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Abstract
The Great Knot is a species from the Scolopacidae family of waders migrating within the East Asian-Australasian Flyway, and 
studies on this species have contributed greatly to understanding of migration ecophysiology and migration strategies in long- 
distance migrants. In this paper, we provide the first description of biometric variability and sexual size dimorphism in Great 
Knots. During the study on the Kamchatka Peninsula, 683 adults and 229 juveniles were measured and sexed molecularly. In 
adults, the mean measurements of females were larger than in males, except for tarsus length. In juveniles, at the early stage of 
migration from breeding to wintering grounds, apparently growth was not complete. Sexual dimorphism was small, with only 
wing length being significantly longer in females than in males. All dimensions of juveniles were smaller than those of adults, 
especially in bill length. The most sexually dimorphic trait in both adults and juveniles was wing length, and the most effective 
discriminant function with wing length as a single predictor correctly identified the sex of 76% of birds in both age classes. 
However, molecular sexing is the method of choice for reliable sexing, especially in juveniles.

Keywords: Waders, sexing, linear measurements, Kamchatka Peninsula, migration

1. Introduction

Many Arctic waders migrate along East Asian- 
Australasian Flyway covering a thousand kilometres 
between breeding areas in eastern Siberia and winter-
ing grounds in New Zealand and Australia (Parish 
et al. 1987; Hansen et al. 2016; Li et al. 2019). The 
crucial stopover site on their route is localised in the 
extensive intertidal areas and near-coastal wetlands of 
the Yellow Sea, which support about 40% of all waders 
migrating in the East-Asian-Australasian Flyway 
(Barter 2002). The loss of coastal habitats and envir-
onmental degradation results in a population reduction 
of many migrants using this migratory route (Wilson 

et al. 2011; Conklin et al. 2016; Piersma et al. 2016), 
which necessitates the intensification of ecological 
research and habitat conservation measures in stop- 
over sites (Amano et al. 2010; Szabo et al. 2016).

The Great Knot Calidris tenuirostris 
(Scolopacidae) is a long-distance migratory wader, 
restricted in their distribution to the East Asian- 
Australasian Flyway. Here, considerable population 
declines were documented in the past decades 
(Wetlands International 2023). The declines are 
explained by the loss and degradation of coastal 
staging habitat in the Yellow Sea region (Melville 
et al. 2016; Piersma et al. 2016). Our knowledge on 
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breeding biology and breeding behaviour of this 
species is still very limited (Tomkovich 2011a,  
2011b). More studies on this species concern the 
migration period. During northward migration, the 
Great Knot makes spectacular migratory flights, fly-
ing non-stop for more than 5,000 km from non- 
breeding areas to the Yellow Sea region and then, 
after refuelling for 1–2 months, to breeding areas in 
Siberia (Lisovski et al. 2016; Chan et al. 2019). 
Recently, the studies on Great Knot have contribu-
ted to understanding migration ecophysiology and 
migration strategies in long-distance migrants (i.e. 
Battley et al. 2001, 2004; Pennycuick & Battley  
2003; Piersma et al. 2008; Peng et al. 2015; Zhang 
et al. 2019), but our knowledge on biometrics varia-
tion is still sparse with only few papers providing 
data from live birds (Barter 1986; Balachandran  
1997; Andreev 2010). Although adult males and 
females differ only slightly in breeding plumage, 
with females tending to have less chestnut in the 
scapulars (Prater et al. 1977; Hayman et al. 1986), 
sexing is possible only by comparing partners within 
a mated pair. In juvenile and non-breeding plu-
mages, both sexes look the same and differ only in 
size, as females are slightly larger than males, which 
is typical of birds in the genus Calidris with only 
a few exceptions (Cramp & Simmons 1983; 
Székely et al. 2000). However, existing data on bio-
metric differences between the sexes in the Great 
Knot are based only on small samples of museum 
specimens (Kozlova 1962; Prater et al. 1977; Cramp 
& Simmons 1983) and cannot be used for reliable 
sex determination, except for exceptionally large or 
small individuals.

Among waders, there are many species that exhi-
bit no plumage dimorphism between the sexes (Del 
Hoyo et al. 1996) and studies on their behavioural 
ecology, ecophysiology, and migration phenology 
often do not take into account possible differences 
between sexes (Puttick 1981; Both et al. 2003; 
Meissner & Krupa 2017; de Zwaan et al. 2019). 
Molecular sexing is the method of choice for sex 
determination (Fridolfsson & Ellegren 1999; 
Morinha et al. 2012), but it requires the collection 
of DNA samples and specialized laboratory equip-
ment. Moreover, this is a costly procedure, espe-
cially when sample sizes are large. Therefore, the 
development of hardly invasive non-molecular 
methods based on a discriminant function, which 
provide reliable sex identification based on morpho-
logical characteristics, is still needed and becoming 
increasingly popular (e.g., Sikora & Dubiec 2007; 
Lislevand et al. 2009; Meissner & Krupa 2016; 
Niemc et al. 2018; González et al. 2022). In this 
paper, we aimed to describe for the first time the 

biometrical variability of adult and juvenile males 
and females of the Great Knot using a large sample 
of birds sexed molecularly. Additionally, we develop 
discriminant functions for sexing adult and juvenile 
Great Knots based on linear body measurements 
which are commonly used in studies on various 
aspects of bird behaviour (i.e. Alves et al. 2013; 
Gwiazda & Ledwoń 2015; Meissner & Krupa  
2017; Meissner et al. 2019).

2. Material and methods

2.1. Fieldwork

Field studies were conducted in 2016–2019 in the 
Khairusova-Belogolovaya estuary on the western 
coast of Kamchatka (Russia) (Figure 1), which is 
the first stopover during southbound migration 
after leaving the breeding grounds, where birds 
switch from feeding on insects and berries to fora-
ging on invertebrates on mudflats (Dorofeev & 
Kazansky 2013). Birds were caught during high 
tide using a modified pull net (Dorofeev et al.  
2019) between 15 July and 16 August. This period 
covers the main part of the migration of the Great 
Knot through Kamchatka (Lisovski et al. 2016; 
Gerasimov et al. 2018). Age was determined on 
the basis of plumage characteristics, distinguishing 
juveniles (younger than 4 months) and adults (older 
than one year) (Prater et al. 1977). Wing length was 
measured with a ruler (1 mm accuracy), while the 
total head, bill, and tarsus lengths were measured 
using callipers (0.1 mm accuracy) (Busse & 
Meissner 2015). Birds were also weighed with an 
electronic balance with an accuracy of 1 g. However, 
the body mass was omitted in analyses, because it 
varies considerably during migration due to accu-
mulation of fat reserves.

2.2. Laboratory work

All birds were sexed molecularly. About 50 μl of 
blood was taken from the branchial vein and pre-
served in 96% ethanol (EtOH). In the laboratory, 
subsamples of 5–10 μl blood cells were dried at 
55°C to ensure that ethanol evaporated. For 554 
of 912 samples, DNA was extracted with ammo-
nium acetate (AmAc) (Richardson et al. 2001), 
lysing blood in a soapy buffer with proteinase K, 
followed by a clean-up with AmAc and ethanol 
perspiration. For the remaining samples, a rapid 
alkaline (NaOH) extraction method was used, lys-
ing blood cells with 0.2 M NaOH at 75°C for 20 
min and neutralizing the solution with 0.04 M 
TriSHCl (pH 7.5) (Rudbeck & Dissing 1998). 
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These two methods were verified in several bird spe-
cies to give the same results (Y.I. Verkuil, unpub-
lished data). For molecular sexing, the specific wader 
primers 2602F/2669 R and PCR protocols of van der 
Velde et al. (2017) were used. PCR products were 
visualized on a 2% agarose gel. To perform a check 
for errors in laboratory procedures, of the 912 indi-
vidual samples, 16 were randomly picked to repeat 
the DNA extraction and PCR. In all cases, the 
assigned sexes were 100% consistent. In total, 683 
adults and 229 juveniles were measured and molecu-
larly sexed, but not all biometrics had been taken 
from each individual so sample sizes differed for 
certain measurements.

2.3. Statistical analyses

The differences in linear body measurements 
between males and females were determined with 
the two-sample t-test or Cochran–Cox test for non- 
homogeneous variances (Zar 1999). The degree of 
sexual dimorphism of a given trait was determined 
by Lovich and Gibbons’ sexual dimorphism index 
(SDI) (Lovich & Gibbons 1992), in which mean 
values of linear body measurements of both sexes 

are taken into account. However, we modified the 
original equation so that positive values indicate 
a higher mean for a given measurement in females 
(a larger sex) and negative values in males.

The method of calculating the Lovich and 
Gibbons dimorphism index was also used to assess 
differences in mean linear measurements between 
adults and juveniles within the same sex, the age 
dimorphism index (ADI). All data met the 
assumptions of the homogeneity of variance 
(Brown–Forsyth test, p > 0.228) and normality 
(Shapiro–Wilk test, p > 0.075), except for wing length 
in adults (Shapiro–Wilk test, W = 0.992, p = 0.001). 
Nevertheless, we did not transform this variable 
because discriminant analysis (DFA) and ANOVA 
robustly withstand deviations from normality, espe-
cially for large sample sizes (Tabachnick & Fidell  
1996; Zar 1999).

A discriminant function analysis (DFA) was carried 
out to identify the best predictors of sex. We recognise 
criticisms of automated stepwise selection of variables 
(Whittingham et al. 2006; Mundry & Nunn 2009), so 

East Siberian
Sea

Bering
Sea

Sea of
Okhotsk

Figure 1. Location of bird ringing site in the Khairusova-Belogolovaya estuary (black dot). Dark grey area indicates the breeding range of 
the Great Knot (according to Tomkovich 2021).
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we have presented models that include only linear 
measurements with means significantly different 
between males and females. Two measurements, 
bill and head length, in which one included the 
other, were highly correlated with Pearson’s correla-
tion coefficients between them r = 0.89 and r = 0.90 
for adults and juveniles, respectively. Therefore, we 
did not include both highly correlated variables in 
the same discriminant function to avoid strong mul-
ticollinearity between independent variables. For all 
other pairs of measurements, the correlation coeffi-
cients were low (r < 0.46). In DFA, the sexes were 
coded “−1” for males and “1” for females and equa-
tions presented in this paper are based on unstandar-
dized canonical discriminant function coefficients, 
with discriminant score D < 0 indicating a male, and 
D > 0 indicating a female. We validated the success 
rate of classification of each discriminant function with 
squared Mahalanobis distances from each sex-group 
centroid, where the given individual is classified into 
a sex group for which it has the highest posterior 
classification probability (Hair et al. 2014). To show 
the degree of overlap between sexes in two most 
dimorphic measurements, 95% prediction intervals 
were presented, a range of values likely to contain the 
value of any single new observation given the settings 
of the predictors (Patel 1989).

There was only a slight bias in the sex ratio in caught 
juveniles (60% of males), whereas among adults, males 
comprised 83%. This unequal sex ratio in adults does 
not necessarily reflect an unbalanced sex ratio in the 
sampled population, but is more a result of the timing of 
the study, as females leave the breeding grounds before 
males (Kistchinski 1988; Artyukov 1990; Tomkovich  
1997), while the field study began after migration had 
already begun. Hence, similar to other papers 
(Ackerman et al. 2008; Meissner & Krupa 2016; 
Yannic et al. 2016), a priori classification probabilities 
were set as equal for both sexes (p = 0.50). The statis-
tical analyses were performed using Statistica 13.3 soft-
ware (TIBCO Software Inc.).

3. Results

3.1. Sexual and age dimorphism in size

In adults, females were larger than males in all linear 
body measurements, except tarsus length. The most 
sexually dimorphic trait in adults and juveniles was 
wing length with SDI of about 3% (Table I). 
However, the overlap in wing length distributions 
between the sexes in adults and juveniles is large 
(Figure 2). When taking into account wing and bill 
length simultaneously, 75% and 71% of males, and 
85% and 70% of females were found within the 

overlapping zone of two ellipses showing a 95% con-
fidence interval for wing length and bill length in adults 
and juveniles, respectively (Figure 3).

In adults, the total length of the head and bill 
showed less than half the index of sexual dimorph-
ism than the length of the wing, whereas differences 
between sexes in mean tarsus length were statisti-
cally insignificant (Table I). In juveniles, there were 
no statistically significant differences in bill and total 
head lengths and only wing length was significantly 
larger in females. As in adults, the tarsus length was 
similar in males and females (Table I).  

Adult males and females were larger than juve-
niles in all linear measurements (t-test, p < 0.001 in 
all cases) with bill length and total head length being 
the most dimorphic, whereas wing and tarsus length 
was the less dimorphic traits (Table II).  

3.2. Sexing

In adults, individuals with wings shorter than 185  
mm were males, and 20% of males in the sample 
may be sexed correctly according to this criterion. 
Adults with wings longer than 197 mm are females, 
but only 9% of females may be correctly sexed using 
this cut-off value. There is less overlap in juveniles 
and, using the cut-off values of 172 and 192 mm, 
correct sex determination applies to 26% of males 
and 10% of females (Figure 2).

In adults, males and females differed significantly in 
wing, bill, and total head length (Table I). Wing length 
contributes the most to the model, as the three equa-
tions with this measurement have very similar efficien-
cies of 74–76% of correctly sexed birds, higher than 
equations with only the bill and total head length 
(Table III). Furthermore, the inclusion of the bill 
and total head length in the model did not increase 
the proportions of birds sexed correctly. In juveniles, 
only wing length was significantly different between 
the sexes. The overall performance of the discriminant 
function with the wing length only (76%) is similar to 
that of adults, with the same proportion of correctly 
classified females and males (Table III).  

4. Discussion

As in the majority of shorebird species from the 
Scolopacidae family, the Great Knots reveals distinct 
reversed sexual size dimorphism in which females are 
larger than males (see Cramp & Simmons 1983). In 
Calidris sandpipers, this dimorphism is usually well 
pronounced, allowing to sex individuals according to 
linear measurements with high effectiveness (i.e. 
Meissner & Pilacka 2008; Hallgrimsson et al. 2008; 
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Jiménez et al. 2015). In the Great Knot, the misclassi-
fication rate of provided equations is within the limits 
reported for other Calidris species (Table S1). As has 
been shown for other species with a large overlap in the 
linear dimensions of both sexes, individuals with 
a discriminant score close to 0 should be omitted 
(Meissner & Krupa 2017). Such a procedure will 
reduce the sample size by not including large males 
and small females in the analyses but will also reduce 
the number of incorrect sex identifications.

Intraspecific variation in different linear dimensions 
reflects the evolutionary responses to selection pressures 
that commonly differ between males and females 
(Badyaev & Martin 2000; Badyaev et al. 2000; Zhu 
et al. 2020). Knot characteristics related to resource 
use (bill length) were more sexually dimorphic than 
those related to locomotion (tarsus length). The 

differences in bill length, similar to other wader species, 
may lead to differences in the foraging niche and spatial 
segregation of males and females during foraging in the 
non-breeding season (Nebel et al. 2000; Nebel 2005; 
Hall et al. 2021).

All linear dimensions in juveniles were smaller 
than in adults, which is especially well pro-
nounced in bill length. Shorter bills in juveniles 
at stopover sites during autumn migration were 
also found in some other Scolopacidae species 
(Hirschfeld et al. 1996; Meissner 1997, 1999). 
Our study was conducted in close proximity 
(about 600 km) to Great Knot breeding grounds 
and the captured birds were just starting their 
autumn migration. This indicates that the growth 
of juveniles does not end before they leave the 
breeding grounds en route to the south, as 
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Figure 2. Distribution of the most dimorphic trait, the wing length, of males (black bars) and females (grey bars) of adult and juvenile 
Great Knots. The median (dot) and interquartile range (rectangle) are given above.
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(white dots) Great Knots. The ellipses show the 95% prediction intervals for a single observation, given the parameter estimates for the 
bivariate distribution computed from the data for males (solid line) and females (dashed line).

Table I. Differences in mean linear measurements between male and female Great Knots, with the sexual dimorphism index (SDI) 
expressed in per cent according to the modified Lovich and Gibbons (1992) equation.

Measurement 
[mm]

Males Females t-test

SDIMean SD N Mean SD N t p

Adults
Wing length 187.7 4.06 565 193.1 3.86 117 13.10 <0.001* 2.9%
Tarsus length 35.99 1.15 537 36.07 1.13 116 0.69 0.491 0.2%
Bill length 42.00 1.71 566 42.48 1.80 117 2.76 0.006 1.1%
Head length 74.06 1.85 566 74.90 2.03 117 4.39 <0.001 1.1%
Juveniles
Wing length 181.7 4.31 137 187.3 3.93 92 10.03 <0.001 3.1%
Tarsus length 35.35 1.07 84 35.22 1.02 65 0.77 0.443 −0.4%
Bill length 36.10 1.98 137 36.11 2.06 92 0.02 0.988 <0.0%
Head length 67.68 2.28 137 67.59 2.44 92 0.28 0.780 −0.1%

* Cochran–Cox test results instead of t-test. 
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previously demonstrated for the Bar-tailed 
Godwit Limosa lapponica (Battley & Conklin  
2010). The lack of expected differences in bill 
length in young males and females may be due 
to the same beak growth rate during postembryo-
nic development in both sexes, which was found 
in other species (Bancroft 1984; Velando et al.  
2000; Jordi & Arizaga 2016). Hence, in females, 
it probably takes longer to reach the final bill size 
than in males, as the final bill in females is larger. 
The length of the bill is the most striking differ-
ence between adults and juveniles, which, on the 
one hand, may have a consequence for juveniles 
in the temporarily limited availability of food 
extracted from the substrate (van Gils et al.  
2016) and, on the other hand, may limit compe-
tition with adults for food resources (Goss- 
Custard & Durell 1981; Marchetti & Price  
1989). It seems that food availability does not 
appear to be a limiting factor for juveniles in the 
early stages of southward migration. Shorter bills 
may be an advantage when foraging on intertidal 
biofilm, which consists of a thin yet dense layer of 
microbes, organic detritus, and sediment in 
a mucilaginous matrix of extracellular polymeric 
substances and non-carbohydrate components 
secreted by microphytobenthos (Elner et al.  
2005; Kuwae et al. 2012). Biofilm grazing has 
not yet been found in the Great Knot, but has 
been confirmed in other waders, including 

a closely related species, the Red Knot Calidris 
canutus (Lourenço et al. 2017). In juveniles, 
shorter wings (flight feathers) than adults have 
been found in many bird species (Marchetti & 
Price 1989; Alatalo et al. 2008). Such difference 
has indeed been observed before in the family 
Scolopacidae during autumn migration, despite 
the high degree of primary wear in adults after 
the breeding season (Atkinson et al. 1981; 
Meissner 1997; Yousef & Meissner 2006; 
Fernández et al. 2007). It was suggested that 
shorter wings in first-year inexperienced birds are 
a result of strong selection for take-off perfor-
mance and increased manoeuvrability as an anti-
predator adaptation (Fernández et al. 2007), while 
adults can fly faster and may compensate for 
reduced manoeuvrability with experience (Alatalo 
et al. 2008). Wing length is the most dimorphic 
sexual trait in both adults and juveniles. In adults, 
the small size of the male may be explained by 
a female preference for high agility during aerial 
displays, which also improves male efficiency in 
parental care (Jönsson 1987; Figuerola 1999; 
Sandercock 2001). Moreover, the sex difference 
in wing length in adult and juvenile birds may 
reflect the overall difference in body size between 
males and females, as larger and heavier females 
need larger wing area for long-distance flight.

The age difference in tarsus length was the lowest 
among all linear measurements. Wader chicks forage 
for themselves from the first or second day onwards 
and this requires a well-developed locomotive abil-
ity, which is reflected in the large size of the legs at 
hatching (Schekkerman et al. 1998). Consequently, 
just after fledging their tarsus has the same length as 
in adults, which was found also in other 
Scolopacidae species (Hirschfeld et al. 1996; 
Meissner 2005; Meissner & Koss 2009). Moreover, 
the tarsus length does not differ significantly 

Table II. Age dimorphism index (ADI) in males and females of 
the Great Knot.

Measurement Males Females

Wing length 3.2% 3.0%
Tarsus length 1.8% 2.4%
Bill length 14.0% 15.0%
Head length 8.6% 9.8%

Table III. Equations for calculating discriminant scores. The percentage of birds correctly 
sexed is given according to squared mahalanobis distances from each sex-group centroid. 
WL – wing length, BL – bill length, THL – total head length.

Equation

Correctly sexed

Males Females All

Adults
D1 = 0.265 WL − 0.237 BL − 41.397 75% 71% 74%
D2 = 0.244 WL − 0.026 THL − 48.037 75% 75% 75%
D3 = 0.248 WL − 46.824 76% 75% 76%
D4 = 0.869 BL − 31.281 54% 46% 53%
D5 = 0.531 THL − 39.406 58% 60% 58%
Juveniles
D6 = 0.240 WL − 44.195 76% 76% 76%
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between sexes, and this was found also in other 
wader species (Ottval & Gunnarsson 2007; Sikora 
& Dubiec 2007; Scherer et al. 2014; Aradis et al.  
2015).

Equations with wing length as a single predictor (D3 

and D6) seem to be better for sexing Great Knots, as the 
inclusion of the bill length or total head length did not 
improve the classification (Table III). The wing length 
is a standard measurement in the protocol for 
Scolopacidae species in bird ringing stations 
(Engelmoer et al. 1987; Gratto-Trevor 2004; Busse & 
Meissner 2015). Moreover, using equations to sex 
Great Knots does not produce a biased sex ratio, like 
in some other shorebird species (Lislevand et al. 2009; 
Meissner & Krupa 2016; Witkowska & Meissner 2020), 
because the proportions of correctly sexed males and 
females are similar or the same. However, the misclas-
sification rate during sex determination of the Great 
Knot is one of the highest among the species of the 
genus Calidris studied (Table S1). Obtained discrimi-
nant functions may offer sufficiently high classification 
accuracy when individuals with a D value close to 0 
would be left unsexed, as in other species with a large 
overlap of linear measurements between sexes 
(Meissner & Krupa 2017; Meissner et al. 2021). The 
equations provided may be sufficient for use not only in 
the future research but importantly also to sex birds 
already measured during previous studies. However, 
including wing length in discriminant analysis may 
cause potential biases resulting from feather wear and 
moult, and birds with worn or moulting outermost 
primaries should be excluded from the analysis.

Biometric variation among the Great Knot popula-
tions originating from different parts of the breeding 
area has not been reported (Kozlova 1962; Cramp & 
Simmons 1983). The breeding area of the Great Knot is 
vast (Lappo et al. 2012; Tomkovich 2021), but flagged 
individuals from all known wintering grounds from the 
Australian coastline to the coastline of the Persian Gulf 
were observed in the Khairusova-Belogolovaya estuary 
(authors’ unpublished data). Hence, it seems that the 
equations provided in this study may be used not only 
for Great Knots migrating through the Kamchatka 
Peninsula. However, in the case of adults provided dis-
criminant function is applicable throughout the annual 
cycle, while in juveniles it should be used with caution 
because the equation was derived from data collected in 
the early part of autumn migration when their growth 
was not finished. Hence, molecular sexing remains the 
method of choice for reliable sexing, especially in 
juveniles.
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