IMIS

Publicaties | Instituten | Personen | Datasets | Projecten | Kaarten
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Bioaccumulation of PCBs in the cuttlefish Sepia officinalis from seawater, sediment and food pathways
Danis, B.; Bustamante, P.; Cotret, O.; Teyssié, J.L.; Fowler, S.W.; Warnau, M. (2005). Bioaccumulation of PCBs in the cuttlefish Sepia officinalis from seawater, sediment and food pathways. Environ. Pollut. 134(1): 113-122. https://dx.doi.org/10.1016/j.envpol.2004.07.010
In: Environmental Pollution. Elsevier: Barking. ISSN 0269-7491; e-ISSN 1873-6424, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Trefwoorden
    Cephalopoda [WoRMS]
    Marien/Kust
Author keywords
    cephalopods; persistent organic pollutants; kinetics; transfer;distribution

Auteurs  Top 
  • Danis, B., meer
  • Bustamante, P.
  • Cotret, O.
  • Teyssié, J.L.
  • Fowler, S.W.
  • Warnau, M.

Abstract
    The cuttlefish Sepia officinalis was selected as a model cephalopod to study PCB bioaccumulation via seawater, sediments and food. Newly hatched, juvenile cuttlefish were exposed for 17 days to environmentally realistic concentrations of 14C-labeled 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB#153) (18 ng PCB l−1 seawater; 30 ng PCB g−1 dry wt sediments; Artemia salina exposed to 18 ng PCB l−1 seawater). Accumulation of PCB#153 was followed in three body compartments: digestive gland, cuttlebone and the combined remaining tissues. Results showed that (1) uptake kinetics were source- and body compartment-dependent, (2) for each body compartment, the accumulation was far greater when S. officinalis was exposed via seawater, (3) the cuttlebone accumulated little of the contaminant regardless of the source, and (4) the PCB congener showed a similar distribution pattern among the different body compartments following exposure to contaminated seawater, sediment or food with the lowest concentrations in the cuttlebone and the highest in the remaining tissues. The use of radiotracer techniques allowed delineating PCB kinetics in small whole organisms as well as in their separate tissues. The results underscore the enhanced ability of cephalopods to concentrate organic pollutants such as PCBs, and raise the question of potential risk to their predators in contaminated areas.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs