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The European Seabass (Dicentrarchus labrax) is a slow-growing late maturing fish. The northern stock has been declining since 2010 and is
thought to be caused by a combination of fishing and weak year classes. Large inter-annual variation in settlement has been observed, so a
better understanding of the mechanisms driving settlement success will aid interpretation of the variation between years, and help to im-
prove the stock assessment models and management strategies. In this study, an individual-based model (IBM) was developed to investigate
the factors affecting sea bass settlement on nursery grounds of the northern sea bass stock. The IBM was coupled with hydrodynamics to
track particles, whereas egg and larval development, and vertical migration behaviour are fully incorporated. The IBM successfully predicted
inter-annual differences in settlement regardless of larval behaviour. The highest settlement success was predicted with neutrally buoyant
eggs, hatchlings, and larval stages, in combination with tidal migration at the final larval stage. Dispersal was driven mainly by the influence of
wind on residual currents and water temperature, with warmer temperatures reducing the duration of the pelagic phase and stronger current
increasing the potential to drift further. Eggs spawned in the central western English Channel settled in both England and France, with move-
ment from the central to the eastern English Channel occurring only in warm years. Larval duration was driven by water temperature and
showed an increase in duration from the southwest to northeast areas of the northern stock. The results are discussed in the context of sea
bass management and conservation strategies.

Keywords: European sea bass, individual-based particle tracking model, larval migration behaviour, oceanographic conditions, pelagic stage
modelling.

Introduction
Understanding the relationship between the adult stock and

number of young fish recruiting to that stock (the stock–recruit-

ment relationship) has been studied for many years (e.g. Beverton

and Holt, 1954). Predicting this relationship remains one of the

foremost challenges in fisheries science (Houde, 2008; Subbey

et al., 2014) as it underpins reference points for sustainable fish-

ing, but is often obscured by large inter-annual variability and

autocorrelation between the environmental factors that drive re-

cruitment. The pelagic egg and larval phases (hereafter termed

pelagic phase) has been well studied in many marine systems in-

cluding coral reefs (Munday et al., 2009), intertidal rocky shores

(e.g. Gaines and Roughgarden, 1985; Caley et al., 1996), and fully

marine environments (Bolle et al., 2009). Marine systems de-

scribed as “open” (Roughgarden et al., 1985; Hyder et al., 2001)

often have the potential for protracted larval dispersal (Gaines
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et al., 2007; van der Molen et al., 2007). Consequently, the pelagic

phase is important in determining the variability in year class

strength of many fish (van der Veer et al., 2000), but the underly-

ing influencing factors are poorly understood (Houde, 2008;

Subbey et al., 2014).

To improve understanding of the pelagic larval phase of ma-

rine fish, mathematical models have been developed including

simple statistical approaches (Subbey et al., 2014), non-spatial

structured population models (Hyder and Nash, 1998), and spa-

tially explicit particle tracking approaches combining both hydro-

dynamics and individual dynamics (van der Veer et al., 1998; van

der Molen et al. 2007; Savina et al., 2010; Rochette et al., 2012;

Lacroix et al., 2013; Tiessen et al. 2014). Individual-based models

(IBMs) are popular tools to aid interpretation of ecological and

evolutionary processes (DeAngelis and Grimm, 2014). IBMs have

been used to model fish populations (DeAngelis and Mooij,

2005), and incorporate behaviours including shoaling (Jeon et al.,

2013; Accolla et al., 2015) and migration (Okunishi et al., 2009).

For example, the movement towards nursery areas has been mod-

elled using IBMs that include vertical migration for European an-

chovy (Ospina-Alvarez et al., 2012) and sole (Savina et al., 2010;

Lacroix et al., 2013), and consistent directional movement along

a river towards nursery grounds (Baetens et al., 2013). IBMs cou-

pled with hydrodynamic models have been used to assess the

temporal distribution of larvae (van der Molen et al., 2007), the

importance of passive drift for variation in year class strength

(van der Veer et al., 1998; Tiessen et al., 2014), the supply of lar-

vae to coastal nursery grounds (Rochette et al., 2012), and link

larval supply and habitat models (Rochette et al., 2013).

The European sea bass, Dicentrarchus labrax, is distributed

across the North-East Atlantic from northwest Africa to southern

Scandinavia, with individuals present in the Mediterranean and

Black Seas (Pickett and Pawson, 1994). Sea bass in the northern

stock are relatively slow growing fish that can reach up to 30 years

of age and take between 4 and 7 years to reach maturity (Pawson

and Pickett, 1996). Mature sea bass aggregate to spawn between

February and April from the Celtic Sea to the southern North Sea

(Dando and Demir, 1985; Sabriye et al., 1988; Jennings, 1990).

The geographic extent of spawning is thought to be bounded by

the 9 �C isotherm and can expand both as the season progresses

and in warmer years (Pickett and Pawson, 1994).

Spawning involves the release of ripe ova in two to three

batches over a two- to three-week period (Mayer et al., 1990).

The pelagic phase of sea bass lasts between 50 and 70 days

(Jennings and Ellis, 2015) and dispersal brings a proportion of

the larvae to the vicinity of nursery grounds in estuaries, salt

marshes, and other sheltered coastal sites. From around 4 years of

age, the juveniles become widely distributed in coastal waters be-

fore joining the adult population once mature (Pawson et al.,

2007). Settlement in the northern stock is highly correlated with

temperature with poor settlement in cold years (ICES, 2012).

Temperature may act as a direct stressor affecting survival of ju-

veniles in nursery areas and could also be correlated with meteo-

rological processes driving egg and larval drift patterns. Genetic

studies show limited distinction between stocks (Fritsch et al.,

2007), and tagging studies have shown large migrations of bass

(Pawson et al., 2007; Quayle et al., 2009) with some evidence of

philopatry, where adults return to the same coastal site after

spawning each year (Pawson et al., 2008).

Sea bass is a high value fish that is exploited by commercial

fisheries (ICES, 2012) and is an important species for recreational

anglers with removals constituting around 25% of the total har-

vest in 2012 for the northern stock (Armstrong et al., 2013). Bass

are currently managed in four discrete regions: (i) Iberian Coast;

(ii) Bay of Biscay; (iii) west of Scotland and south and west of

Ireland; and (iv) North Sea, English Channel, Celtic Sea, and Irish

Sea (ICES, 2012). Scientific assessments of the northern stock

have shown a rapid decline in the spawning stock biomass (SSB)

since 2010 attributed to a succession of weak year classes from

2008 to 2012 and increased fishing mortality (ICES, 2015). The

stock exhibits very large inter-annual variability in settlement,

most probably driven by environmental factors. To conserve the

stock, significant reductions in the harvest of sea bass have been

implemented by the European Commission through seasonal and

area closures, increasing the Minimum Conservation Reference

Size to 42 cm, monthly boat limits or bycatch limits for commer-

cial fishers, and bag limits for recreational anglers (Council

Regulation (EU) 2107/127). Similar patterns were observed in the

late 1980s that led to a number of conservation measures includ-

ing the designation of bass nursery areas (BNAs) around England

and Wales to protect aggregations of fish below the minimum

landing size (Pickett and Pawson, 1994).

In this study, factors affecting settlement of juvenile sea bass were

investigated on nursery grounds in the North Sea, English Channel,

Celtic Sea, and Irish Sea (the “northern stock”—ICES Areas IVb&c,

VIIa, d–h). An IBM was developed that coupled hydrodynamics

and particle tracking with a pelagic phase model that included egg

and larval development and vertical migration behaviour. Potential

effects of spawning stock and the spatial and temporal distributions

of spawning were excluded to assess the effect of the physical envi-

ronment on settlement levels, through adoption of a standardized

method of particle release. Model predictions were assessed in terms

of settlement density, spatial patterns, pelagic phase duration, and

inter-annual variation, and were used to select the larval behaviour

that maximized settlement in known nursery areas. The sensitivity

of the settlement patterns to variation in the physical environment

and the connectivity between spawning and nursery grounds were

assessed. The implications of these findings are discussed in the con-

text of management of sea bass.

Material and methods
The particle tracking model combines active and passive trans-

port of a time-evolving “particle.” The aim was to simulate pe-

lagic migration from spawning ground to nursery area, by

defining growth and behaviour that was dependent on the physi-

cal environment. The selection of the most appropriate behaviou-

ral scenario was based on field observation in river estuaries and

other coastal sites defined as BNAs [Bass (Specified Sea Areas)

(Prohibition of Fishing) Order 1990: SI1990 No. 1156] that are

now sampled in support of the Water Framework Directive

(Coates et al., 2007).

The hydrodynamic and particle tracking models
A three-dimensional implementation of the Eulerian General

Estuarine Transport Model (GETM—www.getm.eu, Burchard &

Bolding, 2002) was used to derive current vectors and water tem-

peratures for the particle tracking model [General Individuals

Transport Model (GITM)] (Wolk, 2003; Tiessen et al., 2014; van

der Molen et al., 2015). Here, a version of GITM was developed

that simulated sea bass development depending on environmental
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parameters (e.g. temperature) and drift using current fields medi-

ated by position in the water column.

The north-west European shelf setup GETM was run using a

time step of 10 s at a spatial resolution of 0.08 � 0.05�, with 25

vertical sigma layers. The model was forced at open-boundaries

by tidal elevations from Topex-Poseidon satellite altimetry

(Le Provost et al., 1998) and by winds, temperature, and humid-

ity derived from the European Centre for Medium-Ranged

Weather Forecast reanalyses (ECMWF, 2006a, b). The relative

contributions of warm water pockets were not included (e.g. out-

flow pipes from industrial developments such as power stations).

A full description of the model setup and forcing can be found in

van der Molen et al. (2015).

The GITM model allows the pelagic phase to be split into differ-

ent stages that are representative of a type of development and/or be-

haviour. For larval stages, a variety of vertical behaviours have been

implemented including diurnal and tidal migration. Movement of

particles related to buoyancy can also be incorporated, and settle-

ment was simulated by freezing particle motion on reaching a certain

size and/or appropriate physical conditions (e.g. water depth, tem-

perature, salinity, and sea-bed composition) (see Tiessen et al., 2014;

van der Molen et al., 2015 for a full description).

This study focused on the northern sea bass stock in the North

Sea, English Channel, Celtic Sea, and Irish Sea (ICES Fishing

Areas IVb-c and VIIa, d–h) (ICES, 2012). The domain of the par-

ticle tracking model was defined as the area from 48�N to 54.5�N
and 8�W to 8.5�E (Figure 1). The domain was based on sea bass

data from 28 sampled estuaries (Kelley, 1988) and 37 BNAs in

England and Wales [The Bass (Specified Sea Areas) (Prohibition

of Fishing) Order 1990: SI1990 No. 1156; The Bass (Specified

Areas) (Prohibition of Fishing) (Variation) Order 1999: SI 1999

No. 75]. The model domain covers most sea BNAs as sampling of

64 UK waterbodies had not provided evidence of populations of

juvenile sea bass above 54�N (see Coates et al., 2007 for a descrip-

tion of sampling).

Spawning
A total of 46548 individual sea bass eggs (particles) were released

at the surface over the whole model domain (Figure 2); with this

number of particle dictated by available computational resource.

One particle was released in every three longitudinal grid cells

and every second latitudinal grid cell. A total of 1724 particles

were released every 3 days between February and April, with the

3-day interval giving a reasonable representation of simulated en-

vironmental conditions. This release pattern covered the known

offshore spawning grounds and time period of interest (Pickett

and Pawson, 1994), and allowed for uncertainty in observed

spawning areas and water temperature preferences. In addition, it

provided a good balance between computation effort and num-

bers of particles. Although such a release scheme did not replicate

the real spawning distribution, it allowed assessment of the effects

of environmental conditions on connectivity between spawning

locations and coastal nursery grounds. More realistic spatial egg

production scenarios could be developed, but this was not done

as it would make it difficult to assess the effects of environmental

conditions on settlement, and there would be large uncertainties

surrounding the spatial and temporal variation in spawning. To

test the impact of different spawning parameters, post-processing

scripts were used to select particles spawned within certain envi-

ronmental conditions at particular locations. The 9 �C isotherm

has been postulated as the threshold above which bass spawning

occurs (Pickett and Pawson, 1994), and was used to define

spawning areas in the model.

Nursery areas
In the United Kingdom, all non-polluted estuaries from the

Ribble Estuary in the North–West to the Blackwater in the

South–East England are likely to be nursery habitats (Kelley,

1988). In England and Wales, 37 rivers, estuaries, and other

coastal sites have been defined as BNAs for juvenile bass, where

additional restrictions on commercial and recreational fishing are

imposed for all or part of the year [Bass (Specified Sea Areas)

(Prohibition of Fishing) Order 1990: SI1990 No. 1156] (Figure

1). It is very likely that nursery areas occur in other countries

within the northern stock area, with some identified

(e.g. Wadden Sea—Cardoso et al., 2015) and studies underway in

some countries to map these areas (e.g. France).

Sea bass development and vertical behaviour
The pelagic phase of sea bass was split into egg and larval stages

(see Jennings, 1990). One egg and three larval stages (hatchling,

larva, and fry) were defined with distinct sizes, rates of develop-

ment, and behavioural characteristics (Table 1). Sea bass eggs

have been found at or near to the surface (Pickett and Pawson,

1994; van Damme et al., 2011a, b), so were assumed positively

buoyant in the model with an upward velocity of 0.002 m s�1

(Edwards et al., 2008). The resulting vertical positions were

driven by this buoyancy and physical mixing. The development

of eggs was dependent on temperature using an existing relation-

ship (Jennings and Pawson, 1991):

lnðageÞ ¼ a þ bT ; (1)

where T was the temperature and a and b were defined for each

of the 13 egg sub-stages (Jennings and Pawson, 1991). Jennings

and Pawson (1991) also estimated the average hatching age,

where half of the eggs have spawned, as 6.47 and –0.129 for a

and b coefficient, respectively. Assuming a suitable temperatures

range from 8 to 20 �C, the average duration of the egg phase

ranged from 3 to 7.5days, which was consistent with reported

duration in other studies (Olivier et al., 2013). Once hatched,

the hatchling carries a buoyant yolk sac and has limited swim-

ming ability, so it was assumed that hatchlings were positively

buoyant with an upward velocity of 0.003 m s�1 (Edwards et al.,

2008). Hatchlings were initially 1.5 mm in length and the dura-

tion of this stage (D) depended on temperature, using the fol-

lowing equation:

D ¼ 10a=10ðbTÞ (2)

with a¼ 1.89 and b¼ 0.077 (Jennings, 1990). The duration of the

first larval stage was between 1 and 7 days and transition to the

second larval stage occurred at a length of 5.5 mm that corre-

sponded to absorption of the yolk sac (Jennings, 1990).

During the second larval stage, the “larva,” sea bass have a

swim bladder, develop fins, and range from 5.5 to 10.5 mm in

length (http://www.fao.org/docrep/field/003/ac230e/AC230E02.ht

m#ch2.11). Sea bass larvae have some swimming ability, but with

few data on the swimming velocity or direction, the vertical

swimming velocity measured for black sea bass of 0.01 m s�1 was

used (Edwards et al., 2008). No information about the impact of
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temperature on growth at this stage was available, so a constant

larval growth rate of 0.2 mm day�1 was assumed (Jennings and

Pawson, 1992). This gave a stage duration of 25 days that was

consistent with other studies (http://www.fao.org/docrep/field/

003/ac230e/AC230E02.htm#ch2.10).

The final larval stage, the “fry,” has good swimming ability and is

ready to settle on a nursery ground, and was assumed to occur be-

tween lengths of 10.5 and 15 mm. A vertical swimming velocity based

on black sea bass of 0.02 m s�1 was used (Edwards et al., 2008).

A constant growth rate of 0.2 mm day�1 (Jennings and Pawson,

Figure 1. Known sea BNAs (purple/grey) in England and Wales (The Bass (Specified Areas) (Prohibition of Fishing) (Variation) Order 1999, SI
1999, No. 75). Contour lines indicate bathymetry (see online version for colours).

Figure 2. Coastal ICES rectangles (1 � 0.5� subdivisions of ICES Area) (dashed line) containing known BNAs (bold solid line) for the model
domain. Dots indicate potential spawning locations where eggs were released.
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1992) gave a duration of 22.5 days that was consistent with other stud-

ies (http://www.fao.org/docrep/field/003/ac230e/AC230E02.htm#ch2.

10). When larvae are smaller than 15 mm, they are not able to swim

sufficiently fast for long enough to influence dispersal (Leis et al.,

2012), so swimming was assumed not to influence settlement location

significantly. Settlement was considered to have been successful when

a fry of length of 15 mm or above (Jennings and Ellis, 2015) arrived

in a coastal area at a depth of<20 m. The total pelagic phase duration

based on this parameterization ranged between 49.5 and 61.5 days,

and was consistent with the observed field settlement time of 50–70

days (Jennings and Ellis, 2015).

Mortality
Mortality studies generally focus on adult farmed fish (El-Shebly,

2009), but studies have provided constant daily instantaneous mor-

tality rates for the larvae of some fish (Houde, 1989) or derived in-

stantaneous mortality rates from other life history characteristics

(McGurk, 1986). Daily instantaneous mortality has been imple-

mented in some IBMs for egg and larval stages, but were generally

not related to temperature or food availability (Rochette et al.,

2012). A variety of approaches have been used to model mortality

including temperature-dependent mortality for egg and first larval

stages (Lacroix et al., 2013), paritioning instanteous mortality into

baseline and predation effects (Hyder and Nash, 1998), and exclu-

sion of mortality (van der Molen et al., 2007). However, as no mor-

tality rates have been reported for sea bass eggs or larvae in field

conditions (El-Shebly, 2009), the stage duration was used as a

proxy for instantaneous mortality in the model, and was equivalent

as assuming a constant daily instantaneous mortality rate.

Considering the lack of information on sea bass mortality, this as-

sumption was appropriate because only constant mortality rates

could be applied, and was the most flexible approach to maximize

the potential for use of post-processing.

Model behaviour selection
Behaviour was selected from simulated scenarios. First, the spatial

distribution of larvae settling into coastal areas was compared

with known nursery areas. Hence, when larvae did not reach a

coastline encompassing reported nursery areas, larval behaviour

was not considered relevant. Second, relevant behaviour was se-

lected when inter-annual differences in settlement rate between

good and poor settlement years were properly reproduced, with

the same method used to setup model forcing for the relevant pe-

riod. Successful settlement was defined as larvae reaching coastal

areas containing known nursery grounds (Figure 1).

Simulating the pelagic phase
Evaluating the effects of inter-annual variation and larval
behaviour on settlement
Sea bass settlement has high inter-annual variation that is

strongly associated with temperature (ICES, 2012).

Hydrodynamics were simulated using a hindcast GETM model

over the period 1995–2009, and predictions of monthly averaged

salinity and temperature were assessed. In addition, a visual com-

parison between model outputs and yearly averaged SSB mea-

surements from ICES was done over the same period.

Environmental conditions were general similar between years, ex-

cept for the two successive years, 1996 and 1997, which repre-

sented the minimum and maximum reported settlement for the

modelled time period. Computational limitations meant that the

number of years modelled was highly constrained, so two con-

trasting years were chosen based on a settlement index for year

class strength derived from juvenile sea bass surveys conducted in

the Solent since 1977 (Brown, 2013). These were 1996, a poor set-

tlement year (hereafter PSY), and 1997, a good settlement year

(hereafter GSY). The effects of the physical environment, life his-

tory characteristics, and vertical migration behaviours on settle-

ment of sea bass were assessed for both years.

Eulerian GETM runs were used to force GITM simulations

covering the pelagic phase period from February to September.

Environmental parameters and current velocities were extracted

hourly for both years and were used to drive the particle tracking

model GITM. Hydrodynamics and temperature drove the particle

passive motion, development, and growth over the pelagic phase.

The number of particles released depended on the local tempera-

ture distribution. The number of particles settling in known nurs-

ery areas and the percentage of successful settlement were

assessed and compared for both years.

Table 1. Predicted duration and size of sea bass at different pelagic developmental stages, parameters used to model growth, and behaviours.

Phase Egg
Larvae

Stage Egg Hatchling Larva Fry

Development Egg Yolk sac Swim bladder and
development of fins

Swim bladder and active swimming

Duration (days) 3–7.5 1–7 25 22.5
Size (mm) 1.3 1.5–5.5 5.5–10.5 10.5–18
Growth Temperature dependent Temperature dependent 0.2 mm day–1 0.2 mm day–1

Exponential (base e)
increase with temperature

Exponential (base 10)
increase with temperature

(Jennings and
Pawson, 1992)

(Jennings and Pawson, 1992)

(Jennings and Pawson, 1991) (Jennings, 1990b)
Behaviour Drift þ float Drift þ float Vertical migration Vertical migration at 0.02 m s�1

Settles in shallow coastal water
(<20 m) if large enough (15–20 mm)

(0.002 m s�1) (0.003 m s�1) (0.01 m s�1)

Behavioural regime
� Scenario 1 Float Float Diurnal Float when ready to settle
� Scenario 2 Float Float Diurnal Tidal when ready to settle
� Scenario 3 Float Float Float Float when ready to settle
� Scenario 4 Float Float Float Tidal when ready to settle
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Sea bass eggs have been reported as buoyant, but little is

known about larval behaviour. To establish vertical behaviour(s)

leading to successful settlement, several biologically plausible

combinations of vertical migration behaviours (floating, diurnal,

and tidal vertical migration) were implemented for each larval

stage (Table 1). Float was defined as a positively buoyant passive

particle with a constant upward vertical velocity. Diel migration

was defined as a vertical movement up to the surface during day-

light hours and descent to depth at night, and is a commonly ob-

served behaviour of planktonic organisms (Enright and Hamner,

1967). Tidal migration is a tactic used by many organisms to se-

lectively achieve directional movement, where individuals move

up into mid-water during transporting tides (Gibson, 2003). For

both vertical diurnal and tidal migrations, movements occur at

the vertical swimming velocity of the larvae and horizontal move-

ment is passive (advection by ambient currents). Particles were

assigned one of four possible behavioural regimes composed of

combinations of behaviours at different larval stages, and success-

ful settlement was assessed for each behavioural regime (Table 1),

through the number of settlers reaching nursery areas, the associ-

ated number particles settling, and replicating the difference be-

tween the PSY and GSY. The behavioural regime that replicated

these criteria most accurately was selected and used to assess the

importance of physical parameters in successful settlement and

connectivity between spawning and nursery areas.

Assessing the environmental drivers for success of
settlement and pelagic duration
The main environmental drivers in the model are current veloci-

ties, air temperature and wind direction and strength, with air

temperature affecting water temperature and varying with wind.

The differences in residual current velocities between years are

also driven mainly by wind and will dominate the inter-annual

variability in passive dispersal of particles. Wind velocity variabil-

ity among the PSY and GSY was assessed by averaging the wind

strength and direction over the pelagic phase. The differences be-

tween years were used to assess the importance of wind in driving

settlement and pelagic phase duration (proxy for instantaneous

constant mortality) in PSY (1996) and GSY (1997).

Water temperature defines the spawning area and affects

growth, so will influence the location of release, settlement, and

duration of the pelagic phase. Sea bass eggs are sensitive to water

temperature and have been shown to develop at temperatures be-

tween 8.7 and 18.6 �C (Jennings and Pawson, 1991). As a result,

the 9 �C isotherm has been postulated as the threshold at which

bass spawning occurs (Pickett and Pawson, 1994). Post-

processing scripts were used to assess the sensitivity of settlement

to the spawning temperature threshold using the 8, 9, and 10 �C
isotherms, with larger spawning areas at a lower than a higher

temperature threshold. The impact on number of particles re-

leased, numbers settling, and percentage and duration of success-

ful settlement was assessed for the PSY and GSY. As the spawning

extent varies with temperature, only the ratio of the number set-

tling to number released was compared for both years.

Connectivity between spawning areas and
nursery ground
The connectivity between spawning and nursery areas was as-

sessed using model outputs of the locations of spawned particles

that settled successfully across the whole model domain. A more

Figure 3. Monthly averaged temperature for February (a, d), March (b, e), and April (c, f) for poor (1996, a–c) and good (1997, d–f)
settlement years. Contour lines represent the 8 �C (dashed), 9 �C (solid), and 10 �C (dotted) isotherms. Axes are longitude and latitude.
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detailed spatial analysis was carried out for three regions repre-

senting differing environmental conditions: North Sea, English

Channel, Celtic Sea and Bristol Channel, and Irish Sea. Analysis

was performed to link the settlement of particles to spawning at

an ICES area scale that included both transport (released in off-

shore water and settlement in coastal water) and self-seeding

(particles released in a particular coastal area that settle in the

same area) processes. The first of these processes linked different

ICES areas and the second process implied local spawning popu-

lation that supply nursery areas in the same ICES area.

Results
Environmental characteristics over 1996 and 1997
During the spawning period, the area delimited by 9 �C isotherm

in the GSY (1997) gradually expanded with time, whereas in the

PSY (1996), this area contracted slightly over the first two months

and then expanded in April (Figure 3). Temperature gradients

shown by distances among isotherms were much larger in the

GSY (1997) than the PSY (1996) (Figure 3). The averaged wind

field over the period simulated was markedly different in the PSY

(1996) and GSY (1997) (Figure 4). In the GSY (1997) winds were

relatively strong and homogeneous westerlies, but in the PSY

(1996) average winds were more variable with no particularly

clear directionality or strength (Figure 4).

The effects of inter-annual variation
More eggs were spawned in the GSY (Table 2) as warmer sea tem-

peratures increased the area available for spawning (Figure 5).

Settlement in the known BNAs (indicated in Figures 1 and 2) was

predicted to be higher in GSY than in PSY, the only exception was

areas with very low settlement in North Wales (Rivers Conwy and

Dee) and the Teifi Estuary (Table 3). However, the difference in

predicted settlement between the two years was much smaller than

estimated in the stock assessment (ICES 2016) (Table 2). Overall,

more larvae and higher levels of settlement were observed in GSY

than PSY irrespective of behaviour.

The effect of larval behaviour on settlement
Settlement in the Wadden Sea and Morecambe Bay only occurred

in the model when tidal migration occurred (Scenarios 2 and 4),

Figure 4. Wind velocity averaged over the sea bass pelagic phase duration (from February to September) for poor (1996—a) and good
(1997—b) settlement years.

The European sea bass Dicentrarchus labrax (L.) 461

Downloaded from https://academic.oup.com/icesjms/article-abstract/75/2/455/4608921
by Lib Netherlands Inst for Sea Res user
on 11 April 2018

Deleted Text: and 
Deleted Text: while
Deleted Text: Wales


so Scenarios 1 and 3 were excluded from further analysis. Diurnal

migration in the larva stage (Table 1) did not affect the number

settling or nursery areas reached, but stronger larval dispersal was

found with floating behaviour. Similar trends in connectivity were

found for the scenarios including diurnal migration in Stage 3

(Figure 6). In this case, connectivity in the English Channel was

split between the east and west, and was northward in the Irish Sea

and the North Sea. However, connectivity depended on the

behavioural scenario, with the maximum settlement obtained in

Scenario 4 (float, float, float, and tidal) (Table 2). As a result,

Scenario 4 was considered to be the most appropriate, as it pro-

duced the highest settlement and reproduced the PSY and GSY, so

it was used for all subsequent model simulations. The spatial distri-

bution of settlers in Scenario 4 showed that settlement occurred in

most known bass nursery grounds and the highest levels were

found in the southwest United Kingdom (Figure 7a and b). There

was also settlement predicted in the more northerly regions of the

Irish Sea and more broadly across the North Sea (Figure 7a and b).

Assessing the environmental drivers for success of
settlement and pelagic duration

Lowering the spawning temperature threshold led to more eggs

spawned, with larger numbers of settlers in the GSY than PSY

(Figures 3 and 5). More particles were release in PSY than in GSY

at a threshold of 10�C, but the opposite was observed at 8 and

9�C (Table 4). However, number settling was always larger in

GSY than PSY, regardless of the spawning temperature threshold

(Table 4). Settlement was lower and dispersal was over a smaller

area in the PSY than GSY, because of weaker average wind speed

in northerly or westerly directions (Figure 4a). However, in the

warm year (1997), settlement was higher and extended further

north in the Irish and North Seas, with prevailing westerly winds

of on average of 2 m s�1 influenced dispersal (Figure 4b).

The average pelagic phase duration for successful settlement

was only very slightly longer in the PSY (1996 � 75 6 5.5 days)

than in the GSY (1997 � 73 6 5.5 days), but the spatial

Figure 5. Number of eggs spawned between February and April for different temperature thresholds (8, 9, and 10 �C) in poor (1996—a) and
good (1997—b) settlement years.

Table 2. ICES stock assessments estimated in 1997 and 1996 (ICES, 2016), number of particles released in poor (1996) and good (1997)
settlement year, and the predicted numbers and percentage of released particles settling (reaching coastal areas) for spawning at water
temperatures of above 9 �C and behavioural scenarios 1–4 (see Table 1).

Year
ICES stock

assessments
Released
particles

Number settling Percentage settling

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 1 Scenario 2 Scenario 3 Scenario 4

1996 1 024 15 957 1 919 3 105 2 112 3 882 12.0 19.5 13.2 24.3
1997 23 272 18 241 4 011 5 717 4 282 6 591 22.0 31.3 23.5 36.1
Ratio 22.7 1.14 2.09 1.84 2.03 1.70 1.83 1.61 1.77 1.49

Ratio represents the ratio between good (1997) and poor (1996) settlement years. Mortality is not included in those simulations and is investigated later as a
post-process.
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distribution varied between the years (Figure 8a and b). The lon-

gest pelagic stage durations in GSY were located at the extremities

of the model domain (northern Celtic and North Seas), with

shorter durations in southwest England (Figure 8b). In the PSY,

longer pelagic duration was seen in coastal areas, notably on

southern and western coasts in the PSY compared with GSY

(Figure 8a and b). Limited larval dispersal in the PSY meant that

only the southern North Sea was reached in the PSY, but settle-

ment occurred in the northern North Sea nursery areas in GSY,

even with moderate pelagic phase duration.

Connectivity between spawning areas and
nursery grounds
The spawning location of particles that settled successfully

showed a broader distribution in GSY than in PSY (Figure 9).

Large numbers of particles were spawned in deep areas settled

successful, especially in the southern Irish Sea in the GSY and on

the Cornwall promontory in both years (Figure 9). A detailed

analysis of the mean connectivity patterns between spawning and

nursery grounds was performed separately for the Irish Sea,

North Sea, and English Channel. Self-seeding was more common

in GSY than in PSY (Figure 6), with higher levels of self-seeding

in the Irish Sea in GSY driven by sufficiently high sea tempera-

tures for spawning close to nursery grounds (Figure 6e). Less self-

seeding occurred in the central Irish sea in PSY (Figure 6b), yet

successful migration towards the northern Irish Sea was driven by

prevailing south-westerly winds (Figure 6a). The model also

showed strong connections between north Cornwall, Devon, and

Bristol Channel with the Irish nursery areas in both years, with

spawning grounds extending westward in GSY (Figure 6b and e).

Eggs spawned in the central western English Channel could

settle both in England and France, with movement from the

central to the eastern English Channel only found in GSY

(Figure 6a and d).

Discussion
Model performance
Model performance in relation to the larval behaviour scenario

had no effect on inter-annual settlement variability. The vertical

behaviour strategy was selected to make larger numbers of parti-

cles reach nursery areas, and a combination of floating behaviour

for the egg and early-larval stages in which no active vertical mi-

gration occurs, resulted in particles dispersion driven by wind.

Coastward migration was only achieved in the model by imple-

menting tidally synchronized vertical migration, with strong tidal

currents occurring throughout the domain. The importance of

active migration in the final larval stage has been reported for

plaice (Fox et al., 2006) and supports the patterns observed from

our model.

The predicted areas of highest successful settlement showed

good agreement with the main known spawning grounds located

in the English Channel, Celtic Sea, Bristol Channel, and North

Sea (Thompson and Harrop, 1987; Jennings and Pawson, 1992;

Pickett and Pawson, 1994; Fritsch et al., 2007); the annual vari-

ability between the GSY and the PSY was also reproduced. The

model also predicted successful migration to known nursery

grounds in the Wadden Sea (Cardoso et al., 2015) and the

Western Scheldt estuary although at lower abundance in other es-

tuaries and lagoons surveyed (ICES, 2014). Sea BNAs occur in es-

tuaries in France and southern Ireland, although at relatively low

density in most years compared with similar habitats in England

(Fahy et al., 2000). No information on BNAs was available for the

Belgian coast, although the short coastline has few potential habi-

tats for young sea bass.

The observed differences in settlement between the GSY and

the PSY could be driven by a combination of many factors in-

cluding: spawning stock, spawning distribution and success, pre-

dation, food availability, disease, environmental conditions, and

the larval dispersal patterns that we focus on here. The model

Table 3. Locations of known BNAs by ICES rectangle, latitude and longitude, and percentage of released particles settling (reaching coastal
areas) for spawning at water temperatures of above 9 �C and behavioural Scenario 4 (see Table 1).

BNAs ICES rectangle Latitude Longitude 1996 1997 Ratio

Fal Estuary, Percuil River, Helford River VIIf10 50 to 50.5� –6 to –5� 2.71 3.76 1.39
Milford Haven VIIg05 51.5 to 52� –6 to –5� 1.12 3.49 3.13
River Yealm, Plymouth Rivers—Plym, Tamar, Tavyand Lynher,

River Fowey
VIIe03 50 to 50.5� –5 to –4� 2.30 3.08 1.34

River Camel VIIf08 50.5 to 51� –5 to –4� 0.76 1.14 1.50
River Torridge, River Taw VIIf04 51 to 51.5� –5 to –4� 0.71 1.32 1.84
Burry Inlet, The Three Rivers—Taf, Tywi and Gwendraeth VIIf01 51.5 to 52� –5 to –4� 1.47 2.04 1.39
Teifi estuary VIIa22 52 to 52.5� –5 to –4� 0.04 0.07 1.62
River Dyfi, River Mawddach, Dwyryd and Glaslyn Estuary VIIa19 52.5 to 53� –5 to –4� 0.32 0.29 0.89
River Dart, Salcombe Harbour, River Avon VIIe04 50 to 50.5� –4 to –3� 0.66 1.53 2.30
River Exe, River Teign VIIe01 50.5 to 51� –4 to –3� 0.11 0.30 2.67
Aberthaw Power Station Outfall VIIf05 51 to 51.5� –4 to –3� 0.28 0.35 1.25
River Conwy, River Dee VIIa16 53 to 53.5� –4 to –3� 0.16 0.01 0.07
The Fleet VIIe02 50.5 to 51� –3 to –2� 0.13 0.40 3.19
Langstone Harbour, Portsmouth Harbour, Southampton

water, Fawley Power Station Outfall—Stanwood Bay,
Poole Harbour

VIId01 50.5 to 51� –2 to –1� 0.06 0.21 3.79

Chichester Harbour VIId02 50.5 to 51� –1 to 0� 0.00 0.07 –
Dungeness Power Station VIId03 50.5 to 51� 0 to 1� 0.19 0.52 2.65
Grain Power Station Outfall, Kingsnorth Power Station Outfall IVc25 51 to 51.5� 0 to 1� 0.00 0.01 –
Bradwell power station IVc21 51.5 to 52� 0 to 1� 0.01 0.05 7.87

Ratio represents the ratio between good (1997) and poor (1996) settlement years. Map of ICES rectangle delimiting BNA is presented in Figure 1.
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experiments were set up to focus on the effects of larval dispersal

patterns in response to inter-annual differences in environmental

forcing, so only included a subset of these factors and was likely

to be the reason for differences in the magnitude of the ratio be-

tween PSY and GSY. The correspondence between model predic-

tions and observations of higher settlement in the GSY was a

strong indication that hydrodynamic conditions are an important

factor in settlement success of sea bass.

Adult spawning in coastal waters led to higher settlement in

the GSY than in the PSY, highlighting importance of appropriate

spawning conditions in the coastal water for settlement success.

The spatial density of spawning was the same for both the PSY

and the GSY, and only occurred where water temperature was

above a threshold, leading to more particles being spawned in the

GSY or warm year (1997) than for the PSY or cold year (1996). In

reality, the spawning output of the stock will vary between years

and also be a highest at the centre of spawning aggregations

(Fahy et al., 2000), with this centre changing throughout the

spawning season moving eastward in the English Channel as sea

temperatures increase.

Figure 6. Connectivity matrices between spawning and settlement by ICES areas for the whole model domain including Bristol Channel and
Celtic Sea (VIIf, g&h), English Channel (VIId&e), Irish Sea (VIIa), and North Sea (IVb&c) for poor (1996—a) and good (1997—b) settlement
years. Connectivity (number of particles) is coloured according to its strength, with white for no connectivity (0 particle), green for weak
connectivity (1 to 100 particles), orange for medium connectivity (100 to 500 particles), and red for strong connectivity (more than 500
particles). ICES areas with self-seeding (the number of particles that are released in a particular coastal area that settle in the same area) have
bold borders.

Table 4. Number of particles released, numbers and percentage of released particles settling (reaching coastal areas) for different spawning
temperatures thresholds and behavioural Scenario 4 (see Table 1).

Number released Number settling Percentage settling

Year 8 �C 9 �C 10 �C 8 �C 9 �C 10 �C 8 �C 9 �C 10 �C

1996 21 458 15 957 10 810 6 282 3 105 1 069 29.3 19.5 9.9
1997 25 941 18 241 10 611 10 068 5 717 2 127 38.8 31.3 20.1
Ratio 1.21 1.14 0.98 1.60 1.84 1.99 1.33 1.61 2.03

Ratio represents the ratio between good (1997) and poor (1996) settlement years. Mortality is not included in those simulations and is investigated later as a
post-process.
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The present model can be used to predict the settlement pat-

tern for larvae at nursery habitats [Kelley, 1988; Bass (Specified

Sea Areas) (Prohibition of Fishing) Order 1999: SI1999 No. 75],

based on any plausible time-dependent density distribution of

eggs should such data be available for a given year. Currently,

spawning distribution data for sea bass in the northern stock are

limited to egg distribution maps from the early 1980s and one

area in 1990 (Pickett and Pawson 1994). The IBM results pre-

sented here were based on uniform egg distribution, therefore

provided a biased prediction of the numbers of sea bass larvae

reaching nursery habitats relative to numbers of eggs spawned.

However, the model predicted the dispersal patterns from indi-

vidual spawning locations, so indicates physically plausible con-

nectivity between spawning locations and nursery areas and how

this varied between years. Moreover, using the same spawning

pattern for both years allows for closer identification of the con-

tribution of environmental factors influencing larval dispersal on

settlement (see later). For the years examined, the results showed

that there was a greater incidence of shorter distance linkages be-

tween spawning location and nursery areas in the PSY than in the

Figure 7. Number of particles settling in coastal areas in Scenario 4 for poor (1996—a) and good (1997—b) settlement years. Coastal ICES
rectangles (dashed line) that contain known BNAs (bold solid line).
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GSY. As similar trends in main connectivity directions and settle-

ment success based on spawning locations were found for differ-

ent migration strategies, a similar connectivity pattern would be

found with a different spawning distributions despite differences

in numbers of settlers.

Role of hydrodynamics in determining year
class strength
The two environmental factors represented in the model forcing

with potential to cause a difference in the results for the two years

were air temperature and wind stress, leading to differences in

water temperature and residual circulation between the years. In

this area, wind and temperature tend to be related. Westerly

winds associated with Atlantic depressions bring temperate air

from the Atlantic Ocean while enhancing the southwest to north-

east residual circulation. In contrast, northerly and easterly winds,

associated with high-pressure systems over the continent, bring

arctic and/or continental air and stall the residual circulation

(Furnes, 1980; Pingree and Griffiths, 1980). The differences in

(surface) water temperature between the years affected the size of

the spawning area through shifts in the position of the spawning

Figure 8. Average duration of pelagic phase for bass settling in different ICES rectangles for poor (1996—a) and good (1997—b) settlement
years.
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temperature threshold, and affected both development and

growth rates. Hence, environmental changes related to increasing

sea temperature could lead to earlier spawning and broader

spawning area (Politikos et al., 2015), but may also be mediated

by latitudinal variations in day length (Vinagre et al., 2009).

Hydrodynamics drive the variation of water temperature, so

the spatial extent of an area with a temperature above a threshold

varied. For example, in the GSY (1997), the 10 �C isotherm en-

compassed a smaller spawning area than in the PSY (1996). With

fewer eggs released at higher spawning temperatures threshold,

lower settlement was observed, although the success rate was

quite high in PSY compared with GSY. The effect of temperature

on egg and larval stage duration, through growth and develop-

ment rates, was probably under-estimated in the model. This was

due to the assumption of constant growth rates for the last

two larval stages, but a lack of information on temperature-

dependant growth led to this approach. Nevertheless, slightly lon-

ger larval durations were simulated in the cold year (1996),

Figure 9. Number of particles originating from an ICES rectangle (spawning location) that settle in a nursery area for poor (1996—a) and
good (1997—b) settlement years.
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resulting in a longer time to reach the settlement size. Mortality

was not included explicitly because of lack of data, with stage du-

ration used instead as a proxy for mortality (equivalent to assum-

ing a constant daily mortality). Hence, longer stage durations

would also result in higher cumulative mortality. It is not possible

to infer which of these effects would dominate, but it is likely that

the effect was overshadowed in the model by the difference in

wind-driven circulation. The effects of temperature and wind

could be separated further with additional model runs using

winds from one year and air temperatures from another, but was

beyond the scope of the present study.

The difference in wind stress between the two years led to a re-

duction in north-eastward transport in the English Channel in

the PSY (1996) that decreased the number transported success-

fully to UK nursery grounds. In the GSY (1997), westerly winds

predominated, advecting warm oceanic water further eastwards

into the English Channel. This caused more short-distance con-

nections between spawning sites and nursery areas, and led to a

higher proportion reaching nursery areas. At the local level of in-

dividual nursery areas, there were variations on this general

theme, most likely related to the complex topography of the area,

which could not be investigated within this study. The difference

of settlement in the Morecambe Bay for both years was probably

driven by the north-easterly wind, with a stronger wind for the

GSY, even in the case where spawning in offshore waters was

higher in the PSY because of local water temperature. Pelagic du-

ration was negatively correlated with temperature and wind, and

was proportional to the migration distance from the spawning

ground to coastal areas. As a result, it may be possible to use aver-

aged wind direction, influencing residual current and water tem-

perature, as a proxy for successful settlement. This was not

possible within the scope of the current study, but further investi-

gation of the links between annual settlement variability and key

drivers (i.e. wind and temperature) would enable a more thor-

ough quantification of their effect, and help to develop a tool for

forecasting sea bass settlement.

Implications of connectivity on sea bass management
The definition of biological stocks of sea bass in the NE Atlantic

has proved elusive (ICES, 2012). Adult sea bass show strong site

fidelity in the non-spawning period (Pawson et al., 2008) and

then undertake annual migrations of widely differing distances

depending on their location to reach water of appropriate tem-

perature for spawning. The IBM scenarios explored in this paper

show that known nursery areas around southwest England,

southwest Wales and coastal sites in northwest Brittany and

southeast Ireland, are likely to have high settlement rates with

relatively short larval transport connections with the main spawn-

ing sites in the western English Channel and Celtic Sea. As the

spawning season progresses, and particularly in years with stron-

ger westerly winds and warmer conditions, spawning is likely to

penetrate farther east in the Channel and into the North Sea. The

model shows that in years with stronger penetration of warmer

water into the southern North Sea, spawning there can lead to ad-

vection of larvae into nursery areas such as in the Wadden Sea

and estuaries in the Netherlands, or in the Thames.

From a fisheries management perspective, the results of this

study suggest that there is considerable potential for genetic mix-

ing because of larval dispersal leading to weak stock differentia-

tion. Despite the wide and variable dispersal of larvae from

spawning sites indicated by the model, spatial management

measures to reduce targeting of spawning aggregations in only

some areas could have a disproportionate benefit on settlement

of young sea bass in nursery areas, with the strongest transport

connectivity with the spawning sites being protected. For exam-

ple, protection of spawning aggregations in the northeast Celtic

Sea and off the Bristol Channel might have greatest benefit for

settlement to sea BNAs in the Bristol Channel, southwest Wales,

parts of southeast Ireland, and in the Irish Sea. Conversely, pro-

tection of aggregations only in the Western Channel would

mainly benefit nursery areas in both sides of the English Channel

depending on the wind conditions and residual current patterns

driving the larval transport. Finally, protection of spawning ag-

gregations farther east in the English Channel and in the southern

North Sea would have greatest benefits for nursery areas in the

eastern Channel and North Sea. Ultimately, consideration of spa-

tial management measures will need an understanding of where

the fish spawning at any location have migrated from.
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