IMIS | Vlaams Instituut voor de Zee

Vlaams Instituut voor de Zee

Platform voor marien onderzoek


Publicaties | Instituten | Personen | Datasets | Projecten | Kaarten
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Myofibrillar proteins in white muscle of the developing African catfish Heterobranchus longifilis (Siluriforms, Clariidae)
Huriaux, F.; Vandewalle, P.; Baras, E.; Legendre, M.; Focant, B. (1999). Myofibrillar proteins in white muscle of the developing African catfish Heterobranchus longifilis (Siluriforms, Clariidae). Fish Physiol. Biochem. 21(4): 287-301.
In: Fish Physiology and Biochemistry. Springer: Dordrecht. ISSN 0920-1742; e-ISSN 1573-5168, meer
Peer reviewed article  

Beschikbaar in  Auteurs 
    VLIZ: Open Repository 279841 [ OMA ]

Author keywords
    development; fish; myosin heavy chain; myosin light chain; polyacrylamide gel electrophoresis; tropomyosin; troponin-C; troponin-I; troponin-T

Auteurs  Top 
  • Huriaux, F.
  • Vandewalle, P., meer
  • Baras, E.
  • Legendre, M.
  • Focant, B.

    Developmental changes in myofibrillar protein composition were investigated in the myotomal muscle of the African catfish, Heterobranchus longifilis (Clariidae), by several electrophoretic techniques. The main muscle fibres of larvae and the fast-white muscle fibres of juvenile and adult fish were found to express distinct myosin heavy chain and myosin light chain 2 (LC2) isoforms. Three myosin LC2 chains were successively detected, differing by their isoelectric points. In contrast, the alkali light chains remained qualitatively and quantitatively unchanged during fish growth. Actin, agr-tropomyosin, and troponin-C (TN-C) were also similar in larval, juvenile, and adult white muscle, but an additional larval tropomyosin isoform was found in the first developmental stages. Two isoforms of troponin-T (TN-T) and troponin-I (TN-I) were synthesised in the course of fish growth. Transition from the larval to the adult isoform was much faster for TN-T than for TN-I. Slow-red muscle myofibrils from adult H. longifilis showed no common component (except actin) with larval, juvenile, or adult fast-white muscle myofibrils. Red myofibrils displayed a single TN-T and a single TN-I isoform, but two isoforms of TN-C. The myofibrillar protein isoforms synthesised at any given developmental stage almost certainly reflect changes in the functional requirements of swimming muscles in the course of fish development.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs