Braeckman et al., 2010). 

The limited importance of low densities of Corophium is supported by the close relation 

in both depth profile and bioturbation rate between the low density treatment and the 

treatment with only burrows at low densities, indicating that the influence of the 

behavioural activities at low densities of Corophium was of minor importance. There is a 

small environmental, abiotic driven flux of passive particle transport down into the 

empty burrows, which does not differ significantly from the net animal activity at low 

densities. However, for high densities, significant differences were found between the 

‘passive’ burrow treatment and the ‘active’ treatment with animals. Furthermore, the 

bioturbation rate was one order of magnitude higher in the animal treatment compared 

to the ‘burrow only’ treatment, indicating that bioturbation is actively driven by the 

burrow-flushing and particle-burial activities of Corophium. The behavioural activities of 

Corophium an sich contribute to a downward sediment mixing of approximately 1 cm²/y 

(for 15,000 ind./m²), which is a five-fold increase compared to the passive transport 

induced by the static structure of burrows. These results indicate that in ecosystems 

where C. volutator is abundantly present, it may play a prominent role in downward 

particle transport and organic matter transformation, while a decline in Corophium 

densities due to natural or anthropogenic disturbances might have negative effects on 

downward transport of organic matter. Moreover, the density of Corophium also proved 

to be an important parameter in biogeochemical processes, where ventilation activity 

increased oxygen consumption, nitrification and denitrification, and the release of 

nutrients from the sediment (Pelegri et al., 1994a; Pelegri and Blackburn, 1994b; 

Emmerson et al., 2001; Mermillod-Blondin et al., 2004) and furthermore, Corophium is 

known to stimulate microbial activity in the burrow (Mermillod-Blondin et al., 2004).  

These biogeochemical results, together with our quantification of sediment reworking 

imply that Corophium, at least at densities of 15,000 ind./m², is important in the 

functioning of intertidal mudflats. This density of 15,000 ind./m², and even much higher 

densities, are frequently observed in mudflats. For instance in the IJzermonding tidal 

flat, where the experimental animals were collected, average densities in summer easily 

reach 50,000 ind./m² with peaks towards 100,000 ind./m² (Chapter 6). Further 

evidence pointing at the importance of Corophium in ecosystem functioning of mudflats 
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was provided by Gerdol and Hughes (1993), who concluded that Corophium (12,500 

ind./m²) prevented the establishment of Salicornia europaea partly by burial of seeds, 

but mostly by preventing the establishment of the seedlings, which inhibits the 

expansion of salt marsh vegetation.  

4.3. Bioturbation rate 

For each of the cores, the bioturbation rate measured after 24h was about one order of 

magnitude higher as compared to those measured on the later sampling occasions. 

These values are most probably not reliable because after one day only very small 

amounts of tracer particles have been reworked. At such short time scale, even minute 

percentages of tracer at depth (e.g. as a result of the slicing process) will result in an 

overestimation of the bioturbation rate by the model.  

 

 

Figure 5: Comparison of bioturbation rates measured in Mermillod-Blondin et al. (2004) at densities of 0 and 
5,000 ind./m² with rates measured in the current study at densities of 0, 2,000 and 15,000 ind./m². 

However, when we compare our bioturbation rates measured at the later sampling 

occasions with other studies, lower values were observed. Mermillod-Blondin et al. 

(2004) for instance, measured a diffusion rate of 0.006 cm2/d for Corophium at a density 

of 5,000 ind./m2 after 20 days, while in this study for both densities much lower values 

were observed, although control values in both studies are similar (Fig. 5). Other studies 
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on intertidal animals, but using fully submersed experimental mesocosms, showed 

values ranging from 0.003 to 0.009 cm2/d (François et al., 2002; Duport et al., 2006). 

We hypothesise that this difference in bioturbation rates could be caused by the 

imposed tidal regime (3h submersion versus 9h emersion) in this study. A previous 

study (De Backer et al., 2010) showed that Corophium is completely inactive for on 

average 70% of the time during emersion, meaning that sediment reworking is mainly 

restricted to submersion. Furthermore, comparison with the study of Mermillod-

Blondin et al. (2004), which was done under similar temperature conditions (14°C 

versus 16±1°C in this experiment) and also without the addition of food, but with 100% 

submersion, indicates that shifts in activity periods caused by the tidal regime, may be 

responsible for the different values in bioturbation rates, with a possible overestimation 

of bioturbation rates in the absence of a tidal regime. To our knowledge, no supporting 

literature exists linking tidal rhythmicity in behaviour to bioturbation rates. Therefore, it 

would be very interesting to test this hypothesis under experimental conditions with 

different tidal regimes. However, studies on seasonal variation in bioturbation rates 

measured lower sediment reworking rates in winter due to reduced feeding, burrowing 

and/or ventilation activities (Maire et al., 2007; Braeckman et al., 2010). Similarly, 

reduced bioturbation activity was also measured for Hediste due to decreased feeding 

behaviour without a food supply (Nogaro et al., 2008). Hence, the observed decrease in 

activity of Corophium during emersion (De Backer et al., 2010) could similarly result in 

lower reworking rates.  

5. CONCLUSION 

The population density of C. volutator is a key parameter determining the impact of its 

bioturbation. Only when abundantly present in the mudflat ecosystem, Corophium will 

play an important role in reworking of the sediment surface. Density declines of 

Corophium, be it natural or anthropogenic, can thus have negative effects on downward 

particle and organic matter transport. We found, however, no evidence for size 

selectivity during bioturbation of Corophium. Furthermore, our results indicated that the 

bioturbation measured at high densities was actively driven by the burrow-flushing and 

particle-burial activities of Corophium, which contributed to a five-fold increase in 

sediment transport compared to the small abiotic driven flux of passive particle 
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transport induced by the static burrow structures. Consequently, this suggests that all 

factors causing a decrease in behavioural activity (e.g. tidal regime, temperature, food 

supply,), cause a decrease in bioturbation activity. 
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CCHHAAPPTTEERR  44  
RREEMMOOTTEE  SSEENNSSIINNGG  OOFF  BBIIOOLLOOGGIICCAALLLLYY  RREEWWOORRKKEEDD  

SSEEDDIIMMEENNTTSS::  AA  LLAABBOORRAATTOORRYY  EEXXPPEERRIIMMEENNTT  
 

ABSTRACT  

The present study aims to test the application of remote sensing to address the impact of 

bioturbation on physical sediment properties. Therefore, a laboratory experiment was 

developed, using microcosms mimicking a marine intertidal water-sediment interface to 

test the influence of Corophium volutator densities on sediment properties. Three main 

variables (water content, clay content and mean grain size) were measured in three 

treatments (no Corophium, 5,000 Corophium/m² and 20,000 Corophium/m²) after 16 days 

of bioturbation. Results obtained with conventional – destructive – techniques showed a 

significant increase of water content and a significant, but small decrease of clay content in 

the presence of Corophium. The remote sensing technique detected the impact of 

Corophium on water content as an increase in absorption at 1,450 nm, but was not able to 

detect the animal impact on clay content. This study demonstrates that remote sensing 

data could be significantly modified by bioturbation activities and that remote sensing can 

be applied in the laboratory to address the impact of bioturbation on sediment properties. 

This possibly opens new perspectives for long term experiments concerning the role of 

bioturbation on sedimentary processes. 

 

KEY WORDS: clay content, Corophium volutator, grain size, hyperspectral 

measurements, remote sensing, water content  

1. INTRODUCTION 

Dependent on the surface materials, various fractions of electromagnetic radiation 

incident on the surface are reflected, absorbed and/or emitted (Lillesand and Kiefer, 

2000). Some materials, such as the pigment chlorophyll a, water and clay absorb light at 

specific wavelengths due to molecular vibration and rotation, while other materials, 

such as vegetation, scatter near-infrared light due to the internal structure of plant 

leaves (Lillesand and Kiefer, 2000). Remote sensing devices capture the reflected 

radiation which can be used to identify and quantify surface materials. With the 

development of high spectral resolution laboratory, field and airborne sensors, the 

reflected signal can be used to predict surface properties qualitatively (Thomson et al., 
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1998; Adam et al., 2006; Deronde et al., 2006) and, to some extent, quantitatively 

(Rainey et al., 2003; Carrère et al., 2003). Remote sensing has the great advantage that it 

is a nondestructive method and less time consuming than conventional sampling.  

In laboratory conditions, hyperspectral signals have been used to quantify mud 

(Kooistra et al., 2003; Lagacherie et al., 2008; Adam, 2009), organic matter (Ben-dor et 

al., 2002; Kooistra et al., 2003), chlorophyll a (Méléder et al., 2003; Combe et al., 2005) 

and moisture content (Ben-dor et al., 2002; Adam, 2009) in sediments. In the field, good 

results have been obtained to estimate chlorophyll a content (Méléder et al., 2003; 

Carrère, 2004; Combe et al., 2005; Murphy et al., 2005; Adam, 2009) and moderate 

results to quantify mud (Kooistra et al., 2003; Rainey et al., 2003; Lagacherie et al., 2008) 

and moisture (Ben-dor et al., 2002; Adam, 2009) content.  

Few studies used remote sensing data to predict distribution of macrobenthos on an 

intertidal flat (Yates et al., 2003; van der Wal et al., 2008). However, the effect of 

bioturbation on the remotely sensed signal, and hence, the potential of remote sensing 

to detect bioturbation, have not been investigated. Nevertheless, bioturbation is 

recognised as one of the major processes that influence the structure and function of 

sediment environments (Lohrer et al., 2004; Meysman et al., 2006). Sediment reworking 

results from various activities, and strongly affects the physical, chemical and biological 

characteristics of marine sediments (Rhoads, 1974; Aller, 1982; Hall, 1994; Jones et al., 

1994; Rowden et al., 1998). As such, bioturbation could potentially influence remote 

sensing analyses through changing sediment properties. 

The mud shrimp, Corophium volutator (Crustacea, Amphipoda) is an abundant deposit 

and/or filter feeding species in intertidal mudflats, where it lives in U shaped burrows in 

the upper 5 cm of the sediment (Meadows and Reid, 1966). Population densities 

frequently reach > 20,000 ind./m2 and in summer months densities can locally increase 

up to 100,000 – 140,000 ind./m2 (Gerdol and Hughes, 1994b). The high population 

densities make C. volutator a critical species in many mudflat ecosystems, where it is a 

significant prey of migratory shore birds and juvenile flounder (Murdoch et al., 1986; 

Boates et al., 1995). Through its activities, Corophium alters sediment properties by 

changing porosity, water content, grain size distribution and the chemistry of the 

sediment (Jones and Jago, 1993; Gerdol and Hughes, 1994a; Pelegri and Blackburn, 

1994b; Limia and Raffaelli, 1997; Mermillod-Blondin et al., 2004). However, 
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contradicting results are often found and still no consensus on the real effect of 

Corophium on the physical characteristics of the sediment is reached. 

The objectives of the present study were twofold:  

1) to examine the physical impact of bioturbation by C. volutator on water content and 

grain size of the sediment with conventional, destructive techniques using microcosms 

in laboratory conditions, i.e. without any confounding factors such as the presence of 

microphytobenthos and differences in sediment characteristics, 

2) to investigate whether physical changes caused by bioturbation of a macrobenthic 

species influence the hyperspectral signal  

2. MATERIAL AND METHODS 

2.1. Experimental setup 

Sediment and C. volutator were collected in October 2007 in the Flemish nature reserve 

“IJzermonding”, a mudflat-saltmarsh area in Nieuwpoort (Belgium, 51°08’N, 2°44’E). 

The sediment was defaunated by three cycles of 24h freezing-24h thawing. Grain size 

analysis (Malvern Mastersizer 2000 laser diffraction) showed that freezing-thawing did 

not alter median grain size (t-test, p=0.48). To reduce natural heterogeneity and to 

obtain equal starting conditions, the sediment was homogenised by thorough mixing 

before use. Sediment microcosms were established by transferring the homogenised 

sediment into PVC cores (15 cm deep and 8 cm internal diameter) to a depth of 10 cm. 

Fifteen cores were placed in an aquarium (0.8 x 0.8 m) in a temperature controlled 

climate room (16±1°C) with a 12:12h light:dark regime, and subjected to a simulated 

tidal regime, resembling the natural tidal conditions (i.e. 3h of submersion and 9h of 

emersion, salinity= 32 psu). Three days after microcosm preparation, C. volutator was 

added to the PVC cores in different densities. Three treatments were set up (five 

replicates per treatment): (1) no Corophium i.e. control (C), (2) 25 Corophium, i.e. low 

density (5,000 ind./m2; LD), and (3) 100 Corophium, i.e. high density (20,000 ind./m2; 

HD). All treatments were placed randomly in the aquarium during 16 days13. On day 16, 

hyperspectral measurements of the sediment surface were performed 3h after 

emersion. Immediately thereafter, the surface sediment was frozen with liquid nitrogen 

(± 1 cm deep), based on the contact coring technique pioneered by Wiltshire et al. 

                                                           
13 Mortality was very low, on average 1% ± SD 1.2%. 
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(1997). This technique allows for undisturbed surface samples and avoids changes in 

water content by draining of the pore water. Afterwards the upper 0.5 cm of the core 

was used to determine water content and grain size in the surface layer. 

2.2. Hyperspectral and physical measurements 

Spectral reflectance measurements Hyperspectral measurements were acquired with 

the Analytical Spectral Device (ASD) spectrometer (FieldSpec® Pro FR, Analytical 

Spectral Devices Inc., Boulder, Colorado, USA), recording the reflectance from 350 till 

2,500 nm, i.e. in the visible (VIS), near-infrared (NIR) and shortwave-infrared (SWIR) 

region of the spectrum. The spectral resolution is 3 nm for the 350-1,000 nm region and 

10 nm for the 1,000-2,500 nm region. Spectral reflectance measurements were acquired 

at 50 cm height, nadir looking with a field of view of 1°, so that a small area of 0.6 cm2 

was sampled. The reflectance was measured at four positions in each microcosm on the 

sediment surface to include spatial heterogeneity. Black cloths, which absorb more than 

95% of the light, were hung around the experimental setup and put on the table to avoid 

diffuse light entering the sensor. The light source was a tungsten halogen 50-W OSRAM 

lamp and calibration was performed every 10 min using a Spectralon® panel (0.30 x 

0.30 m Labsphere, North Sutton, USA), which has a quasi-Lambertian reflectance higher 

than 98 % over a range from 400 to 1,500 nm and higher than 93 % from 1,500 to 2,500 

nm. Hence, the Spectralon® panel is characterised by a reflectance factor for each 

wavelength. The relative reflectance from the sediment (radiant exitance from the 

sediment/radiant exitance from the Spectralon® panel) was multiplied by the 

Spectralon® reflectance factors to obtain absolute reflectance. In laboratory conditions, 

the instrument and the light source are stable enough for calibration to be performed 

with a 10 min time interval, since 10 min after the calibration, the reflectance of the 

Spectralon® panel was almost equal to 100%, except for small deviations situated at the 

extreme upper and lower ends of the spectrum.  

In order to avoid measurements with an incorrect position of the sample under the ASD, 

causing reflectance from the PVC cores, a quality procedure based on the overall 

brightness of the spectrum was performed. One spectrum of the high density treatment 

had to be removed, because the difference in the visible light between this spectrum and 

the mean of the other high-density spectra was very large (more than five times the 

standard deviation of the correctly measured high-density spectra).  
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Water content Frozen sediment from 0 to 0.5 cm depth is weighed after removal of the 

animals to determine wet weight, subsequently freeze-dried for 12h, and weighed again. 

Water content14 was calculated as follows:  

 

100*
)(

)()(
(%)

gweightsampleWet

gweightsampleDrygweightsampleWet
contentWater


  

 

Grain size Grain size analysis was carried out on the freeze-dried samples (8 cm Ø) after 

determination of the water content. Grain size distribution (according to the Wentworth 

scale)15 and mean grain size (µm) were determined using a Malvern Mastersizer 2000 

laser diffraction, capable of detecting the 0.02 µm to 2 mm grain size range.  

2.3. Absorption features 

Absorption can be quantified by 1) the ratio between minimal reflectance in the 

absorption feature and reflectance outside the absorption feature: Rb/Rc (Rb is 

reflectance at maximum absorption, Rc is reflectance out of absorption feature), 2) the 

scaled band depth after continuum removal, and 3) the scaled band area of the 

absorption feature after continuum removal (Fig. 1). Continuum removal is a 

normalisation technique in order to compare absorption features from a common 

baseline. This continuum consists of straight-line segments that connect local spectra 

maxima. It is then removed by dividing it into the actual spectrum (Clark and Roush, 

1984). The continuum is calculated preferably between the local maxima of the 

absorption feature of interest. If there is no local maximum, the shoulder of the dip or a 

pre-defined wavelength is considered for continuum removal.  

Specifically, we used the absorption dips at 1,450 nm and 2,206 nm as assessors for 

respectively water and clay content. A laboratory spectrum for dry fine sand with clay 

shows absorption features of clay at around 1,420 nm, 1,950 nm and 2,206 nm (Fig. 2; 

Adam et al., 2008), where the latter is caused by Al-OH bonds in the clay mineral (Yang 

et al., 2000). Absorption at around 1,420 nm and 1,950 nm is also due to clay molecular 

water absorbing light (Hunt, 1977; Yang et al., 2000). Therefore, the best assessor for 

clay content is the absorption dip at 2,206 nm.  

 

                                                           
14 We measured bulk water content in the top 0.5 cm layer. 
15 The clay fraction was defined as all particles < 4 µm. 
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Figure 1: Measures that quantify absorption features. Rb is the reflectance at maximum absorption, Rc is the 
reflectance out of absorption feature. Example for the water absorption feature at 1450 nm. 

The spectrum of moist fine sand shows water absorption features at 970 nm, 1,190 nm, 

1,450 nm and 1,950 nm (Fig. 2; Adam et al., 2008). The first two disappear when the 

sediment is drier, and the latter becomes saturated at relatively low moisture contents 

(measurements by S. Adam). Furthermore, the best prediction potential of relative 

moisture content in laboratory conditions was obtained using the scaled band area of 

the water absorption feature at 1,450 nm (measurements by S. Adam). For these 

reasons, the absorption at 1,450 nm was considered in the further analysis.  

 

Figure 2: Spectrum of dry fine sand with clay (66% by weight) (left) and of moist fine sand (RMC=27%) (right) 
(from Adam et al., 2008) 

2.4. Data analysis 

Differences in density treatments were tested using one-way ANOVA. Percentage data 

(clay, water content) were arcsine-square root transformed, reflectance (x10) and mean 

grain size data were log transformed to meet assumptions of normality (Shapiro Wilks’ 

test) and homogeneity of variances (Cochran and Bartlett tests). Whenever appropriate, 

a Tukey’s Post Hoc test was used to assess differences between treatments. 
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Furthermore, to investigate relationships between density, physical characteristics and 

spectral measurements, Spearman rank or Pearson correlations were performed. 

3. RESULTS 

3.1. Physical characteristics 

The high-density treatment (HD) had a significantly (p<0.01, Tukey’s Post Hoc) lower 

percentage clay (mean±SD, 3.3±0.1%) in the upper layer than the low-density (LD; 

3.6±0.2%) and the control treatment (C; 3.6±0.06%) (Fig. 3a). Furthermore, we found a 

negative correlation between density and clay percentage (Spearman r= -0.70, p= 

0.0037). Although, mean grain size of HD (179±3 µm) was larger compared to C and LD 

(LD = 177±3 µm, C = 176±2 µm; Fig. 3b), no significant differences in mean grain sizes 

were found.  

Table 1: One-way ANOVA table to determine significant differences for the different physical characteristics 
(clay percentage, mean grain size and water content) between the different treatments. Clay percentage and 
water content were arcsine-square root transformed, median grain size was log-transformed. Significant p-
levels are highlighted. 

 df Clay % 
 MS 

Clay % 
F 

p Mean 
MS 

Mean 
F 

p Water % 
MS 

Water % 
MS 

p 

Treat 2 0.0001 8.9 0.004 0.00005 1 0.4 0.002 37.4 <0.001 
Error 12 0.00002   0.00004   0.00005   

Water content increased significantly when Corophium was present, both for LD 

(19±0.7%) and HD (20±0.6%), compared to C (17±0.4%; Fig. 3c, Table 1). No difference 

however, was found between LD and HD (Tukey’s Post Hoc, p>0.05). Water content 

correlated positively with density (Spearman r = 0.74, p= 0.0017). 

3.2. Hyperspectral measurements 

The reflectance in the visible region of the spectrum differed significantly between the 

density treatments, as shown in Table 2 for the reflectance at 545 nm and 630 nm and in 

Fig. 4. The continuum removed spectra at the absorption dip of water at 1,450 nm (Fig. 

5) show that the dips are maximum for the treatments with Corophium and minimum 

for C. As expected, the scaled band area of the water absorption feature at 1,450 nm was 

positively correlated with water content (Pearson’s r= 0.8, p= 0.0006). Differences 

between the three treatments (Table 2) were significant for the scaled band area at 
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1,450 nm, where C differed significantly from LD and HD (Tukey’s Post Hoc, resp. p= 

0.0003 and p= 0.005; Fig. 6). 

 

Figure 3: (A) Average percentage of clay (B) average mean grain size and (C) average water content (in %) for 
the different treatments (n= 5 ± S.D.) (C = Control, LD = Low Density, HD = High Density), * * and *** indicate 
significance levels of Tukey’s Post Hoc 

Table 2: One-way ANOVA table to determine significant differences for the hyperspectral measurements 
(reflectance at 545 nm, reflectance at 630 nm and scaled band area 1,450 nm) between the different 
treatments. All variables were log (x10) transformed. Significant p-levels are highlighted. 

 df Refl 545 
MS 

Refl 545 
F 

p Refl 630 
MS 

Refl 630 
F 

p Area 1450 
MS 

Area 
1450 F 

p 

Treat 2 0.01 15.9 <0.001 0.01 16.8 <0.001 0.02 21 <0.001 
Error 11 0.0009   0.0007   0.0008   
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Figure 4: Detail of the reflectance spectra in the visible region of the light (545 nm and 630 nm) from all five 
replicates of the three different treatments. Control :dashed lines, low density: solid lines and high density: 
dotted lines.  

For the clay absorption feature at 2,206 nm, scaled band area was zero for all 

treatments. The absence of a clay absorption feature was due to the absorption by water 

and the high signal noise in this region of the spectrum. 

 

Figure 5: Continuum removed reflectance spectra at the water absorption feature at 1450 nm for all five 
replicates from the different density treatments. Control: dashed lines, low density: solid lines and high 
density: dotted lines. 
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Figure 6: Scatterplot of scaled band area 1,450 nm versus water content (in %) for the different treatments 

(□ = Control, ■ = Low Density, ▲ = High Density) 

4. DISCUSSION 

4.1 Physical impact of Corophium volutator 

Our experiment showed that whenever Corophium was present, both in low and high 

density, changes in water content of the surface sediment were visible, i.e. water content 

of the top half cm increased. No difference was detected between the two density 

treatments, but the difference between control sediment and sediment with Corophium 

was significant. Gerdol and Hughes (1994a) found results consistent with our study, 

while other studies found opposite results (Meadows and Tait, 1989) or no influence of 

Corophium on water content (Grant and Daborn, 1994; Limia and Raffaelli, 1997; de 

Deckere et al., 2000). In our study, however, no biofilm was present (unlike in the above 

mentioned studies), to be able to focus on the effect caused solely by C. volutator. Thus, 

in our experiment, complexity was reduced by excluding confounding factors such as the 

presence of a biofilm, since it has been proven more than once that the presence of a 

biofilm increases water content of the sediment surface (Defew et al., 2003; Orvain et al., 

2003). The presence of a biofilm might explain why in some studies no difference was 

found between a control with biofilm and treatments with Corophium. In a control 

treatment, the biofilm retains water, which increases water content. On the other hand, 

in the Corophium treatment, the biofilm is grazed upon by Corophium (Gerdol and 

Hughes, 1994b), so it does not retain water, but then again Corophium influences the 
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water content due to bioturbation. This indicates that the impact of the presence of a 

biofilm and the presence of Corophium on the water content counterbalance each other 

and no significant effects are found. On the other hand, the absence of a biofilm could 

possibly affect bioturbation rates, since food is absent. As is generally the case for 

infauna (Rhoads, 1974), the presence of C. volutator led probably to an increase in pore 

space. In addition, the saturation on emersion increased, caused by retention of water 

due to the secretion of burrow linings (Meadows et al., 1990; Gerdol and Hughes, 

1994a), and this caused an increase in water content in the sole presence of Corophium. 

It should be considered however, that the drainage in the laboratory was different from 

natural conditions, since groundwater level was not able to drain as in natural 

conditions, and there was also no drying due to sun or wind. Nevertheless, conditions 

were constant and standard for all treatments, so we can expect that observations made 

were consistent, but the water content for this top layer was higher than in natural 

conditions, both for control and density treatments.  

Another physical change visible in the top half centimeter due to bioturbation of C. 

volutator was the increase in mean grain size at high density. This increase was mainly 

caused by the significant loss of the clay fraction in the top layer. Corophium volutator is 

known to actively resuspend particles during feeding and burrowing (de Deckere et al., 

2000), and moreover, Corophium was observed to flush its burrows immediately after 

submersion (De Backer et al., 2010). Both activities probably contribute to the loss of 

the finest particles, since these smallest, and thus lightest, particles resuspend easier 

and get washed away with the tides, while the heavier and biggest particles remain on 

the sediment surface. Only at high density, the decrease in clay percentage was 

significant indicating that only at high densities Corophium considerably contributes to 

the sediment grain size distribution. This result is consistent with a previous study that 

quantified bioturbation effects of Corophium using luminophores (De Backer et al., 

unpublished data= Chapter 3). In that study, density of Corophium was found an 

important factor affecting the magnitude of bioturbation, and mainly high densities of C. 

volutator significantly contributed to sediment mixing (De Backer et al., unpublished 

data). 
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4.2 Physical changes influencing remote sensing 

Results showed that the changes in water content due to bioturbation of C. volutator 

affected the spectral reflectance. The higher percentage of water content in the 

treatments with Corophium, increased the reflectance of the visible light (545 and 630 

nm). At low sediment moisture conditions, the sediment becomes darker (decrease in 

reflectance) with increasing sediment moisture, but this relation is reversed at a certain 

water content which is dependent on the soil hydrodynamic properties (Weidong et al., 

2002). This means that, for the high water contents of our sediment samples, the 

reflectance increases for higher water content and the change in reflectance is the 

highest in the visible light for sediment with high water content (Weidong et al., 2002). 

This increase in reflectance can be explained by a water film covering all the sediment 

particles and changing the scattering processes (Neema et al., 1987). The difference in 

water content between control and density treatments was also noted in an increase in 

light absorption at around 1,450 nm by water. The light absorption was quantified by 

the scaled band area of the water absorption feature, which is a better measure than the 

scaled band depth to quantify water content, because at these high water contents, the 

absorption dip not only becomes deeper, but also wider (Adam et al., 2008). No 

differences in water absorption between density treatments were measured, which was 

consistent with the analysed water contents. 

The small, but significant decrease in clay content on the sediment surface for the high 

density treatment did not influence the hyperspectral measurements. The clay 

absorption dip at 2,206 nm has been used in laboratory conditions in dry soils to assess 

differences in clay content (Lagacherie et al., 2008; Adam, 2009) with a root mean 

square error of prediction between 3.5 and 5.8 weight % (Lagacherie et al., 2008) and 

between 1.3 and 1.4 weight % (Adam, 2009). Since the differences in clay content for the 

control, low-density and high-density treatments were smaller than these error values, 

the clay absorption dip was not successful to detect changes in clay content between the 

treatments. Furthermore, the absorption dip was not visible in the spectra, since clay 

absorption degrades with increasing moisture content due to water absorbing light in 

this region of the spectrum (Adam et al., 2008; Adam, 2009). In general, quantification of 

clay content in moist sediments using hyperspectral remote sensing is very difficult 

(Rainey et al., 2003; van der Wal and Herman, 2007; Adam, 2009). 
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4.3 Some considerations and conclusions 

Our laboratory results showed that the bioturbation activity of a species can influence 

the hyperspectral signal. Corophium volutator was used to test this objective, and we 

observed an increase in water content in the presence of Corophium. This increase could 

be measured hyperspectrally, through an increased reflectance in the visible light and an 

increase of scaled band area of the water absorption feature at 1.450 nm. With 

conventional destructive sampling, no difference was found between the low-density 

and high-density treatment, and this was consistently measured hyperspectrally. 

However, generalisation to other macrobenthic species should be done with care, 

because each species alters physical, chemical and biological characteristics of marine 

sediments in a different way (Rhoads, 1974; Aller, 1982; Meadows and Meadows, 1991; 

Hall, 1994; Rowden et al., 1998). These macrobenthos-mediated effects on sediment 

processes are strongly influenced by species-specific life modes (Mermillod-Blondin et 

al., 2005). Nevertheless, the application of remote sensing in the laboratory seems 

promising to address the impact of bioturbation in terms of water content. For 

Corophium, there was no difference in water content between different densities, but the 

hyperspectral results indicate that, if for other species differences in water content 

would exist and also be large enough and consistent, hyperspectral laboratory 

measurements should be able to detect them.  

A decrease in clay content was measured at high densities of Corophium, probably due to 

resuspension and wash out of this finest fraction by bioturbation. This decrease was too 

small to be detectable by remote sensing. Airborne spectral measurements have been 

used to determine in situ sediment properties in an undisturbed manner (Ben-dor et al., 

2002; Carrère et al., 2003; Deronde et al., 2006; Lagacherie et al., 2008). But even though 

hyperspectral airborne sensors, such as HyMap, contain the spectral detail necessary to 

quantify water absorption, it is not possible to extrapolate the obtained results from this 

study to field conditions, because we used a simplified ecosystem in which only one 

mechanism was studied. Yet in natural intertidal sediments, these comparatively simple 

relationships disappear, being replaced with complex interactions between the 

biological and physical components which create considerable temporal and spatial 

variability, resulting in apparently site-specific responses in the properties of sediment 

(Riethmüller et al., 1998; Defew et al., 2002; Chapman and Tolhurst, 2004). 

Nevertheless, this study showed that bioturbation can significantly influence remote 
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sensing analyses. Thus, remote sensing for the assessment of environmental variables 

needs to take into account the potential impact of bioturbation activities, because they 

significantly affect reflectance properties. 

Furthermore, this study proved the usefulness of the application of remote sensing to 

study biologically induced changes in sediment properties in a nondestructive manner. 

Future laboratory experiments studying animal-sediment relationships can gain 

advantage in using hyperspectral measurements. Changes in physical surface properties 

can be measured without disturbing the sediment surface and it is possible to follow up 

biologically reworked sediments in time. This can, especially, open new perspectives for 

long term experiments concerning the role of bioturbation on sedimentary processes. 
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CCHHAAPPTTEERR  55  
EEFFFFEECCTT  OOFF  CCOORROOPPHHIIUUMM  VVOOLLUUTTAATTOORR  OONN  

EERROODDAABBIILLIITTYY  OOFF  CCOOHHEESSIIVVEE  IINNTTEERRTTIIDDAALL  SSEEDDIIMMEENNTTSS  
 

ABSTRACT  

Despite the importance of mudflats as natural sea defenses and wildlife habitats, the effects 
of various biota on cohesive sediment erosion are poorly understood. In this study, the 
influence of Corophium volutator on sediment bed erodability, expressed in terms of 
suspension erosion rate, critical flow velocity and critical shear stress for erosion, was 
investigated in a laboratory flume on cohesive sediment from a mudflat without and with 
different densities (4,000 – 20,000 ind./m2) of Corophium volutator. Suspension erosion 
rate at the onset of erosion was determined with an Optical Backscatter Sensor, and 
critical shear stress for erosion was derived from turbulence measurements using an 
Acoustic Doppler Velocimeter. A significant exponential increase in suspension erosion rate 
with density was found, where sediment with 20,000 ind./m2 showed a five times higher 
erosion rate than sediment without Corophium. On the other hand, critical shear stress was 
found to be independent of Corophium density, at least for densities up to 15,000 ind./m². 
At 20,000 ind./m2, a large decrease (-30%) in critical shear stress was measured. 
Comparison between critical flow velocities obtained in this experiment and 
hydrodynamically simulated flow velocities over the mudflats where Corophium was 
collected indicates that bed erosion is unlikely to happen under natural flow conditions, 
but it might occur under storm conditions.  

KEY WORDS: bioturbation, Corophium volutator, erosion rate, flume experiment, 

intertidal sediments 

1. INTRODUCTION 

The influence of biota on topography and landscapes is still largely unexplored (Gabet et 

al., 2003; Dietrich and Perron, 2006). Erosion laws that explicitly include biotic effects 

are needed to explore how intrinsically small-scale biotic processes can influence the 

form of entire landscapes. To include biotic effects into erosion laws, these small-scale 

biotic processes need to be understood (Borcard et al., 2004; Dietrich and Perron, 2006), 

e.g. explaining the self-organisation processes which are often seen in ecosystems 

requires knowledge on the small-scale biotic processes (van de Koppel et al., 2005; van 

der Wal et al., 2008b), and models including spatially explicit bio-physical interactions 

and scale-dependent processes (Borcard et al., 2004).  
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The erodability of cohesive intertidal sediments is influenced by physicochemical 

sediment factors and biological factors (Berlamont et al., 1993; de Brouwer et al., 2000; 

Paterson et al., 2000; Andersen, 2001; Amos et al., 2004). Important physicochemical 

factors, which influence the erosion, but also the transport, deposition and consolidation 

of the surface sediment, are the water content, bulk density, grain size distribution and 

the mineralogy of the sediment particles (Dyer, 1986; Mitchener and Torfs, 1996; 

Winterwerp and van Kesteren, 2004; Yang, 2003). Physicochemical factors of cohesive 

sediments have been correlated with surface sediment stability for some time (Hayter 

and Mehta, 1986; Black, 1997; Dade et al., 1992; Mitchener and Torfs, 1996; Winterwerp 

and van Kesteren, 2004), whilst it is only recently that biota have been included in the 

prediction of surface sediment stability (Paterson et al., 2000; Paarlberg et al., 2005). 

The biotic components can either hamper or enhance erosion, meaning that the 

consequences for sediment transport are either stabilisation or destabilisation (Willows 

et al., 1998; Grant and Daborn, 1994; de Brouwer et al., 2000; Widdows and Brinsley, 

2002). Microphytobenthos has a stabilising effect through secreting extracellular 

polymeric substances (EPS), which stick sand grains together and form a protective 

biofilm (Yallop et al., 1994; de Brouwer et al., 2005; Le Hir et al., 2007). Macrobenthos 

(bottom living animals > 1 mm) may influence the sediment and its dynamics in several 

ways: (1) by increasing the bottom roughness and/or making it more heterogeneous, 

(2) by inducing particulate fluxes, and (3) by changing the sediment erodability through 

bioturbation or stabilising processes (Le Hir et al., 2007). The influence of macrobenthos 

on sediment behaviour is complex due to the diversity of the macrobenthos with 

different life modes for different species, and the fact that even for a single species, 

opposite effects can exist (Jumars and Nowell, 1984a).  

For the mud shrimp, Corophium volutator (Crustacea, Amphipoda), some controversy 

exists about the (de)stabilising effect, since contradictory results have been reported 

(Grant and Daborn, 1994; de Deckere et al., 2003), depending upon the age of the 

animals, density of the burrows and the sediment grain size (Le Hir et al., 2007). 

Corophium is an abundant deposit and/or filter feeding species in intertidal mudflats. 

Population densities frequently reach > 20,000 ind./m2, and in summer months 

densities can locally exceed 100,000 ind./m2 (Gerdol and Hughes, 1994a). The high 

population densities make this amphipod an important species in many mudflat 

ecosystems, where it is a significant prey for migratory shorebirds and juvenile 
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flounders (Boates et al., 1995; Murdoch et al., 1986). It lives in U shaped burrows in the 

upper 5 cm of the sediment (Meadows and Reid, 1966), and the burrow walls are 

strengthened with a mucus secretion (Meadows et al., 1990). This reduces the 

erodability of the sediment (Grant and Daborn, 1994; Meadows and Tait, 1989), and 

may result in an elevation of the seabed (Mouritsen et al., 1998). On the other hand, the 

U shaped tubes can protrude 1 to 1.5 mm above the sediment surface, and thereby 

increase sediment roughness (Meadows and Reid, 1966), which increases erosion rate 

(de Deckere et al., 2003). Eckman and Nowell (1984) suggested that the protruding 

burrows enhance the microturbulence, resulting in scour around the burrow causing 

destabilisation. However, high densities of protruding structures can also hamper local 

hydrodynamics, and protect the sediment from erosion by increasing the height of the 

benthic boundary layer or even by replacing it to a higher position in the water column 

(cf. skimming flow by Friedrichs et al., 2000). Furthermore, sediment erodability was 

observed to increase indirectly by grazing on the biofilm (Gerdol and Hughes, 1994a; 

Grant and Daborn, 1994; Hagerthey et al., 2002), and directly through an increase in 

erosion rate caused by resuspension of fine sediment due to feeding and burrowing (de 

Deckere et al., 2000). In addition, the resuspension of fine sediment can reduce biofilm 

biomass by inhibiting photosynthesis due to an increased turbidity (Dyson et al., 2007). 

Due to bioturbation of the top few centimeters, a mucus- and biodeposit-rich surface 

layer (often called the “fluffy” layer) is formed. Resuspension of these flocs and recently 

deposited material, not incorporated into the bed, occurs at low flow velocities and is 

termed type Ia erosion (Amos et al., 1992; Orvain et al., 2006; Widdows et al., 2009). 

Widdows et al. (2009) found small influences of biota densities on the onset of type 1a 

erosion, and considered these critical velocities as not of great environmental 

significance. Erosion of the actual bed layer occurs at higher shear stresses, when large 

layers of sediment are eroded and mobilised. Bed erosion can be time dependent, i.e. 

exponential decrease of sediment release with time at constant flows (type Ib), or 

constant with time with a continuous release of sediment to the water column (type II) 

(Amos et al. 1992). 

In this study, the main objective was to investigate the influence of Corophium volutator 

density on major bed erosion. For that reason, a flume experiment was set-up in which 

only one parameter i.e. density, varied between the treatments. We chose not to include 

a diatom biofilm, since this could be a confounding factor interfering with the 
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interpretation of the density-erodability relationship, considering that biofilm biomass 

would probably be affected differently over time between the different density 

treatments. 

2. Material and methods 

2.1. Erosion flume and its instruments 

The flume in the Hydraulic Laboratory of the K.U.Leuven is a straight flume of about 9 m 

long, 40 cm wide and 40 cm deep with a closed recirculating water system (Fig. 1). The 

water used in the flume is fresh water (0 psu), because of environmental constraints 

when discharging the water after the experiments in the Dijle river. The first 4 m of the 

flume is the inflow region with a rigid, wooden false bottom of 8 cm high to provide a 

fully developed turbulent flow in the test section. The test section is 2.9 m long but had 

to be shortened with a wooden false bottom to 40 cm for this experiment, because with 

the large section of 1.16 m², it was logistically impossible to collect enough animals to 

reach appropriate densities. The test section has glass walls on one side facilitating 

visual inspection of the sediment bed and the erosion processes. Downstream of the test 

section, a sediment trap was constructed with a length of 0.6 m to measure the bed load. 

The last part of the flume is the outflow section of 1.5 m long which prevents the flow 

from being disturbed by the sediment trap. A tail gate at the end of the flume can be used 

to regulate water levels, which varied between 14.3 and 20.5 cm.  

The discharge through the flume was measured continuously with a calibrated Kent-

Veriflux electromagnetic flow-meter (EMF). Velocities and turbulence were measured in 

three dimensions and at high frequencies (25 Hz) with a 16 MHz microADV (Acoustic 

Doppler Velocimeter) from Sontek. This instrument measures velocities in a cylinder of 

water with a diameter of 4.5 mm and a height of 5.6 mm at 5 cm from the instrument’s 

transmitter and receivers. The turbidity was measured every second with an Optical 

Backscatter Sensor (OBS) at a distance of 3.5 cm from the bottom. The instrument was 

calibrated to relate the amount of scattering to the suspended sediment concentration 

(SSC).  
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Figure 1: Side view of the rectangular flume. 

2.2. Corophium volutator and sediment 

Sediment and C. volutator were collected in June 2008 in the Flemish nature reserve 

“IJzermonding”, a mudflat-saltmarsh area in Nieuwpoort (Belgium, 51°08’N, 2°44’E). 

The sediment was defaunated by three cycles of 24h freezing – 24h thawing. Grain size 

analysis (Malvern Mastersizer 2000 laser diffraction) showed that freezing-thawing did 

not alter median grain size (t-test, p=0.48). To reduce natural heterogeneity and to 

obtain equal starting conditions, the sediment was homogenised by thorough mixing 

and saturation with seawater before use. The sediment had an average median grain 

size of 140.6±SD 2 µm, and the following distribution over the different fractions: 7.6% 

was smaller than 4 µm, 25.1% between 4-38 µm and 4% between 38-63 µm, 9% 

between 63-125 µm, 33.8% between 125-250 µm, 20.3% between 250-500 µm and 

0.04% between 500-800 µm. Eight sediment mesocosms were established by 

transferring the homogenised sediment into wooden boxes with the size of the test 

section (L:40 cm x W:40 cm x H:8 cm). Each box was filled completely with sediment, 

and gently submersed (without disturbing the sediment surface) in separate plastic 

aquaria for three days to allow the sediment to consolidate. All aquaria were placed in a 

temperature controlled climate room (16 ± 1° C) with a 12:12h light:dark regime. 
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After consolidation of the sediment, C. volutator was added to the sediment mesocosms 

in different densities. A density series of 0 (2x); 4,000; 6,000; 8,000; 10,000; 15,000 and 

20,000 ind./m2 was set up, leading to eight erosion experiments in total (2 references 

and 6 with Corophium). The density treatments were not replicated due to logistic and 

time constraints. The length and the sex of the experimental Corophium population was 

determined for 100 individuals: 69% females (9.2±0.3 mm), 16% males (9.4±0.3 mm) 

and 15% juveniles (1.6±0.01 mm). After the addition of Corophium, the aquaria were 

subjected to a simulated tidal regime, resembling the natural tidal conditions (i.e. 3h 

submersion and 9h emersion). Mortality in the mesocosm was very low and never 

exceeded 1.25%. After 6 days of biological activity, the mesocosms were put one by one, 

and ad random in the test section of the erosion flume before the start of the erosion 

experiment. 

2.3. Erosion experiment 

Sediment erodability is expressed in terms of critical shear stress for erosion, 

representing the interaction between the flowing water and the sediment bed at the 

onset of erosion, and the erosion rate, a measure of the amount of material eroded 

during time (Graf, 1971). During the erosion experiments, the average flow velocity, 

calculated as:  

WH

Q
U   

with Q is the discharge, W is the width of the flume and H is the water level. Discharge in 

the flume was stepwise increased until erosion occurred, while flow parameters and 

suspended sediment concentration were measured. Stepwise increase in flow velocity 

was not constant between treatments, as a manual discharge regulator was used with 

which it was impossible to obtain constant discharge intervals. 

2.4. Shear stress determination 

Bed shear stress (for short ‘shear stress’ in this paper) was estimated from turbulence 

measured by an ADV (Song and Chiew, 2001; Biron et al., 2004; Pope et al., 2006; 

Andersen et al., 2007). These single point measurements of turbulence should be 

acquired at the elevation of maximum Reynolds stresses. Based on low-Reynolds 

boundary layer theory and data, the peak stress can be estimated to occur at ±3% of the 

water depth (± 0.6 cm for a water level of 18 cm). However, it is practically not possible 
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to position the ADV at such a distance of the sediment surface, because 1) the sampling 

volume of the ADV has a vertical dimension of 0.56 cm, 2) the sediment surface is not 

completely smooth, and 3) due to erosion the distance to the bed surface will change, 

hereby possibly positioning the sampling volume within the sediment. Therefore, the 

ADV sampling volume was placed at a distance of 1.5 cm from the sediment bed, which 

is equal to 7 to 10% of the water levels. In an experimental study in a similar laboratory 

flume, Biron et al. (2004) suggested undertaking single-point measurements at 10% of 

the water level, corresponding to the experimentally determined peak value height in 

profiles of Reynolds and TKE shear stress. The velocities should be measured for three 

minutes at 25 Hz to acquire enough samples for these methods based on second order 

statistics (Adam, 2009).  

Shear stress was derived from the turbulent kinetic energy (TKE) as:  

  222

1 '''5.0 wvuCTKE    

where u', v’ and w' are the velocity fluctuations in the stream wise, lateral and vertical 

directions respectively, < > denotes an average and C1 is an empirically derived 

coefficient and equal to 0.19 (Huntley, 1988; Soulsby, 1983).  

The critical flow velocity and shear stress were assumed to correspond to the flow 

velocity or local bed shear stress at the onset of a continuous increase in suspended 

sediment concentration measured by the OBS. 

2.5. Erosion rate determination 

The erosion flux is defined as the mass of sediment eroded per unit of time and per unit 

of area (kg/m2s). It consists of bed load and suspended sediment. 

The bed load could not be determined, because the load cell of the sediment trap was 

not sensitive enough for the small weights of the trapped sediment.  

The rate of suspension is defined as the mass of sediment suspended per unit of time 

and per unit of area (kg/m2s): 

H
dt

dC
E s   

where C is the depth-averaged suspended sediment concentration (SSC) and H is the 

average water depth. In practice, the change in SSC (= dC) was calculated as the 

difference between the averaged SSC (average of all OBS loggings at a discharge step) at 

discharge step i+1 and the averaged SSC at discharge step i, where erosion starts at step 
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i. In this formula, it was assumed that the water column was well mixed so that the 

suspended sediment concentration measured by the OBS at one water depth i.e. 3.5 cm, 

could be used as estimator of C. A SSC profile would increase the accuracy of Es estimates 

considerably, but this was not available. Therefore, estimates of Es should be considered 

qualitatively. 

2.6. Statistical analyses 

Simple linear models (lm) were applied in the statistical environment R (www.r-

project.org) to test for relations between density and average critical flow velocity, 

critical shear stress and suspension erosion rate. The assumptions of linearity, 

homoscedasticity and independence of the errors were verified graphically. Normality of 

the residuals was confirmed numerically with a Shapiro Wilks test. Suspension erosion 

rate was square root transformed to meet the assumptions. Although, Cook’s distance 

revealed that the density treatment of 20,000 ind./m² was an influential data point for 

erosion rate, it was biologically relevant and important to keep this treatment in the 

analyses. For critical shear stress, the normality and linearity assumptions were 

violated, no data transformation was appropriate, but addition of a quadratic term 

allowed to meet the assumptions. To test if density affected the relationship between 

suspended sediment concentration and average flow velocity after the onset of erosion, 

analysis of covariance was conducted to compare slopes of the regressions. Therefore, 

SSC values were dimished with SSC at the start of erosion to allow for comparison 

between the different treatments. To meet the assumption of linearity, average flow 

velocity was squared. 

3. Results 

3.1. Visual observations 

At the highest density of Corophium volutator (20,000 ind./m2), burrows were evenly 

distributed and covered the entire sediment surface (Fig. 1e), while for the lower 

densities, patchiness in burrow densities was observed (Fig. 1c). The sediment surface 

with Corophium burrows was heterogeneous, and with a more muddy and humid 

appearance compared to control treatments (Fig. 1). The turbidity of the water in the 

aquaria with Corophium increased at each flooding event. Even though the water 

http://www.r-project.org/
http://www.r-project.org/
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velocity was almost 0, material was resuspended due to active resuspension of the 

animals flushing their burrows to remove accumulated faeces and excess sand grains 

(De Backer et al., 2010). At the onset of the erosion experiments, active resuspension 

was observed as plumes of sediment flushed out the burrows. At higher velocities 

(Ū=0.2-0.25 m/s), the sediment between the burrows eroded, leaving a smooth surface 

with protruding burrows. After further increase of the current velocity (Ū) up to 0.35-

0.5 m/s dependent on the treatment, a ridge appeared around the burrows, which 

eroded further till grooves were formed (Fig. 1d and f). This indicated the start of 

continuous erosion. For all Corophium treatments, local erosion around the burrows was 

observed, also for the low density treatmens (Fig. 1d). 

3.2. Erodability measurements 

Figures 3a and b show the critical average flow velocity and critical shear stress in 

relation to Corophium density. No significant regressions were found between critical 

average flow velocity or critical shear stress and density (Table 1), indicating that 

(lower) densities of C. volutator did not influence critical flow velocity or critical shear 

stress compared to the control sediment. However, for the density treatment of 20,000 

ind./m², a large decrease in critical average flow velocity and critical shear stress was 

measured, on average respectively -25% and -30% compared to the sediment with no or 

less Corophium (Fig. 3).  

For the initial suspension erosion rate (Fig. 3c), a significant (p=0.035) linear increase 

was found with density (Table 1). The significant relationship was influenced by the 

highest density of 20,000 ind./m2, where the erosion rate of 0.0022 g/m2s was five times 

higher than for the sediment without Corophium at the onset of erosion (Fig. 3c).  

Table 1: Results of simple linear (polynomial) regression models to test for significance of Corophium density 
on critical average flow velocity (Ucrit), critical shear stress (τcrit) and suspension erosion rate. Significant p-
levels are bold. 

Variable Predictor Coefficient (SE) p-value Regression 

p-value R² adj 

τcrit Intercept 0.16 (0.014) 0.0007 0.19 0.28 

 Density 4.7*10-6 (3.4*10-6) 0.24   
 Density² -3.1*10-10 (1.7*10-6) 0.13   

Ucrit Intercept 47.1 (2.7) <0.0001 0.13 0.23 
 Density -4.6*10-4 (2.6*10-4) 0.13   

Erosion rate Intercept 2.1*10-2 (3.4*10-3) <0.0001 0.035 0.48 
(sqrt) Density 9.1*10-7 (3.3*10-7) 0.035   
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Figure 2: Pictures showing different density treatments before and after erosion. A: Control before erosion, 

B: Detail of control after erosion with visible erosion of thin sediment flakes, C: 4,000 ind./m² before erosion, 

D: Detail of 4,000 ind./m² after erosion with local erosion around the burrows, E: 20,000 ind./m² before 

erosion and F: Detail of 20,000 ind./m² after erosion with protruding burrows and visibly erododed sediment 

between the burrows. 
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Figure 3: Critical average flow velocity (a), critical shear stress (τcrit) (b) and square root transformed erosion 
suspension rate (c) for different densities of Corophium volutator. 

The relationships between delta SSC (SSC dimished with SSC at the start of erosion) and 

the squared average flow velocity at the different C. volutator densities are illustrated in 

Figure 4. Slopes are significantly different between treatments (ANCOVA, F7, 31 = 9.6, 

p<0.0005), and although not consistent, the general trend is that the suspended 

sediment concentration increases faster with average flow velocity for higher densities 

of Corophium volutator, once erosion has started. This indicates that a higher degree of 
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bioturbation due to higher densities, increases the amount of sediment that is eroded. 

Especially for the treatment of 20,000 ind./m2, larger amounts of sediment were eroded 

at lower flow velocities compared to the lower densities and the references (Fig. 4). 

 

Figure 4: Relationship between suspended sediment increase (SSC, mg/l) and squared average flow velocity 
for varying densities of Corophium volutator after the onset of erosion. 

4. Discussion 

4.1. Considerations on flume experiments 

Although it is the shear stress that controls the incipient motion of particles in flowing 

water (Léonard and Richard, 2004), the use of critical average flow velocity (Widdows et 

al., 2000b; Ciutat et al., 2007) can be justified, because in similar flow conditions in the 

same erosion flume, there exists a relation between average flow velocity and bed shear 

stress of the form 2Ub  , where A is a characteristic of the flume (Toorman and 

Luyckx, 1997). Until now, there exists no standardised experimental set-up or method to 

determine shear stress. Therefore, it is difficult to compare absolute values of shear 

stress between different studies, since differences in the experimental set-up and the 

determination of shear stress will give different absolute values (Tolhurst et al., 2000; 

Adam, 2009). In our flume, turbulence measurements were preferred to bottom shear 

stress derived from the logarithmic profile, since the flume was too short to develop a 

logarithmic profile (Adam, 2009). Moreover, turbulence was easier and quicker 

measurable than a velocity profile. Reynolds stresses were neither measured, because 
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these are highly sensitive to tilt and secondary currents (Adam, 2009; Kim et al., 2000; 

Nezu and Nakagawa, 1993), which cannot be avoided in a narrow flume. Turbulence 

measurements at a certain depth rely on the assumption that the sampling volume of the 

ADV is located at the peak stress elevation, which was taken as 7-10% from the water 

depth. From Direct Numerical Simulation (DNS) data, it is known that the shear stress is 

not constant over the transition layer near the bottom, and that the peak stress elevation 

is very close to the bottom (~3% of the water depth for the present flume). However, as 

explained above, it was practically impossible to take measurements at this peak stress 

distance. Nevertheless, Adam (2009) concluded that turbulence measurements were 

reproducible and easiest to perform. Since the sediment bed is homogeneous and air 

bubbles are avoided by thorough mixing, the point ADV measurements can be assumed 

to be valid for the whole sediment bed. 

4.2. Impact of Corophium volutator on erodability 

Corophium has several mechanisms to influence sediment erodability. It is essentially a 

deposit feeder, and deposit feeders have the tendency to physically eject sediment into 

the overlying water column (Graf and Rosenberg, 1997). Corophium was previously 

observed to flush its burrows during submersion (De Backer et al., 2010), and the same 

observation was made in this study. de Deckere et al. (2000) concluded that this active 

resuspension significantly affected the suspended sediment concentration (SSC) in the 

water column at low flow velocities (<0.2 m/s), and that the SSC increased with 

increasing density. Deposit feeders are also known to disrupt the cohesive sediment 

structure making the surface sediment more susceptible to erosion (Graf and Rosenberg, 

1997). Disruption of the surface sediment structure by Corophium is mainly due to 

feeding (scraping) and crawling on the sediment surface, which loosens sediment 

particles, so they can be more easily eroded. In the presence of a biofilm, feeding might 

as well indirectly influence sediment stability by decreasing the sediment stability due 

to reduction of the stabilising diatoms (Daborn et al., 1993; Gerdol and Hughes, 1994a; 

Chapter 6). However, no biofilm was added in this flume experiment to stabilise the 

sediment, since this could impede the interpretation of the density-erodability 

relationship. Hence, feeding activity was most probably reduced, which might result in 

lower bioturbation activity (Nogaro et al., 2008). Furthermore, Corophium activities 

increase the surface water content (Gerdol and Hughes, 1994a; De Backer et al., 2009), 
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which is positively related to erosion rate (Fukuda and Lick, 1980; Aberle et al., 2004). 

The burrows built by Corophium might also influence sediment erodability, since they 

increase bottom roughness on the one hand, and strengthen the sediment with mucus 

secretions on the other hand. The activities of Corophium mainly impact the surface 

layer, and as such they mainly influence fluff layer erosion, characterised by (passive) 

floc resuspension at low stresses (Type 1a erosion; Amos et al., 1992). In this 

experiment, fluff layer erosion was not directly measured, since that occurs at low 

current velocities of ± 9 cm/s and 11-12 cm/s (de Deckere et al., 2003; Widdows et al., 

2009), and our erosion experiments started at 11 cm/s. Therefore, we measured bed 

erosion in relation to different densities of Corophium. We are aware that replication of 

our density treatments would have been much more powerful, but due to time and 

logistic constraints, replication was not possible. Therefore, the results should be 

treated with caution and ideally, similar experiments should be repeated with replicated 

treatments. Nevertheless, we observed that the effect of Corophium was predominantly 

an increase in suspension erosion rate with increasing density, and not a change in 

erosion threshold (τcrit). A similar relationship between erosion rate and density was 

observed for other deposit feeders such as Macoma balthica (Willows et al., 1998), 

Nereis diversicolor (Fernandes et al., 2007; Widdows et al., 2009) and Hydrobia ulvae 

(Andersen et al., 2002; Orvain et al., 2006). de Deckere et al. (2003) had results 

consistent with ours for Corophium, although the density range was much smaller. The 

increase in erosion rate was mainly caused by an increase of bottom roughness due to 

the burrow structures of Corophium, but active resuspension due to flushing and passive 

resuspension due to disruption of the sediment structure probably also contributed 

slightly to the increase in suspended sediment. Initial erosion of the sediment between 

the burrows was most probably due to a combination of a local increase in shear stress 

between the burrows and the sediment being more susceptible to erosion because of 

Corophium bioturbation. This led to a surface with protruding burrows, which resisted 

erosion due to the strengthening with mucus (Meadows et al., 1990). These protruding 

burrows caused a further local increase in shear stress (Eckmann and Nowell, 1984), 

and this resulted in scour around the burrows and increased suspended sediment 

concentration.  

No relationship was found between critical shear stress and Corophium density. Several 

authors found a similar independence of τcrit for macrobenthos density of different 
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species (Cerastodema edule by Ciutat et al., 2007; Hydrobia ulvae by Andersen et al., 

2002 and Orvain et al., 2006; Macoma balthica by Willows et al., 1998 and Nereis 

diversicolor by Widdows et al., 2009). However, for a density of 20,000 ind./m², a large 

decrease in critical shear stress was observed, which could be explained by the increase 

in bottom roughness with increasing densities. At this density, the entire sediment 

surface was covered with burrows, which resulted in a surface covered with small 

elevations and pits (Fig. 1e), and this influences the bottom current. In contrast, at the 

lower densities, burrows were more aggregated in patches (often at the edges of the 

mesocosm) (Fig. 1c), and in between the sediment surface was smooth, resembling the 

control sediments. These aggregations of Corophium individuals are the result of natural 

behaviour because high density patches on the cm-scale are also observed in the field, 

especially in winter when densities are lower. This patchiness is caused by intraspecific 

interactions among Corophium individuals or possibly through active aggregation 

(Lawrie et al., 2000). Our results for independence of τcrit at densities lower than 15,000 

ind./m² are consistent with de Deckere et al. (2003) and Grant and Daborn (1994) for C. 

volutator. However, to our knowledge no other flume studies measuring critical shear 

stresses were performed with densities higher than our density of 20,000 ind./m². So, it 

would be interesting to see if shear stress further decreases when density is further 

increased or if it increases. When the density of burrows is high enough, theoretically at 

47,000 ind./m² according to Nowell and Church (1979), a skimming flow may develop. A 

‘skimming flow’ occurs when the spacing between the roughness elements is equal to or 

less than the element height (Vogel, 1994), and it leads to a shift of the stress peak above 

the tube tips resulting in sediment stabilisation and sediment deposition (Friedrichs et 

al., 2000), which might also decrease suspension erosion rate. 

Whether erosion of the intertidal sediments inhabited by Corophium volutator will occur 

in the field, not only depends on sediment stability, but also on the hydraulic stresses 

present on the tidal flat. A hydrodynamic model for the IJzermonding (Giardino et al., 

2009) shows that maximum average flow velocities over the intertidal flats with 

Corophium are around 0.1-0.25 m/s (equivalent to a bed shear stress of 0.024 - 0.15 

N/m²) dependent on the location on the mudflat. This means that, according to our 

results (see Figure 2a), bed erosion will rarely occur under normal weather conditions, 

since erosion started only at 0.34-0.5 m/s (0.12 – 0.18 N/m²) in our experiments. 

However, hydraulic stresses can be higher under storm conditions or on Corophium 
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inhabited mudflats with a different morphology. For instance on the Heringplaat in the 

Dollard Estuary, a maximum flood current was measured of 0.4 m/s equivalent to a 

maximum shear stress of 0.3 N/m² (de Deckere, 2003), which could cause enhanced 

erosion in the presence of Corophium in the field. On the other hand, a study in the 

Westerschelde, showed that Corophium predominantly occurred at low current 

velocities upto 0.25 m/s (Ysebaert et al., 2002b). The preference for low current 

velocities could, hence, be a matter of ensuring its own habitat because bed layer 

erosion could favour other competing species because sediment properties change. SSC 

was not measured at low flow velocities in this study but active resuspension by 

Corophium, especially at high densities, and fluff layer erosion may significantly 

contribute to resuspension of sediment in the water column (de Deckere et al., 2000). 

Although this paper is limited to a laboratory experiment to assess the influence of 

Corophium on sediment erodability, we believe that this kind of experiments are needed 

to include the complex effect of biota in sediment transport models. Firstly, the results of 

such flume experiments should be used to calibrate a model explaining the rate of 

erosion. E.g. Willows et al. (1998) modeled the increase in resuspension due to the 

bivalve, Macoma balthica, with 9 parameters, including the excess flow velocity above a 

critical flow velocity. Secondly, the model should be checked for its application in 

natural situations by performing field experiments with realistic flow conditions. A third 

step could be the inclusion of the model in sediment transport models which have 

enough spatial detail to include Corophium inhabited areas. Since our experiments show 

that Corophium enhances sediment erodability only if highly abundant, the decrease in 

critical shear stress for erosion and the increase in rate of suspension should only be 

included in simulations covering late spring and summer time when the Corophium 

densities are highest (Chapter 6). However, currently, sediment transport models are 

not accurate enough and can not run simulations with the high detail needed to include 

biotic effects.  
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CCHHAAPPTTEERR  66  
TTHHEE  RROOLLEE  OOFF  BBIIOOPPHHYYSSIICCAALL  IINNTTEERRAACCTTIIOONNSS  WWIITTHHIINN  TTHHEE  

IIJJZZEERRMMOONNDDIINNGG  TTIIDDAALL  FFLLAATT  SSEEDDIIMMEENNTT  DDYYNNAAMMIICCSS  
 

ABSTRACT  

This paper focuses on the importance of biophysical interactions on short-term and long-
term sediment dynamics. Therefore, various biological (macrobenthos, photopigments, 
colloidal EPS) and physical parameters (grain size, water content, sediment stability, bed 
level) were determined (bi)monthly in nine sampling plots on the IJzermonding tidal flat 
(Belgium, 51° 08’N, 2°44’E) during three consecutive years (July 2005-June 2008). Results 
showed that sediment stability varied on a short timescale and was directly influenced by 
biota, while bed level varied mainly on the long-term due to interannual variability. The 
short-term dynamic relationships between mud content, water content, fucoxanthin and 
macrobenthos density resulted in a seasonal mud deposition and erosion cycle, and directly 
influenced sediment stability. Moreover, macrobenthos was proven to be the most 
important parameter determining sediment stability. On the long-term, a shift was 
observed from high fucoxanthin/chla concentration, high mud content and zero to 
moderate densities of Corophium volutator towards low fucoxanthin/chla and mud 
content and high Corophium densities, which resulted in a transition from net accretion to 
net erosion. However, most measured variables proved to be poor predictors for these long-
term bed level changes, indicating that external physical forces, such as waves and 
storminess, probably were the most important factors triggering long-term sediment 
dynamics. Nevertheless, biota indirectly influenced bed level changes by mediating short-
term changes in sediment stability, thereby influencing the erodability of the sediment. The 
macrobenthos, and especially the mud shrimp Corophium, was suggested as the (indirect) 
driving destabilising factor for the sampling plots in the IIzermonding when considering 
the long-term evolution. 

KEY WORDS: Belgium, biophysical interactions, Corophium volutator, mudflat, short-

term and long-term variability, sediment dynamics, sediment stability  

1. INTRODUCTION 

Estuarine mudflats are sedimentary intertidal habitats created by sediment deposition 

in low energy coastal environments. They are areas of both ecological and economic 

importance and are increasingly threatened by climatic and anthropogenic pressures 

(Dyer et al., 2000; Worm et al., 2006). Therefore, it is important to understand and 

predict the morphodynamics of these estuarine environments, and thus knowledge on 

tidal flat erosion and deposition processes is indispensable. The physical processes that 
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dominate sediment transport have been relatively well studied, and they determine the 

magnitude of sediment transport to or from a mudflat. These physical processes are 

mainly driven by tidal currents (Postma, 1961; Bell et al., 1997) and wind generated 

waves (de Jonge and van Beusekom, 1995; Bell et al., 1997; Ralston and Stacey, 2007). 

However, it has become increasingly clear that biotic components of the ecosystem can 

exert significant influences on the erosion and deposition processes in sediments 

(Woodin and Jackson, 1979; de Brouwer et al., 2000; Montserrat et al., 2008). The biotic 

components can either hamper or enhance erosion, resulting in bed stabilisation or 

destabilisation respectively (Orvain and Sauriau, 2002). Microphytobenthos has a 

stabilising effect due to the secretion of extracellular polymeric substances (EPS), 

glueing sand grains together and forming a protective biofilm (Yallop et al., 1994; De 

Brouwer et al., 2005; Le Hir et al., 2007). Macrofauna may influence the sediment and its 

dynamics in several ways, for instance by (1) increasing the bottom roughness and/or 

the heterogeneity, (2) inducing particulate fluxes, and (3) changing the sediment 

erodability through bioturbation processes (Le Hir et al., 2007). The influence of 

macrobenthos on sediment behaviour is complex due to the highly diversified life styles, 

and the fact that even for a single species, opposite effects can exist (Jumars and Nowell, 

1984). For instance, some controversy exists about Corophium volutator, for which both 

stabilising (Meadows and Tait, 1989; Mouritsen et al., 1998) and destabilising (Gerdol 

and Hughes, 1994; de Deckere et al., 2003) effects have been described depending upon 

the age of the animals, the density of the burrows and the sediment grain size (Le Hir et 

al., 2007). The overall importance of the role of Corophium in the long term sediment 

dynamics of an intertidal flat, however, remains unclear.  

Morphological changes of intertidal areas are the net result of competing accretionary 

and erosionary processes, with different processes dominant at different times. Long-

term changes are the balance of larger changes occurring over shorter time-scales 

(Wood and Widdows, 2002). The biotic components in estuarine systems are often 

seasonally and annually influenced, so it is important to include this temporal variability 

in measurement programs to understand the sediment dynamics (Defew et al., 2002). 

Borsje et al. (2008) demonstrated that excluding the temporal variability from their 

model of sediment transport generated a less accurate model, because the influence of 

the biota was no longer visible. So far, most field studies lasted for one year or less, as 

such including seasonal variability, but disregarding interannual variability to 
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investigate sediment dynamics and the role of biophysical interactions. We investigated 

longer term variability on a spatially limited scale, in order to enable the assessment of 

the main biophysical factors determining long term sediment dynamics. 

The objectives of the study were: 

1) to analyse the long-term (interannual), short-term (seasonal) and small-scale 

spatial dynamics between biota, physical sediment properties and sediment 

dynamics 

2) to quantify the relative importance of the different biophysical variables on long-

term erosion and deposition and on sediment stability 

3) to determine the importance of Corophium volutator density in relation to long-

term sediment dynamics  

2. MATERIAL AND METHODS 

2.1. Study site and sampling design 

The study was conducted in the Flemish nature reserve ‘IJzermonding’, a mudflat-salt 

marsh area along the eastern shore of the river IJzer in Nieuwpoort (Belgium, 51° 08’N, 

2°44’E) with a tidal range of approximately 4.5 m (Fig. 1). Between 1999 and 2003, 

nature restoration works were conducted in the northern part of the area and until 

today, this part of the area is still recovering from the restoration works (Herrier et al., 

2005). Because one of our objectives was to determine the importance of Corophium 

volutator in sediment dynamics, our study took place in the undisturbed SE part of the 

mudflat. More precisely in the upper part of the middle flat (+3.72 m - +4.13 m TAW 

(Tweede Algemene Waterpassing)), where Corophium volutator is the dominant deposit 

feeding organism with densities as high as 120,000 ind/m² in summer.  

Nine rectangular sampling plots (0.7 m x 1 m) were installed over a horizontal distance 

of 110 m at the study site, so all plots had a similar inundation time (3-4 hours)(Fig. 1). 

Each sampling plot constituted of a rectangle of 0.7 m² and with at each side in the 

middle a metal pole (separated by 1m) used for bed level measurements. These poles 

had a total length of 1 m 50 cm, of which 1 m 20 cm was pushed in the sediment to avoid 

movement of the poles; the remaining 30 cm rose above the surface.  
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Figure 1: Location of the intertidal mudflat area ‘IJzermonding’ (Nieuwpoort, Belgium) and the sampling 
plots within the study area. 

Sampling was carried out monthly from July 2005 to December 2006 (except July 2006) 

and bimonthly from January 2007 to June 2008. In order to minimise edge effects, the 

outer rim of the plot, next to the poles (0.1 m wide), was not sampled, while the middle 

section of the plot between the poles (0.3 m wide) was not sampled to avoid disturbance 

of the bed level. The remaining area at both sides of the poles was divided into 15 

subquadrats (0.1 m x 0.1 m) (Fig. 2). On each sampling day, 2 replicate subquadrats 

(randomly chosen a priori), one at each side of the poles, were sampled. When all 

subquadrats were sampled once (i.e. after 15 months), random selection of subquadrats 

started again, making sure that there was at least 5 months between sampling of the 

same subquadrat. At all sampling times, bed level measurements were made in the 

undisturbed middle section, and sediment was sampled in the subquadrats for analysis 

of grain size, chlorophyll a (chla), water content and macrobenthos. From November 

2005 onwards, fucoxanthin was determined as well. Sediment strength and colloidal 

EPS (extracellular polymeric substances) were measured from March 2007 onwards. 

After collecting the samples, the holes were refilled with similar sediment from just 

outside the plot to avoid changes in current patterns, which might affect erosion 

processes or bed level.  
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Figure 2: Overview of one sampling plot with indication of the poles (black circles) and horizontal bar (thick 
black solid line) used for bed level measurements. The area between the poles and 15 cm at both sides of the 
horizontal bar (length of the dotted lines) was not sampled to avoid disturbance of the sediment surface. The 
numbered squares indicate the different subquadrats (10 x 10 cm), in which the different variables were 
sampled. At each sampling occasion, two randomly selected subquadrats were sampled, one at the A side 
and one at the B side to incorporate possible small-scale variation.  

2.2. Sampling and laboratory analyses 

Chla, fucoxanthin and colloidal EPS: Chla and fucoxanthin are both photopigments 

present in diatom cells, and were measured because they provide a good proxy for 

diatom biomass. cEPS consists mainly of polysaccharides, excreted by diatoms and 

involved in vertical migration (Underwood and Smith, 1998). Since, cEPS is known to 

play an important role in sediment stabilisation (e.g. Underwood and Paterson, 1993; Le 

Hir et al., 2007), it was important to measure the cEPS concentration in conjunction with 

the erosion threshold. Sediment material for quantification of photopigments (chla and 

fucoxanthin) and colloidal EPS (cEPS) was collected using contact cores (Ø 43 mm), 

enabling the collection of ± 2 mm thick frozen discs of sediment (Wiltshire et al., 1997), 

which were wrapped immediately in aluminium foil and stored in liquid nitrogen. On 

return to the laboratory, all samples were stored in the dark at -80°C until analysis. Prior 

to analysis, the frozen discs were lyophilised in the dark. Chla and fucoxanthin 

concentration were determined by HPLC analysis from the supernatant, extracted from 

a subsample of the freeze-dried sediment by adding 10 ml 90% acetone – 10% milliQ 

water solution (Wright and Jeffrey, 1997). Colloidal EPS was quantified by 

spectrophotometer using the phenol-sulfuric acid assay (Dubois et al., 1956) and 
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calibrated standards of D-glucose dissolved in MQ water. Carbohydrates were extracted 

from 1 g of freeze-dried sediment with 5 ml of MQ water for 1h at 30°C followed by 

centrifugation for 15 min at 1500 rpm.  

Grain size and water content: Samples were taken from the upper 6 cm of the sediment 

with 10 ml syringes (Ø 13mm), stored in an icebox and sliced at 1 cm depth upon return 

in the laboratory. Awaiting analysis, samples for water content were stored in the 

freezer (-20°C), whereas samples for grain size were left to dry at the air until analysis. 

For water content, sediment was weighed wet, lyophilised and weighed dry to yield 

water mass percentage or absolute water content (Flemming and Delafontaine, 2000). 

Water content was calculated as the difference of wet and dry sample weights divided 

by the wet sample weights. 

Grain size distribution was determined using a Malvern Mastersizer 2000 laser 

diffraction, capable of analysing the 0.02 µm to 2 mm grain size range. The mud/sand 

boundary was determined at 63 µm, with the mud fraction defined as < 63 µm. Since it 

are the surface sediment properties that influence the biofilm, erosion threshold and 

bed level, only the results of the top 1 cm slice were used in the statistical analyses and 

throughout the entire paper. 

Macrobenthos: The macrobenthos was sampled to a depth of 10 – 15 cm with a 10.2 

cm² core. Macrobenthos samples were taken on the same spot as the contact core to 

reduce disturbance of the plot as much as possible. When animals were retained in the 

contact core, these were removed and added to the macrobenthos sample. Samples were 

fixed with a buffered 4% formalin solution and taken to the lab in closed containers. The 

samples were sieved over a 0.5 mm mesh sieve and preserved using a neutralised 4% 

formalin solution with 0.01% Rose Bengal until processing. All macrobenthos was 

sorted under a stereomicroscope, counted and identified to species level, except for 

tubificid oligochaetes and insect larvae. 

Bed level and sediment strength measurements: For bed level measurements, a 

horizontal bar of 1 m was placed on top of the two poles. The bar had five holes, 

separated from each other by 15 cm starting 20 cm from the edge of the bar. Bed level 

changes were measured in the undisturbed middle section of the plot at these holes as 

the distance between the bar and the sediment surface (accuracy of ± 1mm). The results 

from July 2005 were used as reference point. The sediment strength or erosion 

threshold was quantified as a measure of erodability of the sediment under a certain 
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bottom shear stress using a cohesive strength meter (CSM) (Tolhurst et al., 1999; Defew 

et al., 2002). The CSM fires a jet of water to the sediment surface, disrupting the 

sediment matrix at the sediment-water interface. A series of tests with increasing 

pressure of the water jet is performed, according to the ‘Mud 3’ program of the CSM Mk 

4 (Sediment Services, UK). The point of incipient erosion was determined as the 

pressure at which the light transmission in the measuring cell decreased below 90%. 

2.3. Statistical analyses 

Multivariate analysis: To be able to visualise the temporal evolution in the different 

sampling plots, the plots were grouped based on the normalised environmental 

variables measured during the first sampling occasion (July 2005). Therefore, a group 

averaging cluster analysis was performed based on Euclidean distance similarity 

followed by a similarity profile test (SIMPROF) using the software package Primer v6 

(Clarke and Gorley, 2006). The defined groups were used for further visual 

representation. 

ANOVA of univariate data: To conduct ANOVA, the categorical predictor ‘season’ was 

introduced with ‘winter’ representing sampling occasions from December to February, 

‘spring’ representing sampling occasions from March to May, ‘summer’ representing 

sampling occasions from June to August, and ‘autumn’ representing sampling occasions 

from September to November. Main effects ANOVA was carried out in Statistica 7 to test 

whether the variation in Corophium volutator, Hediste diverisolor, total abundance of 

other macrobenthos (i.e. total abundance – abundance of Corophium and Hediste) and 

environmental variables depended on the categorical predictors year, season and 

sampling plot, and the interaction term year x season. Sampling plot was identified as a 

random effect in the analysis. To warrant homogeneity of variance, some variables were 

transformed i.e. ln(x+1) for colloidal EPS and erosion threshold. 

Regression analysis: Two generalised linear models (GLMs) based on maximum 

likelihood estimation were applied in the statistical environment R (www.r-project.org) 

to test the response of bed level variation and sediment stability to the environmental 

variables and the faunal densities. Before running the model, collinearity among 

variables was examined using Spearman rank correlation coefficients. If a linear 

dependency between variables was identified (r>0.8) only one of the variables was 

retained in the model. The models were based on stepwise elimination/addition (both 

http://www.r-project.org/
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forward and backward) of predictors. The minimal adequate model (MAM) was reached 

based on the lowest Akaike’s Information Criterion16 (AIC, Sakamoto et al., 1986; 

Crawley, 2005;). We used a gaussian distribution with an identity link17. In addition, 

D²adjusted was calculated for each model as an estimate of deviance reduction, adjusted 

for the available degrees of freedom, analogous to R²adj in least-squares regression 

(Guisan and Zimmerman, 2000). Furthermore, in order to partition the effects of all 

significant predictors, the relative importance for each predictor was calculated using 

the R package relaimpo (Grömping, 2006). From this package, the metric ‘lmg’ was used, 

which is based on sequential D²’s by using simple unweighted averages (Grömping, 

2006). This metric allowed the calculation of the amount of variance explained from the 

total variance of the model by each significant predictor in the model. 

To test for the variables contributing to bed level changes, the bed level variation 

between two successive sampling occasions was combined with the averages of the 

variables measured during these two sampling occasions. Bed level variation was 

expressed as a polynomial function (linear predictor) of the mud content (median grain 

size was omitted from the model because of collinearity), chla concentration, water 

content, Corophium volutator density, Hediste diversicolor density and other 

macrobenthos density. Mud and water content were arcsine-square root transformed; 

all other variables were natural-log transformed to obtain normal distribution of the 

residuals. Only cases with information on all variables were used in the modeling. 

Assumptions were verified graphically (residual errors vs fitted values, scale-location 

plot, Cook’s distance), and normality of the residuals was confirmed numerically with a 

Shapiro-Wilks test. Six cases appeared to be extreme outliers (Cook’s distance) and 

these were omitted from the analysis (n=434).  

Log transformed sediment stability was regressed as a polynomial function (linear 

predictor) of mud content (median grain size was omitted from the model because of 

collinearity), water content, fucoxanthin concentration (chla omitted because of 

collinearity), cEPS concentration, Corophium density, Hediste density and other 

macrobenthos density. Only cases with information on all variables were used in the 

                                                           
16 AIC compares the trade-off between goodness-of-fit of the models and parsimony of the models, smaller 
values of AIC indicate a better model. The model with the lowest AIC is the best model, aka the MAM. 
17 Since the response variables, bed level variation and sediment stability, are continuous variables that 
are normally distributed, we used the Gaussian distribution for which the identity link is most commonly 
used. 



BIOPHYSICAL INTERACTIONS AND SEDIMENT DYNAMICS 

95 
 

modeling (n=138). Assumptions here were also verified graphically, and normality of 

the residuals was confirmed numerically with a Shapiro-Wilks test. 

3. RESULTS 

Based on the SIMPROF analysis of the environmental data of the first sampling occasion 

(July 2005), two groups of sampling plots could be defined: plots 1 to 5 (‘southern’ plots) 

and plots 6 to 9 (‘northern’ plots) (for SIMPROF results see Appendix 1). We use these 

two groups throughout the paper for better visualisation. 

3.1. Spatio-temporal dynamics of environmental variables 

Spatial variation between plots was significant for all environmental variables 

measured, except for cEPS (ANOVA, F8, 126=1.3, p=0.25; Table 1; Figs. 3 and 4). For mud 

content and median grain size (not visualised), spatial variation between plots was high 

and ANOVA showed highly significant differences between most plots (resp. F8, 441=41.8 

and F8, 441=57.3, p>0.0001; Table 1). Differences between plots for water content were 

significant but small, and less outspoken as for grain size (ANOVA, F8, 441=4.7, p < 

0.0001). The photopigments, chla and fucoxanthin, both differed significantly between 

plots (resp. ANOVA, F8,441=3.6 and p=0.0005, F8, 373=2.9 and p=0.004), however, Tukey’s 

HSD tests revealed that overall significance was mainly based on significant differences 

between plot 9 and plots 6 and 7 for chla, and between plot 9 and plots 4, 5, 6 and 7 for 

fucoxanthin. Despite these spatial differences, an overall long-term (interannual) 

pattern could be observed, which showed for mud content and median grain size a 

coarsening of the sediment over the years, especially in the muddier sampling plots 1, 2, 

3, 4 and 5 (Fig. 3a). This went with a decrease in water content towards 2007, slightly 

increasing again in 2008, resulting in significant differences between years for water 

content (ANOVA, F3, 441=24.4, p< 0.0001; Table 1; Fig. 3c and 4c). Furthermore, a 

pronounced interannual variation was present for chla (Table 1), with higher 

concentrations in 2005 and 2006 as compared to 2007 (Tukey’s HSD, resp. p=0.001 and 

0.048; Fig. 3e and 4e). These higher values were especially measured in the muddier 

plots 1, 2, 3 and 4 and in plot 9, probably caused by the temporal appearance of algal 

mats. Similarly, a decrease of fucoxanthin in 2006-2007 was observed (8.5±0.2 µg/g) 

and the highest values were measured in 2005-2006 (17±1 µg/g).   
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Figure 3: Temporal distribution of mean ± SE from a) mud content (%), b) Corophium density (ind./m²), c) 
water content (%), d) Hediste density (ind./m²), e) chla (µg/g), f) other macrobenthos density (ind./m²), g) 
fucoxanthin (µg/g), h) bed level (mm), i) colloidal EPS (µg/g) and j) erosion threshold (kPa), for plots 1 to 5 
with indication of the seasons. Note the scale differences for mud content, chla, bed level, cEPS and erosion 
threshold in comparison with Fig. 4.  
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Figure 4: Temporal distribution of mean ± SE from a) mud content (%), b) Corophium density (ind./m
2
), c) 

water content (%), d) Hediste density (ind./m
2
), e) chla (µg/g), f) other macrobenthos density (ind./m

2
), g) 

fucoxanthin (µg/g), h) bed level (mm), i) colloidal EPS (µg/g) and j) erosion threshold (kPa), for plots 6 to 9 
with indication of the seasons. Note the scale differences for mud content, chla, bed level, cEPS and erosion 
threshold in comparison with Fig. 3. 
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Although, cEPS was only determined from 2007 onwards, concentrations were higher in 

samples from 2008 as compared to those of 2007, related to the low chla and 

fucoxanthin concentrations in 2007 (Fig. 3i and 4i). 

Furthermore, for most variables, except for chla, short-term seasonal responses were 

discerned within these long-term trends in the different sampling plots (Table 1). These 

seasonal responses could differ between years, since ‘Year x Season’ interactions were 

significant (Table 1). Mud content was significantly lower in winter compared to the 

other seasons (Tukey’s HSD). However, in summer 2007 and 2008, mud content 

decreased compared to the previous spring and following autumn and winter (Fig. 3a). 

Water content followed this seasonal pattern with the lowest values in winter (10±1 SE 

%), and the highest values in summer (13±1 SE %) (Fig. 3c and 4c). For fucoxanthin, the 

highest values were observed in spring or summer, decreasing towards autumn and 

winter. In 2006, values were highest in summer for sampling plots 1 to 4 and 9, while for 

the other sampling plots, the measured concentrations were highest in spring. In the 

other sampling years, fucoxanthin concentration was highest in spring for all sampling 

plots (Fig. 3g and 4g). Also for cEPS, a clear seasonal pattern was observed (ANOVA,      

F3, 126=33.1, p<0.0001) with higher spring and summer concentrations than in autumn 

and winter (Fig. 3i and 4i).  

3.2. Spatio-temporal sediment dynamics 

Bed level and erosion threshold varied considerable between most sampling plots 

(ANOVA, resp. F8, 441=32.5 and p<0.0001, F8, 55=7.2 and p<0.0001; Table 1; Fig. 3h & j and 

4h & j). For bed level measurements, no significant seasonal trend was detected. 

However, a highly significant interannual trend was observed (ANOVA, F3, 441=47.9, 

p<0.0001) with erosion starting from summer/autumn 2006 onwards (Table 1; Fig. 3h 

and 4h). This trend was most outspoken in plots 1, 2 and 3. 

The opposite was observed for erosion threshold, with no differences measured 

between the two sampling years, while seasonality significantly influenced erosion 

threshold (ANOVA, F3, 55=20.8, p<0.0001; Table 1). In spring, sediment stability was 

highest and erosion thresholds reached a maximum (Tukey’s HSD, p<0.001; Fig. 3j and 

4j). 
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Table 1: Summary of the ANOVA results for the environmental variables and the faunal densities for spatial 
and temporal factors. Time: sampling period when variables were measured. Variable: different variables 
analysed and when appropriate transformations are mentioned between parantheses. Sign: significance 
level; ns = not significant, * = p<0.05, ** = p≤0.01, *** = p≤0.001, ! = p≤0.0001. 

Time Variable 
Source of 
variation 

SS df MS F p Sign. 

July 2005 - Mud Intercept 672241 1 672241 5679.427 < 0.0001  
June 2008 (<63 µm) Plot  39621.8 8 4952.7 41.843 < 0.0001 ! 
  Year 21138.8 3 7046.3 59.530 < 0.0001 ! 
  Season 5406.8 3 1802.3 15.226 < 0.0001 ! 
  Year x Season 9629.2 7 1375.6 11.622 < 0.0001 ! 
  Error 52198.6 441 118.4    

July 2005 - Median Intercept 4093707 1 4093707 2834.016 < 0.0001  
June 2008 grain size Plot 661645 8 82706 57.256 < 0.0001 ! 
  Year 187240 3 62413 43.208 < 0.0001 ! 
  Season 55917 3 18639 12.904 < 0.0001 ! 
  Year x Season 101600 7 14514 10. 048 < 0.0001 ! 
  Error 637020 441 1444    

July 2005 - Water Intercept 45192.10 1 45192.10 7847.927 < 0.0001 ! 
June 2008 content Plot 214.48 8 26.81 4.656 < 0.0001 ! 
  Year 421.84 3 140.61 24.418 < 0.0001 ! 
  Season 450.88 3 150.29 26.100 < 0.0001 ! 
  Year x Season 343.28 7 49.04 8.516 < 0.0001 ! 
  Error 2539.49 441 5.76    

July 2005 - Surface chla Intercept 1100530 1 1100530 247.0921 < 0.0001  
June 2008  Plot 127909 8 15989 3.5898 0.0005 *** 
  Year 50861 3 16954 3.8064 0.0103 * 
  Season 13876 3 4625 1.0385 0.3752 ns 
  Year x Season 182280 7 26040 5.8465 < 0.0001 ! 
  Error 1964182 441 4454    

Nov. 2005 - Surface Intercept 56329.40 1 56329.40 428.2267 < 0.0001  
June 2008 fucoxanthin Plot 1316.36 8 164.55 2.8611 0.0042 ** 
  Year 3464.38 3 1154.79 20.0797 < 0.0001 ! 
  Season 4712.73 3 1570.91 27.3151 < 0.0001 ! 
  Year x Season 2539.99 6 423.33 7.3609 < 0.0001 ! 
  Error 21451.44 373 57.51    

Mar. 2007- Colloidal EPS Intercept 6.523759 1 6.523759 8.800588 < 0.0001  
June 2008 (ln x + 1) Plot 0.096212 8 0.012027 1.3027 0.2480 ns 
  Year 0.655978 1 0.655978 71.0556 < 0.0001 ! 
  Season 0.917651 3 0.305884 33.1334 < 0.0001 ! 
  Year x Season 0.256007 2 0.128003 13.8654 < 0.0001 ! 
  Error 1.163218 126 0.009232    

July 2005 - Corophium Intercept 167745.4 1 167745.4 428.1518 < 0.0001  
June 2008 density Plot 9880.1 8 1235.0 3.1522 0.0018 ** 
  Year 43546.0 3 14515.3 37.0488 < 0.0001 ! 
  Season 93097.8 3 31032.6 79.2073 < 0.0001 ! 
  Year x Season 20727.2 7 2961.0 7.5577 < 0.0001 ! 
  Error 172779.2 441 391.8    
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Table 1 continued 

Time Variable 
Source of 
variation 

SS df MS F p Sign. 

July 2005 - Hediste Intercept 1166.747 1 1166.747 434.7989 < 0.0001  
June 2008 density Plot 1440.890 8 180.111 67.1201 < 0.0001 ! 
  Year 36.858 3 12.286 4.5785 0.0036 ** 
  Season 70.010 3 23.337 8.6966 < 0.0001 ! 
  Year x Season 181.116 7 25.874 9.6421 < 0.0001 ! 
  Error 1183.388 441 2.683    

July 2005 - Other Intercept 593407.5 1 593407.5 906.4623 < 0.0001  
June 2008 macrofauna Plot 238876.0 8 29859.5 45.6120 < 0.0001 ! 
 density Year 17888.7 3 5962.9 9.1086 < 0.0001 ! 
  Season 3830.4 3 1276.8 1.9504 0.1207 ns 
  Year x Season 22987.5 7 3283.9 5.0164 < 0.0001 ! 
  Error 288696.8 441 654.6    

July 2005 - Bed level Intercept 16542179 1 16542179 313914.9 < 0.0001  
June 2008  Plot 28425 8 3553 32.5 < 0.0001 ! 
  Year 15697 3 5232 47.9 < 0.0001 ! 
  Season 164 3 55 0.5 0.6828 ns 
  Year x Season 1281 7 183 1.7 0.1167 ns 
  Error 23069 211 109    

Mar. 2007- Erosion Intercept 92.65472 1 92.65472 843.4292 < 0.0001  
June 2008 threshold Plot 6.29733 8 0.7871 7.1655 < 0.0001 ! 
 (ln x +1) Year 0.12101 1 0.12101 1.1016 0.2985 ns 
  Season 6.87209 3 2.29070 21.2235 < 0.0001 ! 
  Year x Season 2.04509 2 1.02254 9.3081 0.0003 *** 
  Error 6.04201 55 0.10985    

3.3. Spatio-temporal dynamics of macrobenthos 

The macrobenthos was split in three ‘groups’ which could possibly contribute to 

changes in bed level or erosion threshold: 1) Corophium volutator, a dominant species 

constituted 33% of all fauna identified, 2) Hediste diversicolor (3% of all fauna), a large 

species known to influence sediment stability (Fernandes et al., 2006; Widdows et al., 

2009), and 3) other macrobenthos. The dominant species in the ‘other macrobenthos 

group’ were Manayunkia aestuarina (48% of all other fauna), Oligochaeta species (37% 

of all other fauna) and Hydrobia ulvae (13% of all fauna). Furthermore, low to very low 

densities of insect larvae, Macoma balthica, Pygospio elegans, Nemertea and Eteone 

longa were present. 

Corophium densities were spatially influenced (ANOVA, F8, 441=3.2, p=0.0018; Table 1). 

Especially in the first sampling year, differences between plots were considerable, since 

Corophium was (almost) absent from plots 1, 2, 3, 4 and 9 in 2005-2006 (Fig. 3b and 4b). 

Corophium first appeared in these plots in summer 2006, indicating that Corophium was 



BIOPHYSICAL INTERACTIONS AND SEDIMENT DYNAMICS 

101 
 

expanding its coverage, resulting in an increase of density over the years. Consequently, 

significant annual differences were observed (ANOVA, F3,441=37, p<0.0001; Table 1). 

Highly significant differences were also found between the different stations for Hediste 

densities (ANOVA, F8, 441=67.1, p<0.0001; Table 1). Sampling plots 1 to 4 and 9 differed 

significantly in Hediste density from plots 5 to 8 (Tukey’s HSD, all p<0.0001) with lower 

densities in plots 1 to 4 and 9, ranging from 189±SE 66 to 416±SE 133 ind./m2, while 

densities ranged from 3,420±SE 356 to 4,421±SE 455 ind./m² in plots 5 to 8 (Fig. 3d and 

4d). Interannual variation was significant, though limited (ANOVA, F3, 441=12.3, 

p=0.0036). Spatial variation was as well significant for ‘other macrobenthos’ densities 

(ANOVA, F8, 441=45.6, p<0.0001), and plots 6, 7 and 8 differed highly significant from 

plots 1 to 5 and from plot 9 (Tukey’s HSD, all p<0.0001; Table 1; Fig. 3f and 4f). In 

sampling plots 6, 7 and 8, very high densities of Manayunkia (on avg. 30,414±SE 3,713 to 

62,196±SE 4,686 ind./m²) were found, while in plots 1 to 4 and 9, Oligochaeta was the 

dominant taxon (on avg. 15,301±SE 9,952 to 27,963±SE 11,207 ind./m²). Densities 

fluctuated interannually (ANOVA, F3, 441=9.1, p<0.0001), with sampling year 2005 

differing significantly from the other years (Tukey’s HSD). On the shorter (seasonal) 

term, however, no significant seasonal variation was observed for ‘other macrobenthos’ 

densities. Corophium densities, on the other hand, were strongly influenced by 

seasonality (ANOVA, F3,441=79.2, p<0.0001; Table 1). Densities peaked in summer 

(36,296±SE 3,269 ind./m²), slightly decreased towards autumn (26,713±SE 2,139 

ind./m²) and were low in winter and spring (resp. 7,661±SE 645 ind./m² and 6,997±SE 

1103 ind./m²) (Fig. 3b and 4b). Hediste densities fluctuated also seasonally, especially in 

the plots with high densities of Hediste. Highest densities were observed in summer, 

decreasing towards autumn, while lowest densities were recorded in winter and spring 

(Fig. 3d and 4d).  

3.4. Biotic – abiotic relationships 

Many of the measured variables showed similar or opposite patterns on the interannual 

and/or seasonal scale, as demonstrated above. This was reflected in the spearman rank 

correlations with many significant lower or higher degree correlations between the 

different variables (Table 2). On the long term, an overall trend was observed with a 

coarsening of the sediment, a decrease in water content, chla and fucoxanthin 

concentration, an increase in Corophium density and erosion of most plots. This was 
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supported by the fact that mud content was negatively correlated with median grain size 

and Corophium density, whereas positive correlations between mud content and chla, 

fucoxanthin, water content, bed level variation and erosion threshold existed (Table 2). 

Corophium density was negatively correlated with most environmental variables, except 

with median grain size and cEPS. Furthermore, chla was strong positively correlated 

with fucoxanthin (rS=-0.81, df=394) and cEPS (rS=0.86, df=141), and between 

fucoxanthin and cEPS was also a strong positive correlation (rS=0.77, df=141) (Table 2). 

Erosion threshold was not correlated with any of the biofilm pigments or cEPS. The 

significant correlations for erosion threshold were negative, and weak, with the 

macrobenthos densities, median grain size and water content, and positive, but weak, 

with mud content (Table 2). Bed level variation was highly significant positive 

correlated with the biofilm pigments (chla and fucoxanthin) and cEPS. Other, weaker, 

positive correlations existed with mud content and water content, and negative 

correlations existed with median grain size and Corophium density (Table 2).  

Since interactions between variables were complex, and not always straightly linear, we 

regressed bed level variation and erosion level to find the set of variables which best 

explained sediment dynamics. For bed level variation, the MAM (minimal adequate 

model) explained 30% of the variability in bed level changes and all predictors, except 

water content, were retained in the model (Table 3). The three most important 

predictors in this model were ln(chla) (positive influence), explaining 11% of the 

variance, ln(chla)², explaining 10% and ln(Corophium) (negative influence), explaining 

2.5% (Table 3). Erosion threshold (log transformed to obtain normal distribution of the 

residuals) was regressed against mud content, water content, fucoxanthin 

concentration, cEPS concentration, Corophium density, Hediste density and other 

macrobenthos densities. The MAM explained 42% of the variability in erosion threshold. 

The predictors, fucoxanthin and other macrobenthos, were rejected from the model 

(Table 3). The best predictor was Corophium density (negative influence) contributing to 

12% of the explained variance, followed by Hediste density (negative influence), which 

explained 9%, and cEPS (positive influence) which explained 5% (Table 3).  
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In Fig. 5 and 6, the modelled versus observed values for resp. bed level changes and 

erosion threshold in the different sampling plots are shown. When bigger bed level 

changes occurred, modelled values strongly deviated from this pattern (Fig. 5). The 

modelled values for erosion threshold were in better agreement with the observed 

values, especially in sampling plots 1, 4, 5 and 7 (Fig. 6). 

4. DISCUSSION 

The results of this study, in which multiple biotic and abiotic variables were measured in 

conjunction with bed level and sediment stability, highlight the complexity of the factors 

controlling erosion and deposition processes of intertidal sediments. First of all, 

although the sampling plots were situated on the same shore height and the distance 

over which the plots were spread was only ±110 m, spatial variation was high for most 

variables. This is consistent with the fact that estuarine mudflats are intrinsically 

variable and that small-scale patchiness (cm to m scale) is common in muddy sediments 

(Kendall and Widdicombe, 1999; Ysebaert and Herman, 2002). Furthermore, many 

dynamic relationships were observed between the different abiotic and biotic variables, 

and all these variables have been reported as influencing the erosion and deposition 

process in a direct or indirect way (De Brouwer et al., 2000; Widdows et al., 2000a; Le 

Hir et al., 2007; Montserrat et al., 2008). Nevertheless, both on the short-term and on the 

long-term, distinct patterns could be observed. 

4.1. Short-term sediment dynamics 

A seasonal cycle of mud deposition was observed within all plots with low mud content 

in winter and deposition of fine sediments towards spring/summer. Similar seasonal 

cycles of mud content were reported several times for other intertidal flats (De Brouwer 

et al., 2000; Herman et al., 2001; Widdows et al., 2004; Borsje et al., 2008). This 

deposition of mud is temporary, since it disappears in winter, probably due to storms 

and higher wave energy (Herman et al., 2001). Diatom biomass, measured as 

fucoxanthin concentration, increased in spring and attracted fine sediment. Diatoms 

produce secretions of extracellular polymeric substances (EPS) during their daily 

migrations in the surficial sediments of mudflats (Decho, 1990; Underwood and Smith, 

1998).   
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Figure 5: Modelled versus observed bed level changes over the three sampling years. 
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Figure 6: Modelled versus observed values for Log(erosion threshold) from March 2007 onwards. 
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These EPS secretions are known to play an important role in the binding of fine 

sediment particles, and they increase sediment stability (Underwood and Paterson, 

1993; Yallop et al., 1994; de Brouwer et al., 2005; Le Hir et al., 2007). We found indeed a 

strong positive correlation between the diatom pigments chla and fucoxanthin and 

colloidal EPS (cEPS) concentrations. Furthermore, a weak, though significant positive 

correlation was found between both photopigments and mud content. However, cEPS 

correlated negatively with mud content. In summer, mud content decreased again, 

together with fucoxanthin and chla, and macrobenthos densities simultaneously 

increased. The regulative power of macrobenthos on diatom densities has been reported 

in a number of studies (Widdows et al., 2000a, 2000b; Andersen, 2001; Hagerthey et al., 

2002; Orvain et al., 2004). In our plots, Corophium densities showed an outspoken 

seasonal pattern, with a steep increase from late spring to summer. Corophium grazes on 

diatoms and thereby disrupts the biofilm, leading to increased erosion (Gerdol and 

Hughes, 1994b; Defew et al., 2002; de Deckere et al., 2002), and an indirect decrease in 

mud content. Furthermore, Corophium is also known to flush its burrows, which leads to 

active resuspension (de Deckere et al., 2000; De Backer et al., 2010), and a ‘fluff’ layer 

which is easily eroded leading to a direct decrease of the clay fraction (De Backer et al., 

2009). Moreover, active resuspension increases turbidity, which can inhibit biofilm 

productivity through attenuation of the light (Dyson et al., 2007). Additionally, in 

summer 2005 and 2006, when Corophium was still absent from plots 1, 2, 3, 4 and 9, we 

observed a further increase in fucoxanthin (and to a smaller extent in chla) towards 

summer, and also mud content increased or remained status quo. Another variable 

covarying in this seasonal mud cycle was water content. Water content depends to a 

large extent on mud content; the higher the mud content, the higher the water content 

(Flemming and Delafontaine, 2000). However, biofilms affect the water content as well, 

since they retain water and thus increase water content (Defew et al., 2003; Orvain et al., 

2003). This is consistent with our finding of positive correlations between water 

content, chla, fucoxanthin and cEPS. Since water content measurements were sampled 

during low water, the values were probably also influenced by exposure duration and 

the prevailing wind, temperature and sunshine conditions during exposure. 

Although, the observed mud deposition and erosion was temporal, it may be a 

significant factor in the mud balance of an estuary by bringing fine sediment in 

suspension (Herman et al., 2001). This is important for redistribution of sediment 
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within the intertidal zone, and biota significantly contribute to this sediment transport 

on short (monthly) timescales (Wood and Widdows, 2002). Our study agrees upon the 

fact that biota are very important in short-term sediment dynamics. Sediment stability 

(measured as critical erosion threshold with a CSM) was used as a measure for 

susceptibility to erosion, and the variation in sediment stability could be explained for 

45% with the measured variables; significant explanatory variables were Corophium 

density (+ polynomial factor), Hediste density, cEPS (+ polynomial), water content (+ 

polynomial) and mud content. 33% of this explained variation was accounted for by 

biota (macrobenthos and microphytobenthos), with Corophium density (12 + 4%) and 

Hediste density (9%) as most important destabilising predictors, followed by cEPS (5 + 

2.5%, stabilising). This suggests that biological activity is a more important factor 

determining critical erosion threshold than the physical sediment properties, and that 

biological variables and their seasonal dynamic relationships directly influence short-

term sediment dynamics. Widdows et al. (2000a) did not find any significant influence of 

the physical sediment variables (porosity, grain size), whereas influence of the biological 

variables (chla, colloidal carbohydrates and Macoma density) was highly significant. As 

already mentioned before, the role of biofilms in stabilisation is widely agreed upon in 

the literature, and more especially the role of secreted carbohydrates is considered very 

important in biogenic stabilisation (Paterson, 1989; Yallop et al., 1994; Lucas et al., 

2003; de Brouwer et al., 2005; Le Hir et al., 2007). Furthermore, macrobenthos is also 

generally recognised to influence sediment stability (Gerdol and Hughes, 1994a; Orvain 

et al., 2004; Ciutat et al., 2007; Montserrat et al., 2008; Widdows et al., 2000b, 2009), but 

it is extremely difficult to reach a conclusion on the effects on sediment stability, since so 

many different species with different geomechanical traits exist, and even for a single 

species opposing results are found (Jumars and Nowell, 1984; Le Hir et al., 2007). For 

instance, Corophium has been described as stabilising (Meadows and Tait, 1989; 

Mouritsen, 1998) as well as destabilising (Gerdol and Hughes, 1994a; de Deckere et al., 

2003) depending upon the age of the animals, the density of the burrows and the 

sediment grain size (Le Hir et al., 2007). Similarly, Hediste displays a whole array of 

locomotion and feeding modes, thereby processing the sediment in different ways and 

exerting various influences, both stabilising and destabilising (Banta et al., 1999; Palomo 

and Iribarne, 2000; Fernandes et al., 2006). Although plenty of field studies described 

the effects of biological parameters and physical sediment parameters on sediment 
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stability, most of these studies were observational or quantified simple linear 

regressions of either biofilm characteristics related to sediment stability or 

macrobenthos densities related to sediment stability. Few field studies used multiple 

regressions combining both macrobenthos and biofilm parameters in trying to explain 

the observed variance in sediment stability (e.g. Defew et al., 2002; Montserrat et al., 

2008), but none of these determined the relative importance of the different parameters. 

Recently, some models were developed in which the effects of biological activity on 

sediment transport including seasonal dynamics were tested, and they all agreed upon 

the importance of macrobenthos on sediment transport (Wood and Widdows, 2002; 

Paarlberg et al., 2005; Le Hir et al., 2007; Borsje et al., 2008). In addition, our study 

shows that macrobenthos can even be the most important biological parameter in 

determining sediment stability: Corophium and Hediste density together contributed to 

more than half of the variance explained by the model (25% of 45%). Nevertheless, 

extrapolation to other mudflats should be done with great care, since factors influencing 

stability are site-specific (Defew et al., 2002). Our results on sediment stability indicate 

that part of this site-specificity may be explained by macrobenthic patchiness and the 

way that dominant species influence their biotic and abiotic environment. 

4.2. Long-term sediment dynamics 

Bed level variation was much less affected by these short-term seasonal cycles of mud 

content, water content, photopigments and macrobenthos. Linear correlations between 

bed level variation and most of the measured variables were weak or not significant, 

except with the biofilm variables (chla, fucoxanthin and cEPS) correlations were 

stronger. Moreover, multiple regression of bed level against chla, mud content, water 

content, Corophium density, Hediste density and other macrobenthos density explained 

30% of the variation in bed level changes that appeared during the three sampling years, 

which is noticeably less than for erosion threshold. Chla was the best explanatory 

variable, contributing to 21% (11 + 10%) of the explained variance, but nevertheless 

total explained variance is low. This indicates that on longer time scales, the morphology 

of the sediment bed in mudflats is probably largely shaped by physical forces such as 

tidal currents and wind generated waves. This is consistent with Wood and Widdows 

(2002), who simulated sediment transport over an intertidal transect, comparing 

biological and physical influences, and they concluded that the fundamental forcing was 
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the tidal current, which provides energy to cause intertidal transport. Additionally, the 

smaller degree of explained variation for bed level changes could result from the fact 

that the measurements of the variables at the actual day of sampling are actually a 

snapshot. These snapshots do not take into account the day by day variation between 

two field visits, while bed level variation integrates all changes that occurred since the 

last measurements. Especially biofilms may change with days, and even within hours, 

depending on the temperature, sunshine or tidal cycle (Guarini et al., 2000) and for that 

reason day by day variability in e.g. biofilm productivity, may as well contribute to the 

lower explained variation in bed level. 

Wood and Widdows (2002) also concluded that biota have a significant effect on 

sediment redistribution within the intertidal zone, which is important for the 

morphological evolution of intertidal areas. Our observations indeed suggest an 

important influence of biota, and especially of Corophium, on bed level changes, despite 

the low degree of explained variance for the regression. In agreement with the findings 

of Widdows et al. (2000b) for Macoma balthica and microphytobenthos on the upper 

shore of the Skeffling mudflat, we observed a temporal shift from net accretion (July 

2005 – August 2006) to net erosion (September 2006 – June 2008), which coincided 

with a shift in key biota known to influence the sediment erosion. After August 2006, the 

balance changed from a situation with (almost) no or moderate Corophium densities, 

high photopigment concentrations and high mud content to a situation where 

Corophium densities were high and fucoxanthin, chla and mud content were low. The 

shift in bed level was most outspoken in the plots 1, 2 and 3 where a temporal shift 

occurred from no Corophium to high densities of Corophium. Of course, Corophium was 

not the only species present, Hediste and some other macrobenthos species occurred as 

well in higher densities, which presumbably contributed also to the disruption of the 

biofilm. Furthermore, Hediste is known to make a significant contribution to erosion and 

transport of fine intertidal sediment (Widdows et al., 2009). Hence, macrobenthos, and 

especially Corophium, is considered the driving destabilising factor in our sampling 

plots, and, at least indirectly, a critical trigger in the mud deposition and erosion cycle on 

the long-term timescale. A recent flume study investigating the influence of Corophium 

on erodability of cohesive sediments, concluded that Corophium at densities of 20,000 

ind./m² significantly influenced sediment stability, measured as an increase in 

suspension erosion rate (Chapter 5). However, bed erosion proved unlikely to occur 
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under normal flow conditions in the IJzermonding, because calm flow conditions (0.2 

m/s, equivalent to a shear stress of ≈ 0.096 N/m²) are lower than the measured critical 

shear stresses (0.12 – 0.18 N/m²) in the flume. Nevertheless, bed erosion could perfectly 

occur under storm conditions, when current and wave energy could cause shear stress 

to be much higher (Chapter 5). This additionally supports the assumption that physical 

forces are of main importance to shape the bed morphology.  

Despite this clear observational evidence, the explained variance for the regression of 

bed level variation is quite low. This supports the complex relationship between all 

interdependent factors governing bed level variation (chla, Corophium density, Hediste 

density, other macrobenthos density and mud content), that were retained in the model 

and the external factors (e.g. local hydrodynamics, temperature, sunshine, …) interacting 

with them. To gain further insight into the driving environmental variables shaping bed 

morphology, future research should further disentangle the relationships between all 

those interdependent factors. Wood and Widdows (2002) argued that bed morphology 

is the net result of different processes dominant at different times, and that changes over 

long timescales are the balance of larger changes occurring over shorter timescales. In 

addition, our data suggest that external physical forces directly influence bed 

morphology, while the biotic and abiotic variables indirectly influence erosion and 

deposition processes by changing sediment stability, and thereby making the sediment 

to a greater or lesser extent susceptible to erosion or accretion. Therefore, it is 

important to include data on external physical forces in future regression models on bed 

morphology of tidal mudflats. 
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CCHHAAPPTTEERR  77  
GGEENNEERRAALL  DDIISSCCUUSSSSIIOONN::    

IIMMPPLLIICCAATTIIOONNSS  FFOORR  TTIIDDAALL  FFLLAATT  MMOORRPPHHOOLLOOGGYY  
 

The overall aim of this PhD study was to assess the impact of the mud shrimp, Corophium 
volutator, on its biophysical environment. Therefore, the previous chapters of this thesis 
presented and discussed results from several micro- and mesocosm experiments as well as 
from a field survey, dealing with different aspects of the bioturbation process (Chapters 2, 3 
and 4), and the consequences of bioturbation on the erodability of the sediment (Chapters 
5 and 6). In this last chapter, I integrate this newly gathered knowledge into a discussion 
on the ecosystem engineering effects of Corophium volutator. At the same time, I put 
forward some hypotheses on the implications for the tidal flat morphology. It is important 
to bear in mind that these are hypotheses, and as such need further scientific verification. 
Consequently, these hypotheses should be considered topics for further research. 

1. Ecosystem engineering by Corophium volutator  

van de Koppel et al. (2001) suggested the existence of alternate stable states in tidal flats 

with low bottom shear stress. At one end of the equilibrium, there is a highly productive 

state with a high amount of primary producers, characterised by high diatom biomass, 

high silt content and low levels of erosion. The state at the other end of the equilibrium 

has a low primary productivity and is highly erodable. Hence, both diatom cover and silt 

content are low, but secondary production by macrobenthos can be high. The high silt-

high diatom state is maintained by a positive feedback governing the diatom-silt 

interactions (van de Koppel et al., 2001). Actual shifting from one state to the other in 

the system is expected when the positive feedback is broken by crossing critical 

thresholds (Bouma et al., 2009a). For instance, a seagrass vegetated stable state can 

collapse when turbidity of the water increases above a certain threshold turbidity, 

because the growth is inhibited by limited light availability (Van der Heide et al., 2007), 

or a certain threshold density of shoots is needed for the formation and persistence of 

Spartina tussocks, because as such they are able to modify the environment to their own 

advantage (Bouma et al., 2009b). If the system is close to a critical threshold, resilience 

is low and only little disturbance is needed to trigger the shift (Van der Heide et al., 

2007). However, it is possible that a system never reaches the stable state due to 

continuous perturbation by, for instance, the weather (van de Koppel et al., 2001). 
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We found evidence that the presence of Corophium in a tidal mudflat induces changes in 

sediment characteristics, which suggest that the sedimentary system shifts from a mud 

dominated system to a muddy sand system. Although, Corophium at densities of 15,000 

ind./m² significantly reworked the sediment, no evidence was found for differentiation 

between sediment fractions in downward transport (Chapter 3). Both the fine fraction 

and the coarser fraction were transported at similar rates, and with a similar vertical 

depth profile. Nevertheless, results from the microcosm experiment in Chapter 4 and 

from the field study (Chapter 6) both showed evidence for a coarsening of the surface 

sediment layer in the presence of Corophium. These results strongly indicate that 

disruption of the sediment surface during scraping and active resuspension by 

Corophium through flushing of the burrows (Chapter 2), causes a segregation in 

sediment fractions at the sediment surface. The finest particles are washed away with 

the overlying water (measured in Chapter 5 as a significant increase in suspended 

sediment concentration in presence of Corophium). These particles might be captured 

from the water column by diatom mats (de Brouwer et al., 2000), dense aggregations of 

tube worms (Montserrat et al., 2008) or by vegetation (Bouma et al., 2005), while the 

coarser particles settle relatively fast. This mechanism causes a decrease in mud or clay 

concentration at the sediment surface (Chapter 4; Chapter 6). Similar mechanisms were 

attributed to the lugworm Arenicola marina in the German Wadden Sea, which was 

suggested to prevent the succession from sand towards mudflats (Volkenborn et al., 

2007), and to the cockle Cerastoderma edule, which caused a selective removal of fine 

material from the surface sediment (Montserrat et al., 2009). Moreover, Corophium 

grazes on the biofilm, and thereby reduces the diatom cover (Gerdol and Hughes, 1994b; 

Chapter 6). Hence, less fine sediment particles are accumulated by the diatom film and 

resistance against erosion decreases (de Brouwer et al., 2000; Yallop et al., 2004). 

Additionaly, in the Bay of Fundy (Canada) and in intertidal mudflats in southeastern 

England, an increase in sediment stability was observed after removal of Corophium, due 

to bird predation and spraying with insecticide, respectively. This increase in sediment 

stability was as well attributed to an increase in diatom productivity without grazing 

pressure of Corophium (Daborn et al., 1993; Gerdol and Hughes, 1994b). 

Therefore, the presence of Corophium at sufficiently high densities might act as a critical 

threshold to direct the tidal flat system towards the stable state with lower mud content 

and lower diatom cover by disrupting the positive diatom-silt interactions. Averaging of 
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the environmental variables measured during the field study over density classes of 

Corophium, support the suggested hypothesis (Fig. 1). Loss of fine sediment particles is 

supported by the exponential decrease and increase of respectively mud content and 

median grain size with increasing densities of Corophium (Fig. 1 a & c). The sudden 

collapse of fucoxanthin concentration at densities higher than 5,000 ind./m², indicate 

the possible disruption of the positive diatom-silt interaction due to a lower diatom 

biomass caused by grazing (Fig. 1d). This all contributes to a less stable system, which is 

more susceptible to erosion (Fig. 1e & f), and which supports the low silt-low diatom 

state defined by van de Koppel et al. (2001). However, tidal flats are in general 

characterised by small-scale patchiness (cm to m scale) (Kendall and Widdicombe, 

1999; Ysebaert and Herman, 2002). Moreover, the distribution of Corophium in the field 

shows a high degree of small-scale patchiness (Lawrie et al., 2000) and the bioturbation 

effects of the patchy distributed Corophium might thus create a patchwork of areas with 

lower mud content and lower diatom cover alternated with areas with higher mud 

content and higher diatom cover, just as observed in mudflats. In general, biofilm-grazer 

interactions are often important in determining the spatial heterogeneity (Hillebrand, 

2008). Thereby, biofilms drive some central ecosystem functions such as primary 

production and nutrient cycling in mudflats (Decho, 2000), whereof other species 

depend. In that respect, the diatoms can be regarded as key stone species in the tidal flat, 

while Corophium is an important ecosystem engineer affecting the diatoms (seasonally) 

by grazing, physical disturbance and changes in nutrient cycling (this study and e.g. 

Daborn et al., 1993; Gerdol and Hughes, 1994a; Biles et al., 2002; Dyson et al., 2007).  

Density of Corophium appears to be an important threshold triggering the changes in the 

tidal flat ecosystem, since impacts at low densities proved to be small (Chapters 3, 4, 5; 

Fig. 1). In Chapter 3, no significant effect of sediment reworking was detected at 

densities of 2,000 ind./m², and in Chapter 4, only at the high density of 20,000 ind./m², a 

significant decrease of the clay fraction was found. Furthermore, in chapter 5, 

erodability became only clearly apparent at 20,000 ind./m², while at lower densities the 

effects of Corophium on critical shear stress and critical erosion velocity were negligible. 

Nevertheless, organisms with low impact at the individual level can have huge ecological 

effects, providing they occur at sufficiently high densities over large areas and for a 

sufficiently long period of time (Lawton, 1994). Figure 1 indicates that a density of 

Corophium of approximately 15,000-20,000 ind./m² is necessary, to establish clear and 
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persistent ecological effects on the biophysical environment. Further increase in density 

appears not to stimulate further changes in the investigated biophysical parameters, but 

the established environmental settings are maintained.  

 

 

Figure 1 a - f: Relationships between density classes of Corophium volutator and biophysical parameters of 
the sediment, (a) mud content, (b) water content, (c) median grain size, (d) fucoxanthin concentration, (e) 
sediment stability and (f) erosion/accretion measured as bed level changes between successive surveys. Data 
points indicate averages±SE of the available data per density class collected during the field survey presented 
in Chapter 6. 
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2. Corophium volutator and habitat succession 

Corophium is often dominant at the interface between the intertidal flat and the salt 

marsh (Beukema and Flach, 1995). The low salt marsh zone, also called pioneer zone, 

where primary colonisers such as Salicornia spp. and Spartina spp germinate (Long and 

Mason, 1983), might therefore be most susceptible to the ecosystem engineering effects 

of Corophium. Direct inhibition of the salt marsh pioneer Salicornia europaea was 

observed by Gerdol and Hughes (1993), who concluded that disturbance of the surface 

sediment by bioturbation of Corophium buries the seeds, which inhibits germination, 

and prevents the Salicornia seedlings to achieve root anchorage. In addition, indirect 

inhibition through habitat modification by bioturbating invertebrates can also prevent 

the development of suitable pioneer conditions (high silt content, accretion of sediment 

by benthic diatoms, higher critical erosion threshold) for salt marsh development 

(Hughes, 2001; van Wesenbeeck et al., 2007). For instance, Arenicola marina was 

observed to negatively interact with the settlement of Spartina anglica through 

modifying the habitat by a decrease in silt content, bulk density and sediment stability, 

and through continuous stirring which resulted in burial of the seeds (Van Wesenbeeck 

et al., 2007). Similarly, the sand prawn Callianassa kraussi excluded the eelgrass Zostera 

capensis in a South-African coastal lagoon due to high sediment transport, increased 

surface burial and greater penetrability (Siebert and Branch, 2006). If, as suggested 

above, Corophium promotes low mud, low diatom and more erosive conditions, this is an 

additional argument to postulate that salt marsh expansion is indirectly counteracted by 

the presence of Corophium, and as such Corophium protects its own habitat by inhibiting 

salt marsh development. On the other hand, it may seem contradicting that Corophium 

activity results in erosion, because a coarser sediment with a lower mud content 

improves the habitat conditions for competing species, e.g. Cerastoderma edule or 

Arenicola marina. Both species are known to have their natural abundance peak in fine 

to medium sands, with an optimum between 100 and 150 µm for Cerastoderma and 

around 155 µm for Arenicola (Ysebaert et al., 2002b). Moreover, bioturbation effects by 

these two species are known to negatively affect Corophium by interference competition 

(Jensen, 1985; Beukema and Flach, 1996), and as such they might displace Corophium 

volutator. However, turbulence is normally low in the upper part of the mudflats where 

Corophium occurs, and sedimentation of fine particles will probably continuously take 
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place in these areas. Consequently, by its eroding activity in the high intertidal, 

Corophium counteracts the sedimentation to provide for its own survival against 

establishment of salt marsh plants, but due to this continuous sedimentation and the 

more stressful environment in the high intertidal where Corophium lives, species like 

Cerastoderma and Arenicola have difficulties to survive in this upper tidal flat area. 

Nevertheless, on the lower parts of the tidal flat, where sedimentation and 

environmental stress is lower, Corophium is mostly outcompeted by larger bioturbating 

species, and in Köningshafen Sylt (Wadden Sea), Corophium disappeared even in the 

upper tidal area because sand accretion due to sea level rise at the salt marsh edge, 

facilitated Arenicola and inhibited Corophium (Reise et al., 2008). However, in absence of 

these competing species on the tidal flat and in presence of suitable sediments, the 

spatial range of Corophium might even extend towards the lower tidal areas, although in 

lower densities, as is the case in the IJzermonding tidal flat (Wittoeck et al., 2004).  

Furthermore, the high intertidal area on tidal flats is by many intertidal benthic species 

used as nursery area, e.g. by Macoma balthica (Hiddink and Wolff, 2002 and references 

therein). Destabilisation of the sediment, inhibition of microphytobenthos development 

and changes in sediment chemistry are known to indirectly affect juvenile recruitment 

(Woodin et al., 1995; Woodin and Marinelli, 2002; Van Colen et al., 2009). Therefore, I 

assume that physical ecosystem engineering by Corophium in the upper tidal flat, 

together with the changes Corophium causes in sediment chemistry (Pelegri et al., 

1994a; Emmerson et al., 2001; Biles et al., 2002; Bulling et al., 2008), might affect or 

even inhibit juvenile recruitment. In each case, negative effects on Hediste diversicolor 

recruitment by Corophium bioturbation, have been suggested by Olafsson and Persson 

(1986). To my knowledge, no other studies have been performed to study the effects of 

Corophium bioturbation on juvenile recruitment, but this could be an interesting angle 

for further research. 

Given its ecosystem engineering, the different biotic interactions and its trophic position 

in the food web, Corophium can be considered a vital link in the functioning of the tidal 

flat ecosystem. For that reason, it is an important species in the conservation of these 

ecological and economical important habitats. Corophium is especially important in the 

functioning and preservation of the high intertidal area, because there it attains high 

densities and it is often the species dominating sediment processes in this area of the 

mudflat. Assuming Corophium preserves the mudflat by counteracting the seaward salt 
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marsh expansion, it contributes to a gradual transition between the low intertidal flat 

and the salt marsh. This might be important in dissipating wave energy, and thus reduce 

the risk of salt marsh erosion or flooding low-lying land, especially in view of the 

possible increase in storm surges due to climate change. Moreover, anthropogenic 

disturbances such as for instance dredging or dredge disposal (e.g. Newell et al., 1998), 

hypoxia (Van Colen et al., 2008) caused by eutrofication or global warming or toxic 

chemicals (Lenihan et al., 2003) can cause mass mortality in tidal flats, where the 

defaunated areas can cover several km² (Diaz and Rosenberg, 1995). Once, the 

disturbance disappears, macrobenthic recovery may occur and Corophium might play an 

important role in recovery. In a defaunation experiment on the Swedish west coast, 

Corophium was a pioneer species in recolonisation, showing an opportunistic response 

(overshoot in abundance in defaunted plot compared to control) after 30 days (Norkko 

et al., 2006a). Since Corophium is a mobile species and capable of active habitat selection 

(Hughes, 1988; Lawrie and Rafaelli, 1998), it reacted on the absence of large 

bioturbators (Arenicola in this case) and on the ample supply of food, a 

microphytobenthic mat growing on the defaunated plots (Norkko et al., 2006a). This 

example shows that Corophium is capable of playing an important role in recovery of 

disturbed tidal flats ecosystems by improving the environmental conditions for later 

colonisers. 

3. Considerations on site-specific features: feeding mode, 
sediment properties and inundation time with 
perspectives for future research 

The field data from this PhD study are derived from the upper shore of a sheltered, tidal, 

muddy flat with cohesive sediments (avg. mud content = 46 ± SD 16%, avg. clay content 

= 10% ± SD 5% and avg. median grain size = 103 ± SD 58 µm) and with benthic diatoms 

as an important source of primary production. This is often the environment where 

Corophium volutator thrives, and where I hypothesise that in such an environment 

Corophium destabilises its physical environment by decreasing the mud content and the 

diatom biofilm.  

It has, however, been proven that conditional outcomes depending upon environmental 

constraints can cause inconsistent patterns (Norkko et al., 2006b; Rossi et al., 2008). 
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Therefore, site-specific environmental features such as sediment properties, inundation 

time, flow velocities, phytoplankton concentration and the feeding mode depending 

thereupon, … could show a different picture of the effects due to Corophium bioturbation 

(Fig. 2). For instance, on a wave-exposed flat in the Danish Wadden Sea with non-

cohesive sediments (mud content ≈ 10%) , Corophium was observed to accumulate 

sediment, resulting in sediment elevations raising circa 5 cm above the surrounding 

sediment (see also Table 1 in Chapter 1; Mouritsen et al, 1998). Densities of > 100,000 

ind./m² were recorded in these sediment bed elevations. The different sediment 

composition of this tidal flat might be at the origin of these contrasting observations. 

The natural sediment (cohesive versus non-cohesive) will probably play a very 

important role in determining the physical effect of Corophium on its environment     

(Fig. 2). Cohesive sediments form a coherent mass because of electrochemical 

interactions between the sediment particles (a clay content of 5-10% is needed), while 

non-cohesive sediments have a granular structure and the individual sediment particles 

do not stick together (Van Ledden et al., 2004). When Corophium burrows in non-

cohesive sediments, the mucus secretions, used to build its burrow are probably much 

more effective in providing a glue between the grains (cf. Meadows et al., 1990) 

compared to in cohesive sediments. In that respect, Corophium adds cohesion to non-

cohesive sediments and that can enhance sediment stability as observed by Meadows et 

al. (1990) (Table 1 in Chapter 1; Fig. 2). Therefore, it would be very interesting to 

further examine the ecosystem engineering effects of Corophium volutator in a non-

cohesive tidal flat system. In addition, a shift in feeding mode might further enhance the 

opposite effects, because a different feeding mode might result in a different 

modification of the sediment characteristics (Fig. 2). Recently, it was shown that filter 

feeding by Corophium is more important than hitherto believed, at least in Danish fjord 

systems (Möller and Riisgård, 2006; Riisgård and Schotge, 2007). Corophium can switch 

between filter feeding and deposit feeding, with the phytoplankton concentration of the 

water acting as a triggering factor: above a threshold of 0.5-5 µg chla/l, Corophium was 

observed to predominantly filter feed (Möller and Riisgård, 2006; Riisgård and Schotge, 

2007). The link between flow velocity and filter feeding by Corophium was not 

investigated in these studies, but for other animals that are known to switch feeding 

mode, an increase in flow velocity triggered filter feeding as well (e.g. spionid 

polychaetes Miller et al., 1992; Macoma balthica Peterson and Skilleter, 1994; Pygospio 
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elegans Herman et al. 2000). Filter feeders can accelerate the settling of organic particles 

considerably by their activities (Miller et al., 1992; Malmqvist et al., 2001), since they 

meet their nutritional demands by extracting suspended particles (e.g. phytoplankton) 

from ventilation currents (Riisgård and Larsen, 1995), thus enhancing the deposition at 

the sediment surface directly in the form of biodeposited faecal pellets (Graf and 

Rosenberg, 1997; Norkko et al., 2006b). When in the Danish Wadden Sea, as observed in 

Danish fjord systems, the dominant feeding mode of Corophium in these more sandy 

systems would have been filter feeding, the effects on sediment dynamics could be 

totally different: biodeposition could take over, and fine sediment particles could get 

captured and deposited on the surface (Graf and Rosenberg, 1997). Furthermore, if 

Corophium filter feeds, the burrows probably have chimney-like extensions of 1 to 1,5 

mm above the surface (Meadows and Reid, 1966; cf. filter feeding by Hediste diversicolor, 

Christensen et al., 2000). At high densities of Corophium, these protruding ‘chimneys’ 

increase the roughness density (i.e. the ratio of planar area of the roughness elements to 

total bed area) and attenuate flow velocity, favouring biodeposition (Friedrichs et al., 

2000). This phenomenon of altered hydrodynamics by animal tubes with deposition of 

fine sediment was also described for the polychaetes Lanice conchilega (Rabaut et al., 

2007) and Pygospio elegans (Montserrat et al., 2008), which both are known to stabilise 

the sediment surface resulting in elevations above the sediment surface. Moreover, 

biodeposition of silt or clay particles in a non-cohesive tidal flat could again result in a 

shift towards cohesive sediment in the Corophium patches, further increasing stability, 

and causing the sediment bed elevations observed by Mouritsen et al. (1998). Of course, 

this is an assumption, and hence the consequence of switching feeding modes needs 

more attention. It would be very interesting to set-up an experiment where the influence 

of feeding mode on sediment characteristics and sediment stability could be further 

investigated. Additional support for the assumption that feeding mode could be an 

important feature influencing sediment stability, is offered by Hediste diversicolor. 

Hediste is also known to switch feeding modes (Vedel, 1998; Riisgard et al., 1996) and 

also for this species both stabilising and destabilising effects have been observed 

(Widdows et al., 2009 and references therein).  
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Another feature, that could possibly cause site-specific differences is the inundation 

time. In this study, inundation time was 3h in all experiments, which was based on the 

period of inundation in the field. On other tidal flats inundation can be up to 9h or even 

more, and might result in more distinct changes. Activity proved to be very low during 

emersion, only scraping the sediment surface (≈ deposit feeding) continued during the 

entire tidal cycle (Chapter 2). This could have had its impact on the sediment reworking 

activities of Corophium, which were much lower compared to other studies (Chapter 3). 

Nevertheless, already in this study with short inundation time, ecosystem engineering 

effects of Corophium are considerable (first paragraph). However, further research on 

this subject is needed, and an experimental set-up as in Chapter 3 with different tidal 

regimes as treatment could be a first step to elucidate the influence of the tidal regime 

on sediment reworking. 

4. Conclusion 

The general objective of this thesis was to study the impact of the mud shrimp 

Corophium volutator on its biophysical environment. Both the experimental and field 

data from this thesis confirm that Corophium volutator is an important ecosystem 

engineer that modifies its biophysical environment through changes in sediment 

composition, water content, biofilm productivity and sediment stability. Hereby, it 

improves its own survival in the high intertidal and affects other species. Furthermore, 

Corophium plays an important role in sediment mixing, which has implications for 

downward particle and organic matter transport, and thus for decomposition and 

mineralisation processes in the sediment. For all the observed impacts, density proved 

to be an important parameter: significant changes were only observed from 5,000-

10,000 ind./m² onwards. Therefore, disappearance or density declines of Corophium 

could have huge consequences for the tidal flat ecosystems, where these burying 

amphipods thrive, and shape their abiotic and biotic environment.  

Finally, the answer to the title question “The mud shrimp Corophium volutator: a key 

species in tidal flat sedimentary processes?” is clearly ‘YES’, on the condition that the 

species is abundantly present in the tidal flat in question. 
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AAPPPPEENNDDIIXX  11  
SSUUPPPPLLEEMMEENNTTAARRYY  MMAATTEERRIIAALL  

 

SUPPLEMENTARTY MATERIAL TO CHAPTER 2 

Table 1: Summary of the one-way ANOVA results for the different surface and subsurface activities with 

‘tidal period’ as categorical predictor. 

Variable Source of variation SS df MS F p 

Surface crawl Intercept 28115 1 28115 92 < 0.0001 
 Tidal period 18514.4 2 9257.2 30.3 < 0.0001 
 Error 134419.3 440 305.5   

Swim Intercept 463.6 1 463.6 6.6 0.01 
 Tidal period 851.2 2 425.6 6.1 0.0025 
 Error 30839.8 440 70.1   

Scrape Intercept 969.2 1 969.2 96.2 < 0.0001 
 Tidal period 612.4 2 306.2 30.4 < 0.0001 
 Error 4434.5 440 10.1   

Flush Intercept 623.4 1 623.4 9.8 0.0019 
 Tidal period 1144.5 2 572.2 9.0 0.00015 
 Error 28055.6 440 63.8   

Surface inactivity Intercept 2842647 1 2842647 4288.9 < 0.0001 
 Tidal period 93259 2 46630 70.3 < 0.0001 
 Error 291628 440 663   

Ventilate and feed Intercept 327171 1 327171 269.6 < 0.0001 
 Tidal period 97041.1 2 48520.5 40 < 0.0001 
 Error 180815.5 440 1213.5   

Subsurface walk Intercept 3677.4 1 3677.4 78.8 < 0.0001 
 Tidal period 1099.8 2 549.9 11.8 < 0.0001 
 Error 6956.7 440 46.7   

Bulldozing Intercept 35.6 1 35.6 6 0.016 
 Tidal period 72.5 2 36.2 6.1 0.0029 
 Error 887.4 440 5.9   

Subsurface inactivity Intercept 70.3 1 70.3 266.9 < 0.0001 
(asin(sqrt)) Tidal period 26.2 2 13.1 49.8 < 0.0001 
 Error 39.2 440 0.3   
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SUPPLEMENTARTY MATERIAL TO CHAPTER 3 

 

Figure 1: Oxygen profiles for the five different bioturbation treatments on the three sampling occasions. 

Oxygen was measured with Unisense oxygen microsensors (type ox25) with vertical increments of 100 µm. 
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 Figure 2: Overview of the vertical distribution of luminophores for the different treatments at day 14 on the 

basis of analysed images from five different depth layers (continued on next page). 
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Figure 2 continued  
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SUPPLEMENTARTY MATERIAL TO CHAPTER 6 

 

Figure 3: SIMPROF dendrogram based on measured environmental variables (mud content, chla, water 

content and median grain size) from the first sampling occasion. 
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