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Introduction

General introduction
Red macroalgae belonging to the genus Porphyra, (class 

Bangiophyceae, order Bangiales, and family Bangiaceae [1,2]), 
commonly referred to as Nori or Laver, are economically 
important seaweed species used in aquaculture for food, feed 
and fine ingredients [3,4]. Porphyra is therefore researched 
for its primary metabolites and its fine chemicals from 
secondary metabolism [5].

The differentiation of bladed Bangiales species is 
problematic due to their simple morphology and low 
morphological variation within and between species [6,7]. 
Currently, both morphologic identification and genetic 
identification are used. With increasing availability and 
accessibility of genomic identification methods, genetic 
identification is likely to become the main identification 
method [8-11].

In 2011 Sutherland, et al. published a revision of the order 
of Bangiales, [12] resulting in a new identification, based 
on a two-gene phylogeny. This revision was needed due to 
increasing confusion and difficulty in Porphyra taxonomy 
[2,13]. The Sutherland, et al. (2011) review has resulted in a 

smaller pool of Porphyra species, making literature published 
before 2011 where taxonomical identification is based on 
older classifications, less reliable for comparison of species. 
The genus Porphyra encompasses, based on the revision of 
Sutherland, et al., the following species: P. purpurea, P. dioica, 
P. linearis, P. lucasii, P. mumfordii and Porphyra umbilicalis. 
Due to mixed terminology, the terms Porphyra sensu lato and 
Porphyra sensu stricto are often used. Porphyra sensu lato 
encompasses species that are closely related to Porphyra or 
until shortly belonged to the genus Porphyra such as Pyropia 
yezoensis, where Porphyra sensu stricto only applies to 
species currently belonging to the genus Porphyra [2,14-17]. 
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applications as nutraceutical and food additive [46-48]. 
Porphyra has a primary metabolite content consisting of, 
amongst others, high protein levels with a high concentration 
of essential amino acids. Due to this favorable protein fraction, 
interest towards food and feed applications is rising. In both 
applications, Porphyra has the benefit of being a saltwater 
crop, with low nutrient and no terrestrial land usage, when 
compared with current agricultural protein supplies. In feeding 
trials in aquaculture, Porphyra protein showed promising 
results when compared to current often-used protein sources 
[49-54]. Porphyra’s lipid fraction, although being a small 
metabolite fraction, is rich in the polyunsaturated fatty acid 
eicosapentaenoic acid (EPA), which is found in fish oil and has 
beneficial effects on cardiovascular activity [55-57].

Furthermore, Porphyra has considerable concentrations 
of health-beneficial secondary metabolites such as 
antioxidants, vitamins and inorganic elements [45,58,59]. 
One such secondary metabolite that is of great interest are 
the mycosporine-like amino acids (MAA’s), because of their 
UV-absorbing capacity, probably the highest absorption 
known in nature [60,61]. Besides that, MAA’s are also of 
interest for having other cell beneficial capacities such as cell 
proliferation and renewal next to UV-absorbing capabilities 
[62-69].

In this review we provide an overview of the reported 
constituents and fine chemicals found in Porphyra species 
sensu lato, focusing on presence, induction and isolation of 
Porphyra constituents, with special attention for the MAA’s 
(Figure 1).

Porphyra Constituents
Porphyra constituents have been a topic for research, 

for their multiple application in for instance feed, food 
and cosmetics [14,45,51,52,62,70-72]. The composition of 
seaweed constituents in general is influenced by seasonal/
environmental and abiotic factors [54,73,74]. Variation in 
isolation and analysis methods are also accountable for 
differences in concentrations. An overview of constituents in 
Porphyra, based on our literature review, will be discussed 
and an approximation is given in Figure 2.

In our review Porphyra sensu lato is reviewed as subject, due 
to the ambiguity of recently renamed and revised Porphyra 
species. For this review, we used the specie names that were 
used by referenced papers, resulting in the usage of both 
Pyropia (Py.) yezoensis and Porphyra (P.) yezoensis.

In Asia the use of bladed Bangiales (Porphyra sensu lato) 
and primarily Py. yezoensis is integrated for generations. 
Currently, Porphyra is mainly being cultivated in China, 
Japan and Korea where seaweeds are staple food [18]. 
The aquaculture of Py. yezoensis species has an estimated 
worth of about US $7.48 billion in 2017 [15]. Annual Chinese 
production was estimated at just over 100.000 metric ton 
of dried Porphyra, in 2015 [19]. Information on Chinese 
aquaculture and research towards Porphyra sensu lato is 
becoming increasingly available internationally [4,15,20]. 
Nowadays outside of Asia, thus also in Europe, interest in 
cultivation and usage of red macroalgae is increasing.

In Europe Porphyra is naturally found along the shores of 
the Atlantic Ocean [21-23], ranging from Portugal to Norway, 
in the upper parts of the intertidal zone. Europe had a total 
seaweed aquaculture production of 287.033 tons in 2019 
of which 11.125 tons were from seaweed cultivation. No 
Porphyra was produced outside of Asia according to the Food 
and Agriculture Organization of the United Nations (FAO) 
data [24]. According to the FAO, there are opportunities for 
European production and European processing technologies 
of seaweeds, including red seaweeds [25]. Research towards 
cultivation and cultivation applications of seaweeds is 
increasing globally, also acknowledging the opportunities of 
red seaweeds [26-31].

Physological characteristics of Porphyra due to abiotic 
factors such as temperature, light intensity, depth and 
nutrient concentrations has been researched extensively 
[11,32-36]. Together with its importance in aquaculture, this 
has led to strain characterization and breeding programs 
[37,38]. Porphyra has been seen as model organism for 
red seaweeds and genetic research has been undertaken, 
including genomic sequencing [16,39-44].

Porphyra has been a part of human food for thousands of 
years, mainly in Asia [15,45]. However Porphyra is becoming 
increasingly popular globally for its health beneficial 

         

Figure 1:  Porphyra as found in the Oosterschelde, Zeeland, The Netherland. Photo by Jesse van Groenigen.
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P. acanthophora a total amino acid 18.6 g/100g DW was 
reported, in samples from June and September 1998 from 
around Cabo Frio, Brazil [80]. For P. umbilicalis, cultivated in 
at the Sven Loven Center for Marine Infrastructure at Tjärnö, 
Sweden and supplied with filtered seawater, a total amino 
acid content of 31.8 g/100g DW was recorded [81].

Peptides from Porphyra have multiple bioactive 
characteristics, including antioxidant, anti-inflammatory and 
anticoagulant activity [82-84]. P. dioica protein hydrolysate 
showed high antioxidant activity of Tyr-Leu-Val-Ala peptide 
chains, which is found in the phycobiliprotein C-phycocyanin. 
Antioxidant activity was also found in peptide chains from 
the phycobiliproteins C-allophycocyanin and β-phycoerythrin 
[85]. A potent and novel anticoagulant peptide was isolated 
from processed nori sheets of Py. yezoensis, which is stable 
at room temperature and non-cytotoxic [86]. Peptides from 
respectively P. haitanensis and Py. haitanensis showed 
anti-proliferating activity on human [87,88]. Enzymatically 
hydrolysed peptides from Porphyra spp. showed inhibition of 
α-amylase enzyme, thus lowering blood glucose levels [89]. 

Proteins and amino acids
Presence: Protein contents between 10-35% DW are 

most commonly reported for Porphyra, with huge variations 
found caused by amongst, seasonal variabilities, differences 
in extractions and choices in analytical techniques [9,75]. Due 
to these high protein contents, Porphyra has potential in food 
and feed applications [50,52,76]. The essential amino acid 
concentration of total amino acids of Porphyra can be similar 
to fish meal and therefore can be used as a feed additive 
[28,49,77]. Total protein content of Porphyra is shown in 
Table 1 and amino acid compositions are shown in Table 2.

Essential amino acid composed 57% of the total protein 
content for Porphyra sp, with a total protein content of 
24% DW in January 2007 at the São Miguel Island, in the 
Azores Archipelago from the littoral zone [78]. Total amino 
acid content in P. dioica, P. purpurea and P. umbilicalis of 
respectively 24.2, 15.9 and 17.7 g/100g DW was found, in 
samples from October 2014 in Northern Norway [79]. For 
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Figure 2: Average metabolite/constituent composition of Porphyra (percentage of dry weight), based on literature mentioned in this 
review.

Table 1: Protein contents (TAA total amino acid, % DW) in Porphyra species.

Species % DW Analysis Season& site Refs

P. dioica 24.2 TAA Oct 2014 Norway [79]

P. purpurea 15.9 TAA Oct 2014 Norway [79]

P. umbilicalis 17.7 TAA Oct 2014 Norway [79]

P. acanthophora 18.6 TAA Jun-Sep 1998 Brazil [80]

P. umbilicalis 31.8 TAA Apr 2016 Sweden [81]

P. vietnamensis 16.5 Lowry Feb 2002 Hawai’i [108]

Porphyra sp. 24.8 Kjehldahl (× 6.25) Jan 2007 São Miguel [78]

Porphyra sp 24.1 Kjehldahl (× 6.25) Aug 2001 Portugal [109]

P. dioica 9.4 -21.52 Kjehldahl (× 5.0) Jul ’14-’15 Ireland [91]

Porphyra spp 32.7 Kjehldahl (× 6.25) Australia [110]

Py. haitanensis 29.4 Kjehldahl (× 6.25) China [88]
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respectively, 4.15, 4.69 and 3.92 were found for samples 
collected in October 2014 in Norwegian waters [79]. An 
universal seaweed n-protein factor of 5 was proposed to be 
used when accurate data was not available [97].

With total amino acid analysis, the crude protein fraction is 
hydrolysed under acidic conditions after which all amino acids 
are quantified separately using liquid chromatography, with 
their sum representing the total protein fraction. This can be 
done by hydrophilic interaction LC-MS [98], by derivatization 
for fluorescence using o-phthal-dialdehyde (OPA) or 
other pre-column reagents [99,100] or by ion exchange 
chromatography [80,93]. The downside of total amino acid 
analysis is the relatively high cost compared to indirect 
spectrophotometric analyses. It should also be noted that 
during acid hydrolysis, tryptophan, is destroyed completely 
and methionine is destroyed partially [78,80,101,102]. 
The sulfur-containing amino acids cysteine and its dimer 
cystine and methionine require additional derivation after 
acid hydrolysis before analysis is possible and are therefore 
sometimes omitted in amino acid analysis [103]. Overall, in 
spite of higher practical and financial costs, determination of 
total protein content summing up all individual amino acids 
is deemed to be the most accurate representation of total 
protein content.

The Lowry and Bradfort analyses are both 
spectrophotometric indirect biuret protein analyses. The 
Lowry method uses copper sulfate to form cuprous peptide 
complexes in combination with Folin-Ciocalteu reagents 
(phosphomolybdic and phosphotungstic acid) to cause 
interaction between cuprous compounds and the amino 
acids tyrosine, tryptophan, and cysteine [104]. The Bradford 
method relies on the interaction of the protein with Coomassie 
Brilliant Blue G-250 colourant [105]. Under acidic conditions, 
usually the addition of phosphoric acid, protonated 
Coomassie Brilliant Blue reacts primarily with arginine and to 
lesser extend with amino acids with positively charged side 
chains and aromatic side chains [93,98,104,106,105]. It was 

Proteomics analysis identified 30 proteins from P. haitanensis 
with antioxidant activity [90].

Induction: Protein content in P. umbilicalis blades is 
affected by light intensity and duration of light exposure. 
P. umbilicalis showed the highest protein levels at 30 μmol 
photons m-2 s-1 and decreasing with increasing lighting levels. 
Structural protein levels were observed to be highest under 
an 8:16 light:dark regime [11]. Seasonal variations show 
that protein levels of P. dioica more than double in winter, 
to 21.52% DW [91]. It was published that Porphyra protein 
levels from samples collected in New Zealand were alleviated 
during winter when maximal growth is reached [75]. Tissue 
nitrogen content of P. umbilicalis was 3.89% DW and 6.76% 
DW when cultivated for two weeks at respectively 25 µM and 
250 µM ammonium at 10 °C [33]. When P. haitanensis was 
UV-B induced for one hour on two consecutive days, protein 
content peaked when induced at 0.5 W m-2 UV-B and total 
amino acid content peaked at 0.5-1.0 W m-2 UV-B [92]. This is 
shown in Table 1.

Analysis: In recent years, numerous publications have 
addressed the different direct and indirect analysis methods 
for determination of protein concentration, such as Kjeldahl, 
Lowry and total amino acid analysis (TAA) [79,93,94]. With 
the Kjeldahl method, samples are digested with sulfuric acid 
(H2SO4) and a catalyst in order to form ammonium (NH4). By 
acid distillation ammonium (NH4) is converted to ammonia 
(NH3), forming ammonium salts with a standard acid, which 
is titrated. Nitrogen concentration is then determined by 
acid-base titration [78-95]. Nowadays, this process is fully 
automated, and nitrogen to protein conversion factors 
(NPCF) are used to determine protein content [96]. Meta 
studies, analysing other research papers, found that different 
analysis methods are still being used throughout different 
fields of expertise, showing that nitrogen quantification with 
a nitrogen to protein conversion factor (NPCF) of 6.25 was 
the most commonly used method between 2009 and 2015 
[97]. For, P. dioica, P. purpurea and P. umbilicalis NPCF’s of 

Table 2: Amino acid composition (mg/g protein) of Porphyra shown in comparison to soy meal and the amino acid requirement as stated by 
WHO/FAO/UNU  [111].

Amino Acid P. yezoensis

[112]

P. umbilicalis

[113]

P. acanthophora

[80]

Porphyra sp       
[78]

Soy meal           
[101]

Daily Amino Acid 
requirement of an 
Adult [111]

Histidine (His) 5.4 10.6 32 2.33 2.9 15

Isoleucine (Ile) 11.5 42.5 44 8.2 3.7 30

Leucine (Leu) 41.9 86 86 18.45 9.7 59

Lysine (Lys) 53.9 60 67 8.26 6.6 45

Methionine (Met) 8.3 11.5 12 2.05 0.6 16

Cystine 6

Methionine + Cystine 22

Phenylalanine + tyrosine 
(Phe) + (Tyr)

49.8 79.8 75 8 10.4 30

Threonine

Tryptophan 37.3 63.5 62 11.21 4.4 23

Valine - 6
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polysaccharides are deemed qualitative dietary fibres in food 
and feed applications, and hence deemed important for a 
proper functioning of the human digestive track. Often, the 
soluble carbohydrates and the dietary fibres are quantified 
since they are of interest for their application in food, 
cosmetics and pharmaceuticals [115] or for their antioxidant 
properties [116]. For the Hawaiian seaweed P. vietnamensis 
30.5 g/100g DW of soluble carbohydrates was reported [108]. 
For Porphyra sp. from the Azores a soluble carbohydrate 
analysis of 25.37 g/100g DW was reported [78]. This in 
contrast to soluble polysaccharide concentrations of 3% DW 
found in Py. Yezoensis after hot water extraction [117]. This is 
shown in Table 3.

In Porphyra specifically, the water soluble dietary fibre 
phycocolloid porphyran is gathering attention. Porphyran 
generally consists of 3-linked β-D-galactose and 4-linked 
α-L-galactose 6-sulfate, with some partial modification in 
different subunits, as shown in Figure 3 [118,119]. Porphyran 
can encompasses more than 40% of the dry weight of 
Porphyran [14]. Porphyran is being researched for possibly 
being health beneficial such as its anti-inflammatory and 
antioxidant capacity [120,121,122]. A research in rats showed 
that porpyrans are capable of moderate neurological motor 
function improvement [123].

Induction: Seasonal variation influences the total 
carbohydrate concentration, varying between respectively 
39.4 and 47.2 g/100g DW between December and February 
for Korean P. yezoensis samples where total dietary fibre 
ranged between 27.2-34.9 g/100g DW, insoluble dietary fiber 
concentrations ranged between 18.5-26.9 g/100g DW and 
soluble dietary fiber ranged 4.9-8.4 g/100g DW [112]. The 
total carbohydrate content of P. dioica gathered in Galway was 
found at 57.48% DW in July and at 26.21% DW in December, 
although no analysis method was described [91]. For P. 
capensis no clear seasonal influence in total sugar content 
was found, due to high variability in sugar concentrations 
[124]. For Bangiophyceae it was suggested that low molecular 
weight carbohydrate concentrations and compositions are 
species dependant and might be identified based on patterns 
in their low molecular carbohydrate content [125].

Analytical methods: An often-used analytical method for 
soluble carbohydrates is phenolic sulfuric acid colorimetry 
[78-108], first described by Dubois in 1956 [126]. In this assay, 
samples are hydrolysed under acidic conditions, often using 

shown that the often used indirect protein analysis methods 
such Bradfort and Lowry (and Kjeldahl) can show differences 
in protein content of up to 30% or higher in underling 
comparison and in comparison to direct total amino acid 
analysis. Another downside is the usage of the animal protein 
BSA as standard, therefore partly missing plant proteins 
and unsoluble proteins. Upsides for these indirect protein 
analyses are their low cost, quickness and easiness.

Conclusion and recommendations: Protein, peptide and 
amino acid analyses in Porphyra are hampered by biological 
and analytical hurdles. The species used, growth conditions 
(light/nutrient availability), and season have major impact 
on the concentrations and composition of proteins, peptides 
and amino acids. Also, there are multiple analytical issues in 
accurate determination of the protein, peptides and amino 
acid concentration in Porphyra. This is problematic, as 
reliable protein analyses are needed to evaluate macroalgae 
as protein source [81,93,97,107-113]. Multiple differently 
analysed protein contents for Porphyra are shown in Table 1. 
attention should be given to which determination method is 
used. Throughout a multitude of analysis methods, sampling 
strategies and Porphyra species a protein concentration 
between 9-33% DW is shown.

It is recommended in future research to always state 
sampling strategy, including date, environment and season. 
Furthermore, protein determination based on total amino 
acid analysis is recommended for accurate results. Research 
focusing on the effect of abiotic factors on amino acid 
composition is recommended to increase viability for use 
as feed and food. Clearly there is need for standardisation 
of analytical methods as well as the availability of reference 
materials. Bioactivity of protein fractions should be taken into 
consideration when determining protein usage in food and 
feed applications.

Polysaccharides
Presence & bioactivity: Polysaccharides make up a large 

part, 20-40% of the total dry weight mass of Porphyra, 
commonly found in the extracellular matrix and cell 
structures [114]. Porphyra dry weight consists for 65% w/w 
of cell wall material, comprising mostly fibrillar cellulose, 
glycoproteins and sulphated galactans as phycocolloids [76]. 
Algal polysaccharides, including those from Porphyra are only 
partly digestible by the human digestion system. Undigested 

Table 3: Polysaccharide content (%DW) in Porphyra sensu lato.

Species Content % DW Analysis Reference

P. vietnamensis  30.5 SC Dubois [108]

Porphyra sp. 25.37 SC Dubois [78]

Py. yezoensis 39.4-47.2 Residual weight [112]

P. haitanesis 19.9 CP formaldehyde [130]

Py. yezoensis 3 SP Hot water [117]

P. haitanensis 3.6 SP Microwave-assisted extraction [127]

P. haitanensis 10.53 SP hot water [116]

SC: Soluble Carbohydrate, CP: Crude Polysaccharide, SP: Soluble Polysaccharide
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during alkaline and/or acid depolymerization influencing 
the saccharide composition and functional groups. Another 
analytical method for primary hydrocolloid identification, such 
as porphyran, is Fourier Transformed Infrared spectroscopy 
(FTIR). Using FTIR analysis, sun-dried and ground macroalgae 
amongst others can be qualitatively analysed to identify their 
primary hydrocolloid [129].

Fatty acids
Presence and bioactivity: Fatty acids from marine 

environment, most notably omega 3 fatty acids such 
as C20:5ω3 eicosapentaenoic acid (EPA) and C22:6ω3 
docosahexaenoic acid (DHA) as shown in Figure 4, are often 
cited as health beneficial. Fatty acids are researched for their 
affectability as anti-inflammatories, antioxidants and cardio-
vascular enhancers [131]. Fatty acids are also being researched 
as alternative lipid source for fuels [132]. The predominant 
fatty acids in Porphyra are the omega-3 fatty acid C20:5ω3 
eicosapentaenoic acid and the saturated fatty acid C16:0 
hexadecanoic acid (palmitic acid). The dominant fatty acid 
for Py. yezoensis is EPA, comprising more than 50% of the 
total fatty acid content during all seasons [112]. Palmitic acid 
was reported as the most present fatty acid at 46.5-57.6% 
of total lipid content in commercially bought dried P. tenera 
[133]. It should be noted that eicosapentaenoic acid was not 
identified. Work on the lipidome for Porphyra in different life 
stages is ongoing, highlighting the potential for Porphyra as 
possible source of health beneficial fatty acids [134].

The crude lipid content was determined 4.4 g/100g DW in 
P. vietnamensis [108]. A crude lipid content of 8.88 g./100g 

sulfuric acid. Then, under presence of phenol and sulfuric 
acid, spectrophotometric analysis at 490 nm is compared to 
a glucose standard. This method is applicable to free sugars, 
methylated sugars and oligo-and poly-saccharides. Another 
often-used technique is indirect calculation of carbohydrate 
quantification by determining other proximate substituents 
(protein, ash, fatty acids and residual water) and stating the 
residual weight as the carbohydrate fraction [112]. However, 
it has to be mentioned that this indirect approach is prone to 
inaccuracies based by the analysis of other constituents and 
the inclusion of unidentified and unquantified constituents in 
the residual weight. Polysaccharide extraction was optimized 
for hot water extraction, finding an optimum temperature of 
80 °C, solid:liquid ratio of 1:20 and an extraction time of 2h. 
This resulted in a yield of 3% for Py. yezoensis [117]. Microwave 
assisted extraction of polysaccharide from P. haitanensis 
showed a maximum yield 3.6% [127]. Extraction methods 
based on water at elevated temperatures show lower yield 
of soluble polysaccharides. For monomeric sugar composition 
analysis, either directly extracted or after depolymerization, 
Gas Liquid Chromatography (GLC) [128] or High-Performance 
Anion Exchange Chromatography (HPAEC) are often chosen. 
For oligosaccharides and polysaccharide linkage composition 
analysis Gas Chromatography Mass Spectrometry (GC-MS). 
For obtaining detailed oligosaccharide and polysaccharide 
profiles and compositions, Matrix Assisted Laser-induced 
Desorption/Ionization Time-of-Flight Mass Spectrometry 
(MALDI-TOF MS) and ultra-high-performance liquid 
chromatography mass spectrometry (UHPLC-MSn) methods 
can be used. These methods are highly precise, but are also 
costly and time-consuming. Furthermore, sample preparation 
is more complicated, exemplified by degradation of sugars 

         

Figure 3: Chemical structure of the 4 porphyran subunits. Topleft: 3-linked β-D-galactose and 4-linked α-L-galactose 6-sulfate, others: 
modifications.

         

Figure 4: Left C20:5ω3 eicosapentaenoic acid (EPA), Right:C16:0 hexadecanoic acid (palmitic acid).
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composition did not stroke with the classification as lutein 
dominant. For P. suborbiculata a carotenoid composition of 
65% lutein and 35% zeaxanthin was reported [142]. In Py. 
yezoensis also lutein, zeaxanthin, α-carotene, and β-carotene 
were described as the major carotenoids, with Lutein being 
predominant [143]. After a 45 day laboratory cultivation of 
three strains of Py. haitanensis, chlorophyll α concentrations 
between 7.68 ± 0.14 - 9.37 ± 0.20 mg.g-1 DW, phycoerythrin 
concentrations between 40.80 ± 1.00 - 51.00 ± 2.28 mg.g-1 
DW and phycocyanin concentrations between 31.26 ± 0.80 
- 48.36 ± 0.81 mg g-1 DW were found, being an example of 
interstrain variation that can occur under identical growth 
conditions [144].

Induction: For P. yezoensis it was shown that the 
chlorophyll α concentration was higher in March than in 
January for samples harvested in Nantong, China for two 
of three tested strains. However, it must be noted that 
interstrain variation was also significant, with the third tested 
strain showing lower chlorophyll α levels in March [137]. For 
the phycobiliprotein phycoerythrin in P. dioica it was reported 
that concentrations in winter were higher than in summer in 
Brittany, France [10]. For the phycobiliproteins phycoerythrin, 
allophycocyanin and phycocyanin higher concentrations 
were found in January in relation to March across 3 strains 
of P. yezoensis with concentrations in March being between 
6-8 mg.g-1 FW for all three phycobiliproteins [137]. For P. 
linnearis and P. umbililcalis respectively 29 mg g-1 FW and 
26 mg g-1 FW of phycoerythrin were reported, with highest 
concentrations at 100 °C and 250 μmoles L-1 ammonium in 
a laboratory setting [33]. Photosynthetic pigment content is 
higher in shaded blades in comparison to sun exposed blades 
for P. umbilicalis with antioxidant capacity increasing most 
in summer [145]. For porphyra and Pyropia species it was 
shown from meta-analysis that xanthophyll concentrations 
are mostly enhanced under hypersaline conditions and 
under increased lighting conditions. It was suggested that 
pre-harvesting 24 hour induction with PAR radiation at 100 
μmol photons m-1 s-1 and a 12:12 light:dark cycle would 
result in optimal xanthophyll levels for Porphyra and Pyropia 
species, with Pyropia species showing higher total carotenoid 
content and Porphyra showing higher lutein and zeaxanthin 
concentrations [146].

Analysis: The analysis of chlorophylls and carotenoids 
is often performed using photo spectroscopic techniques, 
such as UV/Vis spectroscophy for rapid scanning and 
high performance liquid chromatography for component 
separation, identification and quantification [143,147]. 
Techniques around the analysis of carotenoids and 
chlorophylls are mostly based on their light-absorbing 
property, as they are natural pigments. For identification of 
breakdown components and elucidation of decay pathways, 
mass spectroscopy is an often-used technique, with LC-MS-
MS being the preferred method and advances are made in 
the elucidation of carotenoid metabolomics [148].

Inorganic constituents, minerals and moisture 

DW was found in Porphyra sp, where it must be noted that a 
4 hour Soxhlet reflux was used to increase lipid yield, instead 
of the often used solid-solvent maceration [78]. For Porphyra 
sp. a total lipid content of 1.03 g/100g DW is reported using 
chloroform:methanol extraction [109]. An overview of crude 
lipid content is shown in Table 4.

Induction: The effect of abiotic factors on the lipid 
composition in Porphyra is not well-researched. Induction 
trials with abiotic factors to optimize fatty acid production in 
red seaweeds have not been published to the knowledge of 
the authors. Within research towards the seasonal variability 
of Porphyra composition, lipids are more often analysed. P. 
dioica was sampled in June and Nov 2021 from Galway Bay, 
western Ireland and showed respectively 0.8 ± 0.2% DW and 
1.7 ± 0.5% DW of total fatty acid. The percentage PUFA within 
the total fatty acid was in both seasons around 45% [135]. 
Crude lipid content for P. yezoensis was found to be between 
0.7 ± 0.2 and 1.1 ± 0.2 during a full growth season from 
November 2011 to March 2012 in Korea. PUFA compositions 
were found between 59.6% and 64.6% of the total fatty acid 
composition [112].

Analytical methods: Lipid extraction is often done using 
an hydrophobic chloroform:methanol extraction solvent. 
For quantitative crude lipid analysis, crude lipid quantities 
are often determined gravimetrically, by evaporation of 
solvent and weighting. It must be noted that photoactive 
molecules such as chlorophyll are also extracted efficiently 
in organic liquids such as chloroform and methanol [136] 
and can comprise towards 0.5 g/100g DW [137]. Therefore, 
spectrophotometric analysis for chlorophylls may be used on 
crude lipid extracts, in order to partly account for additional 
untargeted compounds [138]. Quantitative fatty acid profiling 
is usually performed using LC-MS [139] or via GC-MS after 
transmethylation for FAME analysis (Fatty Acid Methyl Ester) 
[140,141], identifying and quantifying individual fatty acids.

Pigments and aromatic constituents
Presence: Carotenoids are class of pigment compounds 

found in photosynthetic bodies of Porphyra, extracted as part 
of the crude lipid content. The order of Bangiales, including 
both Porphyra and Pyropia is described as belonging to the 
Lutein group, as lutein is often the most found abundant 
carotenoid, although variances between species occur [142]. 
P. perforate was shown to have a carotenoid signature 
of 35% lutein, 11.4% zeaxanthin, 4.1% α-carotene and 
49.5% β-carotene based on total carotenoid content. This 

Table 4: Crude lipid content in multiple Porphyra sensu lato species, 
determined gravimetrically.

Species Content % DW reference

P. vietnamensis 4.4 [108]

Porphyra sp. 8.88 [78]

Porphyra sp 1.03 [109]

Py. yezoensis 0.7-1.1 [112]

P. tenera 0.93- 1.61 [133]

P. dioica 0.86 [134]
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of 87.1 g/100g FW for Porphyra sp. Mok [154] reported a 
moisture content for Py. yezoensis of 89.2 g/100g FW (Table 
5 and Table 6).

Mycosporine-Like Amino Acids
Special attention in this review is given to the Mycosporine-

like amino acids (MAA’s), as this group of cellular constituents 
may have future broad applications as UV-photoprotectant in 
cosmetics. Mycosporine-like amino acids are currently a topic 
of research and application and prototype development using 
MAA’s extracts are starting to be published.

Chemical properties
Mycosporine-like amino acids (MAA’s) are founds in a 

wide variety of different organisms, ranging from marine 
macroalgae, to freshwater microalgae to terrestrial microalgae 
[155,156,157,158,159] as well as fungi, marine invertebrates 
and even fish [160,161,162]. The primary function of MAA’s 
is to protect the organism from the harmful effects caused 
by UV irradiation which are amongst others photosynthesis 
inhibition, DNA damage and protein denaturation [65]. Over 
30 MAA’s and MAA’s derivatives are identified and their 
chemical properties researched [163]. For Porphyra, the most 
predominantly found MAA’s are porphyra-334, shinorine and 
palythine [164,165], where other MAA’s such as asterina are 
sometimes found [34].

MAA’s typically have a molecular weight below 400 Da and 
consist of cyclohexenone or cycloheximine backbone with a 
conjugated amino acid [5]. MAA’s exhibit molar extinction 
coefficients up to 50.000 M-1 cm-1 with absorption maxima 
between 309-362 nm [60], with a reported molar extinction 
efficient for respectively Porphyra-334 at 42,300 M-1 cm-1 in 
[166] and for Shinorine at 44,700 M-1 cm-1 [163] in aqueous 
solutions at 334 nm. MAA’s are colourless and soluble in both 
aqueous and hydrophilic organic solvents.

MAA’s have shown to be resistant to heat stress. A 
mycosporine-like amino acid extract of the red seaweed 
species Gracilaria cornea consisting mostly of porphyra-334 
and/or shinorine showed no significant decrease in 
absorption after heat treatment at 75 °C for six hours [191]. 
Porphyra-334 has been reported to be stable for over 80 days 
at room temperature. When treated at 60 °C, porphyra-334 
slowly decreased in absorbance in solution at pH 1-11 over a 
25 hour timeframe. At a temperature of 80 °C this decrease 
was more rapid. At pH 12-13, porphyra-334 showed rapidly 

content presence
Inorganic material, macro- and micro-minerals and 

metals are often grouped together under ash content in 
proximate compositions and can encompass up to 20-30% 
DW. Macroalgae, including Porphyra are being researched as 
nutraceuticals and food for their favourable mineral content 
[141,45,149]. Macroalgae can also take up heavy metals, 
but concentrations are very species dependent. Heavy 
metal concentrations from macroalgae, including Porphyra, 
collected in Norway in October 2014 showed the presence 
of heavy metals, but concentrations mostly remained below 
concentrations for EU regulations in food or feed [150].

Porphyra sp. was incinerated at 550 °C for 2-3h and showed 
an ash content of 28.16% DW [78]. For P. vietnamensis an ash 
content of 25.2 g/100g DW was found after heating for 4h at 
550 °C [108]. An ash content between 7.25 and 3.76 g/100g 
DW for Py. yezoensis after heating for 5h at 500 °C [151]. 
Following AOAC guidelines, an ash content of 6.46 g/100g 
DW was found for P. columbina [152]. For Porphyra sp. an ash 
concentration of 19.07 g/100g DW was found after heating 
for 5 h in an electric oven at 525 °C [109].

Induction: There is seasonal variation in ash content 
of Porphyra spp. over a two year time period, ash contents 
between 12.0 and 18.7 g/100g DW were found for multiple 
different species [153]. These seasonal differences were also 
shown for mineral content in Porphyra, collected between 
January and April on multiple sites of the South Korean coast 
[151]. Ecological conditions, such as urban proximity, also 
influence mineral concentrations in macroalgae [74,154].

Analytical methods: Ash content is often determined 
gravimetrically after incineration of dried material at 
temperatures of 500 °C or higher for multiple hours. For 
mineral composition determination, samples are often acid 
digested and analysed via atomic absorption spectroscopy 
(AAS) [152] or via Inductively Coupled Plasma-Atomic 
Emission Spectroscopy (ICP-AES) [151]. Alternatively, ion 
chromatography coupled to conductivity analysis can be 
used on aqueous extracts [78]. Macroalgal samples should 
be rinsed with freshwater before drying, to cleanse samples 
from adherent seawater.

Moisture content: Moisture content of Porphyra is often 
gravimetrically determined. Using oven drying at 600C, 
McDermid reported for P. vietnamensis a water content of 
90.3 g/100g FW [108]. Paiva [78] reported a water content 

Table 5: Proximate ash content for Porphyra.

Species Content % DW Method (T,t) location reference

Porphyra sp 28.16 550 °C, 2-3 h Jan 2007 São Miguel Island [78]

P. vietnamensis 25.2 550 °C, 4 h Feb 2002 Hawai’i [108]

Py. yezoensis 7.25-3.76 500 °C, 5 h Jan-Apr South Korea [151]

P. columbina 6.46 525 °C, 5 h Aug-Oct 2010 Argentina [152]

Porphyra sp 19.07 525 °C, 5 h Aug 2001 Portugal [109]

Porphyra spp 10.3 525 °C, 5 h China [77]

P. yezoensis 9.3 525 °C, 5 h South Korea [154]
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declining absorbance over a 4 hour period, also at room 
temperature [169].

A selection of MAA’s showed antioxidant activity [163]. 
Mycosporine-glycine had the highest antioxidant activity, 
followed by asterina-330 and palythine [166], while as 
Porphyra-334 and shinorine showed scarce scavenging 
activity [167]. Abiotic environmental characteristics play a 
major role in bioactivity of MAA’s. Porphyra-334, shinorine 
and palytine were reported to be more active than synthetic 
phenolic antioxidants in Folin-Ciocalteu assay’s, while being 
less active than these standard compounds in the radical 
scavenging ABTS bioassay and Ferric Reducing Antioxidant 
Power (FRAP) assay [168]. This while all of these assays have 
the same mode of electron transfer. Since Folin-Ciocalteu 
assay is done at pH around 8 and ABTS and FRAP assay’s are 
done at acidic pH, this would mean that MAA’s bioactivity 
is higher in slightly alkaline conditions compared to acidic 
conditions [168]. As with heat stability, antioxidant activity is 
heavily pH reliable, often showing higher bioactivity at slightly 
alkaline pH [169]. An overview of the most common MAA’s 
and their structures is shown in Table 7.

Presence and biosynthesis of mycosporine-like 
amino acids

Mycosporine-like amino acids are deemed to be 
synthesized following the shikimate pathway [5], present in 
both in eukaryotic as prokaryotic organisms. It is opted that 
mycosporine-glycine is synthesised from a gadusol precursor, 
then being chemically converted via deoxygadusol into other 
mycosporine-like amino acids to cover a wide range of UV-
radiation, as shown in Figure 5 [170]. The Shikimate pathway 
is not found in animals, thus accumulation of MAA ‘s in these 
organisms is supposedly done by ingestion of MAA’s from 
algal diets [171]. An overview of often found MAA’s is given in 
Table 8, showing variations in presence of MAA’s in Porphyra.

Induction of mycosporine-like amino acids
Induction of MAA’s biosynthesis may be achieved by 

induction with PAR radiation and/or UV irradiation [172-176]. 
This seems to be species dependent, with publications either 
observing or not observing induction. The fact that species 
belonging to the genus Porphyra are commonly found in 
the intertidal area, makes it logical that these organism 
have (elevated) UV reducing compounds such as MAA’s. 
There are also seasonal variations within MAA’s content and 
concentration in Porphyra, including P. dioica [177], although 
this was not found for P. dioica sampled in January and July 
on the coast of Brittany [10]. As discussed by [177], more 
research is needed to elucidate interactive effects of PAR 
and UV, depth, salinity, temperature and nutrients on MAA’s 
accumulation. There was no linear combination for the 
independent variables light and temperature that explains 
MAA’s accumulation in P. dioica. It is to be expected to 
exposure to UVA or UVB would increase MAA concentrations/
composition. It was shown that 300 µM ammonium increased 
MAA’s accumulation in P. leucostica and P. umbilicalis, but 
0 and 100 µM ammonium only lowered MAA’s content in 
P. leucostica [34], possibly indicating nitrogen-regulated 
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for extraction and purification of MAA’s from macroalgal 
samples is extraction in 20% aqueous methanol at 45 °C for 
2.5 hours. Then after airdrying, samples are redissolved in 
100% methanol to remove methanol insoluble components 
sugars after which methanol is evaporated and MAA’s are 
redissolved in water ready for analysis [173,178,179]. A 
second option is extracting in 0.2% aqueous acetic acid with 
0.5% methanol at 4 °C for 12 hours on a shaker after which 
samples are centrifuged and filtered [180]. This method is 
specifically designed as a universal crude method from both 
prokaryotic and eukaryotic samples.

A third extraction method, often used on microbial 
biomass [181] is overnight maceration in methanol at 4 °C. 
Then the extract is centrifuged and methanol is evaporated 
to dryness at 45 °C. afterwards, extracts are redissolved in 
water, adding a drop of chloroform to remove apolar organic 
impurities such as chlorophyll before centrifugation and 
filtration [182].

Other less often-used purification methods are also 
reported, such as purification by solid-phase extraction [183] 
or preparative thin layer chromatography [184].

HPLC analysis of MAA’s is commonly done using a C18 
reversed phase column. The mobile phase is mostly an 
isocratic aqueous solution with 1-0.02% acetic acid. One 
research group [185,186] describes an isocratic aqueous 
liquid phase consisting of 0.1% acetic acid and 25% methanol. 
Commonly, these analyses have a run time between 15-
30 minutes and show a high retention. Detection is done 
spectrophotometrically in the 280-360 nm range using 
Diode array detection (DAD). Since pure MAA’s standards 

induction. A division into three physiological algal groups 
was proposed, based on their MAA’s accumulation [5]. This 
system details the three groups as containing:

•	 High initial MAA’s concentrations that are not further 
enhanced through light/UV induction.

•	 Lower initial MAA’s concentrations that can be 
enhanced by light/UV induction.

•	 Low initial MAA’s concentrations that are not 
enhanced through light/UV induction.

Using this division, P. endiviifolium and P. umbilicalis 
were classified as having high initial MAA’s content with no 
induction from a treatment with PAR light or UV radiation. 
P. plocamiestris was classified as having low initial MAA’s 
content with induction during light/radiation treatment. 
This is in line with results found for P. endiviifolium, but is 
contradictory with results found for P. plocamiestrisis. MAA’s 
in Porphyra plocamiestrisis were induced under UVA and UVB, 
while Porphyra endiviifolium shows induction under UVA with 
no additional benefit of UVB induction [172]. For Porphyra 
umbilicalis high initial MAA’s concentrations were found, not 
further enhanced with UV induction, in line with the proposed 
physiological classification system [165]. Although research 
has been published towards the accumulation of MAA’s in 
Porphyra, consensus has not been reached on the influence 
of UV-induction and other abiotic factors on the biosynthesis 
and enhanced accumulation of MAA’s in red seaweeds.

Isolation and detection of MAA’s
MAA’s samples are usually aqueous solutions, often 

partly purified or crude extracts [10]. An often used method 

         

Figure 5:  Biosynthesis of MAA’s from a gadusol precursor.

Table 8: MAA’s commonly found in Porphyra species and an initial MAA’s concentration, when given. Concentrations are converted to total 
MAA’s (mg g-1 DW). 

Species Reported MAA Total MAA’s (mg g-1 DW) Reference

P. leucosticta Shinorine, Palythine, Porphyra-334, Asterina-330 6.99 ± 1.62 [34]

P. endiviifolium Shinorine, Porphyra-334, Palythine, Palythinol, Asterina-330 8.5-15.7* [172]

P. plocamiestris Shinorine, Porphyra-334, Palythine, Asterina-330 0.3-1.6* [172]

P. columbina Mycosporine-glycine, Shinorine, Porphyra-334, Palythine, Asterina-330 5-18* [173]

P. columbina Mycosporine-glycine, Shinorine, Porphyra-334, Palythine, Palythinol, 
Asterina-330

7.0-10.4* [174]

P. umbilicalis Shinorine, Palythine, Porphyra-334, Asterina-330 9.23 ± 1.40 [34]

*extracted from figures in the original publications.
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connected to their specific growth conditions. Mapping 
the influence of external factors on chemical compositions 
will, over time, favourably impact cultivation and usages 
of Porphyra. Due to these major differences in chemical 
composition, research towards local growth and chemical 
composition is incentivized in order to increase our 
understanding of external factors on Porphyra constituents.

The reliability, accuracy and preciseness of analytical 
procedures are widely varying. It is advised to consider the 
robustness of the analytical technique, in the context of the 
research. For example, when determining protein content by 
performing a Kjeldahl-based technique, a Protein Conversion 
Factor should be determined instead of usage of the universal 
standard of 6,25 which is often not applicable to Porphyra. 
The preciseness or robustness of the conclusion that is given, 
should correspond to the robustness and preciseness by the 
analytical technique that is being applied. Use of standard 
reference material should be encouraged.

A prime example of advances in application of Porphyra 
constituents is the application and research towards 
Mycosporine-like amino acids as photo-protectant in 
sun creams and cosmetics. These advances have led to 
consideration of MAA’s as novel UV-blocker. With all effort 
towards Porphyra constituents, more product applications 
are to follow in time.

Porphyra is an economic important species, mostly in Asia. 
Due to global interest in Porphyra, both as food, feed and as 
nutraceutical, a substantial increase in Porphyra cultivation 
is expected. However, especially in Europe, there is still a 
development gap between knowledge of and industrial 
utilization of Porphyra. The transition from scientific research 
towards economically and technically feasible industrial 
applications has yet to be made. Taking into consideration 
the forecasted growth of Porphyra industry in Asia and the 
abundancy of wild Porphyra in Europe, opportunities are 
presenting itself. It is advantageous from an economic point 
of view to aim for full biomass valorisation. Few process flow 
diagrams for total Porphyra valorisation are being published 
[190]. Due to this insight total biorefinery of Porphyra biomass 
and side streams is starting to become a bigger research 
point. This can lead to economical gain of Porphyra as prime 
aquaculture crop, also outside of Asia.
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are not readily available, peak identification is often done 
by comparison of retention time, retention pattern and 
absorption maxima of known MAA’s published in older 
publications. Due to the same reason quantification is often 
done by using approximate molar extinction coefficients, 
instead of a more accurate methods like an internal standard 
or pure compounds as external standard. One must be aware 
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