THE

DEPTHS OF THE SEA.

AN ACCOUNT OF THE GENERAL RESULTS 0 F 71 x

DREDGING CRUTSES OF H.M.SS. 'PGRMUPINR' AND 'LIGETNING
DITRINO THE SUAMERS OF 18AB, 18AR, AND 1870, aydeb the becirntipie minection on DR CAARFNTEF, F.H.S. J. GWYN JEFFREYS, F.RS., AND DH. WYYILLE THOMSON, F.AR,
${ }^{\text {hy }}$
C. WYVILLE THOMSON,

LL.D., D.So., F.R.罗, L. \& R , F.LA., F.G.E. ETL.

WITH NUMEROUS ILLLIT'RATIONG AND MAPG

Contion:

MACMILLAN AND CO.
187.3.

MADAME HOLTEN

1*
GRATEPUL HEMEABRANCF OF T'HE PLEARANT TIMER
GPENT EY HIMSFLE ANE HIS COMRATIRS
At tim
GOVERNOR'g HOUSE 1N THORS日AVN,
nT
THE ADTHOR

THE

DEPTHS OF THE SEA.

MADON :

10nan mPREF ETLI:

PREFACE.

Ar the close of the Deep-sea Dredging Expeditions which had been undertaken by the Admiralty at the instance of the Council of the Royal Society during the years 1868, 1869, and 1870, it was thought right that those who had been entrusted with their scientific direction should, in addition to their official reports, lay before the general public some account of their proceedings with the objects;-first, of showing, if possible, that the value of the additions which had been made to human knowledge justified the liberality of Government in acceding to the request of the Council of the Royal Society, and placing means at their disposal to carry out the desired researches; and, secondly, of giving such a popular outline of the remarkable results of our work as might stimulate general interest, and induce those who have the proclivities and the opportunity, to penetrate farther into the new and strange region on whose borders we have had the good fortune to bave been among the first to encroach.

It was originally intended that the general account should have been a joint production, each of $u 8$ contributing his part. . There were difficulties, however, in the way of this arrangement. We were all fully occupied with other matters, and the nmount of communication and correspondence between us, required to carry out the plan of joint authorship, seemed likely to prove a cumbrous complication.

It was therefore decided that quoad the popular exposition I should take upon myself the office of 'reporter,' and thus it comes about that I am individually and solely responsible for the opinions and statements contained in this book, save where they are included within quotation marks, or their sources otherwise acknowledged.

Since we began these deep-sea investigations, inquiries have come in from all quarters, both at home and abroad, as to the implements and methods which we employ. To supply the desired information, I have described, in detail, the processes both of sounding and dredging; and I hope that the special chapters on these matters- the result of considerable experience-may be found useful to beginners.

I pretend to no special knowledge of physics, and I should have greatly preferred confining myself to the domnin of Biology, my own proper province; but certain physical questions raised during our lnte explorations have so great importance in relation to
the distribution of living heings, and have of late been brought into so great prominence by Dr. Carpenter, that it has been impossible for me to avoid giving my earnest consideration to their general hearings on Physical Geogrnphy, and forming decided opinions, which, I regret to may, do not altogether coincide with those of Dr. Carpenter. The chief points on which my friend and I 'agree to differ' are discussed in the chapter on the Gulf-stream.

It was at first my intention that appendices should be added to the different chapters, containing lists and scientific descriptions of the animal forms which were ohserved. This it was found impossible to accomplish, chiefly on account of the large number of undescribed species which were placed in the hands of the experts who undertook the examination of the several groups. I am not sure that, even if it had been possible to furnish them in time, such lists would have been altogether an appropriate addition to what is intended merely as a popular preliminary sketch.

The metrical system of measurement, and the centigrade thermometer scale, have been adopted throughout the volume. The metrical system is probahly familiar to most of my readers. In case the centigrade notation, which comes in very frequently nwing to the frequent discussion of questions of the distrihution of temperature, should not le equally familiar, a comparative scale, embodying those of

Falrenheit, Celsius, and Réaumur, is introduced for comparison.

My various sources of information, and the friendly assistance I have received on all hands during the progiess of our work, are acknowledged, so far as possible, in the text. I need here only renew my thanks to Staff-Commander May and the officers of the - Lightning,' and Captain Calver and the officers of the 'Porcupine, without whose hearty sympathy and co-operation our task could never have been satisfnctorily accomplished; to my colleagues, Dr. Carpenter, F.R.S., and Mr. Gwyn Jeffreys, F.lR.S., who have cordially assisted me in every way in their power ; and to the naturalists into whose bands the animals of various classes were placed for description and study,-the Rev. A. Merle Norman, Professor Killiker, Dr. Cniter, F.R.S., Dr. Allman, F.R.S., lrofessor Martin Dumean, P.R.s.,
and Dr. ML'Intosh, for information courteously supplied.

The whole of the illustrations in the book-with the exception of the vipnettes of Faroe scenery for which it am indeluted to the accomplished pencil of Madame Holten—are by my friend Mr. J. J. Wild. I need scorcely thank him for the admirable way in which he has accomplished his task, for every figure was with him a lahour of love, and I almost envy lim the gratification he must feel in the result. To Mr. .T. D. Cooper I owe my sincere thanks for the singularly faithful and artistic rendering of Mi. Wild's beautiful drawings on the wood-hlocks.

On the return of the 'Porcupine' from her last cruise, so much interest was felt in the bearings of the new discoveries upon important biological geological and physical problems, that a representation was made to Government by the Council of the Royal Society, urging the despateh of an expedition to traverse the great ocean basins, and take an outline survey of the vast new field of research-the bottom of the sea.

Rear-Admiral Richards, C.B., F.F.S., the Hydrograplier to the Navy, warmly supported the proposal, and while I am writing a noble slip is lying at Sheerness equipped for scientific research under his wise and liheral directions, as no ship of any nation was ever equipped before.

The scientific staff of the 'Challenger' are well aware that for some time to come their rale is to work and not to talk; but now, on the eve of departure, I think it is only right to take this opportunity of saying that nothing has been left undone by the Government to ensure the success of the undertaking, and that dire misfortune only ought to prevent our furnishing a valuable return.
C. Wyvile Thomson.

Edingurge,
Deember 2nd, 1872.

CONTENTS.

CHAPTER I.

1NTRODOTION.
The Queation of a Bathymetrical Limit to Life,-The general Lawa which regulate the Geographical Diatribution of Living Beinga.- Profeseor Edward Forbea' Inveatigationa and Viewn-Specific Cenkres-RepreRemtative Species.-Zonlogical Provincas--Bearings of a Doctrine of Fivalation upen the Ider of a 'Species;' and of the Lawe of Distribution —The Circumatancea mast likely tn affect Life at great Depthe ; Pressure, Temperature, and Abseace of Light Page 1

GHAPTER II.

```
TER CROIGE OR THR 'LIGHTNING.'
```

Proporal to inveatigate the Conditions of the Hottom of the Sea-Sogeestions and Antiojpations.-Correspondence hetween the Council of the Royal Society and the Admirally.-Departure from Stornoway.-The Fieroe Ialanda.-Singular Temperature Reaulta in the Ferot Channel.Lifa abundant at all Depthe, - Ariximga corcmaia-Hokenia earpentari. -General Resulta of the Expedition arage 48
Appendis A-Particnlars of Depth, Temperature, and Paritian at the vericus Dredging Statints of H.M.S. 'Lightnigg,' in the Stimmer of 1868; the Temperaturen carrected for Preanire Paga Bl

CHAPTER 11 .

the croderg of the forcoping.'
The Equipment of the $V_{\text {essfl }}$.-The first Cruige, uniter the direction of Mr. Gwyn Jeffreys, off the West Coast of Ireland and in the Channal between Scotlend nad Rookall. -Dredging married down to 1,470 fathours.
-Change of Arrangements.-Second Cruise; to the Bay of Biscry. Dredging auccesaful at 2,435 fathome. Third Cruise; in the Chonnel betweed Fierae nad Shelland -The Fminn of the 'Cold Aren.' Page Cz

Appendix A.-Official Dnemmenis nud Official Accnunts of preliminery Procaedings in connection with the Explarations in H.M. Surveyingvessel 'Porcupine,' during the S'ummer of 1869 Page 133
Appendix R.-Purticulars of Depth, Tempenture, nud Pasiting at the various Dredging Stations of F.M.S. 'Poreupine,' in the Summer af JR6A

Page 142

CHAPTER IV.

> THE CRDISEG OF THE 'PGRCUPINE' (cQntiatucd).

From Shetland to Stnenowny.-Phosphoreseence.-The Echinalhurida.-
 mente far the Expedition of 1870 . - From Fingland to Gibmaltar. Peculiar Canditians of the Mediterrment.-Return to Cowes. Prge 1-f!
Appenaix A-Fxtracts Crom the Minutes of Council of the Royal Society, mid ather officinl Documents referring to the Cruise of H.M.S. "Porcupine ' daring the Summer of 1870 Prige 197
Affennix B.-Particulere of Depth, Tpmpamature, and Positinn at the varions Dredgingestations of H.M.S. 'Parcupias' in the Summer of 1870

Page 2012

CHAPTER V.

DRRE-gRA ROTNDINE.
The ordinary Sounding-lead for moderate Depthe. Linble to Eroor when employed in Deep Water.- Farly Deep Soundinga unrelinble.-lmpmed Methode of Sounding.-The Cup-lead.-Brooke's Sounding Inatrumant.The 'Balldog ;' Fitugerald's ; the 'Hydru.'—Sounding from the 'Porrupine. --The Contour of the Bed of the Nerth Athentic

Pag! 90ti

CRAPTER VI.

DEPF-GEA DREDGING.
The Naturalist' Dredge.-O. F. Miiller.-Enll's Dredge.-Dredging at moderate Depths.-The Dredge-rope.-Dredging in Deep Wrter.-The ' Hempeu tangled.'-Drenging on hnatd the 'Parcupine.'- The Sieves.-

The Dredger's Noie-book.-The Dredging Committee of the British Association.-Dredgring on the Const of Aritnin.-Dredging abraad.Hietnry of the Pmgreas of Kuowledge of the Aby日an] Fanun. Prga 2at
Aplendix A. -Cne of the Dredging Pnpera isaugl by the Hritish Aqanciation Committee, fillaí up by Mr. MacAndrew

Fage 2 E1

CHAPTER VII.

DREP-ERA TRMןEAATDARA.

Ocenn Currents and thelr generul Effects on Climnta. Datermination of Surface Temperatures.-Deap-sea Themnometera,-Tlıe ordinary Belfregistering Thermometer on Six's principle -Tha Miller Chellan modificution. - The Temperature Ohservations Inken during the Three Ortisea of H.M.S. ' Porcupiue ' in the year 186日, etc. Page ERA

Aprennix A.Surface Temperatures nhacraed on haerd B.M.S. 'Pareupine ' during the Summers of 1869 and 1870

Page 329
Apprninix B.-Temperature of the Sea ot differant Depths near the Easten Margin of the North Atlantic Basin, as agcertained by Serinl and by Bottom Saundings Page 352
Afpendix C.-Compantive Raté af Reduction of Temperature with Increnes of Depth at Three Stations in diferent Latitudes, all of them on the Enstern Margin of the Atlontic Basin

Page 35 s
Appendix D.--Temperture of the San at different Depthe in the $W_{\text {arm }}$ and Cold Arens lying between the North of Scotland, the Shetlaud Islanda, and the Fretae Islands; 0 n necertained by Serinl and by Bottom Somading

Fage 354
Appennix E.-Intermedinte Botton Temperntures abowing the Intermixture of Warm and Cold Currents on the Borders of the Warm and Cold Aгеая Page 355

CHAPTER VIII.

THEGULF-ETAEAM,

The Rinnge of the 'Porcupiee' Temperature Ohservations.-Low Temperntures universal at great Deptha.-The Diffeulty of investignting Ocean Currents.-The Dectrine of a general Ocennic Circulation advocated by Oaptain Manry and by Dr. Carpenter.- Opinion expressed by Sir John Herachel.-The Origin and Extension of tha Gulf-stream. -The Views of Captain Manry ; of Professor Buff; of Dr. Carpenter,-The Gulf-strenm nff the Canst of North Americe.-Professar Bache's 'Seations.'-The Gulf-stream traned by the Surface Tamparntures of the North Athnntic-Mr. Findlay's Views.-Dr. Petermma'e Tempenture Cherts. Sourees of
the underlyiug Cald Whter.-The Arctic Returi Currenta. - Antarctic Indranght.- ∇ ertical Diatrilution of Temperature in the North Atlantic Hasin

Page ${ }^{156}$

('HAPTER IX.

> THE DEEP-NKA TAUNA.

The Prolozoa of the Deep Sea.-Bahhybius.-'Coccoliths,' and 'Cocco-spberes.'-The Fornminifera of the Warin nad Cold Arens.-Deep-sen Sponges, - The Fexactinellidut - Rnssella, - Hyaloncmn. - Decp-sen Cornals, - Tha Stulked Cringids, - Pentarrinus - Rhizocrinus. - Bathy-erinus.-The Stak-fishes of the Deap Sen-The geaeral Diatribution and Reintions of Deap-anan Urehins.-The Cmusacea, the Mollusca, and the Fishes of the 'Porcupine' Expedilinns Page 407

CHAPTER X.

```
TGE CONTJNOITY OE THE CEAL&'
```

Pointe of Resenhlance betrees the Atlantic Ooze and the White ChalkDifferances hetween them-Conpositinn of Chalf.-The Doetrine of the Continaity of the Thalk.-Objections.-Argiments in thvour of the View from Phynical Geology and Geograply.-Former Distribution of Sea and Land.-Palrontological Rqidence. - Chnlk-fintr. - Modern Sponges and Ventricalites-Carale.-Echiuoderms.-Moluacn.-Opinions of Professor Huxley and Mr. Prestwich.--The Compagition of Sen-water. - Presence of Organic Matter. - Analyeis of the enntnined Cinses -Differencea of Specific Gravity.-Conclunion Page 46'7
Appendit A.-Summary of the Resulta of the Examination of Samples of Sea-mater taken at the Suriace and at variour Deptha, By William Lant Carpenter, B. A. . R Sc. - Paga 502
Apprndix B.-Reaults of the Annlyees of Eight Samplea of Sea-wnter collected during the Third Cruiee of the 'Porcupine.' By Dr. Franklend, F.E.S.

Page 611
Apprnini C.-Nates on Specimens of the Rotlom callected during the First Cruise of the ' Porcupine' in I88.日. B.y Tavid Forber, F.R S. Page 514
Appendix D.- Nate on the Carbonic Acid contained in Sen-water. liy John Young Buchangn, M. A Chemist to the 'Challenger' Expedilion.

Page 618
INDEX

 Page Bez3

LIST OF ILLUSTRATIONS．

WOODCUTE．

na． Fat
1．Abtrbophyton linceil，Müller and Traschel．A gong apeci－ men alightly enlarged（No．75） 19
2．Globigerifa bullotars，D＇Orbigay．Highly magnified 2．
3．Orbuliva ontiversa，D＇Orbigny．Highly magnified 23
4．Cabyoffyllia morealis，Fleming．Twioe the natital nize， （No．45） 27
5．Briginga coronata，G．O．Serg．Noturbl bize．（No．7） 67
6．Holtenla oarpanters（ap．n．）．Helf the notaral size（No．12） 71
7．Tigipaoms agariolforma（sp．n．）．Netural bize．（Na．12） 74
8．Gonoflat rhamboines，Fehrioius．Yoang．Twice the natural gize．（No．碞） 87
9．Genton tajenne，Kroyer．Yonng．Twice the netural size． （No．7） 88
10．Oritolites tendiesimde，Carpenter MSS．Mngnified．（No． 28） 91
11．Perocidarig ftrpotata（bp．п．）．Nehtral gize．（No．47） 102
12 Podrtalesta jreferepel（mp．m．）．Slightly enlarged．（No．64） 108
12．Stplncordfla morealig，Loven（ap．）．Natural size．（Na．64） 114
14．Solagter toreifer，Van Duben and Koten．Natural aize． （ Na ．65） 110
15．Korethragter htgpinte（sp，o．）．Dorad aspect．Twice the natural size．（Ne．67） 119
16．Hymenabtrr pelldoidos（ap．n．）．Ventral aspech．Natural give．（No，5月） 180
17．Afceabten mifrons（bp，n．）．Dorsil hapect．Three－fourthe of the vaturel size．（ Na .57 ）． 122
18．Eugiade cugpidatol，Kroyer．（No．G5） 195
19．Caprelea efinobisalim，Normat．Twice the natural size． （No．5月） 121
niu. fags
2u. Aga nagota, Normon, Slightly enlarged, (Na. Bif) 124
21. Ahctarus baffinj, Sabine. Alout the artumal bize. (No. 6.) 128
22. Nympann abyagonum, Norimag. Slightly eulurgen. (No. B6) 129
23. Tercophora efvisobprites, Oscit Schmilt. Twice the untuml size. (No. '70) 147
24. Thpangora lbla (sp. m.). Twice the matural mize. (No. 7g) 148
25. Arciaster vgxillifer (sp. n.). One-third the yuturil bize. (Nの. 78) 150
26. Zoroaster folgens (sp. \mathbf{v}.). One-tbitd the natural size. (No. 78) 15.3
27. Chlferia fratily (sp. u.). Two-thirds the untural size. INo. 86) 160
2日. Calveria miterix (ap- n.). Iener aurface of n partimin of the test showing the structure of the ambuluenal finl internmlin- lnchil areas 157
29. Calvrbia fenegtrata (sp. m.). Oife of the four-vnlued pedi- cellarimo 159
30. Lepbonflia pmolifera, Pallag (yp). Three-lourths the natural size. (No. 20) 1 fin
31. Allipara ocalina, Ehrenberg 170
a2. Opbiomosicm lymani (sp. b.). Doranl aurface. Nituml size. (No 45) 179
33. Opeiomogidu fynani (ep. n.). Oral ghrfaca 173
34. Doryncene toomsont, Niman. Once und a bulf the notural size: everywhere in deep water 1'4
35. Amatmia carpenteit, Nurman. Once and a linlf the ontural size. (Na. 47) 175
sa. Comonurncladia vihgata (ep. ni). One-linlf flic maturil size. (N a. 33, Pl. V.) 187
37. The'Cep-erad! 210
38. (Bhonkés Defr-Sea Sodndina Atparatug 211 213
40. Tee' Bdel-Doa' Sodining Mactine
41. The 'Fitzgerali' Sodnding Macmine 217
42. Toe 'Byma' Sodnding Maciink 218
49. 'Margey's Goundino Mscuine 285
44. Otne Finedrick Mrelerts Debdar. A.b. 1750 294
4n. 'Aale'g Diferae' 24
40. The Stern Derrick of the 'Porcofine, smowina tie 'Accumdlator, ${ }^{\text {a }}$ tif Dipdae, and the Mgel of htowina the Rops 248
The Eng of the Dredgefinamp 2511
vin Pan표
4B. DrRDGE-FAANE, 日EOWJNG THE MODE OF ATTAOLMENT OP THE Ba 2.1
 Attaobient of the Bag 289
f0. Dramram ar the Rfeative Pugiticn of the Vegeel, ter Wetgets, and tif Drbugr, in dreimikg in Dege Water 253
[1. Dremee mite 'Hehpen Tangirb' 957
6e. Set df Drelama Sirvre 200
53. Tife Millet-Cagetia Momfication of Six'b Sblf.pegieteh- ine Thermometya I91
St. Coppha Gase for fhotrcting the Millen-ltabrlla Ther- mometer 292
fis. Enilal Sounding, Station 64 312
he. Seulal Suundina, Station ap 312
57. Corpes conetracted frem Srbial Soindinge in the 'Warm'- anti 'Cold-Areag' in tme Citannrl hetween Scotland and Fabor 315
68. Conves constrdctin from Seriai axo Rottom Soundinge ix tur Ghanfrl between Scutiani aki Rodrall 319
59. Dianham tephesentikg tie Rrlation bettyeen Depth and Temperatide off Rockall 322
60. Piadiam reprfgenting tuf Relation netween Defte and temperatung in tife Atlantic Babin 322
61. Curveg conftroctri from Serial and Hotton Temprratope Sounminas in tue Atlantic Basin 324
fiz. Diagrab hepregenting tit Relatice metween Dffti and Tempbiatore, fiom tie Teyperatore Ofgebvationg taken bettreen Cape Finietreite and Cape St. Fingent, Adenst 1970 327
63. "Eine arüsgere Cytodr von Bathymod mit eingebettetrn Checolitnen" (x. 704) 412
(4. 'Coccosruene' (x. 1000) 4] 4
6at. Tosgella velata (ap. n.). Natural bize. (Na. 32, 1B70) 4]!
(6f. Hyaloneya lubitanicom, B:irhaza du Boenge. Hah the netural нize. (No , na, 1869) 421
6i. Askonhma eftodalenge, Kent. One-eighth the matural aize. (No. Da $_{1}$ 187 (1) 429
68. Fladeliua distinctam. Twice the natural aize. (No. 26, 1870) 432
6!. Thecorsamma mocialig, Pouplales. Once and a half the natural size. (No. 57, 16fig) 4219
70. Pentacineles asteria, Linmeus. One-fourtl the natural aize 436
 17. 1870) 443
vin. ragy
72. Reizocringe loffoteneig, M. Sure. Onge and a half the vatural size. (No. 43, 1869) 46
72. Bateycrinus araotlis (ap, n.). Twiee the netural gize. (No. 37, 1869) 453
74. Archabtrr hafrong (gp. n.). Oml aspeol Tllere-fourtha the natural siza. (No. 57 , 1869) 455
75. Solagter furcifbr, Von Duben and Katen. Oral aspect. Nntural gize. (No. 65, 1869) 456
76. Buccingpais bthiata, Jeffiayb. Fieioe Cbennel 404
77. Latirde alhus, Jellrayg. Twice the natural size. Fearoe Channel 404
78. Platrongetia rucida, Jeffreys. Twice the natural aine. a_{1} from the Eartern Atlantio; $b_{\text {, fom }}$ from Gulf of Mexico 465
79. Pectra hoartnsi, Fortees. Twice the natural size 465
80. Venthictlates simplex, Toulmin Smith. Once and a hall the natural aize 483
81. Ventaculiter atupirax, Toulmin Smith. Outer aurface; four times the natural siza $48 \pm$
82. Ventricilites simplex, Toulmin Smith. Section of the outer wall, showing the structure of the siliciaus network (x. 60) 485
83. Corlospakra tobirex (gi. a.). Slightly enlarged. Off the Congt of Portugal 485
84. 'Choanites.' In a flint from the white chalk 486
VIGNETTES
The Fhror Iglanife xii
Tinitiola 48
Thorbistan 81
Ther Govrbaobis Hoder, Thorsuavn 132
Licis Dimon 154
Nolā̃, fhou the Hilla afovy Thorghavn 235
Foglí, proy the Fiabtern Shore op Vineru 280
Vaay Cbrace in Sudera 324
The Giati and the Háa 40 H
Bordö, Kusd, asd Kalsd, pron tee Hamlet of Vidend 48 H
Konō, from Vany in Borió कीl

MAPS AND PLATES.

Ta facm
PLITI
51
51

87

95

106

180
F.-Trace af F.M.S. 'Pohatrine '—1870
VI-Dlagrak as the 'Porotpinm' Sodninnag rn the ATLAN- tid and in the Fhrog Channel, EHowing the Rrfation betwren Thiprratdre hni Depth, -The Skrial Sount- thgs reducen to Curyra, The Numifre rebter to the Statione on the Charta, Platre I., III.」 And IV. 22
VII.-Phygigal Chart of the North Amantio: ehomina This FOR THR MONTH OF JDLT 383
TIII.-MAP AROWiNg TRE GRNERAL Distrinition or the TRR- Thary, the Chetaceote, and the Jurageid Sygtrme JN MHE NORTE-WERT OF EUROPM WITH REFERTNGE TG CDNTADR 474

'THE DEPTHS OF THE SEA.

UHAPTER I.

INTRODDCTION.

The Question of a Bathymatrical Limit to Life. -The general Lawa which regulate the Geographical Diatribution ai Iiving Beinge. Profeasor Edward Forbes' Investigations and Views-Spacific Centres.-Representative Species.-Zoological Provincea-Bearings of a Doctrine of Evolution upon the Iden of a 'Species,' and of the I.aws of Distribution. -The Circumstanese moat likely to affect Life st great Depths: Pressure, Temperature, and Ahsence of Light

The sea covers nearly three-fourths of the surface of the earth, and, until within the last few years, very little was known with anything like certainty about its depths, whether in their physical or their biological relations. The popular notion was, that after arriving at a certain depth the conditions hecame so peculiar, so entirely different from those of any portion of the earth to which we have access, as to preclude any other idea than that of a waste of utter darkness, subjected to such stupendous pressure as to make life of any kind impossible, and to throw insuperable diffi-
culties in the way of any attempt at investigation. Even men of science seemed to share this iden, for they gave little heed to the apparently well-authenticated instances of animals, comparatively high in the scale of life, having been hrought up on soumding lines from great depths, and welcomed any suggestion of the animals having got entangled when swimming on the surface, or of carelessness on the part of the observers. And this was strange, for every other question in Physical Geomrapliy had been investigated hy scientific men with consummate patience and energy. Every gap in the moble little army of martyrs striving to extent the boundaries of knowledge in the wilds of Australia, on the Zambesi, or towards the Nortly or South Pole, was struggled for by earmest volunteers, and still the great ocean slumbering beneath the moon covered a region apparently as inaccessible to man as the "mare serenitatis. ${ }^{\text {' }}$

A few years ago the bottom of the sea was required for the purpose of telegraphic communication, and practical men mapped out the bed of the North Atlantic, and devised ingenious methods of ascertaining the nature of the material covering the bottom. They laid a telegraphic cahle across it, and the cable got broken and they went back to the spot and fislied up the end of it easily, from a depth of nearly two miles.

It had long been a question with naturalists whether it might not be possible to dredge the hottom of the sea in the ordinary way, and to send down waterbotfles and registering instruments to settle finally the question of a 'zero of animal life,' and to deter-
mine with precision the composition and temperature of sea-water at great depths. An investigation of this kind is heyond the ordinary limits of private enterprise. It requires more power and sea skill than naturalists can usually command. When, however, in the year 1868, at the instance of my colleague Dr. Carpenter and myself, with the effective support of the present Hydrographer to the Navy, who in deeply interested in the scientific aspects of his prolession, we had placed at our disposal by the Admiralty sufficient power and skill to make the experiment, we found that we could work, not with so much ease, but with as much certainty, at a depth of 600 fathoms as at 100 ; and in 1869 we carried the operations down to 2,435 fathoms, 14,610 feet, nearly three statute miles, with perfect success.

Dredging in such deep water was dombtless very trying. Fach haul occupied seven or eight hours; and cluring the whole of that time it demanded and received the most anxious care on the part of our commander, who stood with his hand on the pulse of the accumulator ready at any moment, by a turn of the paddles, to ease any undue strain. The men, stimulated and encouraged by the cordial interest taken by their officers in our operations, worked willingly and well; but the labour of taking upwards of three miles of rope coming up with a heavy strain, from the surging drum of the engine, was very severe. The rope itself, 'hawser-laid,' of the best Italian hemp, $2 \frac{1}{2}$ inches in circumference, with a breaking strain of $2 \frac{1}{6}$ tons, looked frayed out and worn, as if it could not have been trusted to stand this extraordinary ordeal much longer.

Still the thing is possible, and it must be done again and again, as the years pass on, by naturalists of all nations, working with improving machinery, and with ever-increasing knowledge. For the hed of the deep sea, the $140,000,000$ of square miles which we have now added to the legitimate field of Natural History research, is not a harren waste. It is inhabited by a fauna more rich and varied on account of the enormous extent of the area, and with the organisme in many cases apparently even more elahorately and delicately formed, and more exquisitely beautiful in their soft slades of colouring and in the rainhow-tints of their wonderful phosphorescence, than the fauna of the well-known belt of shallow water teeming with innumerable invertebrate forms which fringes the land. And the forms of these hithertn unknown living beings, and their mode of life, and their relations to other organisms whether living or extinct, and the phenomena and laws of their geographical distribution, must he worked out.

The late Professor Edward Forbes appears to have been the first who undertook the systematic study of Marine Zoology with special reference to the distribution of marine animals in space and in time. After making himself well acquainted with the fauna of the British seas to the depth of ahout 200 fathoms by dredging, and by onlisting the active co-operation of his friends-among whom we find MacAndrew, Barlee, Gwyn Jeffreys, William Thompson, Robert Ball, and many others, entering enthusiastically into the new field of Natural History inquiry-in the year 1841 Forles joined Capt. Graves, who was at that time in command of the Mediterranem Survey, as naturalist.

During alout eighteen months he studied with the utmost care the conditions of the Agean and its shores, and conducted upwards of one hundred dredging operations at depths varying from 1 to 130 fathoms. In 1843 he communicated to the Cork meeting of the Aritish Association an elaborate report on the Mollusca and Radiata of the Agean Sea, and on their distribution considered as bearing on Geology.' Three years later, in 1846, he published in the first volume of the 'Memoirs of the Geological Survey of Great Britain,' a most valuable memoir upon the Connention between the existing Fauna and Flora of the British Isles, and the geological Changes which have affected their Area, especially during the Epoch of the Northern Drift. ${ }^{\text {. }}$ In the year 1859 appeared the Natural History of the European Seas by the late Professor Edward Forbes, edited and continued by Rohert Godwin Austen. ${ }^{9}$ In the furst hundred pages of this little book, Forbes gives a general outline of some of the more important of his views with regard

[^0]to the distribution of marine forms. The remainder of the book is a continuation by his friend Mr. Godwin Austen, for before it was finished an early death had cut short the career of the most accomplished and original naturalist of his time.

I will give a brief sketch of the general results to which Forkes was led by his labours, and I shall have to point out hereafter, that although we are now inclined to look somewhat differently on certain very fundamental points, and although recent investigations with hetter applinnces and more extendel experience have invalidated many of his conclusions, to Forbes is due the credit of laving been the first to treat these questions in a brond philosophical sense, and to point out that the only means of acquiring a true knowledge of the rationale of the distribution of our present fauna, is to make onrselves acquainted with its history, to connect the present with the past. This is the direction which must be taken by future inquiry. Forbes, as a pioneer in this line of research, was scarcely in a position to appreciate the full value of his work. Every year adds enormously to our stock of data, and every new fact indicates more clearly the brilliant results which are to be obtained by following his methods, and by emulating his enthusiasm and his indefatigable industry.

Forbes helieved implicitly, along with nearly all the leading naturalists of his time, in the immutability of species. He says (Natural History of the British Seas, p. 8), "Every true species presents in its individuals, certain features, specific characters, which distinguish it fiom every other species; as if the Creator had set an exclusive mark or seal on each
type." He likewise helieved in specific centres of distribution. He held that all the individuals composing a species had descended from a single progenitor, or from two, according as the sexes might be united or distinct, and that consequently the iden of a species involved the idea of the relationship in all the individuals of common descont; and the converse, that there could hy no possibility be community of descent except in living beings which possessed the same specific characters. He supposed that the original individual or pair was created at a particular spot where the conditions were suitahle for its existence and propagation, and that the species extended and migrated from that spot on all sides over nn area of greater or less extent, until it met with some natural barrier in the shape of unsuitable conditions. No specific form could have more than a single centre of distribution. If its area appeared to le broken up, a patch not in connection with the original centre of distribution occurring in some distant locality, it was accounted for by the formation, through some geological change after the first spread of the species, of a barrier which cut off a part of its area; or to some accidental transport to a place where the conditions were sufficiently similar to those of its natural original halitat to enable it to become naturalized. No species once exterminated was ever recrented, so that in those few cases in which we find a species abundant at one period over an area, absent over the same area for a time, and recurring at a later periond, it must be accounted for by a change in the conditions of the area which forced the cmigration of the species, and a sulbsequent further change which permitted its return.

Forbes defined and advocated what he called the law of representation. He found that in all parts of the world, however far removed, and however completely separated by natural barriers, where the conditions of life are similar, species and groups of species occur which, although not identical, resemble one another very closely; and he found that this similarity existed likewise hetween groups of fossil remains, and between groups of fossils and groups of recent forms. Admitting the constancy of specific charncters, these resemblances could not be accounted for by community of descent, and he thus arrived at the generalization, that in localities placed under similar circumstances, similar though specifically distinct specific forms were created. These he regarded as mutually representative species.

Our acceptance of the doctrines of specific centres and of representation, or, at all events, the form in which we may be inclined to accept these, depends greatly upon the acceptance or rejection of the fundamental dogma of the immutahility of species; and on this point there has been a very great change of opinion within the last ten or twelve years, a change certainly due to the remarkable ability and candour with which the question has been discussed by Mr. Darwin' and Mr. Wallace, ${ }^{9}$ and to the genius of Prin-

[^1]fessor Ernst Haeckel, ${ }^{1}$ Dr. Fritz Muiller, ${ }^{2}$ and others of their enthusiastic disciples and commentators. I do not think that I am speaking too strongly when I sny that there is now scarcely a single competent general naturalist who is not prepared to accept some form of the dnctrine of evolution.

There is, no doubt, very great difficulty in the minds of many of ns in conceiving that, commencing from the simplest living being, the present state of things in the organic world has been produced solely by the comhined action of 'atavism,' the tendency of offspring to resemble their parents closely; and 'variation,' the tendency of offspring to differ individually from their parents within very narrow limits : and many are inclined to believe that some other law than the 'survival of the fittest' must regulate the existing marvellous system of extreme and yet larmonious modification. Still it must be admitterl that variation is a vera causa, capable, within a limited period, under favourable circumstances, of converting one species into what, according to our present ideas, we should be forced to recognize as a different species. And such being the case, it is, perhaps, conceivalle that during the lapse of a period of time-still infinitely shorter than eternity-variation may bave produced the entire result.

[^2]The individuals comprising a species have a definite range of variation strictly limited hy the circumstances under which the group of individuals is placed. Except in man, and in clomesticated animals in which it is artificially increased, this individual variation is usually so slight as to be unappreciable except to a practised eye; hut any extreme variation which passes the natural limit in any direction clashes in some way with surrounding circumstances, and is dangerous to the life of the individual. The normal or graphic line, or the of safety, ${ }^{\text {a }}$ of the species, lies midway hetween the extremes of variation.

If at any period in the history of a species the conditions of life of a group of individuals of the species be gradually altered, with the gradual change of circumstances the limit of variation is contracted in one direction and relaxed in another ; it becomes more dangerous to diverge towards one side and more desirable to diverge towards the other, and the position of the lines limiting variation is altered. The normal line, the line along which the specific characters are most strongly marked is consequently slightly deflected, some characters being more strongly expressed at the expense of others. This deflection, carried on for ages in the same direction, must eventually carry the divergence of the varying race fir heyond any limit within which we are in the habit of admitting identity of species.

But the process must be infinitely slow. It is dificult to form any irlea of ten, fifty, or a hundred millions of years; or of the relation which such periods bear to changes taking place in the organic world.

We must remember, however, that the rocks of the Silurian system, overlaid ly ten miles' thickness of sediment entomhing a hundred successive faunæ, each as rich and varied as the fauna of the present day, themselves teem with fossils fully representing all the existing classes of animals, except perhaps the highest.

If it be possible to imagine that this marvellous manifestation of Eternal Power and Wisdom involved in living nature can have been worked out through the law of 'rlescent with modification' alone, we shall certainly require from the Physicists the lougest row of cyphers which they can afford.

Now, although the admission of a doctrine of evolution must affect greatly our conception of the origin and rationale of so-called specific centres, it does not practically affect the question of their existence, or of the laws regulating the distribution of species from their centres by migration, by transport, by ocean currents, by elevations or depressions of the land, or by any other causes at work under existing circumstances. So far as practical naturalists are concerned, species are permanent within their narrow limits of variation, and it would introduce an element of infinite confusion and error if we were to regard them in any other light. The arigin of species by descent with modification is as yet only a hypothesis. During the whole period of recorded human olservation not onc single instance of the change of one specics into another has been detected; and, singular to say, in successive geological formations, although new species are constantly appearing and there is aluurlant evidence of progressive change, no single case
has yet been observed of one species passing through a series of inappreciahle modifications into another. Every species appears to have an area of maximum development, and this has been called the metropolis of the species; and practically we must employ the same methods in investigating the laws of its distribution as if we still regarded it as having been specially created in its metropolis.

It is the same in dealing with the law of representation. Accepting an evolution doctrine, we should certainly regard closely allied or 'representative' species as having descended comparatively recently from a common ancestry, and as having diverged from one another under somewhat different conditions of life. It is possible that as our knowledge increases we may be able to trace the pedigree of onr modern species, and some attempts have already been made to sketch out the main branches of the universal genealogical trea;' but practically we must continue to accord a specific rank to forms which exhibit charactors to which we have been in the habit of assigning specific value.
"Every species has three maxima of clevelopment, -in depth, in geographic space, in time. In depth, we find a species at first represented by few individuals, which become more and more numerous until they reach a certain point, after which they again gradually diminish, and at length altogether disappear. So also in the geographic and geologic distribution of animals. Sonetimes the genus to which the species belongs ceases with its disappearance, but not unfrequently a sucosssion of similar

[^3]species are kept up, representative as it were of each other. When there is such a representation, the minimum of one species usually commences before that of which it is representative has attained its correspondent minimum. Forms of representative species are similar, often only to be distinguished by critical examination." ${ }^{1}$

As an illustration of what is meant by the law of ' representation,' I may cite a very curious case mentioned by Mr. Verril and Mr. Alexander Agassiz. On either side of the Isthmus of Panama the Echinoderm order Echinidea, the sea-urehins, are abundant; but the species found on the two sides of the Isthmus are distinct, although they belong almost universally to the same genera, and in most cases each genus is represented by species on each side which resemble one another so closely in hahit and appearance as to be at first sight hardly distinguishable. I arrange a few of the most marked of these from the Caribhean and Panamic sides of the Isthmus in parallel columns.

Eastetn Fauna.
Cidoris annulatr, Grat.
Dintedemanantillarum, Phil.
Echinneidaris punchlutur, Desul
Eelinomelva michelini, Des. mividis, A. As.
Lytechinna variagatus, A. Á.
Tripnenstes wentricosus, An. Stelaunclypus rourestlii, A. Ag. Juthit distufinata, KL.

Wietern Fauna.
Cidnris thonarrii, Val.
Diademan maxicanum, A. Ag.
Echinocidaris stellatn, An. Echinometra unu brunti, A. Aa. rupicoln, A. Ag.
Lytechinus semituberculatus, A. Ao.

Tripmenstes depressun, A. Aa. Statnuorlypus rotundus, A. Ag. Mellita inagifissa, Micu.

[^4]Eaitern Fajea.
Mellita herapara, A. Ao.
Eneope michplini, Ao.
emarginata, Ag.
Rhyncholampas caribbearam, A. Ag.
Brisas columbaris, A A . Meoma ventricosa, Lüтв.
Plagionotus pectoralis, An. Agrssizia excentriea, A, AG.
Merin atropos, Місн.

Whitete Fauna.
Mellita pacifica, Ver. Enoppe grentios, Ag. mic唯品a, Ab. Rhyncholampas pacificus, A. An

Arisnus obesus, Ver.
Meoma grandis, Gray.
Plagionotus mobilis, A. A0.
Agassisia scmbiculata, $V_{a l}$ Mifera clotho, Mice.

Supposing species to be constant, this singular chain of resemblances would indicate simply the special creation on the two sides of the Isthmus of two groups of species closely resembling one another, because the circumstances under which they were placed were so very similar; hut admitting 'descent with modification,' while gladly availing ourselves of the convenient term 'representation,' we at once come to the conclusion that these nearly allied 'representative species' must have descended from a common stock, and we look for the cause of their divergence. Now on examining the Isthmus of Panama we find that a portion of it consists of cretaceous beds containing fossils undistinguishable from fossils from the cretaceous beds of Europe; the Isthmus must therefore have been raised into dry land in tertiary or post-tertiary times. It is difficult to doult that the rising of this natural barrier isolated two portions of a sballow-water fauna which have since slightly diverged under slightly differ'nt conditions. I quote Alexander Agassiz :-" The question naturally arises, have we not in the different Fauna on both sides of the Isthmus a standard hy which to measure the
changes which those species have undergane since the raising of the Tsthmus of Panama and the isolation of the two Faunre?"

Wdward Forbes distinguished round all seaboards four very marked mones of depth, ench characterized ly a distinct group of organisms. The first of these is the littoral zone, the space between tide-marks, distinguished by the alundance of sea-weeds, on the European shores of the genera Lichina, Fucus, Enteromorpha, Polysiphonia, and Laureneia, which severally predominate at different heights in the \%one, and subdivide it into subordinate belts like a softly-coloured riband border. This band is under very special circumstances, for its inhahitants are periorlically exposed to the nir, to the direct rays of the sun, and to all the extremes of the climate of the land. Animal species are not very numerous in the littoral zone, but individuals are abundant. The distribution of many of the littoral species is very wide, and some of them are nearly cosmopolitan. Many are vegetable feeders. Some characteristic genera on the coast of Europe are Gammarus, Talitious, and Balanus among Crustacea, and Littorine, Patella, Purpura, and Mytius among Mollusca, with, under stones and in rock-pools, many stragglers from the next zone.

The Laminarian zone extends from lnw-water mark to a depth of ahout fifteen fathoms. This is specially

[^5]the zone of 'tangles' for the first few fathoms, and in deeper water of the beautiful scarlet sea-weeds (floriders). It is always under water except at the very lowest eblb of spring tides, when we get a glimpse of its upper border. The laminarian zone produces abundance of vegetable food, and, like the littoral zone, may be divided into suhordinate hands distinguished by differently tinted algæ. Animals swarm in this zone, both as to species and individuals, and are usually remarkable for the brightness of their colouring. The molluscan genera Trochus, Lacuna, and Lottin are characteristic of this belt in the British seas.

The Laminarian zone is succeeded by the Coralline zone, which extends to a depth of about fifty fathoms. In this belt vegetation is chiefly represented by corallike millipores, and plant-like hydroid zoophytes and bryozoa ahound. All of the higher orders of marine invertehrates are fully represented, principally by animal feeders. The larger crustaceans and echinoderms are ahundant; and the great fishing-banks frequented by the cod, haddock, halibut, turint, and sole, belong properly to this zone, although they sometimes extend into water more than filty fathoms deep. Characteristic mollusean genera are Buccimum, Fusus, Ostrea, and Pecten; and nmong echinoderms in the European seas we find Antedon sarsii and celticus, Asteracanthion glaciale and rubens, Ophiothrix fragilis, and on sand, Ophioglypha lasertosa and allida.

The last helt defined by Forbes as extending from about fifty fathoms to an unknown lower limit is the zone of deep-sea corals. "In its depths the number
of peculiar creatures are few, yet sufficient to give a marked character to it, whilst the other portions of its population are derived from the higher zones, and must be regarded as colonists. As we descend deeper and deeper in this region, its inhalitants lecome more and more modified, and fewer and fewer, indicating our approach towards an abyss where life is either extinguished, or exhibits but a few sparks to mark its lingering presence."

Forbes pointed out that the groups of animals having their maximum development in these several zones are thoroughly characteristic, and that groups of representative forms occupy the same zones all over the world, so that on examining an assemblage of marine animals from any locality, it is easy to tell from what zone of depth they have been procured. At all periods of the earth's history, there has been the same clear definition of zones of depth, and fossil animals from any particular zone are in some sense representative of the fauna of the corresponding zone at the present day. We can, therefore, usually tell with tolerable certainty to which zone of depth a particular assemblage of fossils is to he referred.

Although we must now greatly modify our views with regard to the extent and fauna of the zone of deep-sea corals, and give up all idea of a zero of animal life, still we must regard Forbes' investigation into the hathymetrical distribution of animals as marking a great advance on previous knowledge. His experience was much wider than that of any other naturalist of his time; the practical difficulties in the way of testing his conclusions were great, and

[^6]they were accepted by naturalists generally without question.

The history of discovery bearing upon the extent and distribution of the deep-sea fauna will be discussed in a future chapter. It will suffice at present to mention in order the few data which gradually prepared the minds of naturalists to distrust the hypothesis of a zero of animal life at a limited depth, and led to the recent special investigations. In the year 1819 Sir' John Ross published the official account of his voyage of discovery during the year 1818 in Baffin's Bay. ${ }^{1}$ At page 178 he says, "In the menntime I was employed on board in sounding and in trying the current, and the temperature of the water. It being perfectly calm and smooth, I had an excellent opportunity of detecting these important objects. Soundings were obtained correctly in 1,000 fathoms, consisting of soft mud, in which there were worms, and, entangled on the sounding line, at the deptli of 800 fathoms, was found a beautiful Caput Dlechesa (Fig. 1). These were carefully preserved, and will be found described in the appendix." This was in lat. $73^{\circ} 37^{\prime}$ N., long. $77^{\circ} 25^{\prime}$ W., on the 1 st of September, 1818, and it is, so far as I am nware, the first recorded instance of living animals having been brought up from any depth approaching 1,000 fathoms. General Sir Edward Saline, who was a member of' Sir Joln Ross's expedition, has kindly furnished Dr.

[^7]
Carpenter with some more ample particulars of this

 *mangerl N_{n}-ñ
occurrence:'-" The ship sommded in $\mathbf{1 , 0 0 0}$ fathoms, mud, hetreen one and two miles off shore (lat.

[^8]$73^{\prime \prime} 37^{\prime}$ N., long. $77^{\circ} \mathbf{2 5}$ ' W.) ; n magnificent Asterias (Caput Medusce) was entangled by the line, and brought up with very little damage. The mud was soft and greenish, and contained specimens of Lumbricus tubicola.' So far my written journal ; but I can add, from a very distinct recollection, that the heavy deep-sea weight had sunk, drawing the line with it, several feet into the soft greenish mud, which still adhered to the line when brought to the surface of the water. The star-fish had heen entangled in the line so little above the mud that fragments of its arms, which had been broken off in the nscent of the line, were picked up from amongst the mud."

Sir James Clark Ross, R.N., dredging in 270 fathoms, lat. $73^{\circ} 3^{\prime} \mathrm{S}$., long. $176^{\circ} \mathbf{G}^{\prime}$ E., reports: ${ }^{1}$ "Corallines, Flustros, and a variety of invertehrate animals, came up in the net, showing an abundance and great variety of animal life. Amongst these I detected two species of Pyonogonum; Idotea bafini, hitherto considered peculiar to the Arctic seas; a Chilon, seven or eight bivalves and univalves, an unknown species of Gammarus, and two kinds of Serpula adhering to the pebbles and shells . . . It was interesting amongst these creatures to recognize several that I lad been in the habit of taking in equally high northern latitudes; and although, contrary to the general belief of naturalists, I have no doubt that, from however great a depth we may he enaliled to bring up the mud and stones of the hed of the ocean,

[^9]we shall find them teeming with animal life; the extreme pressure at the greatest depth does not appear to affect these creatures; hitherto we have not been ahle to determine this point beyond a thousand fathoms, but from that depth several shell-fish liave been brought up with the mud."

On the 28th of June 1845, Mr. Henry Goodsir, who was a member of Sir John Franklin's ill-fated expedition, obtained in Davis' Strait from a depth of 300 fathoms, "a capital haul,--mollusca, crustacea, asteridn, spatangi, corallines, \&c."" The bottom was composed of fine green mud like that mentioned by Sir Edward Sahine.

About the year 1854 Passed-midshipman Brooke, U.S.N., invented his ingenious sounding insirument for bringing up samples from the bottom. It only brought up a small quantity in a quill. These trophies from any depth over 1,000 fathoms were eagerly sought for hy naturalists and sulimitted to searching microscopic examination; and the result was very aurprising. All over the Atlantic basin the sediment brought up was nearly uniform in character, and consisted almost entirely of the calcareous shells, whole or in fragments, of one species of foraminifer, Glohigerina bulloides (Fig. 2). Mixed with these were the shells of some other foraminifera, and particularly a little perlorated sphere, Orbutina universa (Fig. 3), which in some localities entirely replaces Globigerina: with a few shields of diatoms, and spines and trellised skeletons of Radiolaria. Some soundings from the Pacific were of the same character, so

[^10]that it seemed probable that this gradual deposition of a fine uniform organic sediment was almost universal.
'Then the question arose whether the animals which secreted these shells lived at the hotom, or whether they floated in myriads on the surface and in the upper zones of the sea, their empty shells falling after death throngh the water in an incessant shower. specimens of the soundings were sent to the eminent

microscopists Professor Ehrenherg of Berlin aud the late Professor Baily of West Point. On the moot question these two naturalists gave opposite opinions. Ehrenberg contended that the weight of evidence was in favome of their having lived at the bottom, while Baily thought it was not prolialle that the animals live at the depths where the shells are foumb, but that they inhalit the water near the
surface, and when they die their shells settle to the hottom. ${ }^{\text {. }}$

The next high authority who expressed an opinion was Professor Huxley, and he was very guarded. The samples procured by Capt. Dayman in the 'Cyclops,'

in 1857, were submitted to him for examination, and in his report to the Admiralty ${ }^{9}$ in 1858 he says:-
' Explanntiong and Sailing Directions to acrompany the Wind and Currents Charts. Hy M. F. Maury, LL.D., Lieut. U.S N., Superintendent of the National Observatory. 6th Edition. Philadelphie, 1864. P. 299.

Appendix A to Deep Sea Soundings in the Norlb Atlantic Ocean between Irelnad and Newfoundland, made in H.M.S. 'Cyclapa,' Lieut.-Commander Jogeph Deyman, in June and July 1857. Published by arder of the Lords Commissioners of the Admiralty. London, 1858.
" How can animal life be conceived to exist under such conditions of light, temperature, pressure, and aëration as must obtain at these vast depths? To this one can only reply that we know for a certainty that even very highly organized animals do contrive to live at a depth of 300 or 400 fathoms, inasmuch as they have been brought up thence, and that the difference in the amount of light and heat at 400 and at 2,000 fathoms is probably, so to speak, very far less than the difference in complexity of organization between these animals and the humble Protozoa and Protophyta of the deep-sea soundings. I confess, though, as yet, far from regarding it proved that the Globigerince live at these depths, the balance of probabilities seems to me to incline in that direction."

In 1860 Dr. Wallich accompanied Captain Sir Leopold MeClintock in H.M.S. 'Hulldog' on her sounding expedition to Iceland, Greenland, and Newfoundland, as naturalist. During the cruise soundings were taken, and specimens of the bottom were brought up from depths from 600 to 2,000 fathoms; many of these were the now well-known grey 'Globigerina ooze,' while others were volcanic detritus from Iceland, and clay and gravel the product of the disintegration of the metamorphic rocks of Greenland and Labrador. On the return voyage, about midway between Cape Farewell and Rackall, thirteen star-fishes came up from a sounding of 1,260 fathoms, "convnlsively emhracing a portion of the sounding-line which had been payed out in excess of the already ascertained depth, and rested for a sufficient period at the bottom to permit of their attaching themselves to it." On his return Dr. Wallich published in 1862, an extremely valuable
work which will be frequently referred to hereafter, npon 'The Atlantic Sea-hed.' ' He warmly advocated the view that the conditions of the bottom of the sea were not such as to preclude the possilility of the existence of even the higher forms of animal life, and discussed fully and with great ability the argumenta which had been advanced on the other side. The first part only of Dr. Wallich's book appeared, in a somewhat costly and cumbrous form, and it scarcely came into the hands of working naturalists, or received the attention which it deserved. At the time, however, it was merely an expression of individual opinion, for no new facts had been elicited. Star-fishes had come up on several previous occasions adhering to soundinglines, but the absolute proof was still wanting that they had lived upon the ground at the depth of the sounding. Dr. Wallich referred the star-fishes procured to a well-known littoral species, and complicated their history somewhat irrelevantly with the disoppearance of the 'Land of Buss.' Fortunately the artistic if not very satisfactory figure which he gives of a starfish clinging to the line does not bear out his determination either in appearance or attitude, but suggests one or other of two species which we now know to be excessively abundant in deep water in the North Atlantic, Ophiopholis aculeata, O. F. Müller, or Ophiacantha spinulosa, Müller and Troschel.

[^11]Dr. Wallich's is the noly book which discusses fully and systematically the various questions bearing upon the biological relations of the sea-bed, and his conclusions are in the main correct.

In the autumn of the year 1860 Mr . Fleeming Jenkin, C.E., now Professor of Engineering in the University of Edinburgh, was emplayed by the Mediterranean Telegraph Company to repair their cable hetween Sardinia and Bona on the coast of Africa, and on January 15, 1861, he gave an interesting account of his proceedings at a meeting of the Institution of Civil Engineers.'

This cable was laid in the year 1857. In 1858 it became necessary to repair it, and a length of ahout 30 miles was picked up and successfully replaced. In the summer of 1860 the cable completely failed. On taking it up in comparatively shallow water on the African shore, the cahle was found covered with marine animals, greatly corroded, and injured apparently by the trawling operations in an extensive coral fishery through which it unfortunately passed. It was broken through in 70 fathoms water a few miles from Bona. The sea-end was however recovered, and it was found that the cable which thence traversed a wide valley nearly 2,000 fathoms in maximum depth, was perfect to within about 40 miles of Sardinia. It was then picked up from the Sardinian end, and the first 39 miles were as sound as when it was first laid down. At this distance from the shore there was a change in the nature of the bottom, evidenced by the different colour of the mud, and the wires were
' Minates of Proceedinge of the Tnatitution of Civil Enginears, with Abstracta of the Discuesions. Val. xx. p. הl. Lamdun, lefil.
much corroded. Shortly afterwards the cahle gave way in a depth of $\mathbf{3 , 2 0 0}$ fathoms, at a distance of one mile firon the spat where the electrical tests showed that the enble harl heen previously liroken.

With these 40 miles of cable much coral and many mnrine animals were brought up, but it did not appear that their presence had injured the cahle, for they were attached to the sound as well as to the corroded portions: On his return, Mr. Fleeming Jenkin sent specimens of the animals which he had himself taken from the cable, noting the respective depths, to Prolessor Allman, T.R.S. for determination. Dr. Allman grives a list of fifteen animal forms, including the ova af a ceplalopod, fomed at depths of from 70 to 1,200

fathoms. On other portions of the cable species of Gramtia, Plummlaria, Gorgonia, Caryophyllia, Alcyoninm, Cellepora, Retepore, Escharn, Salicornaria, -Ascirita, Lima, and Serpula. I obscrve from Professor

Fleeming Jenkin's private journal, which he has kindly placed in my hands for reference, that an example of Caryophyllia, a true coral (Fig. 4), was found naturally attached to the cable at the point where it gave way; that is to say, at the bottom in 1,200 fathoms water.

Some portions of this cable subsequently came into the custody of M. Mangon, Professor at the Ecole des Ponts et Chaussées in Paris, and were examined by M. Alphonse Milne-Edwards, who read a paper' upon the organisms attached to them, at the A cademy of Sciences, on the 15th of July, 1861.' After some introductory remarks which show that he is thoroughly aware of the value of this observation as a final solution of the vexed question of the existence of animal life at depths in the sea greatly beyond the supposed 'zero' of Edward Forbes, M. MilneEdwards gives a list of the animals which he found on the cable from the depth of 1,100 fathoms. The list includes Murex lamellosus, Ciristofori and Jan, and Craspedotus limbatus, Philippi, two univalve shells allied to the whelk; Ostrea cochlear, Poli, a small oyster common below 40 fathoms throughout the Mediterranean; Pecten testce, Bivona, a rare little clam; Caryophyllia berealis, Fleming, or a nearly allied species, one of the true corals; and an undescribed coral referred to a new genus and species under the name of Thalassiotrochus telegraphicus, A. Mune-Euwards.

[^12]Tt is right, however, to state that Prof. Fleeming Jenkin's notes refer to only one or two species, and especially to Caryophyllia horealis, as attached to the calle at a depth of upwards of 1,000 fathoms. From this depth he took examples of Caryophyllia with his own hands, but he suspects that specimens from the shallower water may have got mixed with those from the deeper in the series in the possession of M . Mangon, and that therefore M. Milne-Edwards' list is not entirely trustwortliy.

Up till this time all ohservations with reference to the existence of living animals at extreme depthe had been liable to error, or at all events to doubt, from two sources. The appliances and methods of deepsea sounding were imperfect, and there was always a possibility, from the action of deep currents upon the sounding line or from other causes, of a greater depth being indicated than renlly existed; and again, althougl, there was a strong probahility, there was no absolute certainty that the animals adhering to the line or entangled on the sounding instrument had actually come up from the bottom. They might have heen canght on the way.

Before laying a sulbmarine telegraphic calle its course is carefully surveyed, and no margin of doubt is left as to the real depth. Fishing the cable up is a delicate and difficult operation, and during its progress the depth is checked again and again. The cable lies on the ground throughout its whole length. The animal forms upon which our conclusions are based are not sticking loosely to the cable, under circumstances which might be accounted for ly their having heen entangled upon it during its passage through the
water, but they are moulded upon its outer surface or cemented to it by calcareous or horny excretions, and some of them, such as the corals and bryozoa, from what we know of their history and mode of life, must bave become attached to it as minute germs, and have grown to maturity in the position in which they were found. I must therefore regard this observation of Mr. Fleeming Jenkin as having afforcled the first absolute proof of the existence of highly-organized animals living at depths of upwards of 1,000 fathoms.

During the several cruises of H.M. ships 'Lightning ' and 'Porcupine' in the years 1868, 1869, and $1870,{ }^{1}$ fifty-seven hauls of the dredge were taken in the Atlantic at depths beyond 500 fathons, nad sixteen at depthsheyond 1,000 fathoms, and in all cases life was abundant. In 1869 we took two casts in depths greater than 2,000 fathoms. In both of these life was abundant; and with the deepest cast, 2,435 fathoms, off the mouth of the Bay of Biscay, we took living, wellmarked and characteristic examples of all of the five invertehrate sub-kingdoms. And thus the question of

[^13]the existence of abundant animal life at the bottom of the sea has been finally settled and for all depths, for there is no reason to suppose that the depth anywhere exceeds between three and four thousand l'athoms; and if there be nothing in the conditions of a depth of 2,500 fathoms to prevent the full development of a varied fauna, it is impossible to suppose that even an additional thousand fathoms would make any great difference.

The conditions which might be expected principally to affect animal life at great depths of the sea are pressure, temperature, and the absence of light which apparently involves the absence of vegetable food.

After passing a zone surrounding the land, which is everywhere narrow compared with the extent of the ocean, through which the bottom more or less abruptly shelves downwards and the water deepens; speaking very generally, the average depth of the sea is 2,000 fathoms, ar about twn miles; as far below the surface as the average height of the Swiss Alps. In some places the depth seems to be considerably greater, possibly here and there nearly double that amount; hut these abyses are certainly very local, and their existence is even uncertain, and a vast portion of the area does not reach a depth of 1,500 lathoms.

The enormons pressure at these great depths seemed at first sight nlome sufficient to put any iden of life out of the question. 'Phere was a curious popular notion, in which I well remember sharing when a boy, that, in going down, the sea-water became gradually umder the pressure henvier and heavier, and that ali the loose things in the sea floated at different levels.
according to their specific weight: skeletons of men, anchors and shot and cannon, and last of all the broad gold pieces wrecked in the loss of many a galleon on the Spanish Main; the whole forming a kind of 'false bottom ' to the ocean, beneath which there lay all the depth of clear still water, which was heavier than molten gold.

The conditions of pressure are certainly very extraordinary. At 2,000 fathoms a man would bear upon his body a weight equal to twenty locomotive engines, each with a long goods train loaded with pig iron. We are apt to forget, however, that water is almost incompressible, and that therefore the density of sea-water at a depth of 2,000 fathoms is scarcely apprecialily increased. At the depth of a mile, under a pressure of about 159 atmospheres, sea-water, according to the formula given by Jamin, is compressed by the $\frac{1}{1 x}$ of its volume; and at twenty miles, supposing the law of the compressibility to continue the same, hy only $\frac{1}{~}$ of its volume-that is to say, the volume at that depth would be $\frac{4}{7}$ of the volume of the same weight of water at the surface. Any free air suspended in the water, or contained in any compressible tissue of an animal at 2,000 fathoms, would be reduced to a mere fraction of its bulk, but an organism supported through all its tissues on all sides, within and witbout, by incompressille fluids at the same pressure, would not necessarily be incommoded by it. We sometimes find when we get up in the morning, by a rise of an inch in the barometer, that nearly half a ton has been quietly piled upon us during the night, hut we experience no inconvenience, rather a feeling of exhilaration and bunyancy, since it requires a little less exer-
tion to move our bolies in the denser medium. We are alrcady familiar, chiefly through the researches of the late Professor Sars, with a long list of animals of all the invertehrate groups living at a depth of 300 to 400 fathoms, and consequently subject to a pressure of $1,120 \mathrm{llss}$. on the square inch; and off the coast of Portugal there is a great fishery of sharks (Centroscymnus crelolepis, Boc. and Cap.), carried on beyond that depth.

If an animal so high in the scale of organization as a shark can bear without inconvenience the pressure of half a ton on the square inch, it is a sufficient proof that the pressure is applied under circumstances which prevent its affecting it to its prejudice, and there seems to be no reason why it should not tolerate equally well a pressure of one or two tons. At all events it is a fact that the animals of all the invertebrate classes which ahound at a depth of 2,000 fathoms do bear that extreme pressure, and that they do not seem to he affected by it in any way. We dredged at 2,43a fathoms Scrohiculavia mitida, Müller, a species which is abundant in six fathoms and at all intermodiate depths, and at 2,090 fathoms a large Fusus, with species of many genera which are familiar at moderate depths. Although highly organized animals may live when permanently subjected to these high pressures, it is by no means certain that they could survive the change of condition involved in the pressure heing suddenly removed. Most of the mollusea and annelids lurought up in the dredge from heyond 1,000 fathoms were either dead or in a very sluggish state. Some of the star-fislies mored for some time
feebly, and the spines and pedicellarias moved on the shells of the urchins, hut all the animals had evidently received from some cause their death-shock. Dr. Perceval Wright mentions' that all the sharks hrought up by the long lises from 500 fathoms in Setubal Bay are dead when they reach the surface.

Various methods have been proposed to test the actual pressure at great depths, but as all the elements in the calculation are well known, it is easier to work out the question in the study than in the field. A neat instrument was constructed for the American Const Survey. A brass piston or plunger was fitted accurately into a cylindrical hole in the wall of a brass water-tight chamber. The chamber was completely filled with water, and a clasping index on the plunger marked to what extent the plunger had been driven into the water contained in the chamber liy the extreme pressure. The required indication is no douht given, hut such an instrument is at the same time an extremely delicate thermoscope, and until lately there has been no perfect means of correcting for temperature. A more important application of the pressure gauge is to check the accuracy of deep soundings. Probably the best arrangement which has been proposed for the purpose is a long capillary glass tube, calibrated and graduated to millimetres, open at one end, and provided with a moveable index to show to what amount the air contained in the tube has been compressed by the entrance of the water. The principal oljection to this device is the

[^14]great difficulty in arranging an index which will measure with accuracy the extremely small space into which cven a long column of air is compressed when the pressure hecomes very great. It can scarcely be made available beyond 1,000 fathoms (200 atmospheres).

We have in Sir Joln Herschel's 'Physical Geography, ${ }^{11}$ and in Dr. Wallich's 'Atlantic Sea-bed, ${ }^{\prime 2}$ where it is given in the fullest detail, the doctrine of the distribution of deep-sea temperature as it seems to have been almost universally adopted up till the time of the cruise of the ' lightning.' It was generally understood that while the surface temperature, which depended upon direct solar radiation, the direction of currents, the temperature of winds, and other temporary causes, might vary to any amount; at a certain depth the temperature was permanent at $4^{\circ} \mathrm{C}$., the temperature of the greatest density of fresh water. It is singular that this belief sloould have met with so general acceptance, for so early as the year 1833 M. Depretz ${ }^{3}$ determined that the temperature of the maximum density of sea-water, which coniracts steadily till just above its freezing-point, is $-3^{\circ} .67 \mathrm{C}$; and even before that time observations of seartemperatures at great depths, which were certainly trustworthy within a few degrees, had indicated severadegrees helow the freezing-point of fresh water.

The question of the distribution of heat in the sea,

[^15]which is one of the greatest interest in connection with the distribution of marine animals, will be fully discussed in a future chapter. The broad conclusions to which we have been led by late investigations are, that instead of there being a permanent deep layer of water at $4^{\circ} \mathrm{C}$. the average temperature of the bottom of the deep sea in temperate and tropical regions is about $0^{\circ} \mathrm{C}$., the freezing-point of fresh water; and that there is a general surface movement of warm water, produced probably by a combination of various causes, from the equatorial regions towards the poles, and a slow under-current, or rather indraught, of cold water from the poles towards the equator. From cases which are recorded, chiefly by the earlier American sounding expeditions, of the sounding-line having heen run out into long loops in soundings where, from the nature of the sea-bed, the hottom water appeared to be still, it would seem that there are also in some places intermediate currents; but with reference to their limits and distribution we have as yet no data. That a cold flow from the polar seas passes over the bottom seems to be proved by the fact that in all parts of the world wherever deep temperature soundings bave been taken, from the arctic circle to the equator, the ternperature sinks with increasing depth, and is lower at the bottom than the normal temperature of the crust of the earth; an evidence that a constantly renewed supply of cold water is cooling down the surface of the crist, which, being a bad conductor, does not transmit heat with sufficient rapidity to affect perceptihly the temperature of the cold indraught. It is probable that in winter, in those parts of the aretic sea which are not directly influenend by
the northern extension of the gulf stream, the whole colomm of water from the surface to the hottom is reduced to the lowest temperature which it will bear without freezing, and is thus an ample source of the coldest water of the lighest specific gravity.

The proof that the flow of the cold indraught is almost secular in its slowness, is that over a large portion of the ocean where the low bottom temperature is known to prevail, the sea-led is covered with a light teecy deposit of microscopic organisms of great delicacy, into which the sounding-lead has in some instances sunk several feet, and which must inevitably be drifted away by a current of appreciable velocity. In all places where any perceptible current exists, the bottom consists of sand or mud or gravel and rolled pebbles. In some cases also, sounding in the deep water of the mid-Atlantic, the line, after running out greatly in excess of the depth, has been found to have coiled itself in a tangled mass right over the lead-a proof of almost absolute stillness.

In some places, owing to the conformation of the neighhouring land or of the sea-hottom, warm and cold currents"are circumscribed and localized, and this sometimes gives us the singular phenomenon of a patch or stripe of warm and a patch of cold sea meeting in an invisible but very definite line. There is a curious instance of this in the 'cold wall' which defines the western border of the gulf stream along the coast of Massachusetts, and another scarcely less marked which we discovered during the trial cruise of the 'Lightning' has been fully described by Dr. Carpenter in his report of that cruise, and will be referred to hereafter.

In moderate depths sometimes the whole mass of water from the surface to the bottom is abnormally warm, owing to the movement in a certain direction of a great body of warm water, as in the 'warm area' to the north-west of the Febrides; and sometimes the whole body of water is abnormally cold, as in the ' cold area' between Scotland and Fegroe, and in the northern part of the German Ocean. In deep water however, after the first few hundred fathoms, the thermometer usually sinks gradually and very slowly till it reaches its minimum at the hottom, a little above or below the zero of the centigrade scale.

The temperature of the sea apparently never sinks at any depth below $-3^{0.5}$ C., a degree of cold which, singularly enough, is not inconsistent with abundant and vigorous animal life, en that in the ocean, except perhaps within the eternal ice-harrier of the antaretic pole, life seems nowhere to be limited ly cold. But although certain sea-animals-many of them, such as the siphonophora, the salpa, and the ctenophorous medusæ, of the most delicate and complicated arganiza-tion-are iolerant of such severe cold, it would appear' to be temperature almost entirely which regulates the distribution of species. The nature of the ground can have little to say to it, for on every line of const of any extent almost every condition and every kind of sediment is usually represented. From their inhabiting a medium which differs but little in weight from the substance of their bodies, and from the great majority of them producing free-moving larve or fry in vast numbers which are floated along from place to place by currents, mavine animals would seew to have every possifle chance of extending thrir aren,
and yet the geographical distribution of most of the shallow-water species is well defined, and frequently somewhat restricted. Unfortunately we know as yet very little about the general distrilution of marine nuimals. Except along the coasts of Britain and Scandinavia, a part of the North American coost, and a part of the Mediterranenn, we know absolutely nothing beyond the shore zone, or at allevente beyond 10 or 15 fathoms. What little we do know is confined almost entirely to the mollusca, and is due, not so much to scientific research as to the commercial value which the acquisitive zenl of conchologists has placed upon rare shells. Tt. may be supposed, howover, that the same laws which regulate the distribution of littoral and sub-littoral mollusca, affect in libe manner that of shallow-water annulosa, echinoderms, and colenterates; indeed, from the scattered observations which have been made on the distribution of these latter groups, it seems certain that suoh is the case.

Woodward ${ }^{1}$ regarded the marine mollusca as occupying eighteen well-defined 'provinces,' fulfilling more or less completely the condition of having at least onelalf of the species peculiar to the province. Edward Forbes defined twenty-five such 'regions;' but it must be remembered that in both cases at least three-fourths of the number of areas defined were based upon the most imperfect knowledge of the larger and more conspicuous shore shells only. It has been constantly olserved in the fer casca confimerl entirely to the shores of the North Atlantic and the Mediterranean,

[^16]in which dredging las been attempted at any considerable depth, say 30 or 40 fathoms, that the number of species common to the province dredged and to the province to the north of it, is greatly increased lyy the investigation being carried into a deeper zone.' Thus in the lusitanian province Mr. McAndrew dredged off the coast of Galicia and Asturias, 212 species, 50 per cent. of which werte common to the coast of Norway; and off the south of Spain 335 species were oltained, of which 28 per cent. were common to Norway (boreal province), and 51 per cent. to Britain (chiefly celtic province). The shells common to the two or three provinces were chiefly those dredged from considerable depths. The littoral forms had a much more distinct aspect. The mollusca of the 'Porcupine' expedition have not yet been thoroughly worked out. They are in the hands of Mr. Gwyn Jeffreys, and his preliminary reports give a most interesting forecast of what we may expect when bis labour is completed. He announces something like 250 new species. Some of the more interesting of these, and the general phenomena of their distribution, will be referred to in a future chapter.

The echinoderms of the expedition are more limited in number, and have already been examined hy the writer with some care. The general distribution of the Echinodermata is not so well known as that of the Mollusea. There are many littoral and sulb-littoral species. Many of these are local, hut many have a wide geographical distribution, usually along what Edward Forbes calls a 'homoiozoic belt,' a belt of mearly similar circumstances of climate extending
through many degrees of longitude, but few of latitude. As a elass, however, they prefer a depth rather beyond 20 fathoms,' beyond the reach of very violent climatic ricissitudes. 'They are conspicuous things, showing usually sufficiently bold specific characters, and thus they are less liable to confusion than most other groups. 'I'hey involve in their history and economy several of the principal questions discussed in this volume; while giving, therefore, such a brief sketch as the space at my disposal and the amount of my present information may permit, of the additions which have been made during our dredging cruises to the lnowledge of the other invertebrate classes, I will use the echinoderms and the protozo principally for the purpose of general illustration.

Littoral and shallow-water species of animals must be much more liable to have their migrations interrupted by 'natural barriers,' such as deep water through which they cannot pass, or currents of warmer or of colder water; they mnst likewise be much more affected by local circumstances, such as extreme differences between summer and winter temperature; so that they might be expected to be more circumscribed and local in their distribution than the denizens of greater depths-and they certainly are so. The conditions of the bottom in the zone from 20 to 50 fathoms are much more equable than near the surface. Direct solar radiation in temperate regions affects this zoue very slightly, so that it prolably

[^17]maintains nearly the same conditions of temperature through many degrees of latitude; and when as it passes southwards it does become gradually affected by increasing warmth, it may be supposed merely to sink a few fathoms deeper, carrying its conditions and its fauna along with it. For example, animal forms which abound in the celtic province at 25 fathoms with a mean temperature of $10^{\circ} \mathrm{C}$., may be expected in greatest number in perkaps 40 or 50 fathorrs, with the same temperature, in the lusitanian province. Such a zone may thus be continuous for a great distance, while the surface climate has been altering greatly, and the migrations of littoral forms have been again and again interrupted. But the deeper' zone also sometimes meets with a natural barrier,' as at the line of junction between the warm and cold areas already mentioned; which causes a curious sifting out of those species which are intolerant of a change of temperature. Thus the fauna of the temperate northward flow of water off the west coast of Scotland is materially different from that of the cold indranght along the east coast.

If there be this overlapping between the lusitanian and celfic provinces, the same relation may he anticipated between our own and the boreal province; and it is well known that this is the case, for the great majnrity of the mollusen which have been dredged hy McAndrew, Barlee, and especially hy Guyn Jefreys, from depths below 50 fathoms, are identical with those found in shallower water on the Scandinavian const. Our recent work, while it has brought out more fully the overlapping, has gone much farther towards the indication of a general law.

It seems probable that the distribution of marine animals is determined by the extremes of temperature rather than hy the means. The mean winter temperature of the surface and of moderate depths off the north coast of Norway is about $2^{\circ} \mathrm{C}$., and the extreme about $0^{\circ} \mathrm{C}$.; and on the coast of Greenland the mean sinks to $-1^{\circ} \mathrm{C}$., and the extreme to $-3^{\circ} \mathrm{C}$.

The temperature of the trough between Scotland and Freroe at the depth of 500 fathoms is from 0° to -1^{0} C., and we find in that trougl, along with many undescribed forms which are special to very deep water, every one of the echinoderms hitherto found on the coast of Scandinavia and Greenland, with the single exception, I believe, of Ophioglypha stiuvitzii, a shallow-water Greenland form among the ophiurids, and of one or two holothurids which have as yet evaded us.

The temperature of the telegraphic plateau at 1,000 to 2,000 fathoms is apparently usually from 3° to $2^{\circ} \mathrm{C}$., and at 2,500 fathoms in the Bay of Biscay it is $2^{\circ} \mathrm{C}$. From 800 to 2,000 fathoms all along the west coasts of Scotland, Yreland, and France, we have dredged Scandinavian echinoderms in ubundance, and from the deep water as far south as the coast of Portugal I have received examples of some of the best marked northern forms, such as Echinus elegans, D. and K.; Toxopneustes drobachiensis, O. F. Müller; Brissopsis lyrifera, Foknes; Tripylus fragilis, D. and K.; the magnificent Brisiaga coronata, G. O. Sars (Fig. 7), and B. endecacnemos, Ansuörnsen; Pleraster militeris, M. and T.; Ophiacantha spinulosa, M. and ' C .; Ophiocten seviceum, Fonbes; Ophioglypha sarsil, Lǜ'K.; Asterony, loceni, M. and T.; and Astero-
phyton linokii, M. and T, from Mr. Gwyn Jeffreys' dredgings in 1870. Deep-sea forms dredged round our coast identical with morthern species have been usually regarded as 'boreal outliers' (Forbes), or at all events as species which have extended their distribution from northern centres. This idea probably arose in a great measure from their baving heen discovered and first described in Scandinavia. We actually know nothing about their centres of distribution; all we know of them is that they are the inhabitants of an enormously extended zone of special thermal conditions, which 'crops out,' as it were, or rather comes within range of the ordinary means of observation, off the coasts of Scandinavia.

Edward Forbes pointed out long ago the lind of inverted analogy which exists between the distribution of land animals and plants and that of the fauna and flora of the sea. In the case of the land, while at the level of the sea there is, in temperate and tropical regions, a luxuriant vegetation with a correspondingly numerous fauna, as we ascend the slope of a mountain range the conditions gradually become more severe; species after species belonging to the more fortunate plains beneath disappear, and are replaced by others whose representatives are only to be found on other mountain ridges, or on the shores of an arctic sea. In the ocean, on the other hand, there is along the shore line and within the first few fathoms, a rich and varied flora and fauna, which participates and sympathises in all the circumstances of climate which aflect the inhabitants of the land. As we descend, the conditions gradually hecome more rigorous, the temperadure falls, and alterations of temperature are less fell.

The finna becomes more uniform over a larger area, and is manifestly one of which the shallower water fanua of some colder region is to a grent extent a lateral extension. Going still deeper, the severity of the cold increases until we reach the vast undulating plains and valleys at the bottom of the sea, with their fauna partly peculins and partly polar-a region the extension of whose extreme thermal conditions only. approaches the surface within the arctic and antarctic circles.

We hare as yet very little exact knowledge as to the flistance to which the sun's light penetrates into the water of the sea According to some recent experiments which will be referred to in a future chapter, it would appear that the rays capable of affecting a delicate photographic film are very rapidly cut off, their effect being imperceptible at the depth of only a few fathoms. It is probable that some portions of the sun's light possessing certain properties may penetrate to a much greater distance, but it must be rememhered that even the clearest sea-water is more or less tinted by suspended opaque particles and floating organisms, so that the light has more than a pure saline solution to contend with. At all events it is certain that beyond the first 50 fathoms plants are barely represented, and after 200 fathoms they are entirely absent. The question of the mode of nutrition of animals at great depths becomes, therefore, a very singular one. The practical distinction hetween plants and animals is, that plants prepare the food of animals hy decomposing certain inorganic suhstances winieh amimals cannot use as food, and recombining their clements into organic compounds
upon which animals can feed. This process is, however, so far as we are at present aware, constantly effected under the influence of light. There seems to be little or no light at the hottom of the sen. and there are certainly no plants except such as may sink from the surface, but the bottom of the sea is a mass of animal life. At first sight it certainly seems difficult to accomnt for the main. tenance of this vast animal popnlation living without any visible means of support. Two explanations have been suggested. It is conceivable that certain animal forms may have the power of decomposing water, carhon dioxide, and ammonia, and re-combining their clements into organic compounds withont the ageney of light. Dr. Wallich supports this view, and in doing so he states that "No exceptional law is invoked, but, on the contrary, that the proof of these organisms being endowed with the power to convert inorganic elements for their own nutrition rests on the undisputed porer which they possess of separating carbonate of lime or silica from waters holding these substances in solution."' This, however, seems scarcely satisfactory. All the sulnstances employed in the nutrition of animals are offered to them finally in solution in water, and the abstraction of these from their watery solutions cannot he regarded as a 'chemical separation.' The luoad distinction still remains, that when corbon dioxide in solution is presented to a green plant in the sunshine it con decompose it, while an animal eannot.

I helieve we have a simpler explanation. All sea-water coutains a certain quantity of organic

[^18]mntter, in solution and in suspension. Its sources are ohvious. All rivers contain a considerahle quantity. Every shore is surrounded by a fringe which averages a mile in width, of olive and red seaweed. In the middle of the Atlantic there is a marine prairie, the 'Sn'gasso sea,' extending over three millions of square miles. The sea is full of animals, which are constantly dying and decaying. The amount of organic matter derived from these nad other sources ly the water of the ocean is very appreciable. Careful analyses of the water were made during the several cruises of the 'Porcupine' to detect it and to determine its amount, and the quantity everywhere was capable of leing rendered manifest and estimated, and the proportion was found to be very uniform in all localities and at all depths. Nearly all the animals at extreme depths-practically all the animals, for the small numher of higher forms feed upon these-belong to one sulh-kingdom, the Protozoa; whose distinctive character is that they have no special organs of nutrition, lut absorb nomrishment through the whole surface of their jelly-like bodies. Most of these animals scerete exquisitely formed skeletons, some of silica, some of carbonate of lime. There is no doult that they extract both these substances from the seawater ; and it seems more than probable that the organic matter which forms their soft parts is derived from the same source. It is thus quite intelligible that a world of animals may live in these dark abysses, but it is a necessary condition that they must chiefly belong to a class capable of heing supported by absorption through the surface
of their bodies of matter in solution, developing but little heat, and incurring a very small amount of waste ly any manifestation of vital activity. According to this view it seems probable that at all periods of the earth's history some l'orm of the Protozoa-rhizopods, sponges, or both-predominated greatly over all other forms of animal lile in the depths of the warmer regions of the sea. The rhizopads, like the corals of a shallower zone, form buge accumnatations of carbonate of lime, and it is probably to their agency that we must refer most of those greit bands of limestone which have resisted time and change, and come in here and there with their rich imbedded lettering to mark like milestones the progress of the passing ages.

TINH $\mathrm{H}_{4} \mathrm{I}$.צ8

CHAPTER II.

THE CROISE OF THE ' LIGHTNING.'

Proposal to inveatigate the Conditiona of the Battom of the Sea.Suggestians and Andicipations. - Correspondence hetween the Cauncil of the Royal Saciety and the Admiralty.-Departure from Stomowny.-The Freroe Iglande-Singolar Temperature Fesults in the Fame Channel.-Life ahundant at all Depthe.Ariminga coronata. - Holtenta carpenteri.-Gempral Reaulis of the Fxpedition.

Appendix A-Particulara of Depth, Temperature, and Position at the various Dredging Statione of H.M.S. 'Lightning,' in the Summer of 1868 ; the Temperatnres corrected for Prensure.

The biredectel members to the zooodelita in this chapter scfer to the dredging stations on Plate I.

In the spring of the year 1868, my friend Dr. W. B. Carpenter, at that time one of the Vice-Presidents of the Royal Society, was with me in Ireland, where we were working out together the structure and development of the Crinoids. I had long previously had a profound conviction that the land of promise for the naturalist, the only remaining region where there were endless novelties of extraordinary interest ready to the hand which had the means of gathering them, was the hottom of the deep sea. I had even had a glimpse of some of these treasures, for I had seen the year before, with Professor Sars, the forms
which I have already mentioned dredged by his son at a depth of 300 to 400 fathoms off the Loffoten islands. I propounded my views to my fellow-labourer, and we discussed the subject many times over our microscopes. I strongly urged Dr. Carpenter to use his influence at head-quarters to induce the Admiralty, probably through the Council of the Royal Society, to give us the use of a vessel properly fitted with dredging gear and all necessary scientific apparatus, that many heavy questions as to the state of things in the depths of the ocean which were still in a state of uncertainty, might be definitely settled. After full consideration, Dr. Carpenter promised his hearty cooperation, and we agreed that I should write to him on his return to London, indicating generally the results which I anticipated, and sketching out what I conceived to be a promising line of inquiry. The Council of the Royal Society warmly supported the proposal; and I give here in chronological order the short and eminently satisfactory correspondence which led to the Admiralty placing at the disposal of Dr. Carpenter and myself the gumboat 'Lightning' under the command of Staff-Commander May, R N., in the summer of 1868, for a trial cruise to the north of Scotland, and afterwards to the much wider surveys in II.M.S. ' Porcupine,' Captain Calver, R.N., which were made with the additional associntion of Mr. Gwyn Jeffreys in the summers of the years 1869 and 1870 .

From Prof, Wyrille Thamson, Bolfast, to Dr. Corpoutre, V.P.R.S.

$$
\text { A/ay } \mathrm{g} 0,1 \mathrm{SGIS}
$$

My hean Cantextri,-When 1 last snw you, \mathbf{T} suggestod how

determine with nccuracy the conditions and diatribution of Animal Life at grent depths in the ocean; I now resume the facts and considerations which lead me to believe that researches in this direction promiee valuable results.

All recent olservations tend to neyative Edward Forbes's opinion that a acro of unimal life was to be reached at a depth of a few hundred fathoms. Two years ago, M. Sars, Swedish Government Inspector of Fisheries, had an opportunity in his officinl capacity of dredging off the Loffoten lalands at a depth of 300 futhoms. I visited Norway shortly after his return, and had an opportunity of studying with his father, Prol. Sars, some of his results. Animal forms were abundant; many of them were new to science; and among them was one of surpassing interest, the amall Crinoid of which you have a specimen, and which we at once rengnized as a degraded type of the Apiochinidea, an order hitherto regarded as extinct, which attained its maximum in the Pear-encrinites of the Jurassic period, and whose latest representative hitherto known was the Bourguetticrinus of the Chalk. Some years previously, M. Absjornsen, dredging in 200 fathoms in the Hardangerfjord, procured several examples of a Starfish (Arisinga) which seems to find its nearest ally in the fossil genus Protaster. These olservations place it beyond a doubt that animal life is abundant in the ocenn at depths varying from 200 to 300 fathoms, that the forms at these great depths differ greatly from those met with in ordinary dredgings, and that, at all events in some cases, these animals ate closely allied to, and would seem to be directly descended from, the fauma of the early Tertiaries.

I think the latter result might almost have been naticipated; and probably further investigation will add largely to this class of data, and will give us an opportunity of testing our determination of the zoolngical position of some fossil types by an examination of the goft parts of their recent representatives. The main cause of the destruction, the migratinn, and the extreme modification of Animal types, appenrs to be change of clinate, chiefly depending upon oscillations of the enrth's crnst. These oscillations do not appear to have ranged, in the northern portion
of the Northern Hemisphere, much heyond 1,000 feet since the comenencement of the Tertisry epoch. The temperature of deep water seems to be conatant for all latitudes at 39°; an that an immeuse area of the North Atlantic must have had its conditions nneffected by Tertiary or Pest-tertiary oscillations.

One or two other questions of the highest scientific interest are to be solved by the propnsed investigntions:-

1at. The effect of pressure upon animal life at great depths. There is great misapprehension on this point lrobably a perfectly equal pressure to any amount would have little or no effect. Air being highly compressible, and water compreasible only to a very slight degree, it is probable that under a pressura of 200 atmospheres, water may be even more aërated, and in that respect more capable of supporting life, than at the surface.

2nd. The effect of the great diminution of the stimalus of Tight. From the condition of the Cave Fauna, this latter agent probably affects anly the development of colour and of the otgans of sight.

I have little doubt that it in quite practicable, with a small heavy dredge, and a couple of miles of stout Manilla rope, to dredge at a depth of 1,000 fathoms. Such an undertaking would, however, owing to the diatance and the lnhour involved, he quite beyond the reach of private enterpriae. What I am therefore anxioua for is, that the Admiralty may be indured, perhaps at the instance of the Council of the Royal Society, to send a veasel (such as one of those which accompanied the Crble Expedition to take anundinas) to carry out the research. J should be ready to go any time after July; and if you would take part in the investigation, I cannot but believe that it wnuld give good results.

I would propase to start from Aberdeen, and to gn first to the Rockall fishing-banks, whare the depth is modernte, nurd thence north-westward, towards the const of Greenlend, rather to the north of Cape Farewell. We should thus keep pretty nearly nlong the isotherm of 39^{n}, shartly renching 1,000 fnthoms depth, where, allowing 1,600 feet for oscillations in level, and 1,000 leet lor influence of surfare-currenta, summer hent, \&c, we should
still lave \mathbb{t}_{1} (ifu fert af water whese conditions have probably not varied greatly since the commencemont of the Eocene epoch

Yours most truly,
Wyvile Thomson.

From Dr. Carpenter, V.P.R S., to the President of the Royal Soorety.
Uniqeimity of Lanion, Euhinatun Holer, W. Juме 182k, 1868.
1)eab General Sabline, - During a recent visit to Helfust, I had the opportunity of examining some of the apecimens (tmnsmitted by Prof. Sars of Christinuia to Prof. Wyvilla Thomann) which have been obtained by M. Sars, jun., Inspector of Fisheries to the Swedish Government, by deep-sea dredgings of the const of Norway. These epecimens, for reasons atated in the enclosed letter from Prof. Wyville Thomson, are of singular interest alike to the zoologist and to the palmontologist; and the discovery of them can scarcely fail to excite, both among naturalists and among geologists, a very strong desire that the zuology of the deep sea, especially in the Northern Atlantic region, should be more thomoughly and syatematically explored than it has ever yet been From what I know of your own early labours in this field, I canmot entertain a doubt of your full concurence in this desire.

Such an exploration canuot be undertaken by private individuals, even when aided by grants from Scientific Societies. For dredging at great depths, a vessel of considerahle size ia requisite, with a trained crew, such as is only to be found in the Government service. It was by the aid of such an equipment, furnished by the Swedish Government, that the researcles of M. Sars were carried un

Now, na there are understood to be at the present time an umsual number of gum-honts nud other cruisers on our northern and western coasts, which will prohnbly rewain on their stations until the emt of the sensom, it lins occumped to Prof. Wyville 'I'lomsinn and myself, that the Admiralty, if moved thereto by the: Conucil al the Rayal Society, wight be juduced to place ane al these vessels at the dispusil al un'selves and of any oller
naturalists who might be willing to accompony us, for the purpose of carrying on a systematic course of deep-sen ilredging for a month or six weaks of the present summer, commencing early in August.
'Thongh we degire that this inquiry should lie extended both in geographical range and in depthas far as is proposed in Prof. Wyville Thomson's letter, we thiul it preferable to limit ourselves of the present occrsion to a request which will not, we believe, involve the extra expense of sending out a conlingvessel. We should propose to make Kirkwall or Lerwick our port of departure, to explore the sea-hottom between the Shetinnd and the Freve Islands, drenting around the shores nnd in the fiords of the latter (which hnve not yet, we believe, been scientifically examined), and then to proceed ns far narth-west into the deep water between the Fitroe Islinds and Iceland as may he found practicable.

It would be desirable that the vessel provided for such a service should be one capnhle of making way under canvas as well as by steam-power; hut as our operations must necessarily be slow, syecd would not be required. Cousiderable lalour would be spared to the crew if the vessel be provided with a 'donkey-engine' that could be used for pulling up the dredge.

If the Council of the Royal Society should deem it expedient to prefer this request to the Admiralty, I trust that they may furthar be willing to place at the disposal of Prof. Wyville Thamson and myself, either from the Danation Fund or the Gnvernment-Grant Fund, a sum of $£ 100$ for the axpenses we must fincur in praviding an ample supply of spirit and of jars for the preservation of specimens, with olher scientific npplinuces. We would undertake that the ehoicest of such specinems should be depposited in the British Museum.

I shall be ohliged by your bringing this sulyout before the Council of the linyul Socicty, and vemain, Hear Gencial sulane, yours Inithfully,
Whamam II. Canimateli.

From the Minates of the Coustail of the Royal Society, June 18, 1868.

These letters hnving been considered, it was resolved,-" That the proposal of Drs. Carpenter and Wyville Thomson be approved, and recommended to the fnvourable consideration of the authorities of the Admiralty; and that a sum, of not exceeding £100, be advanced from the Donetinn Fund to meet the expenses referred to in Dr. Carpenter's letter."

The following daft of a letter to be written by the Secretary, to the Secretary of the Admiralty, was approved :-

My Lord,--I am directed to acquaint you, far the information of the Lords Commissioners of the Admiralty, that the President and Council of the Royal Society have had under their consirleration a proposal by Dr. Carpenter, Vice-President of the Royal Society, and Dr. Wyville Thomson, Professor of Natural History in Queen's College, Relfust, for conducting dredging operations at greater depths than have beretofore been attempted in the lornlities which they desire to explore-the main purpose of such researches being to oltain infnrmation as to the existence, mode of life, and zoological relations of marine animala living at grent deptlos, with a view to the solution of vavious (fuestions relating to Animal Life, and having on important hearing on Geology and Palountology. The objects of the operations which they wish to modertake, and the course which they would prapose to follow, ns well as the aid they desire to obtain from the Admiralty, are more fully set forth in the letter of Dr. Carpenter to the President, and that of Professor Thomson, copies of which I herewith enclose.

The I'resident and Canucil are of opinion that impartant advoninges may be expected to acerue to science from the proposed uodertaking; accordingly they strongly rerommend it to the favomrable consideration of her Majesty's Covernment, not earnestly hope that the Lords Commissionery of the Admialty may he disposet tol grant the aid requested. In such
case the scientific appliances reguired would be provided for tion funde at the disposal of the Royal Society.

1 am, Re.
W. Shampey, Sec. RS.

Lord H, Lounas, Af. P., Secretary of the A dinivalify.
From the Minutes of the Council of the Royal Suciety for Ocd 20, 1868.

Sir_-In reply to your letter of the 22nd ultina, submitting a propasition fram Dr. Curpenter and Prafeasar Thomson to investigate, by means of dredging, the bottom of tha sea in certain locelities, with a view to sscertain the existence and zoological relations of marine animala at great depths,-a research which you and the Council of the Royel Suciety etrongly recommend in the interests of science to the favourable cousideration of her Majesty's Government, for aid in furtherance of the undertaking, - I am commanded by my Lords Commissionera of the Admiralty to aequaint you that they are pleased to meet your wishee en far as the Service will admit, and have given orders for her Majesty's steam-vessel 'Lightning' to be prepared immediately, at Pembroke, for the porpose of carrying out auoh dredging operalions.

I am, Sir,
Your obedient Servant, W. G. Romaine. To tha Prafidats of tha Royal Saelety.

It will be seen hy the letters from my colleague and myself what our ideas were at that time, and what our anticipations as to the result of our labours. We both more than doubted the ' onti-liotic ' view which was then very generally received, and we expected to be able to trace a ralationship between the living inhabitants of the deep sea and the fossils of some of the later geological formations which we looked upon as their direct and not very remote ancestors. We
had adopted the current strange misconception with regard to the distribution of ocean temperature; and it is perhaps scarcely a valid excuse that the fallacy of a universal and constant temperature of $4^{\circ} \mathrm{C}$. below a certain depth varying according to latitude, was at the time accepted and taught by nearly all the leading authorities in Physical Geography.

From the time that the Admiralty gave their sanction to the use of a Government vessel for the investigation, Dr. Carpenter's lahours in working out all the necessary arrangements and preparations were unceasing, and to his influence in the Council of the Royal Society, and to the confidence placed in his judgment ly members of the Government and men in official positions, the success of the undertaking is unquestionably due.

The surveying ship 'Lightning' was assigned for the service-a cranky little vessel enough, one which had the somewhat doubtful title to respect of being perhaps the very oldest paddle-steamer in her Majesty's navy. We had not good times in the - Lightning.' She kept out the water imperfectly, and as we had deplorable weather during nearly the whole of the six weeks we were afloat, we were in considerahle discomfort. The vessel, in fact, was scarcely seaworthy, the iron hook and screw-jack fastenings of the rigging were worn with age, and many of them were carried away, and on two occasions the ship ran some risk. Still the voyage was on the whole almost pleasant. Staff-Commander May had lately returned from Annesley Bay, where he had heen harbour-master during the Abyssinian war; and his intelligence and vivacity, and the cordial good-fellowslip of his officers,
who heartily seconded my colleague and myself in our work and sympathised with us in our keen interest in the curious results of the few trials at great depths which we had it in our power to make, made the experience, a very novel one to us, certainly as tolerable as possible.

The 'Lightning' left Pembroke on the 4th of August, 1868, and arrived at Oban on the evening of the 6th. At Oban Dr. Carpenter, his son Herbert, and I joined, and, after having taken observations for the chronometers, completed coals and water, and being otherwise ready, we left Oban on the 8th of August, anchored on that evening in Tobermory Bay, and after a gusty passage through the Minch we reached Stornoway on the evening of the 9 th. At Stornoway we were received by Sir James and Lady Matheson with a courteous hospitality which on many subsequent occasions has made us leave their island kingdom with regret and return to it with pleasure. We took in as much coal as we could carry, stowing as much as was safe in bags on the deck, set up a dredging derrick over the stern, took final observations, and departed to the northward on the morning of the 11th. We took a haul or two the same afternoon in from 60 to 100 fathoms, about 15 miles to the north of the Butt of the Lews, to try our dredging-tackle and donkeyengine and to trace the limits of the shallow-water species. All the appliances worked well, but the dredge brought up few animal forms, and all of them well-known inhabitants of the seas of the Ifelrides. The next day we were met hy a brecze from the N.E., which continued for three days with such forec that

we were compelled to lie-to under canvas, drifting to the northward towards the edge of the Færoe Banks, any attempt to dredge being out of the question. On the 13th, during a lull, we sounded and found no bottom at 450 fathoms (Station 1, Pl. I.), with a minimum temperature of $9^{\circ} \cdot \overline{\mathrm{E}} \mathrm{C}$., the temperature of the surface water heing $12^{\circ} \cdot 5 \mathrm{C}$. This was so high a temperature for so considerahle a depth that we suspected some error in the indications of the thermometers, three of Six's registering instruments of the Hydrographic Office pattern. Subsequent observations however in the same locality showed us that the temperature to the depth of 600 to 700 fathoms in that region is the moderate temperature of the northward current of the gulf stream.

The Færoe Banks are greatly frequented in the fishing season by English and foreign fishing-smacks. Of course the principal object is to prepare cured or hard-fish, but many of the English vessels are welled for the supply of fresh cod for the London market.

A large suluare tank occupies the middle of the vessel, and holes in the sides allow the water to pass freely throngh it. The water in the tank is thus kept perfectly fresh; the best of the cod are put into it, and they stand the voyage perfectly. It is curious to sec the grent creatures moving gracefully about in the tank like gold-fish in a glass globe. They are no doulbt 'quite unaccustomed to man,' and consequently they are tame; and with their long smooth mottled faces, their huge mouths, and lidless unspecolative eyes, they are about as unfamiliar objects as one can well see. They seem rather to like to be scratched, as they are greatly infested by caligi
and all kinds of suctorial copepods. One of them will take a crab or a large fusus or buccinum quietly out of one's liand, and with a slight movement transfer it down its capacious throat into its stomach, where it is very soon attacked and disintegrated ly the powerful gastric secretions. In ono welled smack I visited on one occasion, one of the fish had met with some slight injury which spoiled its market, and it made several trips in the well between London and Froroe and became quite a pet. The sailors said it knew them. It was mixed up with a number of others in the tank when I was on hoard, and certainly it was always the first to come to the top for the chance of a crab or a bit of biscuit, and it rubbed its ' head and shoulders ' against my hand quite lovingly.

On the 15th and 16th we dredged over the Færoe Banks at a depth of from 200 to 50 fathoms, the bottom gravel and nullipore, and the temperature from 8° to $10^{\circ} \mathrm{C}$. The lanks swarm with the conimon brittle star Ophiothrix fragilis, with the Norway lohster Nephrops norvegicus, large spider crabs, several species of the genus Galathea, and many of the genus Crangon. So ample a supply of their favourite food readily accounts for the abundance and excellence of the cod and ling on the banks.

There is some rough rocky ground on the Freroe llanks, and notwithstanding all possible care and the use of Hodge's 'accumulators' to ease the strain on the dredge ropes, we lost two of our best dredges and some hundreds of fathoms of rope. On the morning of the 17th we sighted Frone, as usual only getting now and then a glimjse of the islands of this remote little archipelago ly the listing of the curtain ol' mist
which almost constantly envelopes them. Towards mid-day the weather improved a little, and as we threaded among the islands towards the little harbour of Thorshavn we greatly enjoyed our first view of their fantastic outlines, partly shrouded in their veil of mist; their soft green and brown colouring rendered still softer by the subdued sub-arctic light, and the streams and cascades embroidering the gentle slopes of the hills and falling over the cliffs like silver threads and tassels.

The Feroe Islands are basaltic; terrace over teriace of soft easily decomposed anamesite probably of Miocene tertiary age. This uniform structure, and the absence of trees or any prominent form of vegetation, gives a singular sameness of effect. The scottered habitations are usually sad-coloured and roofed with growing turf, so that they are actually invisible at a little distance. We were greatly struck sometimes by the difficulty of estimating distance and height; from the total want of familiar objecta for comparison it was sometimes difficult to tell, passing among the islands and looking at them through the moist transparent air, whether the ridge was 500 feet high, or double or four times that height. The intermediate height is usually mearest the truth.

Thorshavn, the capital of Faroe, is a strange little place. The land shelves down rather abruptly to a little bay, round the head of which the town is built; and the bahitations are perched among the rocks on such flat spaces as may be found for their reception. The result is irregular and picturesque; and very peculiar, for something like a scramhle is nenessary
to get along some of the principal 'streets.' Above the town a little clearing forms a miniature lawn and garden gay with bright flowers in front of the Governor's house, a pretty wooden cottage residence like a villa in a suburb of one of the Scandinavian towns.

Færce, with its wet sunless climate and precarious crops of barley; its turf-thatched cottages and quiet little churches; its glorious cliffs and headlands and picturesque islets, the haunt of the eider-duck and the puffin; and its hardy, friendly islanders, with their quaint, simple, semi-Icelandic semi-Danish customs, has been described again and again. Feroe only came to us as a pleasant haven of rest in the middle of our northern work. We paid it two visits of a week each in successive years, and one of the most pleasant memories in the minds of all of us connected with these expeditions will always be the cordial sympathy which we received from our friend M. Holten the Danish Governor, and his accomplished wife. M. Holten received us with the most friendly hospitality, and did everything in his power at all times to render us assistance and to further our views. He introduced us to the leading inhabitants of his dominion, and during the many pleasant evenings which we spent at his residence we heard all that we could of the economy of this simple little community, perhaps the most primitive and the most isolated in Europe. To Governor Holten I have already had the pleasure of dedicating a singularly heautiful sponge-form which we discovered during our return voyage; and to Madame Holten, to whose graceful pencil I am indebted for the vignettes of Fieroe scencry which so
appropriately close these chapters, I now dedicate this volume, in remembrance of the great kindness which we invariably experienced from her and from her excellent hushand.

We lay in Thorshavn harhour till the 26th of August, the weather being so bad as to make all idea of pursuing our work outside hopeless. Whenever it was possible we dredged in the fiords with Ferroese boats and native hoatmen, and we made the acquaintance of Sysselman Müller, the representative of Foroe in the Danish Parlianent, who had made himself thoroughly conversant with the mollusca of Fæ̈roe, and had contributed his information to a list published in 1867 by Dr. O. A. L. Mörch. The shallow-water fauna seems to le scanty, as we find frequently to be the case on a bed of decomposing trap. It is of a character intermediate between that of Shetland and the Scandinavian coast. The forms which perhaps inferested us most were Fusus despectus, L.-a handsome shell which may possibly be only a very marked variety of Fusus antiquus, L. ; but if so, it is one with very definite limit of distribution, as it occurs only ravely in very deep water in the British seas. In water of moderate depth among the Ferroes it is abundant, apparently replacing F. antiquus. Another common Freroe shell is Tellina calcarea, Cammitz, - a very aluundant British glacial clay fossil, but not hitherto found recent in the British area. In the glacial clays near Rothesay it is in regular heds associated with Mrya truncata, L, var. utdenallensis, Fornes; Saxieava norvegica, Sprengifr; Pecten islandicus, O. F. Mijller, and other northern forms, and frequently so fresh that the two valves are still in position and
held together hy their connecting ligament. Λ somewhat peculiar variety of Echinus sphera, O. F. Mürler, was met with in one of the Fjords associated with n large form of E. flemingii, Ball; and what appears to he a small form of Cucumaria frondosa, Gunner, was very common in shallow water on the tangles.

While we were lying in Thorshavn harbour the Danish gunboat 'Fylla' and the French steam transport 'L'Orient' came in on their way from Iceland. Both of the vessels from the north had come through bad weather, and were glad to run into shelter. During the stay of the three war-ships the little capital was quite gay, and the Governor had abundant opportunity of exercising his genial hospitality. On the 26th of August, as the harometer rose a little and there seemed to be some slight sign of improvement, we left Thorshayn and steamed southward to dredge if possible in the deep channel between Færoe and Shetland ; but the same evening wild weather set in again with a strong gale of wind from the north-westward, and the harometer down to 29.08 . The hook and screw-jack fastenings of the main rigging went one after another, and we narrowly escaped losing the mast. The gale lasted till the 29th, when there was rather better weather ; and after lying-to and drifting to the north-east for nearly three days, we took a sounding in lat. $60^{\circ} 45^{\prime}$ N., long. 49° W. (Station 6). This gave a depth of 510 fathoms and a lottom temperature of $0^{\circ} \mathrm{C}$. On the evening of the 291h and on the 30th the weather was aufficiently moderate to allow us to work our dredging gear, and the first trials were of great interest, as it was our first opportunity of making the attempt in so great a depth of
water. The operation seemed however to present no special difficulty, ind nearly every haul was successful. The hottom was sand and gravel, mostly derived from the disintegration of the old rocks of the Scottish plateau. Animal life was not abundant, but several gronps were fairly represented. Sandy rhizopods of a large size were numerous, and there were several conspicuous crustaceans and echinoderms, among the latter an example of Astropecter temuispinus, of a brilliant gcarlet colour, which came up entningled on the line.

On the 31st had weather set in rgain, and we could neither sound nor dredge. On the 1st of September we got one temperature somnding in 550 fathoms with - 1-2 C., but could do no work.

The next dny, Septemher 2, was more moderate, and we dredged all day at a depili of only $\mathbf{1 7 0}$ fathoms over a very restricted shoal, which, singularly enough, we could not find when we sought for it the year alter in the ' l'orcupine.' Here we found animal life abundant and varicd-a mixture of celtic and seandinavian forms. The bottom was chiefly small rounded pehbles of the dark anamesite of the Feroes, and sticking to them, singly or in little groups like plums on their stems, were many large specimens of the rare brachiopod Terebratula craniam, O. F. Mïler, along with abundance of the commoner form Trwhratalina caput-serpentis, Y .
The following day, Septemher 3, we were again in cleep water, ahnut 500 fathoms, with a bottom temperature a little below the freazing-paint, the thermometer at the surface giving $10^{\circ} \cdot 5 \mathrm{C}$. Here we took representatives of many invertehnate groups-rhizopoots, sponges, fehinoderms, crustaceans, and molluses;
among them a magnificent specimen of a new starfisl which has been since described lyy M. G. O. Sars under the name of Brisinga cornuata (Fig. 5). The genus Brisinga was discovered in 1853 by M. P. Chr. Absjörnsen, who then dredged several specimens of another species, B. endecacnemos, Ansic, at a depth of 100 to 200 fathoms in the Hardangerfjord on the Norway coast a little to the south of Bergen. These are certainly very wonderful creatures. At first sight they look intermediate between ophiurids and star-fishes, the arms too thick and soft for the former, but much more long and delicate than we usually find them in the latter group.

The disk is small, about 20 to 25 mm . in diameter ; in B. endecacnemos nearly smnoth, in B. coronata covered with spines. The madreporiform tuhercle is on the dorsal surface close to the edge of the disk. A firm ring of calcarenus ossicles forms and supports the edge of the disk, and gives attachment to the arms. The arms are ten or eleven in numher: the latter number is prohably abnormal. They are sometimes as much as 30 centimetres in length; narrow at the base, where they are inserted into the ring ; enlarging considerahly towards the middle, where the ovaries are developed; and tapering again to the end. Rows of long spines border the ambulacral grooves; the spines are covered with a solf skin, which, when the animal is quite fresil, furms a little transparent, sack-like expansion full of fluid at the end of each spine. The soft covering of the spines is full of small pedicellarize, and pedicellariz are likewise senttered in groups over the surface of the arms and disk.

I'he arms in B. pmlfgnomemos are nearly smonth,

ribbed transversely here and there by slightly raised calcareous bands passing irregularly partly or wholly across them. In B. coronata these ridges are surmounted by erests of spines. Both species are of a rich erimson colour, passing into orange-scarlet. The arms are easily detached from the disk. We never got one of either species nearly entire, but even coming up in pieces they were certainly the most striking objects we met with. One was sufficient to give a glorious dash of colour to a whole dredgeful. "Le nom Brisinga est derive d'un bijou brillant (Brising) de la déesse Freya, ${ }^{\text {,1 }}$ which hrings a pleasant flavour of Scandinavian heathendom about it. "J'ai trouvé cette Astérie brillante à Hardangerfjord ì l'aide du dredge à la fin du mois d'noat 1853, ì la profondeur de 100 h̀ 200 brasses, où elle était placée sur le plan latéral et perpendiculaire d'une montagne, qui semblait descendre de 80 à 90 brasses jusqu'à 200 hrasses et même de plus. Elle se trouve hien rarement ; en draguant plus de huit jours avec heaucoup d'assiduité dans la même localité et dans les environs je trouvais seulement quelques bras, et quelques individus plus ou moins grands, dont le plus petit entre les pointes des bras opposés avait une grandeur de G pouces, le plus grand environ 2 pieds de diametre. Atucun d'eux n'était sans être endommagé; l'animal rat extrêmement fragile et semble, comme les comatriles et quelques espères d'Ophiolepis et d'Ophintrix, à cause de la pression diminuante de l'eau, tiré vers la surlace, par un effort vigoureux, se difaire de ces hras, qui tonjours se détachent à l'eudrait où ils sont unis avec l'anneau du disque. Le surpois du hras en comparaison du disque trios petit, al la grandene con-
sidérahle de l'animal, augmente aussi les difficultés à le faire sortir du dredge sans être déchiré. Quoique je fusse assez heureux pour le saisir avant qu'il sortait de l'eau, et malgré toute la précaution possible, je réussis seulement ì conserver deux disques d'une paire de hras fermes, mais ì ceux-ci même le peau était rompue. Quond l'animal est complet et cohérent, ainsi que je l'ai vu une ou deux fois sous l'eau dans le dredge, il est véritablement un exemplaire de luxe, me 'gloria maris.' "1

The bad weather was unrelenting, and again interrupted us for a conple of days: we got a sounding however on the 5th of September, in lat. $60^{\circ} 30^{\prime} \mathrm{N}$. and long. $\mathbf{7}^{\circ} \mathbf{1 6} \mathbf{W}$., with no bottom at 450 fathoms and a minimum temperature ahout the freezing-point. It will be seen by the chart that the last five stations, Nos. 7 to 11, form an oblique line from south-east to north-west between the northern part of Orkney and the Fëroe Bank. The bottom is throughout a mixture of gravel and sand, with patches of mud; Nos. 7 and 8 principally the déhris of the metamorphic rocks of the vorth of Scotland; Nos. 9, 10, and 11 chiefly volcanic, the detritus of the Fitroe traps. This line of soundings is entirely within what we afterwards learned to call the 'cold area,' the thermometer for deptls helow 300 fathoms indicating a temperature slightly alove or helow $0^{\circ} \mathrm{C}$.

As we were now again approaching the Fieroe fishing-banks, we shaped our course southwards, and on the morning of September Gth we sounted and
${ }^{1}$ Degeriptinn d'un Nonvean Gento des Aaseries, par P. Chr. Absjiirnsen, in " limuna litomalis Norvegiac," by Dr. M. Sars, I. Karen,

dredged in lat. $59^{\circ} 36^{\prime}$, long. $7^{\circ} 20^{\prime}$ (Station 12), with a depth of 530 fathoms and a 'warm area' temperature of $6^{\circ}-4 \mathrm{C}$. The dredging here was most interesting. The bottom was for the first time 'Atlantic onze,' a fine bluish-grey tenacious calcareous mud, with some sand and a considerable admixture of Globigerince. Imbedded in this mud there came up an extraordinary number of silicious sponges of most remarkable and novel forms. Most of these belonged to an order which had heen described by the writer a couple of years before as 'Porifera vitrea,' a tribe at that time but little known, but which have since become very familiar to us as denizens of the abyssal zone. Working from more extended data, Professor Oscar Schmidt afterwards defined the group more exactly as a family, under the name of Hexactinellida-the term which I shall here adopt.

The relations and peculiarities of this singular group will be fully discussed in a future chapter. The most characteristic forms which we met with on this occasion were the heautiful sea-nests of the Setubal shark-fishers, Hollenia surpenteri, Wy. T. (Fig. 6), and the even more strange Hyalonemat lusitanicum, Babboza de Bocage, olosely yelated to the glass-rope sponges of Japan which have so long perplexed naturalists to determine their position in the animal series, and their relation to their constant companion the parasitic Palythoa.

Hollenia carpenteri is an oval ar sphere 90 to 100 mm . in height, with one large nscular opening at the top about 30 mm . in diameter, whence a simple cylindrical cavity cupped at the bottom passes down vertically into the substance of the sponge to the
depth of 55 mm . The outer wall of the sponge

consists of a complicated nelwork of the cross-like
heads of five-rayed spicules. One ray of cach spicule dips directly into the horly of the sponge, and the other four, which are at right angles to it, form a cross on the surface, giving it a beautiful stellate appearance. The silicions rays of one star curve towards and moet the rays of the neighbouring stars, and run parallel with them. All the rays of nll the spicules are thickly invested with consistent semi-transparent gelatinous matter, which binds their concurrent branches together hy an elastic union, and fills up the angles of the meshes with softly curved viscous masses. This arrangement of the spicules, free and yet adhering tngether by long elastic connections, produces a strong, flexible, and very extensible tissue. The cylindrical oscular cavity within the sponge is lined with nearly the same kind of network.

When the sponge is living, the interstices of the silicious network are filled up both outside and in with a delicate fenestrated membrane formed of a glairy substance like white of egg, which is constantly moving, extending or contracting the fenestrix, and gliding over the surface of the spicules. This 'sarcode,' which is the living flesh of the sponge, contains distributed through it an infinite number of very minute spicules, presenting the most singular and elegant forms very characteristic of each species of sponge. A constant current of water carried along by the action of cilia passes in by apertures in the outer wall, courses through the passages in the lonse texture of the intermediate sponge-sulsiance carrying organic matter in solution and particles of mourishment into all its interstiees,
and finally passes out ly the largo 'osculum' at the top. Over the upper third of the spange a multitude of radiating rigid silicious spicules form a kind of ornamental frill, and from the lower third a perfect maze of delicate glassy filaments, like fine white hair, spread out in all directions, penetrating the semi-fluid mud, and supporting the sponge in its precarions bed ly increasing its surface indefinitely while adding but little to its weight.

This is only one of the ways by which sponges anchor themselves in the ooze of the deep sea. Hyalonema sends right down through the soft mud a coiled whisp of strong spicules, each as thick as a knitting needle, which open out into a brush as the bed gets firmer, and fix the sponge in its place somewhat on the principle of a screw pile. A very singular sponge from deep water off the Loffoten Tslands spreads into a thin circular cake, and adds to its surface by sending out a flat border of silky spicules, like a fringe of white floss-silk round a little yellow mat; and the lovely Enplectella, whose beanty is imbedded up to its fretted lid in the grey mut of the seas of the Philippines, is supported by a frill of spicules standing up round it like Queen Elizaleth's ruff.

The sponges of the deep-water onze nre hy no means confined to one group. The Hexactinollide arc perbaps the most abundant, hut corticate sponges even, closely allied to those which look so rigid when fixed to stomes in shallow water, send out long anchoring spicules and balance thenselves in the salt mud (Fig. 7) ; and off the const of Portugal Mr. Guyn Jefticys dredigerl in 1870 scveral small forms of
the Halichondridee, with long supporting fibrous beards.

From its appearance when brought up Hollenia evidently lives buried in the mud to its upper fringe of spicules. When freshly dredged, it is loaded with

pale grey semi-fluid sarcode, full of Globigerina, Triloculine, and other rhizopods, and covered in our northern lacalities with the little ophiurid Amphiura ahysaicoln, SARs, and the exquisitely delicnte trans-
parent clam, Pecten vitveus, Cafmnirz. Holtenia extends from the Butt of the Lews to Gibraltar, in from 500 to 1,000 fathoms. Mr. Saville Kent, dredging in Mr. Marshall Hall's yacht 'Norna,' found a singular variety off the coast of Portugal, which from its flatter, more hemispherical form, and more rigid anchoring spicules, probably inhabits a firmer medium. ${ }^{1}$

As might he expected, the Atlantic ooze of this station, rich in rhizopods giving an ample supply of' food, and with a comparatively mild climate, yielded many living forms belonging to various orders. Along with Globigerince and other small forms there were many large rhizopods, among them Rhabdammina abyssorum, Sars, a singularly regular triradinte sandy form of a bright orange colour, and very hard; from analyses made by Dr. Williamson at the request of Dr. Carpenter, its hardness is apparently owing to the cement employed by the animal in the construction of its case containing phosphate of iron, the only instance of the use of this substance for such a purpose of which we are yet aware: Astrophizn limicola, Sandahl, a large irregularly-formed rhizopod with a soft test of mud and sand: many large Cornuspira and Textulariu, and large Bi- and Triloculince and other miliolines: a few zoophytes, and especially common the curious sea-pen Kophohelemmon mülleri, Sars, and the fine branching coral,

[^19]Lophohelia prolifera, Pallas: among Echinodems some heautiful varieties of Eshinus mornpgicus, D. and K., E. elegans, D. and K., Ophiocten sericenm, Fonbes, and Ophiacantha spinulosa, M. and T., which seems to be universal in deep water, and the curious little crinoid Rhizocrinus loffotensis, Sars, which will he described hereafter: some remarkalle crustacems, including as one of the most prominent a scarlet Munidet with remarkably large brilliant eyes, of the colour and lustre of burnished copper.

We now proceeded fowards Stornoway, which we reached on the 9th of September, dredging on our way in shallowing water, and still meeting with interesting things such as Antedon cellicus, Barretw, collected previously by Mr. Gwyn Jeffreys on the coast of Ross-shire; abundance of 'the piper,' Cidturis papillata, Lesee, until lately one of the prizes of the British collector, now known to be perhaps the most ahundant of the larger living forms at depths from 250 to 500 fathoms in the British sens.

The weather now looked more promising. I was unfortunately obliged to return to my duties in Dublin; but as the results already obtained led Dr. Carpenter strongly to desire an opportunity of examining hoth the temperature and the animal life of still deeper waters, it was thought hy him and Captain May that, notwithstanding the lateness of the season, it would he worth while to venture another short cruise in a westerly direction, where it was known from previous soundings that the depth was leyond 1, 000 fathoms. Accordingly, alter re-fitting, an operation which in some respects was sormy noeded, and restoring as fur as possilide the lost dreden-
ing gear, the 'Lightning ' once more steamed out of Stornoway Warbow on the 14th of Septemher.

After a fine run of 1.40 miles in a north-westerly direction from the Butt of the Lews, a sounding was taken on the morning of September 15th, in lat. $59^{\circ} 59$, long. $9^{\prime \prime} \mathbf{1 5}^{\prime}$, with a bottom of Atlantic ooze, at a depth of 650 fathoms (Station 14). Still running north-westward sixty miles further, another sounding was taken on the 18 th, at 570 fathoms, when the sconp of the sounding instrument brought up saarcely anything but entire Globigerince, like the finest saga. Fifty miles further, in the same direction, hottom was found at 600 fathoms; but on this occasion the sounding-lead and three thermometers were unfortunately lost in hauling up, so that the temperature was not ascertained. A hanl of the dredge was taken, however', at this great depth, 120 fathoms decper than at any of the previous stations, perfectly successfully, the dredge bringing up $2 \frac{1}{2}$ cwt. of very viscid greyish white mud. The murl was everywhere traversed hy the long glnssy root-fibes of anchoring sponges, and nhout 50 fathoms from the dredge there were two white tufts of such fibres sticking to the rope, mo doult pulled off the ground, as they entangled in their meshes some ophinrids, some small crustaceans, and one or two tule forming annelids. In the mud was a remarkable sea-pen, which Professor Kinliker, who has modertaken the description al such things procured in our severnl expeditions, refers to a new genus under the name of Bathypfilhm. retapowteri, and some large foraminifera. 1)r. Carponter now stood due north, wishing to get into the deep thonglt hotwern the Wehrifes and

Rockall, and on the morning of September 17th sounded at a depth of 690 fathoms, in lat. $59^{\circ} 49^{\prime}$, long. $12{ }^{\circ} 36^{\prime}$, with a ' warm area ' temperature.

The weather now again broke, became too unfavourable for work, and grew worse until the forenoon of the 20th, when St. Kilda was in sight and it was blowing a strong gale with a heavy sea. At daylight on Monday the 21st off Barra Head the south point of the Hebrides, a fresh easterly wind blowing the barometer low and appearances suspicious, Capt. May did not deem it advisalle to stond to sea again. He therefore, after consultation with Dr. Carpenter, determined to conclude the work, proceeded down the Sound of Mull, and anchored at Ohan on the same afternoon.

At Oban Dr. Carpenter and his young son, who had manfully borne no little hardship and helperl to lighten the evil times to his seniors, went on shore and proceeded southwards by land.

Her fate pursued the 'Lightning.' After lying n couple of days at Oban, Captain May started for lemhroke on the 24th September. On the 25th off the Calf of Man, the barometer having suddenly fillen and the wind and sea fast rising, he determined to run for Holyhead, when auddenly, without increase of wind and in a roll not heavier than usual, the whole of the weather fore-rigging went hy the straightening or breaking of the irnn hooks which held it. Luckily the mast did not fall, and after an hour spent in temporarily repairing it the 'Lightning' proceeded on her course and anchored in the new harhour of Holyhead ahout (is p.m.
'The general results of the ' Lightning' expedition
were upon the whole as satisfactory as we had ventured to inticipate. The vessel was certainly not well suited for the purpose, and the weather throughout the cruise was very severe. During the six weeks which elapsed between our departure from Oban and our return only ten days were available for dredging in the open sea, and on four of these only we were in water over 500 fathoms deep. On our return Dr. Carpenter submitted to the Royal Snciety a preliminary report on the general results of the cruise, and these were regarded by the Council of the Society as sufficiently new and valuahle to justify n strong representation to the Admiralty urging the importance of continuing an investigation which had already, even under unfavourable circumstances, achieved a fair measure of success.

It had heen shown beyond question that animal life is varied and abundant, represented by all the invertebrate groups, at depths in the ocean down to (jã0 fathoms at least, notwithstanding the extraordinary conditions to which animals are there exposed.

It had been determined that, instead of the water of the sea beyond a certain depth varying according to latitude having a uniform temperature of $4^{\circ} \mathrm{C}$. a $^{\circ}$ an indranght of Arctic water may have at any depth beyond the influence of the direct rays of the sun a temperature so low as $-2^{\circ} \mathrm{C}$.; or on the other hand, a warm current may have at any moderate depth a temperature of $\mathrm{f}^{\circ} \mathrm{F} \mathrm{C}$. : and it bad heen shown that great masses of water at different temperatures are moving about, each in its particular course; maintaining a remarkable system of oceanic circulation, and yet kepping so distinct from one another that
an hour's sail may le sufficient to phess from the extreme of hent to the extreme of cold.

Finally, it had been shawn that a large proportion of the forms living at great depths in the sea belong to species hitherto unknown, and that thus a new field of boundless extent and great interest is open to the naturalist. It had heen further shown that many of these deep-sea animals are specifically identical with tertiary fossils hitherto believed to be extinct, while others associate themselves with and illustrate extinct groups of the fauna of more remote periods; as, for example, the vitreaus sponges illustrate and umriddle the ventriculites of the chalk.

APPENDIX A.

Particulars of Depth, Temperatura, and Position at the various Dredging Stations of H.M.S. 'Lightning,' in the Summer of 1868; the Tenperatures corrected for pressure.

Number		$\underset{\text { Temathmilur }}{\substack{\text { Bothen }}}$	Tentinco	Fontion -	
6	510	0^{n} \% c .	$11^{\text {cose }} 10$.	$60^{c} 45^{4} \mathrm{~N}$	$4^{4} 49^{\prime} \mathrm{W}$
7	500	$1 \cdot 1$	10.5	fin 7	521
8	550	-1-2	11-7	$60 \quad 10$	559
10	500	$0 \cdot 3$	10-5	6028	6.55
11	450	-0. 0	$10 \cdot 0$	6030	716
12	53.3	$6 \cdot 4$	11. ${ }^{\text {a }}$	5936	720
14	650	$5 \cdot 8$	11-7	59.59	915
15	570	$6 \cdot 4$	$11 \cdot 1$	6038	$\begin{array}{ll}-11 & 7\end{array}$
37	©20	$6 \cdot 4$	$11 \cdot 1$	5949	1236

CHAPTER III.

THE CRUISES OF TME "PORCDPINE.'

The Equipment of the Vessel. -The first Cruise, under the direction of Mr. Gayn Jeffrayn, off the West Coast of Irelend and in the Chamal between Scotland and Rockall.- Dredging carried domn to 1,470 fathoma.-Change of Arrangements.-Second Cruise; to the Bay of Biseay.-Dradging auccessful at 2,435 fathoms.--Third Cruise ; in the Channal between Frease and Sbatland.-The Fauna of the 'Cold Area.'

Apprntix A. - Official Documenta and Official Acconnts of preliminary Procerdinga in connection with the Explorations in H. M. Survey-ing-vessel 'Porcupine,' during the Summer of IR69.
Apfendix B.-Particulara of Depth, Temperature, and Position at the various Dredging Statione of F.M.S. ${ }^{4}$ Porcupine, ${ }^{\text {' }}$ in the Summer of 1869 .

\because The bracketed numbers to tha nominuta in this chapter refor to tha dreotging stationn on Plates II., HII., and IV.

On the 18th of March, 1869, an oral communication was made by the Hydrographer to the Nafy that the Lords Commissioners of the Admiralty had acceded to the wish of the Council of the Royal Society, and that H.M. Surveying-vessel 'Porcupine' had heen assigned for the service.

The equipment of the 'Porcupine' progressed rapidly under the direction of her commander, Captain Calver, with the careful superintendence in all matters hearing
tupon the efficiency of the scientific appliancea, of Dr. Carpenter nssisted by a nommittee composed of' the officers and a few of the members of the Royal society. The 'Porcupine,' though a small vessel, was well suited for the work; thoroughly seaworthy, very stendy, and fitted up for surveying purposes. Captain Calver and his officers had long heen engaged in the arduous and responsible duty of conducting the survey of the east coast of Britain, and were trained to minute accuracy and thoroughly versed in the use of instroments and in the learings of scientific investigation. The crew were chiefly known and tried men, Shetlanders who had spent many successive summers in the 'Porcupine' under Captain Calver's command; returning to their homes in Shetland for the winter, while the vessel was laid up and the officers employed in bringing up their office work at their head-quarter's in Sunderland.
'The working of the dredge was superintended thronghout by Captain Calver, whose trained ability very early gave him so complete a mastery over the operation that he found no difficulty in carrying it down to depths at which this kind of exploration would have been previously deemed out of the question. It is impossible to speak too highly of the skill he displayed, or too warmly of the sympathy he sliowed in our work. It is a pleasure to add that the other offecers of the 'Porcupine,' Staff-Commander Inskip, Mr. Davidson, and Lieutevant Browning, most heartily and \%calously secousled their commander in promoting alike the scientific oljects of the expedition and the welfare and comfort of all who were cugaged in carrying them out.

As it was intended that the exploration in the 'Porcupine' in the summer of 1868 should occupy munh mare time, and if possille be much morne thnoough than that in the 'Lightning' the year before, the preparations for the 'Porcupine' experdition were much more elahorate and comprehensive. The Committee of the Roynl Society were desirons that various important questions as to the physical condition and chemical composition of the water at great depths should be investigated ; and the singular temperature results of the former cruise ably discussed by Dr. Carpenter in his preliminary report had excited so much curiosity and interest that their further elucidation was regarded as vieing in importance with that of the distribution and conditions of animal life. It was consequently decided that the naturalists directing the expedition should be accompanied hy assistants trained in chemical and physical work, and the chartroom of the vessel was fitted up as a temporary laboratory, with plysical and chemical apparatus and microseopes.

The vessel was available from the beginning of May to the middle of September, and as it was impossible for those who had conducted the previous expedition to be absent so long from their public dutics, it was resolved to have three separate cruises; and Mr. Gwyn Jeffreys, F.R.S., whose co-operation was specially valuable from his thorough knowledge of the species and distribution of recent and fossil mollusca, was associated with Dr. Carpenter and myself, and undertook the scientific charge of the first cruise.

Mr. Gwyo Jeffreys was acompanied ly $\mathrm{Mr}^{\text {. }}$ W.

Lant Carpenter, .B.Sc., as chemist and physicist ; and during the first cruise they explored the west const of Treland, the Porcupine Rank, and the channel between Rockall and the coast of Scotland. It was originally arranged that the second expedition, under the charge of the writer with the assistance of Mr. Hunter, M.A., F.C.S., assistant in the Chemical Laboratory in Relfast, in the physical department, should take up the ground to the north of Rockall, leading northwards to the point where we had left off the year before; hut subsequently, for reasons which will be explained hereafter, we altered our plan and took the second cruise in the Bay of Biscay. Dr. Carpenter took the direction of the last cruise, in which we carefully worked aver the 'Lightning channel,' and checked our previous observations; Mr. P. Herluert Carpenter, our former companion in the 'Lightning,' doing the analyses of water, and determining the amount and compasition of its contained air; while T went as snpernumerary and mode myself generally useful.
'The special applinnces and apparatus which were prepared under Dr. Carpenter's superintendence, after much consultation among experts in different departments, for carrying out the various invesi igations, will be described, ench in its place, when descrihing the several methods of investigation and their general results.

For the management of the dredging operations two assistants were appointed on the recommendation of Mr. Gwyn Jeffireys, Mr. Taughrin, of Polperro, an old const-gnard man and an associate of the Linnaean Socicty, for dredging and sifting; and Mr. B. S. Dodr, for picking out, cleaning, and storing the
specimens procured. Both remained with us the whole summer.

The first cruise of the 'Porcupine' moder the scientific charge of Mr. Gwyn Jeffreys commenced on the 18th of May and ended on the 13th of July. It extended for a distance of about 450 miles along the Atlantic coasts of Ireland and Scotland, from Cape Clear to Rnckall; and included Lough Swilly and Lough Foyle and the North Channel to Belfast.

The first dredgings were made about 40 miles off Valentia, in 110 fathoms water with a bottom of mud and sand. The result of this dredging gives a fair idea of the fauna of the 100 -fathom line on the west coast of Ireland. The mollusca are mostly northern species, euch as Necera rostrata, Springler; Verticordia abyssicola, Jefrreys; Dentalium abyssorum, Sses; Buccinum humphreysianum, Bennett; and Pleurotoma carinotum, Bivona. Some however, as Oatrea corhleur, Poli; Aporrhais servesianus, Micinded Murex lamellosus, Cristofori and Jan; and Trachus granulatus, Born,-are Mediterranean forms, and impart somewhat of a southern character to the assemblage. Cidaris papillatu, Leske; Echinus rarispina, G. O. Sars; E. elegans, D. and K.; Spatangus raschi, Loven; and several varieties of Caryophyllia borealis, Fleming, were abundant: but these species seem to ahound at a depth of from 100 to 200 fathoms from the Meditermmean to the North Cape.

After coaling at Gnlway they procecied southwards, and as the weather was very rough and unpromising they dredged in shallow water', from 20 to 40 fathoms, in Dingle Bay: and the next week, with improving

Plate II - Firge Contige of h.MSS. a Pomeromine "-1669.

weather, off Valentia and hetween Valentia and Galway, at depths varying from 80 to 808 fathoms (Station 2), with a temperature at the latter depth of $50 \cdot 2$ C. The general elaracter of the fauna was that which we have hitherto leen in the habit of regarding as Northern. Several interesting things were met with-Nucula tumidula, Malm; Seda frigida,Torell ; Terticordia abyssicola, Jeffnets; and Siphonodentalium quinquangulare, Forbes. Among the echinoderms a multitude of the large form of Lichinus norre-

Fia. 8.-Gonoplax rhomboides, Fabricics. Young. Twice the natural size. (No. 3.)
gicus, D. and K., which I am now inclined to regard, along with several of its allies, as a mere variety of E. flemingii, Barly; and the fine asterid already mentioned, Brisinga coronata, G. O. Sars. Some interesting crustaceans, including Gonoplax rhomboides, Fab. (Fig. 8), a well-known Mediterranean species, and a young specimen of Geryon triclens, Kioyen (Fig. 0), a rare Scandinavian form, and the only known North European hrachyurous crustacean
which had not previously heen taken in the British seas.

Here the Miller-Casella thermometers were tried for the first tine and compared with those of the ordinary construction. The minimum recorded by one of the former was $5^{\circ} \cdot 2$ C., while that recorded by one of the best ordinary instruments of the Hydrographic Office pattern was $7^{\text {c }} 3 \mathrm{C}$. As this difference of $2^{\circ} \mathrm{C}$. was almost exactly what the results of the experiment previously made had indicated as the effect

of a pressure of 1 ton on the square inch, which is about equal to the pressure of a column of sea-water of 800 fathoms, this close coincidence gave great confidence in the practical working of the protected instrument, a confidence which all sulsequent experience has fully justified.

Mr. Gwyn Jeffreys and his companions next proceeded to examine the sea-hed hetween Galway and Porerpine Bank, a shoal discovered during one of
the previous cruises of our little vessel under the command of Lieut. Hoskyn, R.N. The deepest drerlging of this excursion was 1,230 fathoms, with a minimum temperature of $3^{c} 2 \mathrm{C}$, and a bottom of fine grey mud with a considerable admixture of sand. Animals were abundant even at this great depth: among the mollusca several new forms allied to Arca; Trachus minutissimus, Migret, a North American species; and several others; several crustaceans, and many interesting foraminifera. As in previous dredgings in deep water, the miliolines were of very large size, and the large cristellarians showed every gradation in their axis of growth from the rectilineal to the spiral. In the shallower dredgings of this cruise the general character of the fauna was much the same as before. It had what we have been in the bahit of considering a northern 'facies,' but probally, as already explained, because the largely extended deep-water fauna at a temperature of 0° to $+\mathfrak{3}^{\circ} \mathrm{C}$., of which it forms a part, has bitherto only been investigated off the coast of Scandinavia, where it crops up within reach of observation.

Limopsis aurita, Bnoccer; Arca glacialis, Gray; Terticordia abyssicola, Jeffreys; Dentalium abyssorum, Sars; Trochus cineveus, Da Costa; Fusus despectus, L.; F. islandicus, Chrm. ; F. fenestratus, Tunt; Columbella halieeti, Jfffreys; Cidaris papillata, Lesre; Echinus norvegicus, D. and K.; and Lophohelie proliferr, Pallas, were found in these dredgings.

The 'Porcupine' next put into Killibegs Bay, on the north coast of Co. Donegal, and coaled there for her trip to Rockall. As it was anticipated that this
trip would require a clear fortnight, as much coal was stacked on deck as was considered prudent.

This cruise was entirely successful. The weather was remarkably fine, and Mr. Gwyn Jeffreys' party found it possible to work the dredge during severı days at depths exceeding 1,200 fathoms, and on four days at less depths. The greatest depth achieved was 1,476 fathoms (Station 21), and this dredging yielded mollusca, a stalked-eyed crustacean with unusually large eyes, and a fine specimen of Holothuria tremulch.

The deep dredgings in this trip yielded an abundance of novel and most interesting results in every sul-kingdom of the invertebrates. Among the mollusca were valves of an imperforate brachiopod, with a septum in the lower valve, which Mr. Jeffreys proposes to name Alretia gnomon. Among the crustacea were new species of the Diastylider, and many forms of Isopoda, Amphipoda, and Ostracoda, several of them new to science.

Two or three specimens were ohtained at a depth of $\mathbf{1 , 2 1 5}$ fathoms (Station 28) of a very remarkable echinodern belonging to the genus Pourtalesia, A. Ag. All these specimens were apparently immature, judging by the condition of the ovaries. I have named this species provisionally Pourtalesict phiale. After careful consideration I bave come to the conclusion that it is not the young of a form of which we alterwards took a mature example in the cold area between Fieroe and Shetland (Station (G4), which will be described hereafter. Fine corals were constantly dredged in the more moderate depths, particularly great living masses of Lophohelia prolifera (Fig. 30), with smaller tults
of Amphihelia ramea, and everywhere the several varieties of Caryophyllia borealis.

The foraminifera, as before, were remarkable for their size, and the same types were predominant; but species were here obtained for the first time of a

peculiarly interesting Orbitolite, a type not hitherto discovered farther north than the Mediterranean, and there attaining a comparatively small size. Orbitolites tenuissimus, Carpenter MSS. (Fig. 10), is when complete about the size of a sixpence, and as
thin as paper. From its extreme tenuity and the ease with which the rings of chamberlets of which it is composed separate from one another, all our large apecimens were more or less injured. All the chamberlets are on the same plane; this species therefore belongs to the ' simple type' of the genus, though the form of the chamberlets corresponds, as Dr. Carpenter has pointed ont, with those of the superficial layer in the complex type. Another peculiarity which Dr. Carpenter regards as of special importance in its general learings, is that, instead of commencing with a 'central' and 'circumambient' chamber like the ordinary Orbitolites, this form commences with a spine of several turns like that of a young Carnuspira, thus showing the fundamental conformity of this cyclical type to the spiral plan of growth.'

As I have already mentioned, it was the original intention to devote the second cruise to the exploration of an area to the west of the outer Hebrides, between Rockall and the south-western limit of last year's work in the 'Lightning.' During the first cruise however dredging had been carried down successfully to a depth of nearly 1,500 fathoms; and the result so far realized our anticipations, and confirmed the experience of last year. The conditions (to that great depth at all events) were consistent with the life

[^20]of all the types of marine invertebrata; though undoubtedly in very deep water the number of species procured of the higher groups was greatly reduced, and in many cases the individuals appeared to he dwarfecl. From these ohservations (which thoroughly corroborated those of Dr. Wallich and others, about which there had been some difference of opinion on account of the imperfection of the appliances at the command of the observers), we concluded that probably in no part of the ocem were the conditions so altered by depth as to preclude the existence of animal life, - that life had no bathymetrical limit. Still we could not consider the question thoroughly settled; nnd when upon consultation with Captain Calver we found him perfectly ready to attempt any depth, and from his previous experience sanguine of success, we determined to apply to the Hydrographer to sanction an attempt to dredge in the deepest soundings within our reach, viz. 2,500 fathoms indicated on the chart 250 miles west of Ushant. The deepest reliahle soundings do not go much beyond 3,000 fathoms; and we felt that if we could estahlish the existence of life, and if we could determine the conditions with accuracy down to 2,500 fathoms, the general question would be virtually solved for all rlepths of the ocenn, and any further investigation of its deeper alysses would be mere matter of curiosity and of detail. The Hydrographer cordially acquiesced in this change of plan; and on the 17 th of July the ' Porcupine' left Pelfast under the scientific direction of the writer ; Mr. Hunter, F.C.S., Chemical Assistant in Queen's College, Belfast, taking charge of the examination and amalysis of the sea-water.

The weather was very settled. On the Suuday, as we steamed down the Irish Cliannel there was nearly a dead calm, a slight mist hanging over the water and giving some very beautiful effects of coast scenery. On the evening of Sunday the 18th we anchored for the night off Ballyenttin, a pretty little port about fifteen miles from Queenstown, and dropped round to Queenstown on Monday morning, where we anchored off Haulbowline Island at 7 a.m. At Queenstown Mr. P. Herbert Carpenter joined Mr. Hunter in the laboratory, to practise under his direction the gas-analysis, which it had been arranged that he should undertake during the third cruse. Monday the 18th was employed in coaling and procuring in Cork some things which were required for the chemical department; and at 7 p.m. we cast off from the wharf at Haulbowline and proceeded on our voyage.

During Monday night we steamed in a southwesterly direction across the mouth of the Channel. On Tuesday we dredged in 74 and 75 fathoms on the plateau which extends between Cape Clear and Ushant, on a bottom of mud and gravel with dead shells and a few living examples of the generally diffused species of moderate depths. The weather was remarkably fine, the barometer 30.25 in , and the temperature of the air $22^{n}: 5 \mathrm{C}$.

On Wednesday, July 21, we continued our southwesterly course, the chart indicating fluring the carlier part of the day that we were still in the shallow water of the plateau of the Channel. At 4.30 A.m. we dredged gravel and dead shells in 95 fathons, hut towards mid-day the lead gave a much greater depth;

and in the afternoon, rapidly passing over the edge of the platean, we dredged in 725 fathoms with a bottom of muddy sand (Station 36). This is alout the bathymetrical horizon at which we find the vitreous Sponges in the northern area; and although the botfom is here very different, much more sandy with but a slight admixture of gloligerina ooze, we dredged a specimen, tolerably perfect though dead, of Aphrocallistes bocagei, Wright, a vitreous sponge lately described by Dr. E. Perceval Wright from a specimen procured by Professor Barboza de Bocage from the Cape-Verde Islands, and one or two small specimens of Holtenia carpenteri, Wr. T. The muddy sand contained a considerahle proportion of gravel and dead shells.

On Thursday, Muly 22, the weather was still remarkably fine. The sea was moderate, with n slight swell from the north-west. We sounded in lat. $47^{\circ} 38^{\circ}$ N., long. $12^{n} 08^{\circ} W$., in a depth of 2,435 fathoms (Siation 37), when the average of the Miller-Casella thermometers gave a minimmm temperature of $2^{\circ} 5 \mathrm{C}$.

As this was about the greatest depth which we had reason to expect in this neighbourhood, we prepared to toke a cast of the dredge. This operation, rather a serious one in such deep water, will be described in detail in another chapter. It was perfectly successful. The dredge-bag which was safely hauled on deck at 1 o'clock on the morning of the 23 rd , after an absence of $7 \frac{1}{3}$ hours and a journey of upwards of eight statute miles, contained lit cwt. of very characteristic grey chalk-mud. The dredge appeared to have dipped rather deeply into the
soft mud, as it contained amorphous paste with but a small proportion of fresh shells of Globigerina and Orbulina. There was an appreciable quantity of diffused amorphous organic matter, which we were inclined to regard as connected, whether as processes, or 'mycelium,' or germs, with the various shelled and shell-less Protozoa, mixed very likely with the apparently universally distributed moner of deep water, Bathybius.

On careful sifting, the ooze was found to contain fresh examples of each of the Tnvertebrate sub-kingdoms. When examined at daylight on the morning of the 23 r d none of these were actually living, but their soft parts were perfectly fiesh, and there was ample evidence of their having been living when they entered the dredge. The most remarkable species were :-

Molldsca.-Dentalium, sp. n., of large size.
Pecten fehestratus, Fordes, a Mediterranean species.
Dacrydium vilreum, Torell; Arctic, Norwegian, and Mediterranean.
Serobicularia nitidu, Müller: Norwegian, British, and Mediterranean.
Negra obesa, Lovén; Arctic and Norwegian.
Crustacea-Anonyx hölbollii, Kroyer (=A. denticulatus, $\mathrm{Bate}_{\mathrm{A}}$, with the secondary appendage of the upper antenax lnger and more slender than in shallow-water specimens.
Ampelisca requicormis, Bruzeintis.
Metuna, sp. n.
One or two Annelides and Gepifres, which have not yet heen determined.

Relinnoderamta.-Ophocten sericeum, Forbes; several well-grown specimens.
Echinocncumis typica, Sars. This seems to be a very widely distrihuted species; we got it in almost all our deep dredgings, both in the warin and in the cold areas.
A remarkable stalked crinoid allied to Rhizocrinus, but presenting some very marked differences.

Polyzoa.-Sillicornaria, sp. n.
Celenterata. - Two frigments of a hydroid zoophyte.

Protozoa.-Numerous foraminifera helonging to the groups already indicated as specially characteristic of these abyssal waters; together with a branching flexible rhizopod, having a chitinous cortex studded with glohigerinse, which encloses a sareodie medulla of olive green hue. This singular organism, of which fragments had been detected in other dredgings, here presented itself in great ahundance.

One or two small Sponges, which seem to be reforable to a new group.

On Friday, July 23, we tried another haul at the same depth; but when the dredge came up at 1.30 p.m. it was found that the rope had fouled and lapped right round the dredge-bag, and that there was nothing in the dredge. The dredge was sent down again at 3 p.m., and was brought up at 11 r.m., with upwards of 2 cwt. of ooze. - We got from this haul a new specics of Plenvotoma and one of Dentaliam; Serolichlaria vilida, Müller; Dacrydium viturum, Tomell; Ophiacanhla spimulosa, M. and T. ; and Ophincten hroyeri, liëtкex ; with a few emstaccans and many foraminifera.

In hoth of these last deep dredgings the dredge lrought up a large number of extremely beautiful Pobycystina, and some forms apparently intermediate hetween Polycystina and Sponges, which will he described slortly. These organisms did unt seem to he brought from the bottom, but appeared to be silted into the dredge on its way up. They were as numerous adhering to the outside of the dredging-ling as within it. During the soundings taken near this locality quite a shower of several beautiful species of the Polycystina and Acanthometriuct fell 1 וnen chartroom skylight from the whole Iength of the somedingline while it was being hauled in.

We were now steaming slowly back towards the coast of Ireland; and on Mondey, July 26, we dredged in depths varying from 557 to 584 fathoms (Stations 39-41) in ooze, with a mixture of sand and dead shells. In these dredgings we got one or two very interesting alcyonarian zoophytes, and several aphinrideans, including Ophiothrix fragilis, Amphime ballii, and Ophiacantha spinulosa. Many of the animals were most brilliantly phosphoreseent, nnd we were afterwards even more struck hy this phenomenon in our northern cruise. In some places nearly everything brought up seemed to emit light, and the mud itself was perfectly full of luminous specks. The alcyonarians, the brittle-stars, and some annelids were the most hrillinnt. The Pemutulur, the Jirgulurife, and the Gorgonie shone with a lambent white light, so lright that it showed quite distinctly the hour on a watch; while the light from Ophiacautha spinnlosa was of a hribliant green, caruscating from the centre of the disk, now along one arm, now along
anothor, and sometimes vividly illuwinating the whole outline of the star-fish.

On the 27 th we dredged in 869 fnthoms (Station 42), 1he weather being still very fine, and tho sea quite smonth. The bottom was ooze, with sand and dead sliclls. Among the Mollusea procured were a new species of Pletronectio, Ledra abyssicola (Arctic), Leda massinensis (a Sicilian tertiary fossil), Dentalium gigas (sp. n.), Siphonodentalium (sp. ©.), Ceri'hiam metula, Amaura (sp. n.), Columbella haliseeti, Cylichna pyramiduta (Norwegian and Mediterranean), and mamy dead shells of Cavolina trispinnsa. These latter were very common in all the northern dredgings, thongh we never saw a living specimen on the surfice.

During the aftemoon we took a series of intermediate temperatures, at intervals of 50 fathoms, frouz the hottom at 862 fathoms to the surface.

On the $28 t h$ we dredged in 1207 fathoms (Station 48), with a bottom of ooze A large Fusus of a newr spocies (F. attennatus, Jeffreys) was brought up alive, with two or three Gephyrea, and an example each of Ophiocten sericemu and Echinocucamis typica. We again dredged on the 29th and 30th, gradually drawing in towards the coast of Ireland in 865, 458, 180. and 118 fathoms successively (Stations 44, 15). In dis lathoms (Station A苟) we procured a broken example of brisingt endecacnemos, previously taken by Mrr. Jeffreys off Vnlentia, and a number of interesting Mollusea ; and in 158 and 180 fathoms
 animal lile, including many very interesting forms Denatitith abyssurnm, Apor'h ctis serresianns, Solarinn
fallaciosum, Fusus fenestratus, with abundance of Caryophyllia borealis, and all the ordinary deepwater forms of the region.

The last atation, $45 a$, gave us a most singular assemblage of Ophiurideans. Ophioglypha lacertosa was in large numhers and of extraordinary size, and associated with it were two most conspicuous species, new to science; one a large species of Ophiothrix, coming near O. fragilis, hut of much larger size; the disk in the larger specimens 25 mm . in diameter, and the span from tip to tip of the rays 275 mm . The colours of the disk are very vivid, purple and rose; and all the plates of the disk, and the dorsal plates of the arms, are studded with delicate spines. Notwithstanding its totally different aspect, I had a misgiving that this might yet prove only an extreme variety of O. fragilis. My friend Dr. Lütken, however, protests that it is totally distinct. On such a question I bow to his authority, and dedicate it to him, doubts and all, under the name of Ophiothrix lutkeni. The second novelty was a fine species of Ophiomusium.

About mid-day on Saturday, the 31st of July, we steamed into Queenstown. Having coaled at Haulbowline on Monday, the 2nd of August, we were moored in the Alercorn Basin, Belfast, after a pleasant return passage up the channel, on the evening of Wednesday, the 4th.

As it was necessary that her boilers should be thoroughly cleared out after laving heen so long at sea, the 'Porcupine' did not leave Belfast till Wedneslay, the llth of August; when she proceeded to Stornoway, her final port of departure.

The scientific staff consisted of Dr. Carpenter, Mr. P. Herhert Carpenter (who had gone through his apprenticeship in making analyses under unfavourable circumstances in the former cruise with Mr. Hunter, and was now prepared to undertake this task on his own account), and myself ; and our intention was, in nccordance with our original programme, to go carefully over again the region which we had examined in the 'Lightning,' to test with better appliances and more trustworthy instruments the singular distrihution of temperatures in the 'warm' and 'cold ' arens, to map out as nccurately as we could the paths of the warm and cold currents, and to determine the influences of thesc currents upon the character and distribution of animal life.

We left Stornowny on the alternoon of Sunday the 15th of August, and made straight for the scene of our most successful ' warm area ' dredging of the year before. We were equally successfin on this oceasion, and procured several good specimens of Holfenia, and a henutiful series of IIyalonema, ranging from 2 mm . in length p to 30 and 40 centimetres, and thus giving all the stages in the development of the wonderful 'glass rope,' and proving to demonstration its relation to the body of the spongeDr. J. E. Gray's so-called Canteria.

The most interesting novelty however which rewarded us was a very fine Echinid belonging to the Cidaridae to which I had given the name Poronidaris parparala (Fig. 11). I believe I am justified in referring this haudsome species to the gemus Parocidaris, although in it the special character is absent on which that genus was founded ly Desor. Some

' radinles,' as the fossil spines of Cidarites are usually called, presenting a very marked character, had been found in various formations from the lower oolite upwards. These spines are paddle-shaped, compressed, longitudinally grooved, flattened almost into plates, and strougly serrated on the edges. In the nummulitic beds of Val-Dominico near Verona such spines were found associated with plates much resembling 1.hose of Cidaris, but with the unique peculiarity of a row of holes penetrating the test in the areolar space round the primary tuhercle. This character our new Urelin does not possess, but the radioles have the flatness, the longitudinal stria, and the serrated edges of those of Porocidaris.

I do not attach much importance to the perforations in the plates. From Desor's figures they are not round and defined in outline, but lengthened and somewhat irregular, and they radinte from the insertion of the spine. Our species has a set of depressions occupying the position of these perforated grooves which are undoultedly for the insertion of time muscles moving the large long spines, and as the test is thin these grooves might rearlily penetrate the plate, or so nearly penctrate it as to be worn into lonles loy very little drifting nr wear.

Our recent species and the cocene form have another character in common; the areolar circles are not woll defined, and the areole tend to become confluent.

Scatterd plates only of this genns have heen fumal fossil, and the ovarial plates were till mow monkown. They present a very singular character, which is ecertainly of generic valuc. The ovarial
aperture does oot penetrate the platen lut perforates a membrane which fills up a diamond-shaped space, one-half of which is cut out of the outer edge of the ovarial plate in the form of a large triangular notch, while the other half is formed by a separation into a like notich of the two upper interradial plates, in the middle line of the interrndial space. The characteristic paddle-shaped spines are ranged in several rows round the mouth. The large spines round the equator of the cormna are diverse in form, some of them cylindrical, only slightly tapering towards the tip, and others bulging out and thick near the neck and coming somewhat rapidly to a sharp point. The colouring of the animal is very remarkable. The short spines covering the test are of a rich purple, and a purple of even a deeper and richer hue dyes ahout one-third of the length of the spine, from the head of the spine outwards, ending alruptly in a sharply defined line. The spine beyond this purple portion is of a heautiful pale rose colonr. Two mature examples of this fine species were found, and two young ones, one nearly half-grown and the other much smaller.

We now moved slowly to the northward towards the Fwroe Bank, and soundings were taken to fix as closely as possible the point of passage from the warn water into the cold: a temperature sounding taken in lat. $59^{\circ} 37^{\prime}$, long. $7^{n} 40^{\prime}$, gnve a depth slightly less than that of the 'Holtenin ground,'- 475 fathoms, wifh a slightly higher hottom temperature, $7^{\circ} 4 \mathrm{C}$. ; and at Station 50 , lat. $59^{\circ} 54^{\prime}$, long. $7^{\circ} 52^{\prime}$, with a depth of 3 35 fathoms, the minimum temperature had risen to $\mathbf{7}^{\sim} 9 \mathrm{C}$. A sounding at Station 51, lat. $60^{-} \mathrm{G}^{\prime}$, long.
$8^{\circ} 14^{\prime}$, gave 440 fathoms, and a bottom temperature of $5^{n} \cdot 5$ C., showing that we were passing into another set of conditions; and at Station 52, lat. $60^{\circ} 25^{\prime}$, long. $8^{\circ} \mathbf{1 0}$, only a few miles further on, with a depth of 384 fathoms, nearly the same as that of Station 20, the thermometers recorded a minimum of $-0^{\circ} 8 \mathrm{C}$. We now altered our course towards the east-southeast, and, after a run of about 25 miles, sounded in 490 fathoms, with a bottom temperature of $-1^{\circ} 1 \mathrm{C}$. The following six stations, Nos. 54 to 59 , were all in the cold area with a temperature below the freezingpoint of fresh water. At the last station, No. 59, lat. 60° 21', long. $5^{\circ} 41^{\prime}$, at a depth of 580 fathoms, the guarded thermometer recorded the lowest temperature which was met with $-1 \cdot 3 \mathrm{C}$. While we were passing through the cold area and making these observations, the weather was extremely settled and fine, and under the careful management of Captain Calver all our appliances worked admirably. The temperatures were noted in every case hy the same pair of Miller-Casella thermometers, which were sometimes compared with other instruments and found to give perfectly accurate indications, even after being so frequently subjected to prodigious pressure. The sounding instruments and the dredges never failed, and an ingenious device, for which we are indebted to our Captain, enabled us sometimes to multiply our prizes a hundred-fold. A number of tangles of teazed-out hemp, like the 'swabs' for cleaning the deck, were lung in a way which will be explained hereafter at the hottom of the dredge. These hempen tangles swept by the sides of the dredge, pulling along and picking up everything which was moveable and rough. As echinoderms,

crustacens, and sponges were very numerous in the cold area, the tangles often came up alsolutely loaded, while there was but little within the dredge-bag.

In the course of the last series of dredgings we crossed the position of the bank on which we got large spacimens of Terebratula cranium in so great alundance the year lefore, lut we could not find it. The bank appears to be of very limiten area, and loth on this occasion and on the previons one the sky was so overcast for several days together, just when we were in this neighhomrhood, that it was impossible to fix the position either of the 'Lightning' or of the 'Porcupine' by observation. A clead-reckoning is of course kept under great disudvantages when the vessel is drifting for the greater purt of the time half anchored by a dredge.

From Station 59 we proceeded northward to Thorshavn, where we were warmly received by our kind friend Governor Holten, who had been forewarned of our visit, and at once came off in his barge to welcome us. Governor Holten was uncommonly proud of this barge, and he had some reason. She was a very handsome trim bont; and, manned by a dozen stout liwroese hoatmen in their neat uniform, and with the Danish ensign flying at the stern, and our handsome friend muthed in his military cloak, and with a thick hond to keep out the somewhat palpalle and intrusive 'elimate' of Faieroe, she looked all that coukl le desited. When the Governor came on hand, he proposed lo Captain Calver to try a race with him for the homour of old Fingland aud the white ensign. Some of us were going aslore, and when the Govimor came up from the calbin our whale-hoat was lying alungsite
with twelve blue-jacketed Shetlanders sitting like statues, their white oars glittering in the sun. The Governor looked with the eritical eye of a sailor at the two boats,-he still spoke lovingly of the ' Maid of Pierroc,' lout I suppose he saw that, as 'lennyson snys, 'we were atl of us llanes; ' and the question of a trial of strength lapsed by mutual consent I

We were obliged to remain a few days at Thorshavn replenishing in various ways, and while there we were very ansious to have had an opportunity of seeing Myling Itead--a magnificent eliff at the north-western point of Stromes, which falls perpendicularly, even slightly overhanging its base, from o height of upwards of 2,000 feet into the sca. The tide runs among and round these jslands like a mill-race, and the Governor told us that if we started with the morning flood, and our vessel kept pace with the tide, we might make the circuit of the island, passing under Myling, and returning to Thorshaw in six hours. If we did not carry the tide with us, it liceme a matter of difficulty only to be achieved at considerable expense hotlo of fincl and time.

We found that high water would occur on the following Monday, Aug. 23, at I o'clock in the morving : and as the weather was hrilliant up to the evening of Sunday--musually brilliant for those regions-we made all our arrangements in high hope of a pileasant trip, as we lind persuaded our kind host and hostess to accompauy us. With the first dawn of Monday morning it was blowing nnd pouring, and we were oblimed to defer onr risit to the celebrated headland to some possible future opportunty.

The nesi morning was fine again, and we left

Thorshavn about noon, stenming east by south, so as to cross the deep channel between Færoe and Shetland. Our first two stations were on the Fieroe plateau, at depths a little over a hundred fathoms, but the third sounding, taken in the evening of the 24th at a depth of 317 fathoms, gave a bottom temperature of -0 c. 9 C .; we were therefore once more in the cold current. Having kept the same course under easy steam during the night, we took a sounding next morning, lat. $61^{\circ} 21^{\prime} \mathrm{N}$., long. $3^{\circ} 44^{\prime} \mathrm{W}$., at a depth of 640 fathoms, with a bottom temperature of $-1^{\circ} \cdot 1 \mathrm{C}$. A haul of the dredge brought up rolled pebbles and

fine gravel with few animal forms, but among them one of extraordinary interest, a large specimen of a fine species of the genus Pourtalesif, a heart-urchin, one of whose congeners bad been discovered by M. de Pourtales in the gulf-stream explorations off the American coast, and a second hy Mr. Gwyn Jeffreys near Rockall. The present example ('igg. 12) was much larger than either of those previously dredged, and it appeared to be specifically distinct.

[^21]The shell is singularly unlike that of any other known living echinoderm. It is about two inches in length, almost cylindrical, ending posterionly in a blunt rostrum, and the anterior extremity is truncated. The surface of the shell is covered with short spatulate spines, and near the anterior end there is a kind of fringe of long thin cylindrical spines, especially cougregated on the upper surface. The mouth is at the bottom of a deep anterior and inferior groove, and the excretory opening is at the bottom of a pit on the dorsal surface, above the terminal rostrum. The arrangement of the ambulacra is most peculiar. The four ovarial openings and the madreporic tuhercle are on the dorsal surface, just alove the truncated anterior end at the base of which the month lies, and the three ambulacral vessels of the 'trivium' take a short course from the oral vascular ring, one along the centre of the anterior face, and the other two round its eflges to meet in a ling surrounding the ovarial openings. The two vessels of the 'bivium' have a very singular course. They run back into the great posterior prolongation of the shell, on the sides of which they form long loops, sending conical water-feet through single pores in long double lines of somewhat irregularly-formed amhulacral plates, which finally converge in a point a considerable distance hehind the point of convergence of the three amhulacra of the bivium. Between these two points of convergence, which are both on the middle line of the back, several platcs are intercalated. We have thus the three anterior ambulacta ending in their ocular plates, mecting at one point, whore there are likewise foum genital plates, and the madreporic
tubercle; and the two poster:or amlunacra, with their ocular plates, meeting at another point and forming a kind of secondary apex. The fifth genital plate is ohsolete. The specially inkeresting point is that, while we had so far as we were aware no living representative of this peculiar arrangement of what is called 'disjunct' amhblacra, we have long been well acquainted with a fossil family, the Dysasteride, possessing this charncter. Many species of the genern Dysuster, Agassiz, Collyrites, Desmotilns, Metaporhimus, Mremelin, and Girsif, Micuran, are found from the lower oolite to the white chalk, but there the family had previnusly licen supposed to have become extinct.

The next attempt was one of our very few entircly unsuccessful hauls, the dredge comiog up empty. This we attributed to an increase of wind and swell, and consequent drift on the vessel, which seemed to have prevented the dredge from reaching the ground.

We devoted the morning to a series of temperature soundings at intervals of 50 fathoms from the surface to the bottom, and this we accomplished in a very satisfactory manner, with results which will be fully discussed hereafter. After a rapid descent for the first 50 fathoms the next 150 fathoms maintained a high and a tolernbly cquable temperature, and there was then a rapirl finll between 200 and 300 fathoms, the thermoweter at the preater depth indicating $0^{\circ} \mathrm{C}$. From 300 fithoms to the hoftem the temperature full litfle more tham a degree. :Thus the entire mass of water in this chanuel is nearly equally divided into an upper and lower strat um, the boter lising an Aratie stremem of mearly 2,000 feret
dorp, flowing in a south-westerly divection, beneath an upper stratum of comparatively warm water moving slowly townits the north-east; the lower hall' of the latter, however, hnving its temperature considerally modified by intermixture with the stratum over which it lies." ${ }^{1}$

Our next few dredgings were on the Shetland plateau, in depths under 100 fathoms, and over ground already carefully worked by our colleague Mr. Gwyn Jeffreys. We got few novelties, but owing to our very effective dredging appliances we took some of the 'Haaf' rarities, such as Fusus norrifgicus, Chemn.; Fusus berniciensis, King; Pleurotomet carinatum, Bivona; in considerable numhers. The liempen tangles stood us in good stead with the echinoderms. On one occasion the dredge brought up at a single haul, in the bag and on thie tangles, certainly not less than 20,000 examples of the pretty little mochin, Echinus noreegicus, D. and K.

On the 28th of August we anchored in Lerwick Harmour. We remained at Lerwick several days taking in necessary supplies, looking at the geolngy and the many remarkable antiquities of the neighlourhood, and ransacking the haberdashers' shops for those clolicate flecey fabrics of wonl which imitate in a scarcely grosser material, and with almost equal delicacy of design, the fretted skeletons of Holtenia, Euplectullu, and Aphroctillistes.

In this carlier part of the cruise nearly all the derelgings lad heen confined to the cold a:en, and

[^22]over that region we had found a great uniformity of conditions. As already mentioned, the average bottom temperature throughout was a little below the freeringpoint of fresh water, and it sometimes fell to nearly $2^{\circ} \mathrm{C}$. helow the zern of the centigrade scale. The hattom was uniformly gravel and clay, the gravel on the Scottish side of the channel eonsisting chiefly of the debris of the laurentian gneiss and the nther metamorphic rocks of the North of Scotland, and the devonian beds of Caithness and Orkney. On the Færoe side of the channel, on the other hand, the pebhles were chiefly hasaltic. This difference shows itself very markedly in the colour and composition of the tuhes of annelids, and the tests of sundry foraminifera. The pebbles are all rounded, and the varying size of the pebhles and roughness of the gravel in different places give evidence of a certain amount of movement of material along the bottom.

There seems to he but little doubt, from the direction of the series of depressions in the isothermal lines of the region (PI. 7), that there is a direct movement of cold water from the Spitzbergen Sea into the North Sea, and that a branch of this cold indraught passes into the Fitroe Channel. The fauna of the cold area is certainly characteristic, although many of its most marked species are common to the deep water of the warm area whenever the temperature sinks below 2° or $3^{\circ} \mathrm{C}$.

Over a considerable district in the Feroe Channel there is a large guantity of a sponge which is probably identical with Clatorhiza abyssicoln, Sars, dredged by G. O. Sans in deep water off the Loffoten Islands. This sponge forms a kind of
hush or shrul, which appears to clothe the bottom in some places over a large area like heather on a moor. There are at least three species. In one the branches are strict and rigid; while in another the arrangement is more lax, sirle branches coming off from a flexible central rachis like the harhs from the shaft of an ostrich feather. The branches seem in some cases to be from 50 to 80 centimetres in height, and the stems near the base are 2 to 8 centimetres in diameter. The stem and branches consist of a firm central axis, semi-transparent and of a peculiar yellowish green colour; composed of a continuous horny suhstance filled with masses of needle-shaped spicules arranged longitudinally in dense sheaves. 'This axis is overlaid by a soft bark of sponge substance supported by needle-shaped spicules, and full of the bihamate 'spicnles of the sarcode's so characteristic of the genus Esperia and its allies. The crust is covered with pores, and rises here and there into papille perforated by large oscula. This sponge appears to helong to a group allied to the Esperiadre, and perhaps even more clnsely allied to some of the fossil hranching forms whose remains are so almudant in some beds of the cretacenus period. A still finer species of the same group was dredged by Mr. Gwyn Jeffreys in the first cruise of the following year.

Another peculiar sponge (Fig. 13) is very aloundant and of a large size. This form was admirally described by Professor Lovén-unaccountably under the name of Hyalonema boveale. It is certainly very far from Ifyutonema. It is more nearly allied to Tethya, jim the body of the sjonge must certainly be referred to
the corticate type, though it differs from all the other known members of the order in being supported on a long symmetrical stalk formed, as Professor Lovén has shown, of sheaves of short spicules bound together

by horny cement. A tuft of delicate fibres fixes the base of the stem in its position. Professor Oscar Schmidt, in his "Outline of the Sponge Fauna of the Atlantic,' refers this form to his genus Cometella,
and this he assnciates with Snberites, Telhya greatly restricted, and one or two other generic groups, to form a fanily the Sulieritidine, a part of the old orter Corticate, which order he now proposes to dismemher. I doubt if this arrangement will hold good, for the silicious sponges whose skeleton consists mainly of moliating sheaves of long spicules, lorm a conspicuous and natural assemhlage. Stylocomedylut is evidently nearly related in hahit and goneml character to the Mediterranean stalked sponge figured hy Schmidt under the name of Tetillt csplocamos. ${ }^{3}$

Foraminifera are not very ahundant in the cold area, though heve and there in isolated patches large numbers of large and remarkable forms came up on the 'hempen tangles.' These were principally of the Arenacens type. On onc occasion, at Station 51, one of the intermediate dredgings between the warm area and the cold, the tangles brought up a multitude of tubes three-quarters of an inch to an inch long, composed of sand-grains cemented together, and with a slight appearance externally of heading, as if they were divided into segments. During the 'Lightwing' excursion the year before, on the middle bank along with the specimens of Terebrathla cranimm, we had found in abundance a sandy Litnola with very much the same apparance, exerpt that at one end the Littulm had a prominent mouth, and on breaking them open this mouth was repeated, definitely moulded of peculiarly

[^23]coloured sand grains, for every chamher of the series into which the test was divided. The new form, however, was found not to he divided into chambers, but to have its cavity continuous throughout, "though traversed in every part of its length by irregular processes, built up partly of sand-grains and partly of sponge-spicules," resembling those descrilied by Dr. Carpenter in the gigantic fossil fom Parkevic.' One extremity of this chamber is arched over, spaces being left between the agglutinated sand-grains, through which it appears that the gelatinous being within communicates with the outer world by protruding its sarcode processes. The other end was so constantly broken off, leaving a rough fracture, that Dr. Carpenter was inclined to believe that this form to which he gave the generic name of Bolellina, grew attached to the bottom or to some foreign body.

The cold area teems with echinoterms. In the channel north and west of Shetland, we added to the fauna of the British area besides a large number of species new to science, nearly every one of the forms described by the Scandinavian naturalists as inhabiting the seas of Norway and Greenland.

In comparatively shallow water Cidaris hystrix was most abundant, and of large size. The large form of Echinus flemingii, BaLl, was rare; but every liaul at all depths brought up some variety or other which was referred with doubt to E. elegans, D. and K., to one ur other form of \boldsymbol{E}. norvegicus, D. and K., or to E. rarituberculatus, G. O. Sars; and although it may, perhaps, be necessary still to describe all these which certainly in their extreme forms present vary

[^24]marked differences as distinct species, after having gone over some thousands of them-some brought up in nearly every haul of the dredge from Faroe to Gibunltar-I am inclined to suspect that they may be all varieties of Echinus flemingii. I have already alluded to the countless myriads in which the small form of E. norvegicus, D . and K ., 15 mm . in diameter, swarms on the 'Haaf' fishing banks. 'These little urchins are mature so far as the development of their generative products is concerned; and I suspect from the abundance of three sizes, that they attain their full size in two years and a half or three years; but in colouring, in sculpture, and in the form of the pedicellariæ, I do not see any character to distinguish them from a form four times the size, common in deep water off the coast of Ireland; nor, again, can I distinguish these last by any definite character which one would regard as of specific value from the shallow water form of Echinus flemingii, as large as the ordinary varieties of E. sphara.

The Shetland variety of Equus cahallus is certainly not more than one-fourth the size of an ordinary London dray-horse, and I do not know that there is any good reason why there should not be a pony form of an urchin as well as of a horse.

Prolessor Alexander Agassiz ${ }^{1}$ has discovered that the Florida species of Echinocyamus is nothing more than the young of a common Florida clypeastroid, Stolonoclypus prostraths, Ag., and he suggests the possibility of our Echnocyamus angulosus, Leske, heing one of these stuuted ' pouy ' varieties, or undeveloped young, either of the American Stolo-

[^25]noclypus, the pluteus 'pseudembryo' having been carried along and distributed liy the gulf-stream, or of some European deep-water clypeastroid hitherto unknown.

The three so-called species of the genus Toxopneustes of the cold area must, I fear, submit to fusion. T. pictus, Norman, and T. pallidus, G. G. Sars, are certainly varieties of T. drobachiensig, O. F. Müller.

The young of Brissopsis lyrifera, Foubes, were abundant at all depths, but mature examples did not occur beyond 200 fathoms, and were larger and more abundant from 50 to 100 fathoms. Tripylus fragilis, D. and K., a rather scarce Scandinavian form, was added to the British fauna; several specimens baving been taken, unfortunately usually crushed on account of its great delicacy, in the deeper and colder hauls. Magniticent specimens of the bandsome heart-urchin, Spatangus raschi, were very alunndant, associated in the same zone of depth with Cidaris.

Star-fishes were very numerous, rare and new species sometimes actually crowding the hempen tangles. The two species of Brisinga, B. endecccnemos, Atss., and B. coronata, G. O. Sars, came up occasionally and were always regarded as prizes, although it was a matter of some difficulty to extricate their spiny arms one after the other from the tangles; they were scarcely ever within the dredge. Salaster papposur, Fonnes, apparently their nearest of lin though far removed, was represented abundantly by a very pretty deep-water varicty, with ten arms about forty millimetres arross from tip to tip,
of a bright orange-scarlet even at Station 64, at a depth of 640 fathoms; and we dredged abundantly S. furcifer, D. and K. (Fig. 14), previously known

only in the Scandinavian seas. Pedicellaster typicus, Sars, occurred but sparingly, and more frequently the

 | Non, su.)
pretty biscuit-like Astrogonium grannlare, Müller and Troschel. A. phryginaum, O. F. Müller, and

Asteropsis pulvillus, O. F. MüLler, were not met with beyond the 100 -fathom line. A curious little group of cushion stars, hitherto supposed to be confined to high latitudes, were represented by Ptejaster militaris, M. and T., and P. pulvillus, Sars, and ly two forms new to science, one, Korethraster hispidus, sp. n., with the whole of the upper surface covered with long free paxills like sable brushes (Fig. 15). Ranges of delicate spatulate spines border the

ambulacral grooves. As in Plevaster, there is a double row of conical water feet. The other genus (Fig. 16) is perhaps even more remarkable. The star-fish is very flat, the dorsal surface covered with short paxillw which support a membrane as in Pteraster. A row of spines fringing the ambulacral grooves is greatly lengthened and weblued, and the web running along the side of one arm meets and unites with the web
of the adjacent arm, so that the angles between the arms are entirely filled up by a delicate membrane stretched on and supported by spines, and the body thus hecomes regularly pentagonal. There is no trace on the ventral surface of the arms of the transverse ranges of membranous comb-like plates which are so characteristic in Pteraster.

By far the most abundant and conspicuous forms among the star-fishes in deep water were the genera Astropecten and Archaster, and their allies. At one to two hundred fathoms the small form of Astropecten irregularis, A. acicularis of Norman, literally swarmed in some places, usually in company with the small form of Luidia savignii, M. and T., L. sarsii, D. and K. I feel no doubt that these two forms, A. acicularis and L. sarsii, are mere deepwater varieties of the forms which attain so much larger proportions in shallow water. Mr. Edward Waller took charge of Mr. Gwyn Jeffreys' yacht during the summer of 1869, on a dredging cruise off the south coast of Ireland. He worked principally alout the 100 -fathom line and a little within it, and procured a magnificent series both of Astropecten and Luidia showing a gradual transition through all intermediate stages between the large and the small varieties.

The cold aren gave us Astropecten tenuispinus in great abundance and beauty. The tangles sometimes came up scarlet with them, and associated with this species a handsome new form of a peculiar leaden grey colour, and with paxille arranged on the dorsal surface of the disk in the form of a rosette, or the petaloid ambulacra of a Clypenster. Astropecten
arcticus, Sars, was met with sparingly in some of the deeper dredgings. The known northern species of Archaster were abundant and of larye size; A. parellit, D. and K., passing into comparatively shallow water; and A. audromeda alundant at greater depths.

At Stations 57 and 58, and at various others in the cold aren we trok many specimens of a fine Archaster (Fig. 15) with a double row of large square marginal plates giving the edges a thickened square-cut appearance like those of Ctenodiscus;
each marginal plate covered with miliary grains, and with a prominent rigid central spine. This is a large form, one of our most striking additions to the tale of known species. It measures 120 mm . from tip to tip of the arms across the risk. The colour is a rich cream, or various shades of light rose.

Ctenodiscus crispatus occurred rarely and of rather small size, not more than 25 mm . across. Nearly every haul brought up small specimens of Asteracmuthion mulleri, M. Sars, and specimens of all sizes of Cribrella san!uinolenta, \mathbf{O}. F. Müllek.

The distribution of Ophiuoridea was altogether new to a British dredger. By far the most abundant form in moderate depths was Amphinra abyssicola, N. Sars, a species hitherto unknown in the British seas; and at greater depths this species was associated in about equal numbers with Ophiocten sericeum, Fornes.

Everywhere Ophiacantha spinulosa, M. and T., abounds, and the common Ophioglypha lacertosa of shallow water is replaced by O. sarsii, Lürken, while Ophiopholis aculeata, O. F. Müller, loves to nestle among the branches of corals and stony polyzoa. In such characteristic cold area dredgings as Stations $54,55,57$, and 64 , we find the two species of Ophioscolex, O. purpirea, D. and K., and O. glacialis, M. and T.; the former in some jilaces in great abundance, and the latter much more scarce. Both species are new to the British area, and two very remarkable forms which accompany them are new to science. One of these is a very large ophiurid with thick arms, upwards of three decimetres long, and a large soft disk
resemhling that of Ophionzyxa, to which genus it seems to be allied. The specimess which have been hitherto procured are scarcely sufficiently perfect to allow of its heing thoroughly worked out. The other is a large handsome species of Ljungmans genus Ophiopus. The plates covering the disk are small and obscure, and partly masked by a netted membrane. In moderate deptlis Amphiufa balli, Thompson, was common, and we now and then dredged a stray example of the heautiful little Ophiopeltis securigera, D. and K., lately added to the Shetland fauna by the Rev. A. Merle Norman.

It was a matter of some surprise to us as well as of great pleasure to bring up in many of our cold area hauls considerable numbers of the handsomest of the northern free crinoids, Antedon escrichtii. So far as I am aware, this species has not hitherto been met with in the Scandinavian or Spitzbergen seas; all our museum specimens come from Greenland or Labrador. This is also the case with Ctenodiscus crispatus. In neither instance do the specimens from the north of Scotland appear to be quite so large as those from Greenland. One or two hauls in moderate water gave us abundant examples of Antedon celticus, Barrett, a form still more common however in the Minch; and almost every hanl we found a broken specimen or some fragments of Antedon sarsii.

Once or twice we found a fragment of the stem of Rhizocrinus, but aingularly enough no living specimen of this interesting little crinoid rewarded us from the cold water, although our conclusion seemed to he just, that the Arctic indraught sets into the Faroe

Channel directly from the seas of the Loffotens where it aboumds.

We dredged many Holothurix ; notably everywhere bolow 200 or 300 fathoms the delicate little Echinochomuis typica, M. Sars; and Psolus squanatus, Konen, which does not seem however to be common, through we dredged it in great profusion on one occasion in the ' Lightning,' its white scaly disks showing out against the smootlı black pehhles of Feeroe basalt to which they were attached. Holathuria ecalcarea, Sans, was met with ncensionally, and formed another

interesting addition to the British fama. It always had a peculiar effect coming up among a number of much smaller and more delicate things, like a massive German sausage twenty or thirty centimetres long.

In the charanteristic hauls in the cold area we met with some very interesting crustaceans, one or two of which I figure as they are highly suggestive of the source of the cold water. They are some of the gigantic forms of amphipoda and isopoda of the Arctic sea.

Fhesirus cuspidatus, Kroyen (Fig. 18), had previcusly been known only in the Greenland sea, and

the genus was represented for the seas of Britnin by an imperfect example of another species.

Fig. 10 is a large and hitherto unknown species of
the genus C'iprella, the odd-looking group of skeleton shrimps which fix themselves by their hind claspers, usually in this locality to branching sponges, and wave their gaunt grotesque bodies about in the water.

SEga nasuta, Norman (Fig. 20), is another new species, one of the 'normal' isopods. Much larger specimens of this curious genus are however known on the British coasts, usually semi-parasitical on large hishes.

Arcturus baffini, Sabine (Fig. 21), is another of the 'isopoda normalia'-normal to a certain extent in its structure, but very peculiar in its appearance and

habits. Arcturus has, like Caprella, the habit of clinging to some foreign body by its claspers, and rearing up the anterior part of its body in a queer mauner; but it has in addition a pair of enormously developed antennes, and to these the young cling by their claspers, and range themselves along like a couple of living fringes. Idotea (Arcturus) baffini was first described in the Appendix to Captain Parry's fourth voyage. This, or a nearly allied species, seems to oceur also in the Λ ntarctic seas. Sir James Clark Ross remarks,' that in dredging at a depth

[^26]of 270 fathoms, lat. $7231 \mathrm{~S} .$, long. $173^{\circ} 39 \mathrm{E}$, " corallines, flustre, and a variety of marine invertebrate animals came up in the net, showing an abundance and great variety of animal life. Amongst them I detected two species of Pycnogonum, Idotea baffini, hitherto considered peculiar to the Arctic

seas "-and some other forms. The figure represents Arcturus baffini and a few of its progeny, which however have got somewhat into disorder. The nursery arrangements are usually much more regular.

One or two species of the singular marine arnchnida of the gemus Nymphon, of a vary large size, were
frequently entangled in large numbers on the loose lompl. 'Ihis groul serms to he specially characteristic of the ser at an aretic temperature. They are reported of almost incredihle size, thisty centimetres or so across, from the lite German and Swedish polar expeditions, and they have also been found enor-

mously large in deep water in the antarctic regions. They often come up clinging to the sounding line.

The Mollusca, which in the preceding cruises usually constituted the prineipal results of the dredging, were here quite subordinate as regards both number and variety to the groups already
mentioned; and the difference between the molluscan fauna of the cold and that of the warm area was not by any means so great as that shown in other groups. One of the most interesting types which we met with was Terebratula septata, Philippi $=T$. septigera, Lovén, a brachiopod found living at Station 65 in the Shetland Channel, at a depth of 345 fathoms, and a bottom-temperature of $-\mathbf{1}^{\circ} \cdot \mathbf{1 C}$. A variety of this species, from the Pliocene beds of Messina, has been described and figured by Professor Seguenza under the name of Waldheimia peloritana; and it is clearly the same as the Waldheinzia floridana, found in the Gulf of Mexico by De Pourtales, which our own numerous specimens so considerally exceed in size as to show that its more congenial home is in frigid water.

Only a small number of Fishes were procured, hut their sacarcity may prohably have heen due to the unsuitableness of the dredge as a means for their capture. The few species taken were placed in the hands of Mr . Conch of Polperro by Mr. Loughrin, and were examined by him after our return. The list includes a new generic form intermediate between Chimera and Macrourus, which was brought up from a depth of 540 fathoms in the cold area; a new species of a genos allied to Zeus; a new Gadus approaching the common Whiting; a new species of Ophidion; a spenies of a new genus near Cyclopterus; Blennius fasciatus, Blocn, new to Britain; Ammodytes siculus; a fine new Serranus; and a new Syngnathus.

Death put an end to the labours of the veteran Cornish naturalist while he was preparing descriptions and figures of our new species. He died full of
years and work, and this last task, on which he had entered with keen interest, must be finished ly other hands.

It will he seen that the hottom temperature of the cold area, at not fathoms, floes not differ by more than two or three degrees from that of the warm area, at depths heyond 1,500 fathoms. It seems, in fact, as Dr. Carpenter has well pointed out, as if all the extreme climatal conditions which, in the deep water of the Atlantic are extended over a vertical distance of two or three miles, are here compressed, without greatly altering their proportions, into the compass of half a mile. We have the same surface super-beating and rapid fall for the first short distance: the same hump on the curves, indicating the presence of a layer of water hented by some other cause than direct solar radiation; the same rapid fall through a stratum of intermixture; ' and, finally, the same long excessively slow depression through a deep hottom bed of cold water nearly at a uniform temperature.

As might he anticipated, if the view be correct that arctic conditions are in a broad sense continuons throughout the alyssal regions of the sea, a large number of the inhahitants of the 'cold area' are common to the deep water off Rockall and as far south as the coast of Portugal; hut the fauna of the Feroe channel inclades hesides these generally distributed frims, an assemblage of species-for example the large erustaceans and arachuida and some of the starfishes - which are not only gencrally claracteristic of frigigl conditions, but specially of that part of the aretie province represented hy the seas of Spitzbergen,

Greenland, and Joffoten. There can be little doulit that this especially arctic characler of the faum is maintained by the continual migration of arctic species along with the arctic current indicated by the depressions in the lines of equal temperature. Many species characteristic of the 'cold area' were not met with beyond its limits, owing doubtless to the entire landing in and disappearance of the cold water, and the obliteration of the arctic current as such at the western opening of the channcl hetween the Færoe hanks and the Hehrides.

Tッ1

APPENDIX A.

 crolings an contection weith the Baploratious in H.M. Sur-wryitu-vessel 'Por'upiuc,' during the Summer of 1869.E.rwacta from the Minutes of the Cnuneil of the Roynt Sneiety, srling forth the origin of the 'Porcupine' Eapordition, and the ubjects which it acas desiumed to camy out :-

The Preliminary Report of the Dredging Operntions conducted liy Drs. Carpenter and Wyville Thomsan (in the 'Liglitning') having loeen considered, it was
hesolved, -That, looking to the viluable results obtrined finm these Marine Reseurches, restricted in scope as they have Leen in n first trial, the I'resident and Comeil cousider it minst desimble, with a view to the advuacement of Zoology mul ather brauches of seience, that the explorntion should be renewed in the conrse of the ensuing summer, and carried over a wider nrea; and that the gid of Her Mnjesty's Gnvermment, so liberally afforbed last yenr, be again requested in furtheraves of the modertaking.
liesolver,-That a Commitee he sppninted to report to tlie Conncil an the measures it will be advisable ta take in arder to tarry line loregoing resolution most aclvantagenusly intor ellinet. 'J'le Committee fu consist of the I'resident and dMictry, with Itr. Carpeuter, Mr. Gwyn Jeltieys, and Cajolain Lichards.

$$
\text { Fobranty 1. N, } 1 \text { sitis. }
$$

leat the fullowing Report of the Eumithe an Marine liescarrela's:-
"The Committee appointed by the Council on the 21st of January, to consider the measures advisable for the further prosecution of Researches into the Physical and Biologicnl Conditions of the Deep Sea in the neighbourhood of the British Coast, beg leave to Report as follows:-
"The results oltained by the Dredgiugs and TemperatureSonndings carried on during the brief Cruise of H.M.S. 'Lightning' in August and September, 1868, taken in connection with those of the Dredgings recently prosecuted under the direction of the Governments of Sweden and of the United States, and with the remarkable Temperature-Soundings of Caplain Shortland in the Arabian Gulf, have conclusively shown-
"1. That the Ocean-bottom, at depths of 500 fathons or more, presents a vast feld for research, of which the systematic exploration can scarcely fail to yield results of the highest interest and importance, in regard alike to Physical, Biological, and Geological Sicience
${ }^{4}$ 2. That the prosecution of such a syetematic exploration is altogether beyond the reach of private enterprise, requiring means and appliances which can only be furnished by Government.
"It may be hoped that Her Majesty's Government may be induced at some future time to consider this work as one of the speciul duties of the British Navy; which possesses, in the world-wide distribution of its Ships, far greater apportunities for auch researches than the Navy of any other country.
"At preseat, however, the Committee consider it desitable that the Royal Society should represent to Her Majesty's Government the importance of at once following up the euggestious appended to Mr. Carpenter's 'Preliminary Repnt' of the Cruise of the 'Lightning,' by instituting, during the coming season, a detniled survey of the deeper part of the Ocean-bottom between the North of Scotlind and the Ferroe Islands, and by extending that survey in both a N. E. and a S.W. direction, so as thoroughly to javestigate the Physical and the Biological conditions of the two Submarine Provinces included in that area, which are characterized by a strongly marked contrast in C'limate, with a correspond-
ing elissimilarity in Animal Lifis, and to trace thls clltuatic dissimilarity to its somree; ns well as to carry down the like survey to deptha much greater than have been yet explored ly the Dreilye.
"This, it is Lelieverl, eno be nccomplished without difficulty (ugless the wentler should prove catraordinarily unpropitious) ly the employment of a euitalle vessel, provided with the requisite npplinnces, between the middle of May and the middle of September. The Ship should be of suflicient aize to furnish a Crew of which each 'watch' could carry on the work contiouously without undue fatigue, ac as to take the fullest advantage of calm weather nod long summer days; and should also provide adequate necommodntion for the study of the specinens when freshly oltaiued, which should be one of the primary nbjects of the Expedition. As there would be no occasion to extend the Survey to r greater distance than (at the most) 400 miles from land, no difficulty would be experienced in obtaining the supplies necessary for such a four montha' cruise, by running from time to time to the port that might be nearest Thus, supposing that the Ship took its departure from Cork or Galway, and proceeded first to the chanvel hetween the British Isles and Tiockall Bank, where depths of from 1,000 to $\mathbf{1 , 3 0 0}$ fathoms are known to exist, the Dredgings and Temperatare-Soumdings could be proceeded with in a northerly direction, until it would be convenient to make Stornoway. Taking a fresh departure from that port, the exploration might then be carried on over the nrea to the N.W. of the RIebrides, in which the more moderate deptiss (from 500 to 600 fathoms) would afford greater facility for the detailed survey of that part of the Ocean-hottom on which a Cretaceous depositis in progress-the Fauna of this orea having been show by the ' lightning ' researches to present features of most especial interest, while the careful study of the deposit may be expected tu elucidate many phenomena as yet uuesplained which are aresented by the ancient Chalk Formation. A month or sis weeks would prohaljly be required lon this part of the Survey, at the end of which time the vessel mingtagain rum to Stornowid fur supplits. The area the N. and N.E. ald

Lewis ehould then be warked tu the liko careful mamer ; and as the 'cold men' would here be encounterell, special attention should be given to the determination of its houndmies, and of the sources of its climatic peculiarity. These would probnbly require the extension of the survey for some dislance in a N.E. direction, which would carry the vessel into the neighbourhond of the Shetland Isles; and Lerwick would then be a suitnble port for supplies. Whatever time might then remnin would be advantagennsly emplayed in dredging at such a distnnce round the Shetlands as would give depths of from 250 to 400 fathoms, Mr. Gwyn Jeffreys' dredgings in that locality having been limited to 200 fathoms.
"The Natural-History work of such an Txpedition should be prosecuted under the direction of a Chief (who need not, however, be the same throughout), aided by twa competent Assistnnts (to be provided by the Royal Society), who should be engnged for the whole Cruise. Mr. Gwyu Jeffreys is rendy to toke charge of it during the first five or six weeks, say, to the end of June, when Professor Wyville Thowsun would be prepared to take his ploce; and Dr. Carpenter would be able to join the Expedition enrly in Augnst, remaning with it to the end. It would be a great advontuge if the Surgeon appointed to the Ship should have sufficient knosoledge of Natural History, and sufficient interest in the iuquiry, to participate in the woirk.
"The experience of the previous Expedition will furnish adecuate auidnace as to the uppliances which it would lie necessary to ask the Government to provide, in onse they accede to the present application.
" With reference to the Scientifio instrmments and appnintus to he provided by the Ruynl Sriciety, the Committee recommend that the detailed consideration of them be referred to a Specina Committes, consisting of gentlemen pinctically ennversant with the cunstruction and working of such instruments."

Regolverl, - That the hejuit now resil be reenived nual medopted, and that applicaían be made to Ifer Mijesty's Government an andingis.

Thu following 1) mift of a Ledide tu be transmilted ly the Fieretary to the Secretary of the Adminalty was nuproved :-
" J'ue Ruyal Suciety, Bulilingtun Hinele,
" Fidrainy 18, 1 Rag.
"Sin_-liefinring to the 'Preliminary lieport' hy De Carpenter al' the lesults ol' the Deep-Sen Exploration carried on during the micf Cruise of Her Majcsty's Stenu-vessel 'Lightuing' in Angust and September last, wlich has alruady leen transmitted for the consideration of tho Lards Commissioners of the Alminaley-I an directed by tho Iresident and Council of the Royal Society to state that, louking to the valuable juformation oltained from these Marive Researehes, although comparatively restricted in duration nul exteut, they deew it most desiralle, in the interests of Biological and Physical Science, aud in no small degree also for the advancement of IIydroghaphical knowledge, that a fresh exploration should be entered upon in the eusuing summer, and exteuded over a wieler area; and they now desire earnestly to recommenal the matter to the favouralle considemtion of My Lords, in the hope that the aid of Her Majesty's C Govemment, which was su reatily and liberally lestowed last year, may he afforded to the undertaking now contemplated, for which such suppront would be indispensable.
"In lavour of the procticahility aud probable success of the proposed Iresh explomation, \mathbf{I} am directrel to explain that the oljects to los aimed at, as well as tho course to be followed and the measures to le employed for thuir attainment, have mainly leen suggested by the olsenvatious made nut the experience gaines in the last Expedition.
" Further information as to the proposed exploration will be found in the lituort, herewith transmittot, of a Committee to whose cousidematim the suljeet was relerred by the Council.
"It is mulerstood that the requisite Scientitic Λ ppantus and the remuneration of the A ssistants to be emplojed would he provided by the lingal Society. With regard to the applimens which Her Majesty's Cowemment may beasked to jurvide, the experience fof the previnus Expalition will furnish aderfunts gnislance, whenever the general selome may le approvel. It
has appeared to the Presideut and Council, that if the ahip required for the proposed service could be provided by the temporary employment of one of Her Majesty's Surveying Vessels now in commission, anything beyond a trifing outley on the part of the Government would be rendered unnecessary. "I temain,
" Your obedient Servant, " W. Sharpey, M.D.a
"The Sefrotary to the Admivalty." "Sec. R.S."

Resolved, -That a Committee be appointed to consider the Scientific Apperatus it will be desirable to provide for the proposed Expedition. The Committee to consist of the President and Officers, with Dr. Carpenter, Captain Richarde, Mr. Siemens, Dr. Tyndall, and Sir Charles Wheatstone, with power to add to their number.
That a sum of 4200 from the Government grant be assigned to Dr. Carpenter for the further prosecution of Researches into the Temperature and Zoology of the Deep Sea.

March 18, 1869.

An oral communication was made by the Hydrographer to the effect that the Lards Commissioners of the Admiralty bad acceded to the request conveyed in Dr. Sharpey's Ielter of February 18; that Her Majesty's Surveying-vessel 'Porcupine' had been assigned for the eervice; and that the special equipment needed for its efficient performance was proceeding under the direction of her Commander, Ceptaín Calver.

$$
\text { April 16, } 1868 .
$$

Read the following letter from the Admiralty :-
"Anainaltr, Mareh 18,186 .
" Str,-With reference to previous cortespondence, I nm commonded by My Lords Commissionera of the Admizalty to accuaint you that Dr. Carpenter and his Assistants, who have been deputed by the Royal Society to accompany the Expedition about to le dispatched to the neighbourhood of the Forroe Isles
for the purpose of investignting the bottom of the Ocean by means of deep-sen soundings, will be entertained whilst embarked on board the ' lorcupine 'at the Government expense.

$$
{ }^{*} \mathrm{Inm}_{1} \mathrm{Sir}_{1}
$$

> "Your obedient servant, "W. G. Romane."
"Tha Prasidert of tha Royal Society."
June 17, 1669.
Read the following Report:-
"The Committee appointed Fel. 18, 1869, to consider the Scieutific Apparatus it will le desimble to provide for the proposed Expelition for Marine Researches, beg leave to lay before the Council the following Report :-
"The chief subjects of Physical Enquiry which presented themselves as interesting on their own account, or in relation to the existence of Life at great depths, were as follows :-
"(1) The temperature both at the hattom and at various deptha hetween that and the surface.
"(2) The nature and nmount of the dissolved Gases.
" (3) The amount of Orgnnic matter contrined in the water, and the gature and amount of the Inorganic salts.
"(4) The amount of Light to be found at great depths.
"Among these subjects the Committee thought it desirable to confine themselves in the first instance to such as had previously to some extent heen taken in hand, or could pretty certainly be carried out.
"The determination of Temperntures has hitherto rested chicfly upon the registration of miniman Thermometers. It is obvious that the tempernture registered by minimun thermometers sunk to the botiom of the sea, even if their registration were unaflected ly the pressure, would only give the lowest temprature reached somewhere between top and bottum, not recrssarily at the botton itself. The temperatures at various depths might incleed, provided they anwhere increased on going deeper, le determined hy a series of minimum thermometers placed at different distances along the line, though this would
involve considemble difficulties. Still, the liability of the index to slip, and the probability that the indiention of the thermameters would be affecterl by the great pressure to which they were exposert, rendered it very desirable to control their indicatiens by an independent method.
"Two plans were proposed for this purpose, one by Sir Cbnrles Whentstone, aud one by Mr. Siemens. Bath plnus involved the employment of a voltaic curreut, excited ly a hattery on deck; and required a cable for the conveyance of insulated wires. The former plan depended upon the action of an immersed Breguet's thermometer, which, by av electro-mechanical arrengement, was rend by an indicating instrmment placed on deck. The latter plan made the indication of temperature depend on the existence of a thermal variation in the electric resistance of a conducting wire. It rested on the equalization of the derived currents in two perfectly similar partinl circuits, contaiving each a copper wire running the whole length of the calle, the sea, and n resistance-cail of fine platinum wire; the cail in the ove circuit being immersed in the sea at the eud of the coble, and that in the other being immersed in a vessel on leck, containing water the temperature of which conld be regulated hy the ardition of hat or cold water, and deterwind by an ordinary theranometer.
"The instriments required in Sir Charles Wheatstone's plan were more expensive, aud would tuka longrer to construct; and, besides, the Committee were unwilling to risk the loss of a somewhat enstly instrument in case the cable were to break. On these nccounts they thought it lest to adopt the simpler plan proposed by Mr. Siemens; and the apmantus recuired for carrying the plaw into execution is now completed, and in use in the expelition.
"Meanwhile a plan had liecu devisen hy lle. Miller for olviating the elfent of pressure on a minimam theronsmeter, without preventing aceess to the steme for the pouse al' sultinas the index. It cousists in enchosing the hull, in an outer bullo rivetted ou a little way un the alem, ile interval hetween tha bulles leciug partly filled with liguicl, for thes sake of duicker cunduction. Tla Gomitue latue hat a dew minimum dheme-
 answer perfertly. Thee methon is deseribed in a shout paper whiell will he real to the Suecely to-manraw.
"Fur olitaining specimens of water from any drpth to which the drespging extends, the Committee lanve prucured an instinment ernasimetent as to its leating ficatures on the plan of that desiflued hy Dr. Marect in the Plilosopllical Transactions fur 1810, and usel sucecssfully in the carlier northern expeditions.
"Mr. Gwyn Jeffreys is now ont on the first Cruise of the ' Porcupine,' the vessel which the Admiralty have sent out for the purinose, and is necompnuied by Mr: W. L. Carpenter, J.Se. (son of Dr. Carpenter), who undertakes the general execution of the physical and chemical part of the incuiry. A letter has beru received by the I'resident from Mr. Jeffreys, who apeaks highly of the zenl and elfiriency of Mr Carpenter. The tharmometers protected according to Dr. Miller's plan, and ihe instrument for obtaiming specimens of water from great deptlis, lave lacu fumd to work salisfactorily in actual practice. Mr. Siemens' instrument was not quite realy when the vessel started on her first Crinise, and was not on hoarl when the alove letter was written. The gas-nualyses have heen successfilly carried on, ontwithstnuding the motion of the vessel. From a lettet sulbequently received from Mr. Carpenter, it nppears that Mr. Siemens' apparatus, so far as it has yet loeen tried, works in perfect harmony with the thermometers protected according to 13r. Miller's plan."
"Junc JA, 1849,"
Resolved,_That the Report now read be received and entered on the Minutes.

APPENDIX B.

Particulars of Depth, Temperature, and Pasition at the various Dredging-siations of H.M.S. 'Poteupine' in the Summer' of 1869 :-

	Derth jn	Bintion Temparalure		Pranilinn	
1	370	$\theta^{\circ} \cdot 4 \mathrm{C}$.	$12^{\circ} \cdot 3 \mathrm{C}$.	51' $51{ }^{\prime} \mathrm{N}$.	$11^{\circ} 50{ }^{\prime} \mathrm{W}$.
2	808	$5 \cdot 2$	12.3	5122	1225
3	722	$6 \cdot 1$	12.5	5138	1250
4	251	$9 \cdot 7$	$12 \cdot 0$	5156	13.39
5	364	9.3	$12 \cdot 2$	537	1252
6	90	$10 \cdot 0$	12.2	52 23	1140
7	159	$10 \cdot 2$	$11 \cdot 8$	5214	1149
8	106	10.7	$12 \cdot 3$	5.315	1151
9	165	$9 \cdot 8$	$12 \cdot 0$	5316	1242
10	85	$8 \cdot 7$	12.5	5323	1329
11	1630	-	-	59 24	1524
12	670	$5 \cdot 9$	$11 \cdot 2$	5341	1417
13	208	9-8	$12 \cdot 0$	5342	1355
14	173	9.8	11.8	5349	1315
15	422	8-3	$11 \cdot 2$	545	1217
16	816	$4 \cdot 2$	$11 \cdot 7$	5419	1150
17	1230	$3 \cdot 2$	11.8	5428	1144
18	183	9-7	$11 \cdot 8$	5415	11 9
19	1860	$3 \cdot 0$	$12 \cdot 6$	5453	1059
20	1443	2.9	13.0	5511	11.31
21	1476	2.7	17.4	-5 40	1346
22	1263	2. 2	13.8	568	1384
23	630	6-4	14.0	$56 \quad 7$	1419
$23 a$	420	$8 \cdot 0$	13-7	5613	14 1月
24	109	日.0	14.9.	562 fi	14 2R
25	164	8-1	$13 \cdot 7$	5641	1:139

। ا｜｜1｜｜｜｜ 	绿
 0	氨管
水品	－
隹 	9

	Dentil in		Surnra	Pantilun	
G4	640	$-1^{n} 1 \mathrm{C}$	$\mathrm{g}^{\circ} \mathrm{g}$ C	$61^{\circ} 21^{\prime} \mathrm{N}$	$33^{\circ} 4 t^{\prime}$ V
65	345	-1.1	$11 \cdot 1$	6110	291
66	267	$7 \cdot 6$	11.	$\mathrm{G}_{1} 15$	144
67	64	9.5	11.0	6039	029
68	75	$6 \cdot 7$	$11 \cdot 4$	6023	0 asm
69	67	$6 \cdot 5$	$12 \cdot 0$	fin 1	018 E
70	66	$7 \cdot 3$	$11 \cdot 9$	604	021
71	103	O-2	1]. 6	6017	253
72	76	y-4	11. ${ }^{\text {a }}$	6020	35
73	84	- $\mathrm{g} \cdot \mathrm{4}$	$11 \cdot 5$	60 2?	36
71	203	8.7	$11 \cdot 4$	6039	39
78	250	$5 \cdot 5$	$10 \cdot 8$	604.5	3 A
76	344	$-1 \cdot 1$	10.1	fio 3n	368
77	560	$-1 \cdot 2$	10-5	fin 34	440
78	290	[5]	$11 \cdot 2$	6014	430
79	76	9-4	11.2	5944	444
80	92	g. 6	$11 \cdot 8$	6949	442
81	142	9.5	$11 \cdot 8$	59.54	51
82	312	$5 \cdot 2$	11.2	600	513
83	362	3.0	$11 \cdot 7$	606	58
84	155	9-5	$11 \cdot 4$	5934	634
85	190	g. 3	12.1	5940	634
86	445	- $1 \cdot 0$	$12 \cdot 0$	5948	631
87	767	5-2	11.4	5935	¢ 11
88	705	5.9	$12 \cdot 0$	5926	823
89	445	$7 \cdot 6$	$11 \cdot 7$	5938	748
90	458	$7 \cdot 3$	11-7	5941	734

CHAP'IER IV.

TUE CRUISES OT THE 'PORCUPINF' (continued).
From Shetland to Stornoway.-Phosphoreacence.-The Echinolhurider.
-The Fruдa of the ' Warm Area.'--End of the Cruies of 1869. Arrangements for the Expedition of 1870.-From England to Gilraltar-Peculiar Conditions of the Meditermanean, - Return to Cowes.

Arpendix A.--Extracts from tho, Minutes of Council of the Royal Saciety, and ather afficial documents referring to the Cruise of H.M.S. ' Porcupine ' during the Summer of 1870.

Appenmix B.-Particulara of Depth, Temparatura, and Position at the various Dredging-stations of H.M.S. 'Porcupine' in the Summer of 1870.
**The trackeld nuinhera to tha woontcite ind this chapter refte to tha dredgingstations an Platos IV. and V.

We left Lerwick on the 31st of August, and ran south- and westward, passing close to Sumburgh Head; Fair Isle, of evil repute among mariners, lying on the southern horizon like a little grey cloud. The weather was still very fine, and we had a good tossing with scarcely a breath of wind in the famous Roost of Sumburgl. Past Norna's eyrie on the 'Fitful Mead;' past in the falling shadows of the antamn aight the rocky Island of Foula, still the haunt of one or two pairs of the great skua gull, Lestris cataractes, a species fast
hastening to jois the dodo and the gair-fowl among the creatures of bygone times.

We now steered somewhat to the north of west, and early on the 1st of September sounded in lat. $60^{\prime \prime} 17^{\prime}$, long. $2^{\circ} 63^{\prime}$, at a depth of 103 fathons, and a bottoms temperature of $9^{\circ} \cdot 2 \mathrm{C}$. We were still in the shallow water, and had not touched the arctic stream. All day we slipped over the edge of the plateau, dredging chiefly well-known Shetland forms, and the temperature falling slightly, reaching in the afternoon at a depth of 203 fathoms, $8^{\circ} \cdot 7$ C. (Station 74). The next sounding, about ten miles farther north, gave us the stratum of intermixture, a temperature of $5^{\mathrm{n}} 5 \mathrm{G} \mathrm{C}$. at a depth of 250 fathoms. We ran about thirty miles in the night, and early next morning dredged in the frigid water again in lat. $60^{\circ} 36^{\prime}$ N., long. $3^{\circ} 58^{\prime} \mathrm{N}$., at a depth of 344 fathoms, with a bottom temperature of $-1^{\circ} \cdot 1 \mathrm{C}$., the temperature at the surface being $10^{\circ} \cdot 1 \mathrm{C}$. Five-and-twenty miles to the westward, we sounded again at noon of the same day at 560 fathoms, with $-1^{0^{-}} 2 \mathrm{C}$.

In these two or three last cold dredgings the character of the bottom was much the same-gravel of the older rocks, and clay. The preponderance of echinoderms and sponges was again remarkable, and the paucity of mollusca, though in this region we took a single specimen of a mollusk which seemed to be greatly out of its latitude. This was a pretty little brachiopod, Platydiaan omioides, SAcciri (Morrisift, Davinson), hitherto found only in the Mediterranean. The size of this specimen greatly exceeded that of Mediterranean examples of the same species a singular circumstance which leads
our friend Mr. Gwyn Jeffreys to the somewhat hazardous presumption that "its original home is in the horeal, perhaps even in the arctic region.'

Two very peculiar little sponges were met with here rather frequently sticking to stones. $\boldsymbol{\Lambda}$ short smonih column, about 20 mm . in height, is surmounted in one species, which must I think be identified with Thecophora semisuberites, Oscar Schmidt, by a soft

pad of sponyy matter, with one or two projecting tubes with oseula in the centre. The other, which I shall call Thecophora ibla (Fig. 24), from its resemblance to the cirripede of that name, ends in a scaly cone with a single osculum in the middle. The outer wall of the column in both forms is firm and glossy, under the microscope composed of closely-packed sheaves of needle-shaper spicules with their termination blunt and slightly bulbous. The sheaves are
arranged rertically, and this peculiar tissue forms a complele sheath surrounding a pulpy mass of granular horny and sarcodic matter which fills the interior. In this inner spongy substance sheaves of similarly-shaped spicules are likewise arranged vertically, but much more loosely; and the projecting scales forming the head of Thecophova ibla are formed by the projecting ends of such sheaves. Among echinoderma, Ophiacantha spinulosa was one of the

prevailing forms, and we were greatly struck with the brilliancy of its phosphorescence. Some of these hauls were taken late in the evening, and the tangles were eprinkled over with stars of the most brilliant uranium green; little stars, for the phosphorescent light was much more vivid in the younger and smaller individuals. The light was not constant, nor continuous all over the star, but sometimes it struck out a line of fire all round the disk, flasling.
or one might rather say glowing, up to the centre; then that would fade, and a defined patch, a centimetre or so long, break out in the middle of an arm and travel slowly out to the point, or the whole five rays would light up at the ends and sprad the fire inwards. Very young Ophiacanthae, only lately rid of their 'plutei,' shone very brightly. It is difficult to doult that in a sea swarming with predncenus crustaceans, such as active species of Dorynchus and Munida with great bright eyes, phosphorescence must be a fotal gift. We had another gorgeous display of luminosity during this cruise. Coming down the Sound of Skye from Loch Torridon, on our return, we dredged in abont 100 fathoms, and the dredge came up tangled with the long pink stems of the singular sea-pen Pavonaria quadrangularis. Every one of these was embraced and strangled by the twining arms of Asteronyx lovêui, and the round soft horlies of the star-fishes bung from them like plump ripe fruit. The Paconariae were resplendent with a pale lilac phosphorescence like the flame of cyanogen gas; not scintillating like the green light of Ophiacantha, but almost constant, sometimes flashing out at one point more brightly and then dying gradually into comparative dimness, but always sufficiently bright to make every portion of a stem caught in the tangles or sticking to the ropes distinctly visihle. From the number of specimens of Pavonaria brought up at one hanl we luad evidently passed over a forest of them. The stems were a metre long, fringed nith hundreds of polyps.

Ophiocten sericeum, Fonnes, and Ophioscolex pur'pur'ea, D. and K., were likewise very common, and
in sand patches, Ophioglypha sarsii, Lürken. The most abundant asterid was Asteropecten tenuispinus, always a marked olject from its bright red colour-with here and there an example of Archaster andromeda and Pteraster militaris. Every haul brought up several specimens of the so-called large

form of Echinus norvegicus, here of a pale colomr, somewhat conical, and looking suspiciously like small forms of E. flemingii.

Along with one or two epecimens of Archaster andromeda, we took at Station 76 mm exceedingly heautiful Archastar (Fig. 25), certainly hy far the finest species yet drealged in the Northern Seas.

The arms are flatened, somewhat square in section
owing to the position and size of the marginal plates, which rum up mearly vertically from the side of the unusually wide nmbulacral groove till they meet the edge of the perisom of the dorsal surface. The marginal plates are thickly covered with rounded scales and bear three rows of spines-one at the upper edge (and this series in combination form a fringe round the dorsal surface of the star-fish), one near the centre, and one a little farther down towards the ventral edge. The ambulacral gronve is bordered by obliquely placed combs of spines, short towards the apex and centre of the arm, lut lecoming longer towards its base, and forming at the re-entering angles between the anbulacral grooves large singularly beantiful pads; each plate bearing a double row of spines, aud each spine having a second short spine or scale on the end, an arrangement which adds greatly to the richness of the hoodering. The inner spine of each comb on the side of the ambulacral groove is longer than the others, and bears on the end a little oblong calcareous plate usually langing firnm it somewhat obliquely like a flag, with sometimes a rudiment of a second attached to it in a gelatinous sbeath, which makes it probable that it is an aborlive pedicellaria. From this character, which is one which camot escape observation, I have called the species 'vexillifer.' I know no star-fish in which the ambulacral grooves are so wide and the ambulacral tubes so large in proportion to the size of the animal as in this species. The dorsal perisom is closely covered with rosettc-like paxilles. 'Ithe colour is a pale rose, with a tinge of luff. The ambulacral tubes, which when the animal
is living present a very marked feature from their great size, are semi-transparent and of a pale pink colour.

We now took a run once more to the southward, recrossing the boundary of the cold stream, and sounding successively in 290 fathoms, with a bottom temperature of $5^{\circ} \cdot 3 \mathrm{C}$., and in 76 fathoms, with a temperature of $9^{\circ} \cdot 4$, practically the same result as in the former case; and in the next four Stations, 80, 81, 82, and 83, we repeated the operation inversely, sounding in 92 fathoms, with a tempera. ture of $9^{\circ} \cdot 7 \mathrm{C}$.; in 142 , with $9^{\circ} \cdot 5$; in 312 , with $5^{\circ} \cdot 2$; and in 362 , with $3^{\circ}-0$.

After a run of about sixty miles in a soutb-easterly direction nearly parallel with the 100 -fathom line, on the moming of Saturday the 4th of September we sounded in lat. $59^{\circ} 34^{\prime}$ N., long. $6^{\circ} 34^{\prime}$ W., with a depth of 155 fathoms and a temperature of $9^{\circ} \cdot 5 \mathrm{C}$. Two other Stations after running distances of six and eight miles only took us once more over the edge of the bank and into the cold river, the first giving a depth of 190 fathoms, with a temperature of $9^{\circ} \cdot 3$, and the second 445 fathoms, and - $1^{\circ} \cdot 0$.

As we were satisfied for the present with our work in the cold area, and as the next day was the day of rest, we steamed quietly westwards for about 100 miles, past the Rutt of the Iews and beyond the entrance of the channel to Station 87, lat. $59^{\circ} \cdot 35^{\prime}$ N., long. $2^{\circ} 11^{\prime} \mathrm{W}$., a point nearly in the middle line of the deep water of the channel, and consequently in the axis of the cold stream, the line in which the peculiarities of the cold area are most pronounced. Here a sounding gave us a depth of 767 fathoms and
a bottom temperature of $5^{\circ} \cdot 2 \mathrm{C}$. We were thus in the warm area, and the dead-cold water of the cold area lying fifty or sixty miles off, with the bottom at a higher level, was completely banked in. The bottom temperature here corresponded so closely with that of the same depth in the Rockall Channel that apparently scarcely a drop of the Arctic in-

draught makes its escape in this direction. The dredge here brought up half a ton of Atlantic 'globigerina coze,' a load which tested its tackle and the donkey-engine to the utnost. The weight of the dredge itself with the weight attached was 8 cwt., so that altogether the burden reached not
far short of a ton, and the distance it lad to be dragged through the water was not much less than a mile. As was frequently the case when these great loads came up, there were few of the higher animal forms in the dredge. The tangles brought up, however, two or three specimens of a very handsome starfish, the type of a new genus.

Zoroaster fulgens (Fig. 26) is a five-rayed star-fish, 250 mm . from tip to tip of the arms, which run close up to the centre leaving a small disk not more than 20 mm . in diameter. There are four rows of sucking feet in the ambulacral grooves, a character which places the genus in the first division of the Asterida, along with Asteracanthion. The arms are compressed laterally, and run up to a central longitudinal ridge, which bears a row of large pointed spines articulated to n row of projecting knob-like ossicles. From this ridge bands of ossicles curve downwards to the edge of the ambulacral groove so close together and so thick and solid that the arms are contimously and strongly mailed over. The disk is paved with large calcareous tubercles with articulated spines; the tubercles and spines becoming larger towards the centre of the disk. The whole surface of the body is covered with long fine spines, with here and there a group of pedicellariza on short soft stalks attached to the tops of special spines, while a row of such spines bearing large groups of pedicellariæ runs along the edges of the ambulacral grooves. When living, the whole surface of the animal is covered with n quantity of glairy mucus. The colour of the perisom is a magnificent yellow scorlet, but it is very evanescent, fading immediately in spirit. This is a
distinet, as well as a very shriking form. We ouly met with it on this accasion. The skeleton of this star-fish at first sight closely resembles that of some spucties of Ophithinter, fior instance O. asperuhths, Litken. It is at once distinguished, however, by the fundamental character of the quadruple row of ambulacenl suckers; and the texture of the surface of the star-fish is utterly different. The arrangement of the ossicles of the frame-work is perhaps nearest to that in Arthraster dixomi, Fornes, from the lower clank of Balcombe pit near Amlerley, Sussex ; but the only specimen of that species, now in the British Museum, unfortunately does not show the arrangement of the plates in the ambulacral grooves.

As our coals were beginning to run short, and what remained were hlowing off fast-steaming against rather a strong head wind-we thought it prodent to retrace our steps slowly towards Stornoway, dredging on our way. Accordingly, in the afternoon, we took a haul in lat. $59^{\circ} 260^{\prime}, \mathrm{N}$. , long. $S^{3} 23^{\prime}$ W., with a depth of 70: fathoms, and at temperature of 5 © 0 C. Continuing our casterly course during the night, but heading slightly northwards so as to come upon the ground whice we had been previously so successful in dredging the singular anchoring sponges, we dredged in the morning in lat. $59^{\circ} 38^{\prime} \mathrm{N}$., long. $\mathrm{F}^{\mathrm{c}} 4 \mathrm{G}^{\prime} \mathrm{W}$., with a depth of tho fathoms and a temperature of 7°.5 C. 'lhis lonul was not rery rich, but it yielded one specimen of extraordinaty beaty and interest. As the dredge was coming in we got a glimpse from time to time al a large searlet urchin in the bag. We thought it was ane of the highly-coloured forms
of Echinus femingii of unusual size, and as it was blowing fresh and there was some little difficulty in getting the dredge capsized, we gave little heed to what seemed to be an inevitable necessity-that it should be crushed to pieces. We were somewhat surprised, therefore, when it rolled out of the bag uninjured; and our surprise increased, and was cer-

tainly in my case mingled with a certain amount of nervousness, when it settled down quietly in the form of a round red cake, and began to pant- a line of conduct, to say the lenst of it very unusual in its rigid undemonstrative order. Yot there it was with all the ordinary characters of a sea-urchin, its interambulacral areas, and its amhulacral arens with their
rows of tuhe feet, its spines, and five sharp blue teeth; and curious undulations werc passing through its perfectly fexible leather-like test. I had to summon up some resolution hefore taking the weird little monster in my hand, and congratulating myself on the most interesting addition to my favourite family which had been made for many a day.

Cateveria hystrix-Lor I have named this genus and species after our excellent Commander and his tidy

Fig. 28.-Culecria hystrix, Wyville Thoman. Inner surface of a portion of the test showing the structure of the ambulacral and interambulacral areas.
little vessel, in grateful commemoration of the pleasant times we had together-is circular and depressed, rather more than 120 mm . in diameter, and about 25 mm . high (Tig. 28). Both interambulacral and ambulacral areas are wide. The peristome and the peripract are unusually large; the former covered with ealcareous scale-like plates, perforated up to the rim of the mouth for the passage of ambulacral tube-feet, as in Cidaris: the latter with a large madreporic tubercle
aud five large round openings in the ovarial plates in the centre of which open the wide ducts from the ovaries. The jaw pyramid, 'Aristotle's lantern,' is large and strong, and formed on the plan of the Diadematidx, and the teeth are large and simply channelled. The point of structure, however, in which Calveria differs from all previously described recent urchins is the arrangement of the ambulacral and interambulacral plates. These, instead of meeting edge to edge and abutting against one another so as to form a continuous rigid shell as in most other echinids, overlap one another ; the plates of the interambulacral areas from the apical pole towards the mouth, those of the ambulacral area from the mouth towards the apical disk (Fig. 28). In Calverif, the outer portions of the interamlunlacral plates leave spaces between them which are filled up with membrane, and the inner ends of the plates form large wide expansions, which overlap greatly. The ambulacral pairs of pores are singularly arranged : they are in arce of three, hut two of the pairs of each arc penetrate small special accessory plates, while the third pair penetrates the ambulacral plate near the end. The outer ends of the interambulacral plates overlap the outer ends of the ambulacral plates, so that the ambulacral areæ are ensentially within the interambulacral. The interamhulacral plates bear each close to the onter end where they overlap the ambulacial plates, a large primary tubercle; and two imperfect rows of primary tubercles bearing long spines are ranged in the middle of the amhulacral avere; the remainder of the surface of the plates is thickly studded with secondary tubercles and miliary grains.

The spines are very delicate and hollow, with projectiug processes arranged in an imperfect spiral; and resemble somewlat the small spines of the Diadematides. The colour of the test is a rich crimson with a dash of purple, and it is vely permanent; the only perfect specimen procured which is preserved in spirit has not lost colour greatly to the present time.

In the summer of $1870, \mathrm{Mr}$. Gwyn Jeffreys, dredging on the const of Portural, took two neariy perfect specimens and several frogments of another species of the genus Caloeria; and subsequent careful examination of fragments and dehris has shown that this. second species. C fenestrata, occurs likewise in the deep water off the const of Scotland aud Ireland. The interambulacral plates are narrower, and leave larger membranous spaces hetween them, and the great key-like overlapping expansions in the middle line are much larger. The spines have the same form and are arranged nearly in the same way; but parallel to

Fia. 29.-Catrerif fencestrata, Wivilie Thomson. One of flu' fantr-vilucil pedicellarite. the outer row of large spines on each interambulacral space there is a row of four or five or more pedicellaries, of quite a peculiar type. The head of the pedicellaria which is supported on a long stalk, consists of fonr valves (Fig. 29), the wide terminal portion of each forming
a beautiful double fenestrated frame, with a peculiar twist in it reminding one of a Campylodiscus, and a very elegant crenated border. These disks are raised on delicate hollow pedicels, which expand beneath, at their point of attachment to the common stalk. A large mass of muscle envelopes the lower part of the group of pedicels, and doubtless determines the movement of the valves in reference to one another.

It is difficult to see what relation in position the valves can occupy when the instrument, whatever may he its use, is closed.

We now steamed onwards to the south-east for about ten miles, and put down our dredge, fully equipped with 'hempen tangles ' and every accessory device for entrapping the denizens of the deep, exactly, as our Commander assured us, over the spot where we had dredged the Holtenia early in the cruise. We got there in the evening, and adopted a plan which we had tried successfully once or twice before; we allowed the dredge to remain down all night, moving along with the drift of the vessel, and hauled it up in the early morning. I do not believe human dredger ever got such a haul. The special inhabitants of that particular region-vitreous sponges and echinoderms-had taken quite kindly to the tangles, warping themselves into them and sticking through them and over them, till the mass was such that we could scarcely get it on hoard. Dozens of great Holtenice, like

> "Wrinkled heads and aged,
> Witu silver beatd and hair,"
a dozen of the best of them breaking off just at that critical point where everything doubles its
weight ly being lifted out of the water, and sinking slowly away back again to our inexpressible anguish; glossy whisps of Hythonema spicules; a bushel of the pretty little mushroom-like Tisiphonia; a fiery constellation of the scarlet Astropecten tenuispinus; while a whole tangle was ensanguined by the 'disjecta membra' of a splendid Brisingr.
There was not much in the dredge-bag that was new. Some large Minide, with their 'sphëery cyne;' some fine specimess of Kophobelemnon millert; an example of the Euryalid, Asleronyx loreni, wearly the only Scandinavian echinoderm which we had not previously taken; and an injured specimen of a flexible urchin, which we supposed to be of the same species as that procured the day before, although it differed greatly in colour, leing of a uniform pale grey. Upon further examination, however, it proved to be the type of a totally different generic group of the same family.

Phormosoma placenta resembles Calveric in laving the perisom flexible, the plates overlapping in the same way and in the same directions; but the plates overlap one another only slightly, and they leave no membranous spaces between, so that they form a continuous slell. The great peculiarity of this form is that the upper surface is quite different from the lower. Above, the ambulacral and interambulacral ares are well defined and in ordinaly proportion, the interambulacral area being just twice as wide as the ambulacral, and the spines are much like those of Calverit, and are arranged nearly in the same manner. At the periphery the shell comes to a lind of ridge, and alters entirely; from the edge
to the mouth the distinction between amhulamal and interambulacral ares is apparently lost, and the sutures between the plates can scarcely be made out; the pore areæ are reduced to mere lines of' double pores, and the whole of the surface of the shell is studded over uniformly with the very large areolæ of primary tubercles, bearing spines which are small and delicate and apparently quite out of proportion to the mass of muscle connected with them which fills the nveolæ. As in Calveria, the tubercles are porforated.

We have thus hecome accuuainted with three members of a family of urchins which, white differing in a most marked way from all other known living groups, bear a certain relation to some of these, and easily fall into their place in urelin classification. They are 'regular echinids,' and have the normal number and arrangement of the principal parts. They resemble the Cidaridse in the continuation of the lines of ambulacral pores over the scaly membrane of the peristome to the mouth, and they approach the Diadematidæ in their hollow spines, in the form of their small pedicellarim, and in the general structure of the jaw pyramid. From both of these families they differ in the imbricated arrangement of the plates nud in the structure of the pore area, to the wirlest extent compatible with belonging to the same sub-order.

Many years ago Mr. Wickham Plower of Park Hill, Croydon, procured a very curious fossil from the upper chalk of Higham near Rochester. It, consisted of a number of serics of imbricated plates radiating from a centre, and while certain sets of these plates were perforated with the characteristic double
pores of the urchins, these were absent in alternate series. Same points about this fossil, particularly the imbricated arrangement of the plates over portions indicating a circle at least four inches in diameter, caused great difficulty in referring it to its place. Edward Forhes examincd it, but would not hazard an opinion. The general impression was that it must be the scaly peristome of some large urchin, possibly of a large Oyphosoma, a genus abundant in the same bed. Some years after the discovery of the first specimen, a second was obtained hy the Rev. Norman Glass, from Charlton in Kent. This specimen appeared at first to solve the difficulty, for it contained in the centre a well-developed 'lantern of Aristotle;' there then was the peristome of the urchin, of which Mr. Flower's specimen was the periproct. The late Dr. S. P. Woodward examined the two specimens carefully, and found that the question was not so easily settled. He detected the curious reversal of the imbrication of the plates in the ambulacral and interambulacral areas which I have described in Calverif, nnd at one point he traced the plates over the edge of the specimen, and found that they were repeated inverted on the other side. With great patience and great sagacity he worked the thing out, and came to the conclusion that he was dealing with the representative of a lost family of regular echinids.

Woodward names his new genus Echinothuria, and descrihes the chalk species, E. floris, almost as fully and accurately as we could describe it now with a full knowledge of its relations -- for Echinothuria is closely related to Celhariat and Phormosoma. In all
essential family characters they agree. The plates imbricate in the same directions and on the same plan, and the structure of the ambulacial arese, which is so special and characteristic, is the same. Echinothuria differs from Calveria in the wider interambulacral and ambulacral plates, in the smaller' amount of overlapping, and in the absence of membranous intervals; and from Phormosona it differs in having the structure and ornament of the apien and oral surfaces of the test the same.

As the genus Echinothuria was the first descrihed, I have felt justified in naming the family the Echinothuridm. I have done this with the greater pleasure, as it brings into prominence a term suggested by my late friend Dr. Woodward, whose early death was a serious loss to science. In Dr. Woodward's memoir, the following curious paragraph occurs:-
" After this apparently conclusive demonstration, it appears desirable to give a name to this fossil and to attempt a short description, although its rank and affinities are still a matter of conjecture. At present it is one of those anomalous organisms which Milne Edwards compares to solitary stars belonging to no constellation in particular. The disciples of Von Baer may regard it as a 'generalized form ' of echinoderm, coming, however: rather late in the geological day. The pullication of it should be acceptable to those who hase their hopes on the 'imperfection of the geological record,' as it seems to indicate the former existence of a family or tribe, whose full history must ever remain unknown." The special hearings of the discovery of this group, and of soveral other animal forms allied to chalk fossila
living among the recent chalk-wod of the Atlantic sca-bed, will be discussed in a future chapter.

While we were examiuing our wonderful dredgeload the little 'Porcupine was steaming slowly southwards-past the isliund of Rona, and Cape Wrath looking out into the north cold and blue, with the waves now enrled up asleep at its feet, as if they never did any harm ; past the welcome Butt of the Lews, and into the little harhour of Stornoway. Here we remained sowe days; wot sorry-even although our eruise had been thoroughly pleasant-to exchange the somewhat cramped routine of life in a gun-bont for the genial hospitalities of Stornoway Castle.

The fauna of the 'warm nrea' is under circumstances altogether special and peculiar, which must be discussed in full hereafter. While the cold area is sharply restricted, tho wam area extends continuously from the Fieroes to the Strait of Gibraltor. At all events the same conditions are continnous; hut as will he explained more fully hereafter, the whole 600 or 700 fathoms of water lown to the hottom at the mouth of the Fieroc Channel, corresponds with the surface layer only to a like depth in the Rockall Channel or in the Atlantic basin. The first 700 to 800 fathoms in all cases nere actually warm, but where the depth greatly exceeds 800 fathoms, there is a mass of cold water beneath sinking slowly to nearly the freezing-point. The bottom therefore, the halitation of the fauna, is only warm where the depth is not greater than 800 fathoms, and in such a case only can the term 'warm area' he correctly applied. Such are the conditions off Ferron, and it is this which makes the contrast
between the warm and cold areas so marked in that region. Tho warm area, however, even as thus restricted, is continuous southwards so far as we know indefinitely for the North Atlantic, occupying the zone of depth along the coast from say 300 to 800 fathoms. At great depths evergwhere the climatal conditions approach those of the cold area, and the actual character of a faunn-an assembinge of animals at any one spot-must depend not merely upon temperature but upon the laws regulating the distrihution of deap-sea animals; a subject on which we know as yet very little.

The hottom in the cold area in the Fæ̈roe Channel is rough gravel. That in the warm is everywhere nearly homogeneous 'gloligerina ooze.' This circumstance alone is sufficient to determine a marked difference in the habits of the animals and their mode of life.

Referring then to the foraminifera, the dredge came up throughout the warm area full of Globigerina and Orbulina, and fine calcareous mud, the product of their disintegration. Among these were multitudes of other forms, most of them of large size. I quote from Dr. Carpenter. Speaking of the Holtenia ground, he says:-" The Foraminifera oltained on this and the neighbouring parts of the warm area presented many features of great interest. As already stated, several arenaceous forms (some of them new) were extremely abundant; but in addition to these we found a great abundance of Miliolines of various types, many of them attaining a very unusual and some even an unprecedented size. As last year, we found Cornuspirce resembling in general aspret the large

Opercaltmer of iropical seas, and Biloculines and Triloculine far exceeding in dimensions the littoral forms of British shores; and with these were assocated Cristellaria of no less remarkable size, presenting every gradation from an almost rectilineal to the nautiloid form, and having the animal body in so perfect a state as to enable it to be completely isolated by the solution of the shell in dilute acid."

Sponges were extremely abundant, but they were restricted to only a small number of species; all of them with one form or another of the curious anchoring hahit. Among the Hexactinellidx Holtenin was the most striking and the most abundant form. Hyalonema was alsn common; but we got few perfect specimens with the sponge and glass-rope in connection. The conical sponge heads were very numerous; they seemed to have been torn off by the edge of the dredge, the rope remaining in the mud, and the ropas were frequently brought up without the sponge. Almost all the ropes were cncrusted with the constant 'commensal' of H_{y} olonema, Palythoa fatua. Very young examples of Hyalonema, with the whisp from 5 mm . to 20 mm . long, had usually no Patythoa on them; but when they bad attained alune the latter dimensions in almost every case one could see the first polyp of the Palythor making its appearance as a small bud, and its pink-encrusting cœnosarc spreading round it. By far the most common sponge in the chalk-mud is the pretly little hemispherical corticate form Zisiphonion ngariciformis. This species, though differing from it greally in nppearance and halit, seems to be closely allied to a strong, heavy
encrusting sponge which we met with frequently sticking to stones in the 'cold area.' The form of the spicules was nearly though not quite the same, and their arrangement was very similar. It appeared as if the two forms placed in intermediate circumstances might have approached one another very closely.

In the warm area, as in the cold at these great depths, there is a singular absence of Hydrozoa. A few species of Sertularia and Plumularia, and one or two allied forms accurred, and they are now in the skilful hands of Dr. Allman for determination; but their small number and insignificance is remarkable.

Neither are the true corals represented by numerous species, although in some places individuals are enormously abundant. During the 'Porcupine' cruises of 1869 twelve species of Madreporaria were procured which have been determined hy Professor Martin Duncan. None of these helong to 'reefbuilding' genera, hut to a group which are recognized as deep-sea corals, a group which appears to have had numerous representatives during all the later geological periods. In a band somewhat restricted in depth, extending downwards from the 100 -fathom line, we met in some places with very large numbers of many varieties of Caryophyllia borealis, Fleming (Fig. 4); and at depths of 300 to 600 fathoms the handsome branching Lophohelia prolifera, Pallas (Fig 3(0), forms stony copses covering the bottom for many miles, the clefts of its branches affording fully appreciated shelter to multitudes of Area nochulosa, Psolus squamalus, Ophiopholis aculeata, and other indolent 'commensals.'

Tive species of dmphihelin are cited by Professor Martin Duncan from the 'Porcupine' expedition:A. profinde, Pourisles; \boldsymbol{A}. oculata, L sp.; \boldsymbol{A}. miocenict, Seguenza; A. ctlautica, n. sp.; and A. ornate,

n. sp. ; and on oue or two occasions, chiefly on the verge of the cold area, the hempen tangles involved some elegant frigments of the stony coral Allopoora ochlinu, Emrenbeng (lig. 31).

Although many of the echinoderms of the cold area are common to the warm, the general facies of the echinoderm fauna is different, and there are a number of additional and very striking forms.

Cidaris papillata, Leske, is abundant at moderate

deptlis. On our \quad econd visit to the Holtenia ground we dredged one small specimen of the handsome urchin already described, Porocidoris purpurata. A fine brilliantly-coloured urchin of the Echinus
flewingii group, but distinguished from E. flemingii by characters which I must regard as of specific value, Echinus microstomu, Wyville Thomson, was common and of large size; and nlong with it mauy very heautiful brightly-coloured examples of the smallest form of E. norvegicus.

The three species of the Echinothurida, Calveria hystrix, C. fenestrata, and Phormosoma placenta have as yet been met with in this region only, and they seem to have a wide distribution, stretching at alout the same depth and temperature from the Ferroe Islands to the south of Spain. I hear from Professor Alexander Agassiz that Count Pourtales has dredged fragments of one of the species under nearly similar circumstances in the Strait of Florida. Cribrelles sanguinolenta was in thousands, of all colours-scarlet, bright orange, and chocolate brown. Sevoral examples were found of a fine Scytaster, probably identical with the Asterias canariensis of D'Orbigny, and if so having a southern distribution. The curious little Pedicellaster typicus of Sars was not unfrequent; a form which looks very much like the young of something else. One small specimen of Pleraster militaris came up from the IIoltenia ground, but with the exception of Astropecten tenuispinus, which seemed to be more abundant than ever, the characteristic aretic echinoderms were alssent. We took no examples here of Toxopuenstes drobochiensis, Tripylus fragilis, Archister andromedn, CLonodiscns orispatns, Astropecten aratious, Euryale linlie, Ophioscolex glaciatis, or Autedon psorichuii. It is very likely that there may becolonies in the 'warm area' of some or of all of
these-for the region in which they are common under very different elimatal conditions is within a few miles, and there is no intervening barrier-but

they certainly are not abundant. Ampliura abyssicola, Sars, was in great numbers sticking to the sponges, and Ophiacanthri spinulosa was nearly as common as in the cold area.

We took one or two small examples of a very fine ophiurid, of which larger specimens had been previously found at about the same depth and temperature during the sccond cruise of the same season off the coast of Irclaud. This form probably ought to he referred to Lyman's genus Ophiomusium,

though the characters of the genus must be somewhat altered to admit it. Ophiomnsium eburneum, Lyman, of which several specimens were taken by Connt Pourtales at depths of from 270 to 335 fathoms, off Sancly Key, is distinguished by the great solidity and complete calcification of the
perisom. The plates of the disk are soldered together, so as to form a close mosaic ($\mu v \sigma e i o v$). The mouth-papillm are fused into two lines, their number being only indicated by grooves. The lateral arm-plates are united together above and below, the upper and lower arm-plates are reduced to mere rudiments, and there are no tentacle pores beyond the first arm-joints.

 lepp whter

In our new species, which I name provisionally Ophiomusium lymani, the diameter of the disk is 28 mm ., and the length of each arm 100 mm . in large specimens. The two lateral arm-plates, finsed together above and below, form complete rings, thicir distal edge notched on each side for the insertion ol seven arm spines, of which the lowest is much longer than the rest. The dorsal arm-plates are small and diamond-shaped, let in hetween the lateral armplates at the distal end of their upper line al'
junction. The ventral arm-plates are entirely absent. 'This is a large handsome star-fish. I am not aware of any fossil form which ean be referred to the same genus; but it looks like a thing which might be expected to have congeners in the upper chalk. Holothurids were not lirequent, lunt the singular little Eshinocucumis typict of Sars, covered with spiny plates, turned up in every sifting.

Fio. 35.-Amathice cerpenteri, Nomans. Onee nul a half the natural size. (No. 47.)
Cr'ustacea are numerous; but we have here entirely lost the gigantic Arctic amphipods and isopods of the 'cold area.' A pretty little stalk-eyed form Dorymohus thomsoni, Norman (Fig. 3.1), small and delicate, and very dislinct f'rom all freviously deseribed species of the menus, is very widely diffused.

This crab, from its long spiny legs and light body, very often comes up entangled on the part of the rope which had been passing over the ground. Another handsome new species, Amathia carpenteri, Nonman (Fig. 35), was common in the sandy chalkmud of the 'Holtenia ground.' The genus had previously been familiar as a Mediterranean form.

I quote from a preliminary notice of the Crustacen by the Rev. A. Merle Norman: "Ethusa granulata (sp. n.), the same species as that found off Valentia, but exhibiting a most extraordinary modification of structure. The examples taken at 110-370 fathoms in the more southern habitat have the carapace furnished in front with a spinose rostrum of considerable length. The animal is apparently blind, but has two remarkable spiny eye-stalks, with a smooth rounded termination where the eye itself is ordinarily situated. In the specimens however from the north, which live in 542 and 705 fathoms, the eye-stalks are no longer moveable. They have become firmly fixed in their sockets, and their character is quite changed. They are of much larger size, approach nearer to each other at their base, and instead of being rounded at their apices they terminate in a strong rostrate point. No longer used as eyes, they now assume the functions of a rostrum; while the true rostrum so conspicuous in the southern specimens has, marvellous to state, become absorhed. Had there heen only a single example of this form procured, we should at once have concluded that we had found a monstrosity, but there is no room for such an hypothesis by which to escape from this most strange instance of modifi-
cation of structure under altered conditions of life. Three specimons were procured on two different nccasions, and they are in all respects similitr."

Mollusca are much move ahundant and varied in the warm area than in the cold. Mr. Gwyn Jefliceys remarks, however, that there is not such a decided difference in the Molluscan fauna of the two regions as might lave heen expected firom the difference in their conditions; very many species heing common to looth. At 500 fathoms the sponges are full of Pecten vitreus, Сuem., and Columhella halioti, Jefrneys; and throughout the area species occur of many Mollnscan gencra, including Lima, Dacrithin, Nucula, Lerln, Montaouta, Axinus, Astarte, Tellina, Necpra, Dentalium, Carlulus, Siphonodentalimm, Rissor, Aclis, Odnstomit, Aporvhais, Pleurotownt, Fusus, and Buccinum.

Taken as a whole the fauna of the warm area off the north of Scotland seems to he an extension of a fauna with which we are as yet very imperfectly acquainted, occupying what we must now call moderate depths, say from 300 to 800 fathoms, along coasts which are bathed by currents of equatorial water. The fauna of this zone is evidently extromely rich; and as it is heyond the reach of ordinary dredging from an open boat, and yet not at a sufficient depth to present any very great difficulty from a yacht of average size, its exploration scems to present just the combination of adveature and novelty to stimulate amateurs; so we may hope shortly to have its conditions and distrilution eleared up. A most successful step in this direction has heen made already by Mr. Marshall Hall, who,
with his yacht 'Norna,' and with the airl of Mr. Saville Kent, has thrown a goorl deal of additional light upou the zoology of the 'warm area' off the coast of Portugal.

We left Stornoway on the 13th of September, and in the afternoon dredged for a few hours in Loch Torridon without much result. Late in the evening, steaming down Raasay Sound, we came upon the luminous forest of Pavonaria to which I have already referred. At noon, on the 1 tith, we were abreast of the Islnnd of Mull, and on the 15th we were once more moored in the Abercorn Basin, Belfast, where we took leave of the 'Porcupine' and our highlyvalued friends her captain and offeers; in the hope of meeting them again shortly, and thoroughly satisfied with the success of our summer's work.

On the 2-tth of March, 1870, a letter was read at the council meeting of the Royal Society from Dr. Carpenter, addressed to the President, suggesting that an exploration of the deep sea, such as was carried out daring 1868 and 1869 in the regions to the north and west of the British Islands, should now be extended to the south of Europe and the Mediterranean, and that the council of the Royal Society should recommend such an undertaking to the favourahle consideration of the Admiralty, with a view to oldain the assistance of Her Majesty's Government, as on the previous occasions. The oflicial correspondence, with reference to the expedition of the summer of 1870, is given in Appendix Λ to the present chapter.

It was intended, as on the previous occasion, to divide this year's expedition into eruises; and again Mr. Gwyn Jeffreys undertook the seientilic direction
of the first eruise, at a time when both Dr'. Carpenter and I were occupied with our oflicial work. A young Swedish naturalist, Mr. Joshua Lindibll of the University of Lund, accompraied him as zoological issistant, and Mr . W. L. Carpenter took clarge of the chemieal department. It was arranged that Mr. Jeffreys' cruise should extend from Falmouth to Gibraltar: Dr. Carpenter and I were to have relieved him at Gibraltar, meeting the vessel there, and to have worked together as we did the year before; but I was unfortunately laid up with an attack of fever, and the whole charge of the last cruise in the Meditcrranean rested wilh Dr. Carpenter. Owing to this untoward circumstance, I must give at secondhand the brief account of the first part of the work of the year 1870 which is necessary to complete the sketel of what has been done towards the illustration of the condition and fauna of the North Atlantic. In the Mediterranean Dr. Carpenter found the conditions of temperature and of the distribution of animal life entirely cxceptional, as might have been to a certain extent anticipated from the exceptional circumstances of that land-locked sea. The investigation of 1870 can only be said to have luroken ground towards the solution of a series of very special and peculiar problems; and I am not in a position to go farther at present than to indicate the gencral results at which my colleague has arrived.
'The ' l'orenpine' left liamouth on the sth of July, but was detained in the Channel for several days ly loges and contriary winds. On the 71h of July, they reached the slope from the platenu of the Chamel to the deep water of the Athantic, and look a first haul

in 567 fathoms. Mr. Teffireys repnets the contents of the dredge as small but very interesting. Among the mollusea he notes Terelratula septate, Limopsis borealis, Hela tenella, Verticordia abyssicola, Turbo flosus, and Ringicula ventricosa. Turbn flosus and its variety T. glahratus had previously been known only as fossils in the tertiaries of Calabria and Messina. Terebratula septata, Limopsis borealis, and Hela tenella are likewise fossil in the Pliocene beds of southern Italy, and are found living in the Scandinavian seas. Mr. Norman notes among the crustaceans new species of Ampelisca and of six other genera; and the beautiful scarlet Echinus microstoma was the most conspicuous echinoderm.

The wind, as the vessel passed over the slope of the Channel, was rather too light for successful dredging; the drift-way was scarcely sufficient to carry the dredge along. The tangles were most valuable, coming in as highly effective aids, particularly in securing all things provided with anything in the form of spines or other asperities.

On the 8th the first haul was nearly a failure. Other hauls later in the day, at 690 and 500 fathoms, gave important resulte. Rhynchonella aicula, Seguenza; Plemronentia, sp. n.; and Actron, sp. n., occurred: besides the usual northern species. Mr. Norman reports as to No. 8: "A most important dredging, the results among the crustacea heing more valuable than all the rest put together-at any rate of the first cruise. It contains almost all of the elooicest of the new species in last year's expedition, and four stalk-ryed crustaccans of groat interest, three of which are new, and the fourth,

Gergon midens, is a fine Norwegian species. With these are associated two forms of a more southern character, Inrchns dorsettensis and Ebalin cranchii, which I slould not have expected at so great a depth." 'The echinoderms were a very northern झroup. They included Ciduris papillata, Eshinus 120rvegiens and IN microstoma, the young of Brissopsis lyniferr, Astropecten arcticus, Archaster andromeda, and A. parellii, with a small specimen of Ophiomиsium lymani, several examples of Ophiacantha spinnlosf, and as usual one or two of the universally distributed Echinocucumis typica. Dr. MeIntosh, to whom the annelids were referred, notices as a species supposed to be specially northern, Thelepus coronatns, Fas.; and IIoltenia carpenteri, our familiar anchoring spange, of all sizes and ages and in considerable numbers, was entangled in the liempen 'swabs.'

July 9 th.-The wind still ton light for effective work. Dredged in 717 and 858 fathoms, the assemhlage of mollusca having the usual character of being to a groat extent common to the recent fauna of the sens of Norway and to the plincene fauna of Sicily and the Mediterranean. It inchurlerl on this occasion Terebratelln spilzbergensis, an arctic and Japanese form, P'ecten vitreus, and P. aratus, Leda pernula, Trochus suturalis, Odostomint uitens, and Pleurotomat hispidnham. Among the echinoderms was a fine specimen of Brisinga endecarnemos, Aossörnsen, very markedly lifferent from B. coronata, which was the form commonly met with in the north. The anrals were represented by Amphihelia oculata and Desmophyllum crista-gnlli. Among the annelids were Pista cristatte, O. F. Müluer, and Trophoniel glauce,

Malmgren, both of them Arctic spocies. The 10th was Sunday, and the vessel lay-ta, and on the 11th they dredged, still on the slope of the chamnel plateau, with nearly the same result as before, the fanna maintaining the same character.

Mr. Gwyn Jeffreys was now anxious to get a haul or two in the very deep water off the mouth of the Bay of Biscay, which we had explored successfully in 1869. They therefore steamed southwards, going a considerable distance without dredging, as they were afraid of coming in contact with the cable between Brest and North America. When they got to their ground unfortunately had weather set in, and they were olliged to make for Vigo. On Thursday, July 14th, they passed Cape Finisterre, and dredged in 81 fathoms about 9 miles from the Spanish coast. Along with a number of familiar forms, some of them with a wide northern extension, they here took on the tangles two specimens. one young and one apparently mature, both considerahly injured, of the singular Echinidean alrearly mentioned, Calveria fenestrata. This is evidently not a rare form nor is it confined to very deep water ; it is rather remarkable that it should have escaped notice so long. On the $15 t h$, they sounded in from 100 to 200 fathoms, about 40 miles from Vigo, and on the 16th took one or two hauls in Vigo Bay at a depth of 20 fathoms. This locality had already heen well-nigh exhausted by Mr. MeAndrew in 1849, and only a few additions were marle to his list.

They left Vigo on the 1Sth. I quate from Mr. Gwyn Jeffreys:-
" Wednesday, Jnly 20th.—Dredged all day with
cousiderable success at depths from 380 to 094 fathoms (Stations 1d-1(i): the wind and sea bad now gane down; and we took with the scoop net a few living specimens of Clio chspitata. The dredgings in 380 and 409 fathoms yielded among the mollusca Lefle lucide (Norwegian and a Sicilian fossil), Axinus cmuyarins (also Norwegian), Necera obesa (Spitzbergen to the West of Trcland), Odostomia, n. sp., O. mimuta (Mediterraneau), and Cerithium, n. sp.; and among the echinoderms were Brisinga enderacnemos and Asterong.x loveni. But the results of the dredging in $99-4$ fathoms were so extraordinary as to excite our utmost astonishment. It being late in the evening, the contents of the dredge could not be sified and examined until daylight the next morning. We then saw a marvellous assemblage of shells, mostly dead, but comprising certain species which we had alwnys considered as exclusively northern, and others which Mr. Jeffreys recognized as Sicilian tertiary fossils, while nearly 40 per cent. of the entire number of species were undescribed, and some of them represeuted new genera. The following is an analysis of the mollusca perfect and fragmentary taken in this one liaul:-

The northern species above referred to are 34 in mumber, and include Dacridīum vilvenn, Nucula pumila, Leda lucida, L. frigida, Ferticordia abyssicnla, Necera jugosa, N. obesu, Teotura fuler, Fissurisppta papillosa, Torellia vestita, Pleurotoma turricula, Admete viridula, Cylichna alba, Cylichna onata, Jeffneys n. sp., Bullut eonulus, S. Wood not Deshayes (Coralline Crag), and Scriphander librarius. Leda lucillu, Nerera jugosa, Tectura fulva, Fissurisepta papillosa, Torellita vestita, as well as several other known species in this dredging, are also fossil in Sicily. Nearly all these shells, as well as a few small echinoderms, corals, and other organisms, had evidently been transported by some current to the spot where they were found; and they must have formed a thick deposit similar to those of which many tertiary fossiliferous strata are composed. It seemed probable also that the deposit was partly caused by tidal action, because a fragment of Melempus myosotis (a littoral pulmonibranch) was mixed with deep-water and oceanic Pectinibranchiates and Lamellibranchiates. None of the shells were Miocene or of an older period.
"This remarkable collection, of which not much more than one-half is known to conchologists, notwithstanding their assiduous labours, teaches us how much remains to be done before we can assume that the record of Marine Zoology is complete. Let us compare the vast expanse of the sea-bed in the North Atlantic with that small fringe af the coast on both sides of it which has yet heen partially explored, and consider with reference to the dredging last mentioned what are the prospects of our ever becoming acquainted with all the inhalsitants of the deep
throughout the glohe! We believe, however, that a thorough cxamination of the newer Tertiaries would materially assist us in the intuiry ; nod such examination is l'easible and comparatively easy. Much goorl work has been done in this line; but although the researches of Bucchi, Bivona, Cantraine, Philippi, Calcara, Costa, Aradas, Brugnone, Seguenza, nud other able palieontologists in the south of Italy have extended over more than half a century, and are still energetically prosecuted, many species of molluscous shells are continually heing discovered there, and have never been published. Besides the Mollusca in this dredging from 994 fathoms, Professor Duncan informs us that there are two new genera of corals, and Flcobellum distimetum, which last lie regards as identical with one from North Japan. It coincides with the discovery on the Lusitanian consts of two Japanese species of a curious genus of Mollusca, Deaticordia, both of which are fossil in Sicily and one of them in the Coralline Crag of Suffolk."

Tn the snme dredging there are a number of very singular molescribed sponges, many of them recalling some of the most marked characters of one of the sectinns of Ventriculates. These will be referred to in a fature chnpter.

On Thursday, the 21st of July, dredging was carried on all doy at depths from 600 to 1095 fathems, lat. $39^{n}+9^{\prime} \mathrm{N} ., \operatorname{long} .0^{\circ} 43^{\prime} \mathrm{W}_{.,}$with a bottom temperathre at 109 fnthoms of $\mathbf{l}^{\circ} \cdot 3$ (. and at 740 fathoms of $9^{\circ} \cdot \mathrm{L}$ C. The dredging was most snecessful; many of the new and peculiur mollusea of the last deedging were taken here alive, with several additionol forms.

Several undescribed crustaceans were added;-a new species of the genus Crenocyathus among the corals, and a species of an unnnown genus allied to Bathycyathus. Brisinga endecaonemos and some new ophiurids were part of the treasures, but the greatest prize was a splendid Pentacrinus about a foot long, of which several specimens came up attached to the tangles. This northern Sea-lily, on which my friend Mr. Gwyn Jeffreys has bestowed the name Pentacrinats wyville-thomsoni, will be described hereafter with some other equally interesting members of the same group.

Cape Espichel was reached on the 25 th. 'The weather was now, however, so rongh that Captain Calver was obliged to take shelter in Setubal Bay. Professor Barbozn de Bocage of Lishon had given Mr. Gwyn Jeffreys a letter of introduction to the coastguard officer at Setubal, who knew the place where the deep-sea shark and the Hyalonenne are taken by the fishermen, lut the state of the weather prevented his taking advantage of it.

Off Cape Espichel in 740 and 718 fathoms, with a temperature of $10^{\circ} 2 \mathrm{C}$., the mollusca were much the same as those from Station 16, but included Leda pusio, Limopsis pygmaga (Sicilian fossils), and Verticordia acuticostata. The last-named species is interesting in a geological as well as a geographical point of view. It is fossil in the Coralline Crag and the Sicilian Pliocene heds, and it now lives in the Japanese archipelago. Mr. Jeffireys anggests a mode of acenunting for the community of so many species to the castern borders of the Λ tlantic basin and the Mediterranean, in which several Japanese brachiopods and crustaceans are found, and tlie seas of

Northern Asia, by supposing a migration through

the Arctic Sea. We must know, however, much
more than we yet do of the extension both in time and space of the fauna of deep water before we can come to any certain conclusion on these questions.

Dredging across the entrance of the Strait of Gibraltar in 477, 651, and 554 fathoms, Stations 31,82, and 83 , with a hottom temperature of $10^{\circ} \cdot 3,10^{\circ} \cdot 1$, and $10^{\circ} 0$ respectively, meny remarkable forms were dredged, including a very elegant sponge, apparently allied to, if not identical with, Oscar Schmidt's, Caminus vulcani, and snme beautiful forms of the Corallio-spongir, which will be noticed in a future chapter. Station No. 31 yielded a sponge form which recalled the branching heather-like Cladorhiza of the cold area off Ferroe. Chondrooladia virgata (Fig. 36) is a graceful branching organism from twenty to forty centimetres in height. A branching root of a cartilaginous consistence, formed of densely packed sheaves of needle-shaped spicules bound together by a structureless organic cement, attaches the sponge to some foreign body, and supports it in an upright position; and the same structure is continued as a solid axis into the main stem and the branches. The axis is made up of a set of very definite strands like the strands of a rope, arranged spirally, so as to present at first sight n strong resemblance to the whisp of Hyalonema; but the strands are opaque, and hreak up under the point of a knife; and under the microscope they are found to consist of minute needle-like spicules closely felted together. The soft sponge substance spreads over the surface of the axis and rises into long curving conical processes, towards the end of which there is a dark greenish oval mass of granular sponge matter, and the outline of the
come is continued heyond this by a number of groups of needle-shnped spicules which surround a ninrow oscular opening. All parts of the sponge are londed with triple-toothed 'bibamate' spicules of the sarcode.

On the 5th of August the ' Porcupine' steamed into Tangier Bay, after ineffectually trying to dredge in 190 fathoms off Cape Spartel. In Tangier Bay two casts were taken at a depth of 35 fathoms. The fanna was chiefly British, with a few more southern forms.

On the 6th of August Mr. Jeffreys went to Gihraltar, and there yielded up the reins to Dr. Carpenter, going on to Sicily u ici Malta, for the purpose of examining the newer tertiary formations in the south of Italy, and the collections of fossil shells at Catania, Messina, Palermo, and Naples, in connection with the results of his cruise.

On Monday, the lath of August, Captain Calver, with Dr. Carpenter, who fortunately retained the services of Mr. Lindalll as assistant, in charge of the science department, steamed out into the middle of the Strait for the purpose of commencing a series of olservations on the currents of the Strait of Giluraltar.

These experiments, which at the time were not considered very satisfactory, were repeated and extended in the summer of 1871 by Captain Nares, R.N., and Dr. Carpenter, in FI.M.S. 'Shearwater.' Their curious results have heen given in great detail ly Dr'. Carpenter in the Proccedings of the Royal Society of London, and ly Captain Nares in a special report to the Admiralty. As it is my purpose to
confine myself at present almost exclusively to the description of the phenomena of the deep water in the Atlantic so far as these have been worked out, I will not here repeat the narrative of the experiments in the Strait. I will, however, give a brief sketch of Dr. Carpenter's cruise in the Mediterranean, as the remarkable phenomens connected with the distrihution of temperature and of animal life which he observed, illustrate while they contrast with the singularly different conditions which have heen already described in the outer ocean.

The first sounding in the basin of the Mediterranean was taken on the 16 th of August, lat. $36^{\circ} 0^{\prime}$ N., long. $4^{\circ} 40^{\prime} \mathrm{W}$, at a depth of 586 fathoms, with a bottom of dark grey mud. The surface temperature was $23^{\circ} 6 \mathrm{C}$., and the bottom temperature $12^{\circ} 8^{\circ} \mathrm{C}$., ahout three degrees higher than at the same depth in the ocean outside. A serial sounding was taken to determine the rate of the diminution of temperature, with the following curious result :-

Thus the temperature fell rapidly for the first 30 fathoms, more slnwly for the next 20 , liom 50 to 100 lost only $3^{\circ} \mathrm{C}_{\text {, }}$ and hefore reaching the depth of a hundred fathous had attained its minimum tewpera-
ture, there heing in further dimimution to the bottom. This scrial sounding and all the subseguent temperaturc olservations taken during the Mediterranean ernise showed that the trough of the Mediterranean from the depth of $\mathbf{1 0 0}$ fathoms downwards is filled with a mass af water at almost exactly the same temperature throughont, al temporature a little above or below $12^{\circ} 75 \mathrm{C}$.

The following instances have heen cited by Dr. Carpenter from the carlicr olservations in the Mediterranean basin, to slow the great uniformity of the hottom temperature for all depths:-

			马rienerit Trtajor	Poadlitu.	
41	730	1:' ${ }^{\prime}$ C	-3" 6 CC .	Lat. 35^å ${ }^{\text {a }}$ N	Long 4'12'W.
42	510	1.3.9	乌11 -	3.14	357
4.9	1fis	13. \downarrow	엉 (3524	(1) $1.30{ }^{\circ}$
14	4 A	1.3-0	$21 \cdot 0$	35 +3 20"	$\therefore 0030{ }^{\prime \prime}$
4	2 y	13.4	รู) 6	:ī $3010 \times$	$29930{ }^{\text {b }}$
46	493	18.0	23-0	35.9	156
47	8.4	13.6	d] 0	.7735 .30] 1030

At this last Station (No. 47) a serial sonnding was taken, which entirely confirmed the results of the first (No. L0) :-

	athons	.	.							
2	"	.	-	.						
3	"	.	-	.						
1	"	.	-	.	-					
t10		.	.	,	.				-	
100		-	,	-	.	.			.	
84	4	.	-	.	.					

-again a mass of water lying at the bottom, 745 fathoms-not far from a mile-in depth, at the uniform temperature of $12^{\circ} \mathrm{GC}$. ($54^{\circ} \cdot 7 \mathrm{~F}$.)

The dredge was sent down nt each successive station, but with very poor result; and Dr. Carpenter was driven to the conclusion that the bottom of the Mediterranean at depths beyond a few hundred fathoms is nearly azoic. The conditions are not actually inconsistent with the existence of animal life, for at most of the stations some few living forms were met with, but they nre certainly singularly unfavourable. Thus at Station 49, at a depth of 1412 fathoms, and a temperature of $12^{\circ} \cdot 7 \mathrm{C}$., the following species of mollusca were obtained : Nucula quadrata, n. sp.; N. pumila, Absjörnsen ; Leda, n. sp.; Verticordia granulata, Seg.; Hela tenella, Jeffreys; Trochus gemmulatus, Pe; Rissoa subsoluta, Aradas; Natica affinis, Gmelin; Trophon maltilamellosus, Pe.; Nassa prismatica, Br.; Columbella haliceti, Jefr.; Buccinium acuticostatum, Per; Pleurotoma cavinatum, Cristofori and Jan ; P. torquatum, Ph.; P. decussatum, $\mathbf{P r}$.

Near the African coast the fauna was more abundant, but the hottom was so rough that it was unsafe to use the dredge, and the tangles were usually sent down alone. Many polyzoa, echinoderms, corals, and sponges were taken in this way, but they were mostly well-known Mediterranean species. After remaining for a few days at Tunis and visiting the ruins of Carthage, dredging was resumed on the Gith ol' September on the 'Adventure' Bank, so called from its having been discovered by Admiral Sinyth when surveying in II.M.S. 'Adventure.' Here, at depths
 alsuntant. Wial other mollusea die following were lound: - Trorhus sufuratis, P1, (Sicilian fossil);
 shriathla, lonkss (Sic. Jossil); C! armhta, Broccme (Sic. fussil) ; (intliaiat excephtrinet, Tinela; Scalavia fromfori, T. Sowerbs (Sicilian and Coralline Crag lossil) ; Pyramidel/a plicost, Bhown (Sic. and Cor. Crag fossil); Aelfon phsilhs, lonnes (Sic. fossil). I'he Eehinodermata were abundant so far as individuals went, but the number of species was smnll, and they were nearly all well-known Mediterranean forms. Cilleris papillata, Leske, showing many varictics, but differing in no specilic character from the bany forms of the same species which range from North Cape to Cape Spartel in the ocean outside. The Mediterranean varieties of this species are certainly Cideris hystriv, of Lamarch. I feed a degree of medrdainty about the pretty bittle Cidaris, deseribed ly Philippi under the mame of C. affinis. Chameteristic examples of it, which aro athondant on the 'Alvembure' lhank and along the African coast, look very distinct. They are of a beatitiful deep wose red, the spines are laanded with red and hrownish-ydow, and cowe to a fine point, while those of (, papilleth are usually hlunt at the point, and froquently even a liftle expanded or cupped; and the portion of the interamhnlnceal phates covered with miliary ghanules is wirler, and two detined rows of body spines nearly of equal size lic up against the hases of the primary spmes, over the alventas. These womld appear to he chat racters of suceifie value. but then sarain there are
a mass of intermediate forms; and although after careful consideration I have described the two species ns distinct, I find it a matter of great difficulty to draw the line between them. Several specimens of a handsome Astrogoniam allied to A. granular'e were taken on the 'Adventure' Rank. Professor Duncan reports some interesting corals, and Professor Allman two new species of Aglaophenia; and Dr. Carpenter detected once more the delicate Orbitolites tenuissimus, and the large nautiloid Lituola, with which he was familiar in the dredgings in the Atlantic.

After a short stay at Malta, on September 20th the 'Porcupine' steamed out of Valetta Harbour, and steered in a north-easterly direction, towards a point seventy miles distant, at which a depth of 1700 fathoms was marked on the chart. This was reached early the next morning, and the line ran out 1743 fathoms, lat. $36^{\circ} 31^{\prime} 30^{n}$ N., long. $15^{\circ} 46^{\prime} 30^{\prime \prime}$ (No. 60), with a temperature of $13^{e} \cdot 4 \mathrm{C}$., more than balf a degree higher than the temperature of the deepest sounding in the western basin. The tube of the sounding apparatus brought up a sample of yellow clay, so like the bottom at some of the most unproductive spots in the western Mediterranean, that it was not considered advisahle to delay the time necessary for even a single enst of the dredge, which at that depth would have occupied nearly a day. Having thus satisfied themselves as far as they could hy a few obscrvations that the physical conditions of the easiern basin of the Mcditerman were similar to those of the western, they steced for the coast of Sicily. Quietly along the Sicilian coast
during the night, in early morning through the narrowest part of the Strait hetween Messina and Reggio, past Charylidis and the castled rock of Scylla, and so out of the 'Faro' into the open sen to the north of Sicily, studded with the Iipari Islands. A temperature sounding taken near Stromboli, lat. $38^{\circ} 26^{\prime} 30^{\prime \prime}$ N., long. $15^{n} 32^{\prime} \mathrm{E}_{- \text {, gave a depth of } 730}$ fathoms, and a hottom temperature of $13^{\circ} 1$ C., while the temperature of the surface was $22^{\circ} \cdot 5 \mathrm{C}$.

Under the rugged cone of Stromboli the dredgers took another set of temperatures, with the result common to the whole voleanic neighbourhood of Sicily, of a temperature slightly higher than that of the deep water in the western hasin of the Meditervanean, a plenomemon of which it would take long and careful observation to determine the couse ; and while doing so they pondered on the cloud of smoke hanging over the pealk, so suggestive of the thentre of subtermanean change beneath, and admiled the industry and enterprise of those who, rendered contemptuous hy the familiarity of ages, carricd their vineyauds "all over the cone, save on two sides, looking north-west and south-east, over one or other of which there is a continual discharge of dust and ashes."

Their comrse was now laid straight for Cape de Gat, which they passed on the 27 th of September, nrriving at Gibraltar on the 29th. At Gibraltar, Dr. Carpenter resumed his observations and experiments on the currents of the Strait. These observations were continued until the 2nd of October, when it became necessary for Captain Calver to retu'n lomewards. The coast of Portugal was repassed in fine weather, the time at their disposal not allow-
ing any further use of the dredge in the deep water, and after encountering a fresh breeze in the chops of the Chanuel, on the evening of October the 8th, the 'Porcupine' anchored at Cowes.

LITIE LIBdN

APPENDIX Λ.

Eatracts from the Mrinutes of Coumsil of the Royal Socicty, and other Offictal Dornments reforring to the Cruise of H.M.S.

- Porcupine during the Summer of 1870 :-

Afrech 24, 1070.
A Letter was rend from Inr. Carpenter, addressed to the Presilent, suggesting that an Explamation of the Deep Sea, such ns was carried out during 1868 and 1869 in the regions to the North of the Reitish Islands, should now be extended io the South of Europe aud the Mediterranean, and that the Council of the Royal Society should recommend such an underitaking tn the favournble consirleration of the Adniralty, with n view to ohtain the assistnnce of Her Majansty's Cinvernment as on the previous occasions.

Resolved, -That a Committee, consistiry of the President and Uficers, with the Hylragmpher, Mr. Gwyn Teffreys, Mr. Siemens, Prufessor Tyndnll, noll Dr. Carpenter, with power to add to their mumber, be appointed, to consider the expediency of adopling the proposial of Dr. Carpenter, and the plan to he followed in carrying it ont, os well ns the inslrumenta nod other nppliances that wonld be respuired, and to report their opinion therern to the Council ; hut with power pribionsly in communicate to the Admiralty a draft of such report as they anny agree unon, if it shall n oppear to them expedient to do so in orrler to save time.

$$
A_{j} \pi i 12 \Omega, 18 \pi n .
$$

Rend the following Peport:-
"The Committee appointed no the 24 th of March to consider ${ }^{\text {a }}$ proposal for a further Exploration of the Deep Sea during the
ensuing summer, ta well as the scientific preparations which would he required for a new expedition, heg leave to report as follows:-
"The genema course proposed to he followed, and the chief objerts expected to be attaived in a new expedition, are painted ont in the following extract from the letter of Dr. Carpenter, read to the Council on the 2 th ult, which was referred to the Committee:-
" 'The plan which has been marked out between my collengues iu last year's work and mygelf is as follows :-
'Having reason to hope that the "Porcupine" may be spared towards the end of June, we propense that she shonld start anrly in July, and proceed in a S.W. direction townids the furthest point to which our survey whs carried last yenr; carefully exploring the hottom in depths of 400 to 800 fathoms, en which, ns experience has shown tis, the most interesting collectimns are to be made; but also olbtaiving a few ensts of the Uredge with Temperature-soundings at greater fleptlis, as opporturities may occur.
"، The course shonld then be nearly due South, in a direction of general parallelism with the const of Frauce, Spinin, and Portugal, keeping generally within the depths just mentioned, hut occasionally stretching westwards into yet deeper waters. From what has been already done in nhout 400 fathoms' witer off the coast of Portugnl, there is no doubt that the ground is there exceedingly rich. When approaching the Strnits al' Gibraltar, the survey, both Thysical and Znologiral, should be carried out with great care and minuteness; in order that the important problem ns to the enrrents letwen the Meditermuean nod Atlantic Scas, and the relntion of the Meditervanenn liauna to that of the Atlanfic (nn which Mre. Cwyo Joflreys is ol' opinion that the resulte of our last years work thom an entionly new light), may be cleared up.
 elange of this part of the expectition; and if Jrmfesser Wyville
 alilieult to final lím n suitalide nssistmo.

nud theve I eloould te myself prepared to join her, in place of Mr. Jeffreys, with one of my sons as an asgistant. We should propose first to complete the survey of the Straita of Gibraltar, if that should not have been fully accomplished previously; and then to proceed eastwards along the Mediterranean, making stretchles between the consts of Europe and Africa, ac as to carry out ns complete n survey, Physical and Zoological, of that part al the Mediterrnnean basin as time may parmit. Malta would probably be our extreme point ; and this we should reckon to rench albout the middle of September.
"' It is well known that there are questions of great Geological interest comnected with the present distribution of Animal life in this area; nnd we have great renson to believe that we shall herre find nt considernble depths a large number of Tertiary species which have been supposed to be extinct. And in regard to the Physics of the Mediterranenn, it appears, from nll that we have been nble to lenrn, that very little is certainly known. The 'Temperature and Density of the water, at diferent depths, in a basin so remarkably out off from the great ocean, and linving a continual influx from it, form a most intereating subject of inquiry, to which we shall be glad to give our best attention, if the menns are placed within our reach.'
"Considering the success of the two previous Expeditions, and especially that of the 'Porcupine' last yenr, the Committee are persunded that no less important acquisitions for the furtherance of scientific knowledge would be gained by the renewed exploration as now proposed; and they accordingly recommend that a representation to that effect be made to the Admiralty, with a view to ohtnin the aid of Her Majesty'e Government as on the previnus ncensions.
"The Committee approve of a proposal made hy Mr. Gwyn .Jeffreys to accept the services of Mr. Lindahl, of Lund, in the expedition as unpaid Assistant Naturalist.
"As regards scientific instruments, the Committee have to report that thone employed in last year's voyage will be ngnin nvailable for use; and Mr. Siemens hopes to render his elentro-thermal indicator of more easy employment on ship-board.
"The Committee, having lenrued that Dr. Frankland has contrived an apparatus for hriuging up the denp-sen water charged with jts gaseous contents, hnve resolved to add his name to their number; and they request leave ta meet agnin in order to complete the arraugements and make a finnl report to the Council."

Resolved, -That the Report now read be received and adnpted, and that the Committee le requested to continue their meetings and report again on the arrangements when finally decided on.

Resolved, -That the following dinft of a Tetter to he addressed to the Secretary of the Admiralty be approved, viz: :-
"Sir,-I am directed by the President and Council of the Royal Society to nequaint you, for the information of the Lords Commissioners of the Admiralty, that, considering the important scientific results of the Playsical and Zoclogical Explarntinn of the Deep Sea carried on in 1868 and 1869 through the aid of Her Majesty's Govermment, they deem it highly desirable that the investigntion ghauld be renewed during the ensuing summer, and extended over a new area.
"The course which it would be proposed to follow in a new Expedition, the principal objects to be attained, and the genernl plan of operations, are sketched out in the enclosed extract from a Letter addressed io the President by Dr. Carpenter, and have in all points been approved by the Council,
"The President and Council would therefore enenestly recommend such an undertaking to the favournble consideration of My Lntils, with the view of abtaining the nssistanco of Her Majesty's Govermment so lihornlly necorded nod effectively rendered on the previous occasions.
"The scientific conduct of the expedition would, as in the last year, be alhared by Dr. Carpenter, Profeasor Wyville Thomsan, provided that gentlemnn is oule to undertake the duty, and Mr, Gwyu Jeflreys. It is also proposed that Mr Lindalil, a young Swedish gentleman accustomed to marine resmarches, should necompany the expedition as Assistnnt Naturalist.
"I have to culd that whatever appertains to the strictly Scientific equipment of the Expestition will, ns formerly, be at the charge of the Royal Society.
"W. Sharpey, Sccrataty."
A sum of $\mathrm{fl010}$ from the Government Grant was assigned for the Scientitic purposes of the Expedition.

May 18, 1870
liead the following Letter from the Admiralty :-

"Sir_-Hnving laid before My Larda Commissioners of the Aumirilty yomr letter of the 2nd inst., requesting that further researches may he made of the reep sen, I am commonded by their Lardships to nequaint yout that they will spare Her Mnjesty's Steam-vessel ' Porcupine for this service, and that the Treasury have been requested, ns on the former occasion, to defray the expense of the messing of the scientific gentlemen compusing the Experition.

$$
\begin{aligned}
& \text { " I nm, Sir, } \\
& \text { " Your obeclient Servant, } \\
& \text { "Vfrnon Lusbineton." }
\end{aligned}
$$

$$
\begin{aligned}
& \text { "Screvtarth the Rapal Surirt?, Durdiagian Howsc." }
\end{aligned}
$$

APPENDIX B.

Particulars of Depths, Temperature, and Fosition at the various Dredging-stations of F M.S. 'Portupine,' in the Summer of 1870:-

	Dritula Fatheisua	$\underset{\substack{\text { Hothom } \\ \text { Tetrieralure }}}{ }$	Burfice Tamjerature	Prastion.	
1	567	-	-	$48^{\prime \prime} 98^{\prime} \mathrm{N}$.	$10^{\circ} 15^{\prime} \mathrm{W}$
2	305	$14^{a_{*}} 8$ C	$16^{\circ} 2 \mathrm{C}$.	4837	109
3	690	-	-	4831	10 3
4	717	$7 \cdot 5$	$16 \cdot 3$	4832	959
5	100	$10 \cdot 7$	16.8	4829	945
G	358	$10 \cdot 0$	$16 \cdot 9$	4826	944
7	93	$10 \cdot 6$	16.2	4818	911
8	257	9-9	15.9	4 R 13	911
9	539	$8 \cdot 9$	$17 \cdot 8$	486	918
10	81	11.9	$16 \cdot 4$	4244	923
11	332	10.2	$16 \cdot 1$	4232	924
12	128	11-3	16-3	4220	917
13	220	11.0	$18 \cdot 1$	4016	937
14	469	$10 \cdot 8$	$18 \cdot 4$	406	944
15	722	9-8	$20 \cdot 0$	402	949
16	994	4.5	21-0	3955	956
17	1095	4-3	19-8	: 1942	943
18	1065	4-5	$18 \cdot 2$	3ก 29	944
19	248	11.0	18-1	3927	9 39
20	965	--	-	3925	94.5
21	G20	10-2	19-5	. 1819	9 911
23	718	$10 \cdot 7$	19-1	3815	983
23	802	9.0	19-0	3720	$\square 30$
24	292	11.5	19-6	3719	9 1is

Numint	Repllil		THurtarn	twertion	
25	374	$11^{\text {c, }} \mathrm{f} \mathrm{C}$	$2 \mathrm{~J}^{\circ} \cdot \mathrm{g} \mathrm{C}$	17. $11 \cdot \mathrm{~N}$	$\mathrm{g}^{\mathrm{c}} \mathrm{7}$ \% W
$\underline{96}$	364	11.5	213 - 0	3 fl 44	88
27	323	10. ${ }^{\text {\% }}$	22.7	3687	731
28	:304	$11 \cdot 7$	21-8	3629	716
나으n	286	-	--	3627	654
4	227	13-9	22. ${ }^{\text {- }}$	3620	647
310	386	$11 \cdot 7$	2\% - ¢	3615	659
31	475	10•3	$21 \cdot 7$	35. 56	76
33	651	10.1	$21 \cdot 8$	35 41	7 B
33	$5.9 \pm$	10.0	$22 \cdot 4$	3532	654
34	414	10.1	$21 \cdot 8$	3544	653
35	335	10.9	23-2	3539	fi 38
30	128	12.9	$23 \cdot 8$	3535	626
37	190	11.8	22.0	35.50	60
:38	50.3	11.8	2\% - 0	3558	5 26
39	517	13.3	$21 \cdot 0$	35.59	527
40	586	13-4	$23 \cdot 6$	360	440
41	730	$13 \cdot 4$	23.6	3.517	412
43	790	13.2	$23 \cdot 2$	3545	357
4.3	163	13.4	23 - 9	3514	354
44	455	13.0	21.0	3543	30
ti	207	12.4	$22 \cdot 6$		229
46	49%	13.0	23-0	3589	156
47	845	1] $\cdot \mathrm{G}$	21.0	3725	110
4 H	1328	1) - 4	23.0	3710	031
49	1412	12-7	29	:46 29	031
511	51	-	-	$3{ }^{3} 14$	017 E
Sitra	152	-	-	3618	024
51	1415	12-7	$24 \cdot 0$	3655	110
51	6611	-	-	3fi 38	188
510	591	-	\cdots	$36^{3} 9$	138
53	112	$13 \cdot 0$	$25 \cdot 0$	3653	555
54	1508	13-6	24.4	3741	627
55	1456	12-8	$24 \cdot 8$	3729	631
56	390	1:3 6	25.6	37 3	1137
57	224	-	-	376	1310
58	266	13.6	$24 \cdot 1$	3643	1336
59	445	$13 \cdot \mathrm{f}$	24-6	3632	1412
(i)	1743	13.4	23-3	3631	1546

Num hat of Etatian	Denth In Yathnma	Entram Teinparalure	Sarics Tamparalure,	Parition.	
61	392	$13^{\circ} 10$	$22^{\circ} \cdot 5 \mathrm{C}$	$38^{\circ} 26^{\prime} \mathrm{N}$.	$15^{\circ} 32^{\prime} \mathrm{E}$ 。
62	730	13-0	22-5	3838	1521
63	181	12.4	20.2	961	526 W
64	460	12'4	18.8	3558	528
68	198	12-1	17.3	35 50	-57
66	147		-	3556	557
67	188	12•8	20.9	3549	621

CHAPTER V.

DEEP-SEA SODNDING.

The ordinary Sounding-lead fur modernte Depths. - Liable to Erior when ewployed in Defp Water. - Early Deap Soundings un-reliahle.-Improved Meiboda of Sounding.-The Cup-lead.-
 the 'Hydra.'-Sownding from the 'Parcupine.'-The Contour of the Bed of the North Atigntic.

In all deep-sea investigations it is of course of the first importance to have a means of determining the depth to the last degree of accuracy, and this is not so easy a matter as might be at first supposed. Depth is almost invariably ascertained by some modification of the process of sounding. A weight is attached to the end of a line graduated by attached slips of different coloured buntine (the woollen material of which flags are made, in which the colours are particularly bright and fast) into fathoms, tens of lathoms, and hundreds of fathoms; or, for deep-sea work, with white buntine at every 50, black leather at every 100 , and red buntine at every 1,000 fathoms. The weight is run down as rapidly as possible, and the number of fathoms out when the lead touches the botiom gives a more or less close approximation to the depth.

The ordinary deep-sea lead is a prismatic leaden block about two feet in length and 80 to 120 lbs . in weight, narrowing somewhat towards the upper end, where it is furnished with a stout iron ring. Before heaving, the lead is 'armed,' that is to say the lower end, which is slightly cupped, is covered with a thick coating of soft tallow. If the lead reach the bottom it brings up evidence of its having done so in a sample sticking to the tallow. Usually there is enough to indicate ronghly the nature of the ground, and it is on the evidence of samples thus hrought up on the 'arming' of the lead that our charts note ' mud, ${ }^{1}$ ' shells,' ' gravel,' ' ooze,' or ' sand,' or a combination of these, as the kind of bottom at the particular sounding ; thus we have ${ }^{2, \text { min }}$, ma mud, shells, and sand at 2,000 fathoms; $\begin{gathered}\text { acere }, ~ o o z e ~ a n d ~ s t o n e s ~ a t ~\end{gathered}$ 2,050 fathoms; a 2 .as m, mud, sand, shells, and scorix at 2,200 fathoms, and so on.

When no hottom is found, that is to say, when there is no arrest to the running out of the line and nothing on the 'arming' of the lead, the sounding is entered on the chart thus, , no bottom at 3,200 fathoms. Such soundings are not to be depended upon in deep water, but they are usually quite reliable for moderate depths, so far as they go. They give us no help in the exploration of the bottom of the sea, hut they are of great practical value, and indeed they give all the information which is directly required for the purposes of navigation; for if there be 'no bottom' at 200 fathoms, there is probally nus dangerous shoal in the immerliate neighloumhoot.

Soundings are usually taken from the vcssel, and while there is some way on. Where great accuracy
is required, ns in coast-surveying, it is necessary to sound from a hoat, which can he kept in position by the oars and reference to some fixed objects on shore.

This ordinary system of sounding answers perfectly woll for comparatively shallow water, hut it breaks down for depths much over 1,000 fathoms. The weight is not sufficient to carry the line rapidly and vertically to the hottom; and if a heavier weight be used, ordinary sounding line is unable to draw up its awn weight along with that of the lead from great depths, and gives way. No impulse is felt when the lead reaches the hottom, and the line goes on running out, and if any attempt be made to stop it it breaks. In some cases bights of the line seem to be carried along by sulmarine currents, and in otbers it is found that the line has been rmming out by its own weight only, and coiling itself in a tangled mass directly over the lead. All these sources of error vitiate rery deep soundings. In many of the older observations made ly officers of our own navy and of that of the Inited States, the depth returned for many points in the Atlantic we now know to have leen greatly exaggerated; thus Lieutenant Walsh, of the U.S. schooner ' Taney,' reported a cast with the deep-sca lead at 34,000 feet without bottom; ${ }^{\prime}$ Lieutenant Berryman, of the U.S. brig 'Dolphiu,' attempted unsuccessfully to sound midocean with a line 39,000 feet long; ${ }^{2}$ Captain Denham, of II.M.S. 'Itcrahl,' reported hotom in the

[^27]South Atlantic at a depth of 46,000 feet;' and Lieutenant Parker', of the U.S. frigate 'Congress,' ran out a line 50,000 feet without reaching the bottom. ${ }^{-1}$ In these cases, however, the chances of error were too numerous; and in the last chart of the North Atlantic, published on the authority of Rear-Admiral Richards in Nov. 1870, no soundings are entered heyond 4,000 fathoms, and very few beyond 3,000 .

A great improvement in deep-sea sounding, first introduced in the United States navy, was the use of a heavy weight and a fine line. The weight, a 32 or 68 lb . shot, is rapidly run down from a boat; and when it is supposed to have reached the bottom, which is usually indicated with tolerable certainty by a suclden change in the rate of running out of the line, the line is cut at the surface, and the depth calculated by the length of line left on the reel.

As the great problems of physical gengraphy, the strength and direction of currents, and the general conditions of the hottom of the sea hegan to acquire more geweral interest, the particles brought up on the 'arming' of the lead from great depths were eagerly sought for and scrutinized; it thus became important that a greater quantity should be procured, enough at all events for the purposes of chemical and microscopical examination. Many instruments have heen contrived from time to time for this purpose, and a vast amount of information has been gained by their use. It has now been shown that dredging on a large scale is possible at all depthe, but dredging can only he performed under specially favourable circumstances, and requires a vessel specially fitted at con-

[^28]siderable expense. We must still, therefore, depend mainly upon some form of sonnding apparatus for the gradual acemmulation of observations which will give us in time a consistent idea of the nature of the hottom of the sea throughout. A simple instrument which will lating up a surface sample of a pownd or so, from a depth of 2,000 fathoms, withunt much trouble and with some certainty, is still a desideratum.

In the ycar 1818, Sir John Ross, in command of II.M.S. 'Isabella,' on a voyage of discovery for the purpose of exploring liaflin's Bay, invented a machine " for taking up solmolings from the hottom of any fathomable deptl," which he called a 'deep-sea clamm.' \quad large pair of forceps were kept asunder ly a bolt, and the instrument was so contrived that on the bolt striking the ground, a heavy iron weight slipped down a spindle and closed the forceps, which retained within them a considerable quantity of the hottom, whether sand, mud, or small stones.' On the 1st of September, 1818, Sir John Ross sounded in 1,000 fathoms, lat. $73^{\circ} 37^{\prime}$ N., loug. $75^{\circ} 2 \overline{5}^{\prime}$ W. The soundings consisted of "snit mul, in which there were worms, and, entangled on the sounding-line, at the depth of 800 fathems, was found a heautinh Caput Nechusep." On the Gth of September Sir John Ross sounded in 1,050 fathoms, lat. 72° 93' 3^{\prime}., long. $73^{c} 075$ ' W ., and the clamms linought up 6 lbs. of very

[^29]soft mud. I mention these soundings thus particularly because they are the first authentic instances of any quantity of the bottom having been brought up from such depths. The clamms were used with strong whale line made of the best hemp, $2 \frac{1}{2}$ inches in circumference. The weight recommended by Sir John Ross for the sounding in the North

「ıa 17,-Tlı Sea is fifty pounds.

One of the earliest and certainly not the warst of these miniature dredges is a simple modificntion of the common deep-sea lead, the 'cup-lead' (Fig. 37). A rod of iron passes through the lead, and ends a few inches beneath it in a conical iron cup. A A thick bend-leather washer slides freely on the rod between the end of the lead and the cup. The theory of this instrument is, that as the lead runs down, the current of water keeps up the washer, leaving the mouth of the cup free. On reaching the ground, the weight of the lead drives the cup into the mud or sand, and the lead falls to one aide. When the lead is hauled up, a sample of the bottom goes into the cup, and is retained there by the washer, which is pressed down upon the top of the cup during its upwarl journey ly the reversal of the current. 'The 'cup-lead' is very useful for moderate depths. 'lwiec out of three times it brings up a sample, but the cup is too open and the means of closing it are ton crude, and the third time everything is washed out and the cup comes up perfectly clean. Deep soundings take tou
much time and are too valuable to admit so large an average of losses.

About the year 1854, J. M. Brooke, passed-midshipman in the U.S. navy, a clever young officer who
was at the time doing duty in the Observatory, proposed to Captain Maury a contrivance by which the shot might be detached as soon as it reached the hattom, and specimens brought up in its stead. The result of this suggestion was Brooke's deep-sea sounding apparatus (Figs. 38 and 39), of which all the more recent contrivances have been to a great extent moditications and improvements, retaining its fundamental principle, the detaching of the weight. The instrument as devised by Mr. Brooke is very simple. A 64 lb . shot E is cast with a hole through it. An iron rod a has a chamber is at the lower end, and two moveable arms hinged to the upper end with eyes to fasten two cords by which the rod is suspended; so that when the instrument is hanging free the arms are nearly vertical (Fig. 38). Each arm bears a projecting notched tooth, and before sounding the shot is suspended, with the rod passing through it, in a canvas or leather sling c attached by cords whose loops pass over the teeth. The cup at the lower end of the rod is filled with tallow 'arming,' in which a chamber has been made by pushing in a wooden plug. When the instrument strikes, the end of the rod is driven into the material of the bottom, which fills the chamber in the arming, the two jointed arms fall down, the loops of the sling are relieved from the teeth, and the rod slips through the hole in the shot and comes up alone with ils enclosed sample of sediment.

In this simplest and carliest form Brooke's sounding apparatus had some of the defects of the cup-lead. 'The sample of the hottom was too small, and sam a risk of heing washed oul in hauling uj. Murlifica-
tions were soon madc. Commanter Dayman made

several improvements for the sounding voyage of
H.M.S. 'Cyclops' in 1857. ${ }^{1}$ He used iron wire braces to support the sinker, as these detach more freely than slings of rope; he replaced Bronke's round-shot hy a leaden cylinder to diminish the resistance and thus increase the velocity in descending; and he adapted a valve opening inwards, to the terminal chamher in the rod, to prevent the washing out of the sample. Commander Dayman seems to have found the apparatns thus improved to answer well. He used it throughout his important survey of the ' telegraph platean.'

The 'Bull-dog' sonnding machine (Fig. 40) is now probably the most generally known of these dredgingleads. This instrument is an adaptation of Sir John Ross' deep-sea clamms, with the addition of Brooke's principle of the disengaging weight. It was invented during the famous sounding voyage of B.M.S. ' Bulldog' in the year 1860, and Sir Leopold M'Clintock gives the chief credit of its invention to the assistant. engineer on board, Mr. Steil. 2 A pair of scoops a close upon one another scissorwise on a hinge, and have two pairs of appendages n, which stand to the opening and closing of the scoops in the relation of scissor handles. This apparatus is permanently attached to the sounding-line hy the rope F, which in the figure is represented hanging loose, and which is fixed to

[^30]

Fig. to. - The ' Bull-dog ' Sounding Machize.
the spindle on which the cups turn. Attached to the same spindle is the rope D , which ends above in an iron ring. E represents a pair of tumbler hooks, fastened likewise to the end of the sounding-line; c a heavy leaden or iron weight, with a hole through it wide enough to allow the rope b with its loop and ring to pass freely; and b , a strong india-rubber band which passes round the handles of the scorps. In the fogure the instrument is represented as it is sent down and before it reaches the bottom. The weight c and the scoops a are now suspended by the rope d , whose ring is caught by the tumbler hooks e. The elastic ring n is in a state of tension, ready to draw together the scoop handles and close the sconps, but it is antagnnized by the weight c, which, pressing down into a space between the handles, keeps them asunder. The moment the scoops are driven into the ground by the weight, the tension on the rope D is relaxed, the tumblers fall and release the ring, and the weight falls and allows the elastic band to close the scoops and to keep them closed upon whatever they may contain; the rope D slips through the weight, and the closed acoops are drawn up ly the rope \mathbf{r}. This is a pretty idea, and an ingenious and elegant apparatus, but it is rather complicated. I have never seen it in use, but I should fear that the observer might often he thwarted by the scoops falling in a wrong direction, or by pelbles getting into the hinges and preventing their clasing thoroughly. The simpler all these things are the better.

We used in our trip in the ' Lightning' in 1808 an instrument (Pig . 41) which at first sight searecly locks promisiug from ils apparout want of compact-
mess, hut I will siy this for the ' litzgerald' sounding apparatus that I never knew it fail; and we were olsliged, unfortunately for ourselves, to try it fiesquently in very liad weather and moler most unfaronrable circumstances. The soundingline ends in a lnop passing through an eye in the centre of a linr of jron F. The bar terminates at one end in an claw and at the ather in a second cye, to which a chain is attached. A scoop A, with a sharp, spade-like lip, is fixed to a long and rather heavy iron rod D_{1} with an expanded ruddershaped end to steady it in passing quickly through the water, and hencath this an eye, which fits the claw of the bar f. A door n fits the scoop to which it is hinged, and it is also hinged to the nrm $c_{\text {, which, }}$ when held in a vertical posilion, keeps it open. The arm c is attached ly the chain to the aye in the bir f, and the arm and chain correspond in length in the rod 1 . 'Two tecth E E project firom n, and on these anc hums a heary weight. The

apparalus is so arljusted, that when the weight is attached and the instinment hanging ready for use, as represented in the figure, the rod \mathbf{r} maintains a borizontal position. When the instrument strikes the gromnd, the tension on the bar F is relieved, the weight draws the rod D off the claw and slips off, nt the same time filling the scoop. When hanling up, all the instrument falls into a menrly vertical line, and the scoop contes up full in the middle, the weight of 1 keeping its mouth closed up against its lid.

The apparatus used during the eruise of the "Porenpine," where sounding was carried on to the utmost attainable accuracy and at great depths, was a somewhat elaboriute modification of Rronke's sounding machine which had heen previnusly employed ly Captain Shortland in the voyage of H.M.S. 'Hyclia,' sounding across the Arabian Gulf preparatory to laying the Indian Cable.

This specinl modifiention, which, certainly answered remarkalily well, aplpears to have beem rlue entirely to Mr. Gibhs, the blackemith on board the vessel.' We ehristemed it the

[^31]' Hydra,' in recognition of its inventor and of the vessel in which it was first used.

The axis of the 'Hydra ' (Fig. 42) is a strong brass tube, which unscrews into four chambers. The three lowest of these are elosed above by conical valves opening upwards, but not fitting ahsolutely tightly, so as to allow a little water to pass; and the lowest chamber is is closed hy a butterfly valve also opening upwards. The upper (fourth) chamber a contains a piston, and the piston-rod c is continued upwards into a rod which ends in the ring to which the sounding-line is attached. The upper chamber in which the piston works has a large bole on either side about the middle of its length, and a small hole passes through the piston itself. Projecting from the upper part of the rod there is a notched tooth ν, and over the tooth passes an arched steel spring, with a slit which allows the tooth to pass through its centre, and its two ends fastened moveably to the rod. When the spring is forcilly pushed back, it allows the touth with its noteh to protrude through the central slit. The weight consists of three or four c'ylinders of iron F , toothed and notehed so as to fit into one another and make one mass. The weight used in the 'lorcupine' was from two to three hundredweight, according to the deptll. The weight is suspended by an iron wire sling which passes over the notehed tooth, the spring having been pressed back. The weight is amply sufficient to retain the spring in that position.

The figure represents the instrument prepareal to let go, the whole weight suspended from the ring at the top of the piston-rod, which is thus fully drawn out
of its cylinder. As the instrument runs down the water passes freely through the tube and valves, and pours out by the holes in the wall of the cylinder. When it touches the ground the piston is pulled down by the weight, but its progress is somewhat arrested by the water in the lower part of the cylinder, which can only escape slowly, thus giving the weight time to force the terminal chamber with the butterfly valves into the ground. The weights then rest upon the bottom and relieve the spring which throws the sling off the tooth. The tube comes up free with all the valves closed, and the last chamher filled with the substance of the hottom, and the other chamber with bottom water.

In the skilful hands of Captain Calver the ' Hydra' never once failed, and from the great weight used it is admirably suited for accurate soundings in deep water; but it is somewhat complicated, and it brings up very small samples of the hottom. In the case of the cruise of the ' Porcupine,' where the large dredge was sent down at almost every sounding-station, this was of little consequence; but where dredging is impracticable, and all information as to the condition of the bottom must be got from soundings, some simple adaptation of the ' Hull-dog' scoops or the Fitzgerald apparatus would certainly have a great advantage.

During the cruise of the 'Porcmpine' in 1869 soundings were taken with the utnost care at ninety stations, and in 1870 at sixty-seven stations, and on every occasion the operation was conducted hy Capt. Calver himself, whose great experience on the surveying service was in itself a guarantee of the greatest possible accuracy. Captain Colver told me that on
erery occasion, even at the greatest depths, he felt distinctly the shock of the arrest ol the weight upon the bottom communicated to his hind. A careful sounding was always taken immediately lefore letting go the dredge. I will take as an example the sounding which determined the depth of the deepest haul of the dredge yet made, in 2,435 fathoms in the Bay of 13iscay on the 22 nd of July, 1869, and describe the morlus operandi.

The 'Parcupine' was provided at Woolwich with an admirable double cylinder donkey-engine of 12 horse power (nominal), placed on the deck amidships, with a couple of surging drums. This little engine was the comfort of our lives; nothing could exceed the steadiness of its working and the ease with which its speed could be regulated. During the whole expedition it brought in with the ordivary drum, the line, whether soumbling-line or dredge-rope, with almost any weight, at a uniform rate of a foot per second. Once or twice it was over-strained, and then we pitied the willing little thing panting like an overtaxed horse; and sometimes we put on a small drum for very hard work, gaining thereby additional power at some expense of speed.

Two powerful derricks were rigged for sounding ard dredging operations, one over the stern and one over the port bow. 'The bow derrick was the stronger, and we usually found it the more convenient to chedge from. Sombling was most frequently carried un from the stern. Both derricks were provided nith accumulators, accessory pieces of apparatus which we found of great value. 'The hlowk though which the summeng-line ur dredening-rine passed was not
attached directly to the derrick, but to a rope which passed through an eye at the end of the spar, and was fixed to a 'bitt' on the deck. On a bight of this rope hetween the block and the 'hitt' the accumulator was lashed. This consists of thirty or forty or more of Hodge's vulcanized india-rubher springs fastened together at the two extremities, and kept free from one another by being passed through holes in two round wooden cuds like the heads of churn-staves. The loop of the rope is made long enough to permit the accumulator to stretch to doublile or treble its length, but it is nrrested far within its breaking point. The accumulator is valuable in the first place as indicating roughly the amount of strain upon the line; and in order that it may do so with some decree of accuracy it is so arranged as to play along the derrick, which is graduated from trial to the number of cwts. of strain indicated by the greater or less extension of the accumulator; hut its more important function is to take off the suddenness of the strain on the line when the vessel is pitehing. The friction of one or two miles of cord in the water is so great as to prevent its yielding freely to a sudden jerk such as that given to the attached end when the vessel rises to a sea, and the line is apt to snap. A letting-go frame like that used on hoard the 'Hydra,' a hoard with a slit through which the free end of the sounding machine passed, nnd which supported the weights while the instrument was heing prepared, was fitted under the stern dervirk. The sounding instrument was the ' Iyydra,' weighted with $33 G \mathrm{lls}$. The sounding-line was wound amidships just abaift the donkey-engine on a large strong reel, its revolution
commanded by a brake. The reel held about 4,000 finthoms of medimm No. 2 line of the best Italian hemp, the No. of threads 18 , the weight per 100 fathoms 12 llbs .8 ozs ., the circumference 0.8 inch, and the breaking strain, dry, 1,402 lhs., moaked a day 1,211 lbs., mirked for 50,100 , and 1,000 fathoms.

The weather was remarkably clear and fine; the wind from the north-west, force $=4$; the sea moderate, with a slight swell from the north-west. We were in lat. $47^{\circ} 38^{\prime}$ N., long. $12^{\prime \prime} 08^{\prime}$ W., at the mouth of the Bay of Biscay, about 200 miles to the west of Ushant. The sounding instrument, with two Miller-Casella thermometers and a water bottle attached a fathom or two above it, wns cast off the letting go frame at $2 \mathrm{~h} .44 \mathrm{~m} .20 \mathrm{~s} . \mathrm{p} . \mathrm{m}$. The line was run off by hand from the reel and given to the weight as dast as it would take it, so that there might not be the slightest check or strain. The following table gives the ahsolute rate of descent:-

In this case the timing wns only valuable as corroborating other evidence of the accuracy of the sounding, for even at this great depth, wearly three miles, the shock of the arrest of the weight at the bottom was distinctly perceptille to the commander, who passed the line through his hand during the descent. This was probably the deepest sounding which had been taken up to that time which was perfectly reliable. It was taken under unusually favourable conditions of weather, with the most perfect appliances, and with consummate skill. The whole time occupied in descent was 33 minutes 35 seconds; and in heaving up, 2 hours 2 minutes. The cylinder of the souuding apparatus came up filled with fine grey Atlantic ooze, containing a considerable proportion of fresh shells of Globigerina. The two Miller-Casella thermometers registered a minimum temperature of $9^{\circ} \cdot 5 \mathrm{C}$.

Various attempts have been made to devise an instrument which should determine accurately the amount of vertical descent of the lead hy self-registering machinery. The most successful apparatus for this purpose, and the one most in use is 'Massey's sounding-machine.' This instrument, in its latest and most improved form, to he used with the common lead, is shown in Fig. 49. Two thimbles fr pass through the two ends of the lieavy aval brass shield aA; to the upper of these the sounding-line is attached, and to the lower the weight at alout half a fathom from the machine. A set of lour lrass vanes or wings is are soldered olliquely to an axis in such a position that as the mathine desermels the axis revolves ly fore pressure of the water against
the vanes. The revolving axis communicates its motion to the indices on the dial-plate C_{3} which are so adjusted that the index on the right-hand dial passes through a division for every fathom of

Fia. 43.- Mamey'i Moliniling Marimm:
vertical descent, whether quick or slow, and makes an entire revolution for 15 fathoms, while the lefthand index passes through a division on the circle for 15 fathoms, and makes an entire revolulinn during
a descent of 225 fathoms. Where grenter depths are required it is only necessary to add another dial and index. This sounding instrument answers very well in moderately deep water, and is extremely valuable for checking soundings by the ordinary method, where deep currents are suspected, as it ought to register vertical descent only. It is not satisfactory in very deep water, and its uncertainty is shared apparently by all instruments involving metal wheel-work. It is difficult to tell the reason. The machinery seems to get jammed in some way under the enormous pressure of the water.

The 'Massey's sounding-machine' in common use is somewhat different from the 'shield' instrument described and figured above. It is constructed on precisely the same principle, but it is lolted to a special form of sounding lead, and is thus somewhat more cumbrous.

Besides the increasing attention which has heen paid of late years to all subjects of scientific interest, and especially to those commected with physical geography, the conditions of the depths of the sea, the nature of the bottom, the force and direction of deep currents, the temperature at great depths, and, in fact, al the conditions affecting the sea lottom, have lately acquired great practical importance in connection with telegraphic communication by accan cahles.

The Atlantic Ocean, with the accessible portions of the Arctic Sea, has naturally, from the relation in which it stands to the first maritime and commercial uations of the present period, lieen the most carefully surveyed; and as it appears to contain depths nearly
if not quite as great as any to he found in the other occan hasins, it may prolably he taken as a fair example of ordinary couditions. It is open from pole to pole, and thans participates in all conditions of climate, and it commonicates freely with the other seas. We have still but scanty information allout the beds of the Indian, the Antarctic, and the Pacific oceans, but the few olservations which have litherto reached us seem to indicate that neither is the depth extreme in these seas, nor does the nature of the bottom differ greatly from what we find nearer home. The Mediterranean - a closed cul-cle-sac almost cut off from the general ocean-is under most peculiar circumstances, which will be discussed hereafter. The general result to which we are led ly the enreful and systematic deep-sea soundings which have been undertaken of late years by our own Admiralty and by the American and Swedish Govermments, is that the depth of the sea is not so preat as was at one time supposed. I have already mentioned that in some of the earlier sounding expeditions enormous depths were registered from various parts of the Atlantic, and I have also mentioned the reasons, depending chielly upon defective appliances, why many of these soundings are now considered untrustworthy. Lieutenant llerryman, of the U.S. brig ' Dolphin,' reported 4,580 fathoms (27,480 feet), equal to the height of Dwalagiri, in lat. $4 \mathbf{1}^{\circ} \mathbf{7}^{\prime} \mathrm{N}$., long. $49^{\circ} 93^{\prime}$ W., hall-way between New York and the Agores; 'no bottom' at 4,920 fathoms (29,520 feet), deeper than the height of Deodunga, the highest pacak in the world, in lat. $38^{\circ} \mathrm{ad}^{\prime} \mathrm{N} .$, loug. $6 \mathrm{z}^{\circ} 1 . \mathrm{N}^{\prime} \mathrm{W}$.; ant ' m , liottom' at $\mathrm{G}, 600$ fathoms (39,600 feet),
lat. $32^{\circ} 55^{\prime} \mathrm{N}$. , long. $47^{\circ} 58^{\prime} \mathrm{W}$., indicating a chasm hetween the coast of America and the Western Islands, which might easily engulph the whole rauge of the Himalayas. This space probably represents the deepest part of the North Atlantic; lut there is little douht that these depths are greatly exaggerated. The average depth of the ocean bed does not appear to be much more than 2,000 fathoms (12,000 feet), about equal to the mean height of the elevated table lands of Asia.

The thin shell of water which covers so much of the face of the earth occupies all the broad general depressions in its crust, and it is only limited and more abrupt prominences which project alove its surface as masses of land with their crowning plateaux and mountain ranges. The Atlantic Ocean covers $30,000,000$ of square miles and the Arctic Sea $3,000,000$, and taken together they almost exactly equal the united areas of Europe, Asia, and Africa -the whole of the old world; and yet there seem to be few depressions in its bed to a greater depth than 15,000 or 20,000 feet-a little more than the height of Mont Blanc-and except in the neighbourhood of the shores there is only one very marked mass of mountains, the volcanic group of the Açores.

The central and southern parts of the Atlantic appear to be an old depression, probably at all events coneval with the deposition of the Jurassic formations of Europe, and throughout these long ages the tendency of that great body of water has no douht heen to ameliorate the outliaes, softening down asperities hy the disintegrating action of its waves
and currents, and filling up lollows by drifting about and distributing their materials.

The first careful surveys of the Atlantic, in which great depths were determined with considerable accuracy, are the cruises of Licut.-Commonding Lee, in the U.S. brig ' Dolphin' (1851-52), and of Lieut. Commanding O. H. Berryman, in the same vessel in 1852-5s; hut the sounding voyage in which modern oppliances were first employed with perfect accuracy with a practical object was that of Lieutenant Werryman in 1866 , in the U.S. steamer ' Arctic,' in which twenty-four deep-sea soundings were taken with the Brooke's and Massey's sounding machines on a great circle lietween St. John's, Newfoundland, and Valeutia in Ireland, with a view to the laying of the first calle. The same ground was gove over by Lieutenant Dayman, in II.M.S. 'Cyclops,' in Juwe and July 1857, and thirty-four soundings were taken, the depth leing estimated by Massey's sounding-machine and a modification of Rrooke's machine already described. The next important sounding expedition was that of Commander Dayman, in H.M.S. 'Gorgon,' from Newfoundland to the Açores, aurl thence to England. The deptlas were taken in this case with a lead usually 188 llos. in weight which was lost at each cast, and alliacore line with a hrenking strain of 420 lbs . Only on one occasion, aloout a third of the way from the Agores to England, a cup-lead was let go, attached to a stronger line, in 1,900 fathoms, and came up half filled with grey noze.

Another route for' a telegraph cable having been proposed, L.M.S. ' Bull-ding ' started in July 1860, under
the command of Captain Sir Leopold M'Clintock, and took depths between the Treroe Islands and Ieeland, and thence to Greenland and Labrador. The sonndings were taken first lyy corl-line and an iron sinker of aliout 1 cowt., the line and sinker being cut off at each operation; and the sounding was then usually repeated with the 'Bull-dog'sounding-machine, with which large samples of the bottom were procured. A diary of this voyage was kept ly Dr. Wallich, Naturalist to the Expedition, and was afterwards pulalished hy him as part of the extremely important memoir on the North Atlantic sea-led, to which I have already referred. Some further questions having arisen as to the best line to loe taken by תn Atlantic telegrapl cable, Captain Foskyn, R.N., was despatched in the 'Porcupine' to examine the curious dip from 550 to 1,750 fathoms, described by Captain Dayman in 1857 as occurring aloout 170 miles west of Valentia. One important result of this cruise was the discovery of the 'Porcupine' Bank, about 120 miles west from Galway Ray, with a minimum deptl of 82 fathoms.

Towards the latter part of the year 1808 H.M.S. 'Gannet,' Commander W. Chimmo, R.N., was ortered by the Admiralty to definc during her homeward voyage from the West India Station the northern limits of the Gulf Stream, and to take deep somndings and temperatures. Thirtecn noundings were taken with the Bronke's machine over an area of upwards of 10,000 square wiles from Walle Island (lat. 4is $20^{\prime} \mathrm{N}$., long. $\mathbf{6} 0^{\circ} \mathrm{W}$.), at deptls varying from $8(0)$ to 2,700 fathoms.

For many years past the Americall Govermment
have heen prosecuting a most carcful and clahorate survey of their coast-line; and latterly the Coast surver, under the late l'rofessor Bache and the prosent energetic head at the litucan, Professor Pierec, has pushed its operations into decp water, particularly in the Gull-stream region north-westwards of the strait of lioridla. Dredging operations have been ennducted most suecessfully under Count Pourtilles, and it will he seen hereafter that his results are a raluable complement and corroboration of our own. The Swedish Govermment has twice executed carcful soundings in the sea between Spitzbergen and Greenlnud and to the sontl-west of Spitzbergen; in 1Nfif under the diraction of Otto Thorell, and in 1wis through the Swedish Aretic Rxploring Expedition uudh'r Captain Count von Otter of the Royal Awedish stemmer 'Sophiar.' In 1869 the Swedish corvette 'Josculine' sounded and dredged in the North Atlantic, taking sounlings to the depth of upwavds of $\mathbf{3 , 0 0 0}$ fathoms, and discovered the 'Josephine Rank, ' with a minimum depth of 102 fathoms, in Jat. $3 \mathrm{if}^{\circ} \cdot 4 \mathrm{i}^{\prime} \mathrm{N}$., long. $11^{\circ} 10^{\prime} \mathrm{W}$. To the north-west of the Strait af Cibualtar. The North-German Polar experlitions greatly increased our knowledge of the Spitzberger and the Grocmland Scas; and finally, on December $20 t h$, 1sino, the American wautical school-ship ' Mercury,' Captain P. Giraud, crossed the Tropical Atlantic to Sierra Leone, which she reached on the 14th of Febuary, 1871. She left Sierin Lcone on Fehruary 21st, and soundings and other olservations were continued till she reached Havanmah on the 13th of April. The ollject of this expedition and the character of the observers are
singular and instructive. It seems that the 'Mercury' is a vessel helonging to the Commissioners in charge of the hospitals and prisons of New York, and it is emploged for the purpose of training boys, committed by the magistrates for vngrancy and slight misdemeanours, to hecome thorough seamen. One important part of the training in this ship is that she makes long cruises, and the boys are thus fitted quickly to enter into the service of the navy or the mercontile marine. In the present cruise, the Commissioners, desiring to promote the education of the lads and to advance the interests of science as much as lay in their power, instructed the captain to obtain a series of soundings on the line of ar near the equator from the coast of Africa to the mouth of the Amazon, and to observe the set of the surface currents and the temperature of the water at various depths.

The Commissioners report most favourably of this mode of training, which is now being so generally adopted in this country. For such hoys the adventurous life has a specinl charm, and, "instead of growing up to he a curse to the community, they are made into valuable men." Two hundred and fifty scapegraces were sent out on this voyage, and on the return of the ship, in the opinion of the captain 100 of these were capable of discharging the duties of ordinary seamen.

Brooke's detaching sounding apparatus was used in the ' Mercury,' and in the report of the scientific results of the voyage, which was drawn out by Professor Hewry Draper of New York, a diagram of the bed of the Atlantic at the twelith parallel is introduced, based on fifteen soundings. It shows that,
" parting from the African const, the bed of the ocean sinks very rapilly. A couple of degrees west of the lougitude of Cape Verde the soundings are 2,100 fathoms. From this point the mean depth across the ocean may he estimated at about 2,400 fathoms, but from this there are two striking departures-irst, a depression, the depth of which is 3,100 fathoms ; and, second, an elevation, at which the soundings are only 1,000 , the general result of this being a deep trough on the African side and a narrower and shallower trough on the American." ${ }^{1}$

Referring to the chart (Pl. VII.), in which the groater depths are indicated by the decper shades of blue, a shade to every 1,000 fathoms; in the Arctic Sca there is deep water ranging to 1,500 fathoms to the west and south-west of Spitzbergen. Extending from the coast of Norway and including Iceland, the Ferae Islands, Shetland and Orkney, Great Britain and Ireland, and the leed of the North Sea to the coast of France, there is a wide plateau on which the depth rarely reaches 500 fathoms, but to the west of Iceland and commumicating douhtless with the deep water in the Spitzbergen Sea a trough 500 miles wide and in some places nearly 2,000 fathoms deep, curves along the east coast of Greenland. This is the path of one of the great Avetic return currents.

[^32]Alter sloping gradually to a depth of ano fathoms to the westrand of the coast of Ireland in lat. $52^{\circ} \mathbf{N}$., the bottom suddenly dips to 1,700 fathoms at the rate of ahout fifteen to minetem fect in the 100; and from this point to within ahout 200 miles of the coast of Newfoundland when it hegins to shaal ngain, there is a vast undulating sulmarine plain, averaging about 2,000 fathoms in depth below the surface-the 'telegraph platenu.'

A valley about 500 miles wide, nnd with a mean depth of 2,500 fathoms, stretches from off the southwest coast of Treland, along the const of Europe clipping into the Bny of Biscay, past the Strait of Gibraltar, and along the west coast of Africa. Opposite the Cape de Verde Islands it seems to merge into a slightly deeper trough, which occupies the axis of the South Atlantic and passes into the Antarctic Sea. A nearly similar valley curves round the coast of North America, about 2,000 fathoms in depth off Newfoundland and Lahrador, and becowing considerally deeper to the southward; where it follows the outline of the coast of the States and the Bahamas and Windward Islands, and finally joins the central trough of the South Atlantic off the coast of Brazil, with a depth of 2,500 fathoms. A wide nearly level plevated tract with a mean depth below the surface of 1 :500 fathoms, nearly equal in aren to the continent of Africa, extends southwards from Iccland as liar as the $20 t h$ parallel of north latitude. This plateau culminates at the parallel of 10^{n} north latitude in the voleanic group of the Acgures. Pico, the highesf point of the \mathbf{A} cores, is $\mathbf{7}, \mathbf{6 1 3}$ feet ($\mathbf{1 , 2 0 1}$ fatloms) :howe the lewh of the sea, which gives from
the level of the plateman andight of $\mathbf{1 6 , 2 0 f}$ feet (2,701 fathoms), a litile more than the lieght of Mont Blame aloue the sea-lerel.

Accurato sommeng and as yet muth too distant to justify anything like a detailed contom map of the hed of the Atantic, and such an sketch as the one hore siven can ouly be regarded as a lirst rough dralt. Sothing, however, can give a more ceroneous or exagereated conerption of its andine than the ideal sedion in Captain Maury's ' Ploysical Geot Elatility of the Noa,' allhongh it is iv a certain sense corvect.

According to our present information, we must regard the athantic Occan as covering a vast region ul' wide shallow vallers and undulating plains, with a fiow eroups of voleanic mountains, insignificant hoth in height and extont, when we consider the chormons ated of the ocean licel.

- CHAP'IER VI.

UEEP-SEA DREDGING.

The Naturalist's Dredge.- O. F. Miiller.-Dall's Dredge.-Dredging at maderate Deptlis.-The Dredge-rope. - Dredging in Deep Water.-The ' Hempen tangles.'-Dredging on board the 'Porcu-pine.'-The Sieves.-The Dredger's Note-book.-The Dredging Committes of the British Association.-Dredging on the Coast of Britain.-Dredging abroad.-History of the Progress of Knowledge of the Abyssal Fauna.

Apprndix A.-One of the Tredging Papars iseued by the British Association Committee, filled up hy Mr. MacAndraw.

Up to the middle of last century the little that was knosn of the inhabitants of the bottom of the sea beyond low-water mark, seems to have been gathered almost entirely from the few objects found thrown upon the beach from time to time after storms, and from chance captures on lend-lines, and by fishermen on their long lines and in trawls and oyster and clam dredges. Even these precarious sources of information could not he used to the utmost, for it was next to impossille to induce fishermen to bring ashore anything except the regular oljeects of their industry. Even now the sehoolmaster has scarcely made way enough to erndicate old prejudices. Fishermen are often so absolutely ignorant of the nature of these cxtrnueous animals, that it
is conccivalle to them that they may be devils of some kind which may have the power in some occult way of influencing then and the results of their fishing. I believe, however, that with the progress of education this notion is dying out in most places, and that now fewer ranities and novelties are lost hecause it is ' unlucky' to keep them in the boat.

The maturalist's dredge does not appear to have heen systematically used for investigating the fauna of the lottom ol' the san, until it was employed hy Otho Frederick Minller in the rescarches which afforded material for the publication in 1779 of his admirible "Descriptions nnd Fistory of the rarer and less known Animals of Deumark and Norway." In the prelace to the first volume Miiller gives a quaint account of his machinery and mode of working which it is pleasant to read.
The first paragraph quoted gives a description of a dredge not very untike that used by Ball and Forbes (Fig. 4.4), only the month of the dredge seems to have been square, a modification of the ordinary form which we find useful for some purposes still, but in most cases it gives fatal facilities for ' washing out ' in the process of hauling in.
" Praecipuum instrumentum, quo fundi maris et sinuum incolas extrahere conabar, erat Sacculus reticularis, ex fuwiculis cannabinis concinnatus, margine aperturae alligatus laminis quatuor ferreis ora exteriori acntis, vluam longis, quatuor vncias latis, et in quadratum dispositis. Angulis laminarum exsurgehant quatuor luacilli ferrei, altera extremitate in annulum liherum iuncti. Huic annectitur funis ducentarum et plurium orgyarum longitudine. Saccus
mari immissus pondere ferrei apparatus fundum plerumque petit, interdum diuersorum et contrariorum saepe fluminum maris inferiorum adnersa actione moleque ipsius fumis plurium orgyarum in via retineri, nec fundum attingere creditur."

The figure of this first ' naturalist's dredge' is taken from an ornamental scroll on the title-parge of Müller's book.
"Fundo iniacens ope remorum aut venti modici trahitur, donec tractum quendam quaeuis obuia excipiendo confecerit. In cymbam denique retrahitur spe et labore, at opera et oleum saepe perditur, nubesque pro Iunone captatur, vel enim totus argilla fumante aut limn fnetente, aut meris silicibus, aut testaceorum et coralliorum emortuorum quisquiliis impletur, vel saxis praeruptis et latebrosis cautibus implicitus horarum interuallo vel in perpetuum omnia experientis retrahendi inuenta frustrat; interdum quidem vnum et alterum molluscum, helminthicum, ant testaceum minus notum in dulce laborum lenimen reportat." Müller graphically describes the dificulties which he encountered in carrying on his work. The paucity of animal life on the Scandinavian coasts: the wild and variable climate, "aceris intemperies, marisque in sinubus et oris maritimis Norvegiae inconstantia adeo praepropera et pracpostera, vt aër calidissimus vix minutorum interuallo in l'rigidum, tempestas serena in horridam, malacia infida in anstu ferventem pelagum haud raro mutetur." Still mothing can quell the energy of the enthusiastic old maturalist, who looks upon all his hardships as part ol' the day's work: "Hanc mutationem sucpius cum vitae periculo et sauitatis dispentio expertus sum, noe tamen.
membra licet fractus, animum demisi, nee ab incepto desistere potui. Discant dehinc historiae naturalis scituli, rariora naturae alssyue indefesso labore nee comparari, nee iuste nosci." It does not appear, however, that Otho Frederick Müller dredged much beyoud thirty fathoms, and in his day the knowledge of marine animals was not sufficiently adranced to warrant any generalization as to their bathymetrical distribution.

The instrument usually employed in this and other northerre countrics for dredging oysters and clams is a light frame of iron about five leent long by a foot or so in width at the month, with a sorajer like a narrow hoe on oue side, and a suspending apparatus of thin iron hats which weet in an iron ring for the attachment of the dredge rope on the other. From the frame is suspeuled a bag

 Dredge. A.la. Jifo ahout two feet in depth, of iron chain netting, or of wide-meshed hempen cord netting, or of a mixture of both. Naturalist dredgers at first used the oyster dredge, and all the different dredges now in use are modifications of it in one direction or in another' for in its simplicity it is not

[^33]suitable for scientific purposes. The oyster dredge has a scraper only on one side. In the skilled hands of the fishermen this is no disadvontage, for it is always sent down in such a way that it falls face foremost, but philosophers using it in deep water very generally found that

Fia. di.—' nilla Dretga.' whether from clumsiness or from want of sufficient practice, they had got the dredge down on its back, and of course it came up empty. Again, oyster dredgers are only allowed to take oysters of a certain size, and the meshing of the commercial dredge is so contrived as to allow all bodies under a certain considerable size to pass through. This defeats the object of the naturalist; for some of the prizes to which he attaches the highest value are mites of things scarcely visible to the unaided eye.

The remedy for these defects is to have a scraper on each side, with the arms attached in such a way that one or other of the scrapers must reach the ground in whatever position the dredge may fall ; and to have the bag deeper in proportion to the size of the frame, and of a material which is only sufficiently
open to allow the water to pass freely through, with the openings so distriluted as to leave a part of the bag elose enough to bring up the finest mud.

The late Dr. Robert Ball of Dublin devised the modification which has since been used almost universally by naturalists in this country and abroad under the name of ' Ball's Dredge' (Fig. 45). 'The dredges on this pattern used in Britain for ten years after their first introduction about the year 1838, were usually small and rather heavy-not more than from twelve to fifteen inches in length by four or four and a half inches in width at the mouth. There were two scrapers the length of the dredge-frame and an inch and a half or twa inches wide, set at an angle of ahout 110° to the plane of the dredge's mouth, so that when the dredge was gently hauled along it took hold of the ground and secured anything loose on its surface. I have seen Dr. Ball scatter pence on the drawing-room floor and pick them up quite dexterously with the dredge drawn along in the ordinary dredging position.

Latterly we have used Mall's dredges of considerably larger size. Perhaps the most convenient form and size for dredging from a row-boat or a yawl at depths under a hundred fathoms is that represented by Fig. 45. The frame is eighteen inches long, and its width is five inches. The scrapers are threc inches wide, and they are so set that the distance across between their scraping edges is seven inches and a half. The ends of the frame connecting the scrapers are round bars of iron five-eighths of an inch in diameter, and from these two curved arms of
round iron of the same thickness, dividing lieneath into two branches which are attached to the ends of the cross-bars by eyes allowing the arms to fold down over the dredge-mouth, meet in two leeavy eyes at a point eighteen inches above the centre of the frame. The total weight of the dredge-frame and arms is twenty pounds. It ought to be of the best Lowmoor on Swedish wrought-iron. I have seen a stout dredge-frame of Lawmor iron twisted like a bit of wax in extricating it from a jam between two stones, and, singularly enougl, the dredge which came $u p$ in that conclition contained the unique example of an echinoderm never found before or since.

The thick inner edges of the scrapers are perforated by round holes at distances of about an inch, and through these, strong iron ringe about an inch in diameter are passed, and two or three like rings run on the short rods which form the ends of the dredgeframe. A light iron rod bent to the form of the dredge opening usually runs through these rings, and to this rod and to the rings the mouth of the dredgebag is securely attached by stout cord or strong copper wire.

In the dredge now before me, which has worked well and seen good service, the bag is two feet in depth, and is of hand-made net of very strong twine, the meshes balf an inch to the side. So open a network would let many of the smaller things through, and to avaid this the bottorn of the bag, to the beight of ahout nine inches, is lined with ' breadlang,' a light open kind of canvas.

Many other materials have been used for dredge-
lings. Raw hulfialo- and cow-hides ave very strong, lut they are apt to become offensive. When these are used it is necessary to punch holes here and there to let the water through or to leave the seams which are scwed with thongs a little open. Another bag which I have used frequently is made of sail-cloth, with a window of strong hrass wire gause let in on either side. Nothing, however, seems to me so good as strong cord netting. The water passes easily through and carries with it a large part of the fine mud, while enough mud is retained by the breadbag lining in the hottom to give a fair sample of its contents. It may be said that many small valuable objects may he washed through the meshes of the upper part of the dredge along with the mud, and thus lost; but, on the other hand, if the lag be very close it is apt to get filled up with mud at once, and to collect nothing more.

It is always well when dredging, at whatever depth, to ascertain the approximate depth with the lead before casting the dredge; and the learl ought always to be accompanied by a protected thermometer, for the sulsequent haul of the dredge will gain greatly in value as an observation in gengraphical distribution if it he accompanied by an accurate note of the hottom temperature. For deptlis under 100 fathoms the amount of rope paid out should be at least double the depth. Under thirty fathoms, where one gencrally works more rnpidly, it should be more nearly three times. This gives a good deal of slack before the dredye if the loont be moving very slowly, and keeps the lip of the dredge well down and if the bant lie moving too quickly through the water, by
far the most common error in amateur dredging, from the low angle at which the line is lying in the water the dredge has its best chance of getting an occasional scrape. It is bad economy to use too light a rope. For a diedge such as that described, and for work round the coasts of Europe at depths attainable from a row-boat or yawl, I would recommend bolt-rope of the best Russian hemp, not less than one and a half inch in circumference, which should contain from eighteen to twenty yarns in three strands. Each yarn should lear nearly a hundredweight, so that the breaking strain of such a rope ought to be upwards of a ton. Of course it is never voluntarily exposed to such a strain, but in shallow water the dredge is often caught among rocks or coral, and the rope ought to be strong enough in such a case to bring up the bnat, cren if there were some little way on.

Dredging in sand or mud, the dredge-rope may simply he passed through the double eye formed by the extremities of the two arms of the dredge; but in rocky or unknown ground it is better to fasten the rope to the eye of one of the arms only, and to tie the two eyes together with about three or four turns of rope yarn. This breaks much more readily than the dredge rope, so that if the dredge get caught it is the first thing to give way under n strain, and in doing so it very often so alters the position and form of the dredge as to allow of its extrication.

The dredge is slipped gently over the side, either from the bow or from the stern-in a small hoat more usually the latter-while there is a little way on, and the direction which the rope takes indi-
cates roughly whether the dredge is going down properly. When it reaches the ground and begins to scrape, an experienced hand upon the rope can usually at ance detect a tremar given to the dredge by the scraper passing over the irregularities of the bottom. The due amount of rope is then paid out, and the rope hitched to a bench or rollock-pin.

When there is anything of a current, from whatever cause, it is usually convenient to attach a weight varying from fourteen pounds to half a hundredweight, to the rope threc or four fathoms in front of the dredge. This prevents in some degree the lifting of the mouth of the drodge. If the weight be attached nearer the dredge, it is apt to injure delicate olijects passing in.

The boat should move very slowly, proliably not faster than a mile an hour. In still water, or with a very slight current, the dredge of course anchors the boat, and oars or sails are nccessnry; but if the boat be moving at all it is all that is required. I like hest to dredge with a close-reefed sail before a light wind, with weights, against a very slight tide or current; but these are conditions which cannot always be commanded. The dredge may remain down from a quarter of an hour to twenty minutes. ly which time, if things go well, it onght to be fairly filled.

In dredging from a small loont the simplest plon is for twe or three men to haul in hand over hand and coil in the bottom of the lunat. For a large yawl or yacht, and for deptlis bryond fifty fathoms, a winch is a great assistance. The rope takes a couple of turns round the winch, which is worked by two
men, while a third takes it from the winch and cails it.

Dredging in deep water-that is, at depths beyond 200 fathoms-is a matter of some difficulty, and can scarcely he compassed with the ordinary machinery at the disposal of amateurs. Deep-sea dredging can no doubt be carried on from a good-sized steam yacht, but the appliances are so numerous and so bulky, and the work is so really hard, that it is scarcely compatible with pleasure-seeking.

I do not know that much improvement can be made upon the apparatus and method employed in the 'Porcupine' in 1869 and 1870. I will therefore describe her dredging gear and the dredging operation carried on from her at the greatest depths in the Bay of Biscay, that which tested our resources most fully, somewhat in detail.
'The 'Porcupine' is a 382 -ton gun-boat, fitted up for the surveying service, in which she bas been employed for some years past among the Hebrides, and latterly on the east coast of England. She was assigned for our special work in 1869, with all her ordinary surveying fittings; and certain very important additions were made; among others the doulle-cylinder donkey engine, which worked up to about twelve horse-power, with surging drums of different sizes, large drums for hringing up light weights rapidly, and smaller drums for heavy work. This engine was set up amidships, so that lines could be led to the drums either from fore or aft. The donkey-engine proved a most serviceable little machine. We almost always used the large drum, both in dredging and sounding: and except on one
or two accasions when an enormons load, nuec nearly a tom, came up in the dredge-loan, it delivered the rope steadily, at a miform rate of more than a foot per second, for the whole summer.

A powerful derrick projected over the port how. A large lilock was suspended at the end of tho alerrick by a rope which, as in the ease of the sount-ing.-line, was not divectly attached to the spar hut passed through an eyc, and was attached to a 'litt' on deck. On a bight of this rope was lashed a powertul accumulator, the machine alroady described (p. © $2 \underline{2}$) as of so much use in the management of the sounding-line. In dredging from a large vessel the 'accumulator' is invaluable firom the great strength of the springs the dredge is usually drawn along without stretching them to any great degree: they become tense and taut, and yield, with a Find of slight pulsation, to the rise and fill of the vessel. Whemever they run out it is a sure indication that either the dredge has caught or the weight in it is hecoming too great, and that the dredge-rope ought to he relieved hy a turn of the patdle-wherd or screm. Care shonld be talien not to have the bight of the rope to which the accumulator is nttached more than alont twine the lenght of the austretchend springs. Springs in grool order ought to streteh to much more than double their length; lut it is unsafe to try them too far, as a lash firom one, if it were io give way, would he most sondous. When a great strain comes upon the rope, it acts first upon the acecmmatar, pulling down the block and streteling the elastic bands; and a graduatud seale on the derriek, argainst which the aecumulator plays, gives in

Fia. 46.- The Stern Derriek of the '1'ownitise' showing the 'acrumulator' the strealg', and the motle of stowing the mule.
cwts. an approximation at all events to the strain an the rope.

A second derrick, nearly equally strang, was rigged nver the stern, and we dredged sometimes from one and sometimes from the otlier. The stern derrick was, however, principally used for sounding; the lettinggo board, \&c., being fitted up in connection with it. We had an excellent arrangement for stowing the dredge-rope in the 'Porcupine;' an arrangement which made its manipulation singularly easy, notwithstanding its great weight-about $5,600 \mathrm{lbs}$. A row of alourt twenty great iron pins, alout two and a half feet in length, projected over one side of the quarterdeck, rising oliliquely from the top of the bulwark. Finch of these held a coil of from two to three hundred fathoms, and the rope was coiled contimously along the whole row (lig. 4if). When the dredge was going down, the rope was taken rapidly lig the men from these pins-'Aunt Sallies' we called them, from their euding over the deck in smooth white halls-in suceossion, linginning wilh the one nearest the credging derrick; and in hauling up, a relay of men carried the rope along from the surging drum of the donkey-engine and laid it in coils on the pins in inverse order. Thus, in letting gn, the rope passed to the block of the derrick directly from the 'Aunt Sallies;' in hauling up, it passed from the hloek to the surging drum of the donkeg-engine, from which it was taken by the men and coiled on the " Aunt Sallies. ${ }^{\text {' }}$

The length of the dredge-rope was 3,000 fathoms, nearly three and a lalf statute miles. Of this, 2,000 liathoms were 'hawser-lairl,' of the liest Russion
hemp, $2 \frac{1}{2}$ inches in circumference, with a breaking strain of 21 tons. The 1,000 fathoms next the dredge were ' hawser-laid,' 2 inches in circumference. A Russian hemp rope appears to be the most suitable. A manilla rope is considerably stronger for a steady pull, but the tibre is more brittle and liable to go at a ' kink.' I bave never seen a wire-rope used, but I should think it would be liable to the same objection. The 'Challenger' is to be supplied with ' whale-line' for her great expedition. The frame of one of the dredges which we used in the Bay of Biscay is represented at Figs. 47 and 48. The length of

Pia. 47.-Tie Ead of the Dredge frame.
the dredge frame is 4 ft .6 in ., and it is 6 inches wide at the throat or narrowest part. The dredge used in the deepest haul was somewhat different. About half of each arm next the eye to which the rope was attached, was of heavy chnin. I doubt greatly, however, if this is an advantage. The chain drags along in front of the dredge, and may possibly olstruct the entrance of objects and injure them more than a pair of rigid arms would do. On one side the chain was attached to the arm of the dredge by a stop of five turus of spun-ynm, so that in case of the dredge
becoming entnngled or wedged among rocks or stones, a strain less than sufficient to break the dredge rope would break the stop, alter the position of the dredge, and probahly enable it to free itself :

Fia. 48 -Dredge-frame showing the mode of attachment of the Bag. a. Spunyarn Stop.
and in case of its taking in a greater load of mud than the rope could hring up, the stop would likewise give way and allow the dredge to fall into such a position that n large part of its contents would slip
out. 'The weight of the frame of this iredge, the largest we ever used, was 2% lhs. ; it was forged by Messrs. Harland and Wolff of Helfast of the best Sowmoor iron. The dredge-bag was double-the outer of strong twine netting, the inner of breand-

Fin 40 -The Find of the liredgr-in Ese, showisg of the livg. bag. Three sinkers-one of 1 cwt , the other two of 56 lbs . each-were attached to the dredge-rope at b00 fathoms from the dredge.

The operation of sounding at a depth of 2,435 fathoms in the Bay of Biscay on the 22nd of IUly, 1869, has already been descrihed in detail. When the depth had heen accurately ascertnined, about 4.45 P.M. the dredge was let go, the vessel drifting slowly before a moderate breeze (force $=4$) from the N.W. The 3,000 fathoms of rope were all out at 5.50 p.m. The diagram (Fig. 60) will give an idea of the various relative positions of the dredge and the vessel according to the plan of dredging adopted liy Captain Calver, which worked admirably, and which appears, in fact, to be the only motle which would answer for great depths. A represents the position of the vessel when the dredge is let ga, and the dotted line A of the line of descent of the dredge, roudered ollique by the tension of the rope. While the dredge is gaing down the ressel drilts gradually to leeward; and when the whale (say) 3,000 fathoms of rope are out, $c, w_{\text {, }}$
and D might represent respectively the relative posi-

Fio. 50.-Diagram of the relative position of the Vessel, the Weights, and tho Drelge, in dredking in deep water.
tions of the vessel, the weight attached 500 fathoms
from the dredge, and the dredge itself. The vessel now steams slowly to windward, occupying successively the positions $\mathrm{E}, \mathrm{F}, \mathrm{G}$, and H . The weight, to which the water offers but little resistance, sinks from w to w^{\prime}, and the dredge and bag more slowly from n to \boldsymbol{b}. The vessel is now allowed to drift back before the wind from H towards c. The tension of the motion of the vessel, instead of acting immediately on the dredge, now drags forward the weight W^{*}, so that the dredging is carried on from the weight and not directly from the vessel. The dredge is thus quietly pulled along with its lip scraping the bottom in the attitude which it assumes from the centre of weight of its iron frame and arms. If, on the other band, the weights were hung close to the dredge, and the dredge were dragged directly from the vessel, owing to the great weight and spring of the rope the arms would be continually lifted up and the lip of the dredge prevented from scraping. In very deep dredging this operation of steaming up to windward until the dredge-rope is nearly perpendicular, after drifting for hall an hour or so to leeward, is usually repeated three or four times.

At 8.50 p.m. we began to haul in, and the 'Aunt Sallies' to fill again. The donkey-engine delivered the rope at the rate of rather more than a foot per second, without a single check. A few minutes befnre 1 a.m. the weights appeared, and a little after one in the morning, eight hours after it was enst over, the dredge was safely hauled on deck, having in the interval accomplished a journey of upwards of eight statute miles. The dredge contained $1 \frac{1}{2}$ cwt.
of very characteristic pale grey Atlantic ooze. The total weight brought up by the engine was-

Much more experience will yet be necessary before we can assure ourselves that we have devised the clredge of the best form and weight for work in the deep sea. I rather think that the dredges, 150 to 225 lbs., which we bave been in the hahit of using, are too heavy. In many instances we have had evidence that the dredge, instead of falling gently upon the surface and then gliding along and gathering the loose 1 hings in its path, has fallen upon its mouth and dug into the tenacious mud, thereby clogging itself, so as to admit but litile more. I mean to try the experiment of heavier weights and lighter dredge frames in the 'Challenger,' and I helieve it will be an improvement.

In many of our dredgings at all depths we found that, while few oljects of interest were hrought up within the dredge, many echinoderms, corals, and sponges came to the surface sticking 10 the outside of the dredge-bag, and even to the first few fathoms of the dredge-rope.

This suggested many expedients, and finally

Captain Calver sent down half-a-dozen of the 'swabs' used for washing the decks attached to the dredge. 'The result' was marvellous. The tangled bemp brought up everything rough and moveable which came in its way, and swept the bottom as it might have swept the deck. Captain Calver's invention initiated a new era in deep-sen dredging. After various expariments we came to the conclusion that the best plan was to attach a long iron transverse bar to the bottom of the dredge-bag, and to fasten large bunches of teazed-out hemp to the free ends of the bar (Fig. 51). We now regard the ' hempen tangles' as an essential adjunct to the dredge nearly as important as the dredge itself, and usually much more conspicnous in its results. Sometimes, when the ground is too rough for ordinary dredging, we use the tangles alone. There is some danger, however, in their use. The dredge employed under the most favourable circumstances may he supposed or hoped to pass over the surface of the floor of the sea for a certain distance, picking up the nbjects in its path which are perfectly free, and small enough to enter the dredge mouth If they chance to be attached in any way, the dredge rides over them. If they exceed in the least the width of the dredgeopening, at the particular angle at which the dredge may present itself at the moment, they are shoved aside and lost.

The Mollusca have ly far the best chance of being fully represented in investigations carried on by the dredge alone. Their shells are comparatively small solid bodies mixed with the stones on the bottom, and they enter the dredge along with these. Echino-
derms, corals, and spongets, on the eontraty, aro bulky ohjects, and are frequontly partially luried in the

mud or move or less firmly altaclect, so that the dreflge gemerally misses them. Wiill the tangles it
is the reverse. The smooth heavy shells are rarely brought up, while frequently the tnngles loaded with the spiny spheres of Cidaris, great white-bearded Holtenie, glistening coils of Hyalonema, relieved by the crimson stars of Astropeoten and Brisinga, present as remarkable an appearance as can well be imagined. On one occasion, to which I have already referred, $I \mathrm{am}$ sure not fewer than 20,000 examples of Echinus norvegicus came up on the tangles at one haul. They were warped througly and through the lempen fibres, and actually filled the tangles so that we could not get them out, and they hung for days round the bulwarks like nets of pickling onions in a greengrocer's shop. The use of the tangles, which seem so singularly well adapted to their capture, gives therefore a totally unfair advantage to the radiate groups and the sponges, and this must always be taken into account in estimating their proportion in the fnuma of a particular area.

The tangles certainly make a sad mess of. the specimens; and the first feeling is one of woe, as we undertake the almost loopeless task of clipping out with a pair of short nail-scissors the mangled remains of sea-pens, the legs of rare crabs, and the dismembered disks and separated arms of delicate erinoids and ophiurids. We must console ourselves with the comparatively few things which come up entire, sticking to the outer fibres; and with the reflection that had we not used this somewhat ruthless means of capture the mutilnted specinuens would have remained unknown to us at the hottom of the sea.

The dredge comes up variously freighted according to the locnlity. Usually, if dexterously managed,
the bag is about half full. If, from a great depth, beyond the reach of currents, where there is only so slow a movement of the mass of water that the finest sediment is not carried away, it contains nsually fine calcareous or aluminous mud alone, with the animals forming the fauna of the locality distributed through it. In shallower water we may have sand or gravel, or stones of various sizes mixed with mud and sand.

The next step is to examine the contents of the dredge carefully, and to store the objects of search for future use. The dredge is hauled on deck, and there are two ways of emptying it. We may either turn it up and pour out its contents ly the mouth, or we may have a contrivance by which the bottom of the hag may be made to unlace. The first plan is the simplest and the one most usually adopted. The second has the advantage of letting the mass out more smoothly and easily, but the lacing introduces rather a danaging complication, as it is apt to loosen or give way. In a regularly organized dredging expedition, a frame is oftev arrangerl with a ledge round it to receive the contents of the dredge, but it does very well to capsize it on an old piece of tarpauling. Any objects visible on the surface of the heap are now carefully removed and placed for identification in jars or tubs of sea-mater, of which there should be a number standing ready. The heap should not be much disturbed, for the delicate objects contained in it have already been unavaidahly sulbjected to a gond deal of rough usage, and the less friction among the stones the better.

Close to the place where the dredge is emptied
there ought to be one or two tuls about two fcet in diameter and twenty inches deep, and each tub should be provided with a set of sieves so arranged that the lowest sieve fits freely within the bottom of the tub, and the three succeeding sieves fit freely within one another (Fig. 52). Each sieve is provided with a pair of iron handles through which the hand can pass easily, and the handles of the largest sieve are made long, so that the whole nest can be lifted without stooping and putting the arms

Fra. 69 -sel ni Dreiging Sleves.
into the water. The upper smallest sieve is usually deeper than the others; it is made of a strong open net of brass wire, the meshes a half inch to a side. The second sieve is a good deal finer, the meshes a quarter inch to a side. The third is finer still, and the fourth so close as only to allow the passage of mud or fine sand. The sieves are put into the tub, and the tub filled up to the middle of the top sieve with sea-water. The top sieve is then half filled with the eontents of the dredge, and the set of sicves are gently moved up and down in the
water. It is of great importance not to give any rotatory motion to the sieves in this part of the process, for such is very ruinous to fragile orgnnisms. The sieves should be gently churned up and down, whether singly or together. The result, of course, is that the rourher stones and gravel and the larger organisws are washed nind retained in the upper sieve. The fine mud or sand passes through the whole of the sieves and sulusides into the bottom of the tub, while the three remaining sieves contain, in graduated series, the objects of intermedinte size. The sieves are examined carefully in succession, and the organisus which they contain gently removed with a pair of brass on bonc forceps into the jars of sea-water, or placed at once in loottles of weak spinit of wine.

The scientific value of a dredging operation depends mainly upon two things, - the care with which the aljects procured are preserved and libelled for future identification and refercuce, and the accaracy with which all the circumstances of the dredging, position, depth, nature of ground, hottom temperature, date, \&c., are recorded. With regard to the prescrvation of the animals, I camot bere go into detail. 'There are mavy ways of preserving, special to the different invertebrate groups; and 'taxidermy' is in itself a complicated art. I will merely menfion one or two gemeral points. A specimen in almost evary group is of infinitely greater scientific value if it lie proserved entire with its soft parts. For this purpose the most usual plan is to place it at once in spirit of wine diluted to ahout proof. Care must he taken not to put too wany sipecimens
together in one jar, or they will very shortly become discoloured; and the jars ought to be looked to carefully and the spirit tested, and if necessary renewed after they have been set aside for a day or two, as sea animals contain a large quantity of water. In hot weather, and if the specimens be bulky, it is often better to use strong spirit. The ordinary methylated spirit of commerce answers sufficiently well for ordinary purposes, though if a specimen be reserved for minute dissection, I prefer using pure, or even absolute alcohol.

For very delicate transparent objects, - such as salpæ, siphonophora, polycystina, \&c.,-Goadby's solution seems to be preferable: but do what we may, a preserved specimen of one of these lavely objects is a mere caput mortuum, a melancholy suggestion of its former beauty; good only for the demonstration of anatomical structure.

In preserving marine animals dry, as much of the soft parts should be removed as possible, and replaced by tow or cotton, and the object to be dried should be sterped in several changes of fresh water to get rid of the whole of the salt, and then dried very thoroughly and not too quickly. Every specimen, whether dry or in spirit, should be lahelled at once, with the number under which this particular dredging is entered in the dredger's note-book. It is wonderful how soon things get into confusion if this be not rigorously attended to. The small paper tickets with a fancy margin and gummed on the back, which haberdaslers use for ticketing their goods, are to be bad of all wholesale stationers at nominal prices, and they are very con-
venient. Their great disadvantage is that if the bottles on which they are fixed get wet they are apt to come off.

Pencils nee sold by seed-merchants for writing on tallies which are to be exposed to rain. Perhaps the safest plan is to mark the number and dnte with such a pencil on a shred of parchment or parchment paper, and put it into the bottle. This may seem a trifling detail, but so great inconvenience constantly arises from carelessness in this matter, that I feel sure of the aympathy of all who are intcrested in the scientific aspect of dredging when I insist upon the value of acenrate labelling.

It is of even greater importance that certain circumstances relating to every individual haul of the dredge should be systematically noted, either in the dredger's diary, or on a special form prepared for the purpose. The precise position of the station ought to be defined in shore dredging by giving the distance from shore and the bearings of some fixed objects; in ocean dredging by noting accurately the latitude and longitude. In the 'Lightning,' in 1868, we dredged at a station about 100 miles to the north of the Butt of the Lews, and came upon a singular assemblage of interesting animal forms. Next year, in the ' Porcupine, ${ }^{\text {' }}$ we were anxious to try again the same spot to procure some additional specimens of a sponge whioh we were studying. The position hard been accurately given in the log of the ' Lightning.' aud the Girst haul at a depth of upwards of half a mile gave us the very same group of lorms which we had taken the year hefore. On our return Captain C'alver again dropped the dredge
upon the same spot, with like success. The depth in fathoms should be carefully noted, as a most important element in determining the conditions of life and distribution of species; and the nature of the bottom-whether mud, sand, or gravel; and if the latter, it is well to state the nature and composition of the pebbles, and if possible the source from which they may probably have been derived. Now that we have in the Miller-Casella thermometer a reliable instrument for this purpose, the bottom temperature ought always to be noted. This is important whether in shallow or in deep water. In slallow water it gives a datum for determining the range of annual variation of temperature which can be endured by certain species; and at great depths it is even more important, as we are now aware that, owing to the movement of masses of water at different temperatures in various directions, totally different conditions of climate may exist in deep water within a few miles of one another, and the limits of these conditions can only be determined by direct experiment. It is important when determining the bottom temperature to note also the temperature of the surface of the sea, the temperature of the air, the direction and force of the wind, and the general atmospheric conditions. If the dredger be purely a zoologist, having no particular interest in special physical prohlems, it will still be well worth his while to make all the ohservations indicated and to publish the results. These then pass into the hands of physical geographers, to whom all trustworthy additions to the myriad of data which are required to arrive at a truc gencralization of the
phenomenal of that distribution of temperature are most acceptable.

At the Birmingham Mecting of the British Associntion in 1839 an important committee was apjointed "for researches with the dredge, with a view to the investigation of the marine zoology of Great Britain, the illustration of the geographical listrihution of marine animals, and the more accurate detcrmination of the fossils of the pliccene period: under the superintendence of Mr . Griny, Mr. Forbes, Mr. Goodsir, Mr. Patterson, Mr. 'Ihompson of Belfast, Mr. Hall of Dublin, Dr. George Iolnston, Mr. Smith of Jordan Bill, and Mr. A. Strickland." The appointment of this committee may be regarded ns the initiation of the systematic employment of this method of research. Edward Forbes was the ruling spirit, aud under the genial influence of his contagious enthusiasm great progress was made during the next decade in the knowletge of the fauna of the Aritish seas, aud many wouderfully pleasant days were spent by the original committee and by many others who, from year to year, were 'added to their number.' Every annual rejort of the British Association contained communications from the English, the Scottish, or the Irish branches of the comwittee, and in 18 0a Edward Forbes submitted its first general report ou British marine zoology. This report, as might have been anticipated from the eminent qualifations of the reporter, was of the highest value; and taken along with his remarkable memoirs previously published, son the distribution of the Mollusea and Radiata of the Sgean Sca," and " on the geological relatious
of the existing Fauna and Flora of the British Isles," may be said to mark an era in the progress of human thought.

After enumerating various additions to our knowledge of the distribution of marine invertebrata within the British area which were still to be desired, Forbes concludes his report with the following sentence: "And lastly, though I fear the consummation, however devoutly wished for, is not likely soon to be effected, a series of dredgings between the Zetland and the Firroe Isles, where the greatest depth is under 700 fathoms, would throw more light on the natural history of the North Atlantic and on marine zoology generally than any investigation that has yet been undertaken."

To Forbes's general report succeeded many reports from the different sections into which from year to year the committee divided itself. Among these I may mention particularly the very excellent work done by the Belfast dredging committee, communicated to several meetings of the Association ly the late Mr. George C. Hyndman; the reports of the Dublin committee ly the late Professor Kinahan and Professor E. Perceval Wright; the important listl of the fauna of the East Coast of England reported on behalf of the Natural History Society of Northumberland, Durham, and Newcastle-upon-Tyne, and of the Tyne side Naturalists' Field Club, by Mr. Henry T. Menvell and Mr. G. S. Brady ; and lastly the invaluahle reports on the marine fauna of the Hebrides and Shetland, compiled at an extroordinary expense of labour, discomfort, and privation-doultless with an immediate guerdon of infinite enjoyment
--through many yenss, ly Mr. Gwyn Joffreys, Mr. Barlec, the Rev. A. Merle Norman, and Mr. Edward Waller, and communicated to the Transactions of the Association from 1863 to 1868 . The dredging committees of the British Association, combining the pursuit of knowlerge with the recreation of their summer holidays, may be said to have worked out the fauna of the British area down to the 100 -fathom line, for the rlyedger is now rarely rewarded by a conspicunus novelty, and must be contented that the greater number of his additions to the British list are confined to the more obscure groups.

Meanwhile some memhers of the dredging committee and their friends who had time and means at their disposal pusled their operations farther a-field, and did good service on foreign shores. In 1850, Mr. Macaudrew published many valuahle notes on the lusitanian and wediterranean faunac ; and in 1850, at the request of the biological section of the British Association, he submitted to the Cheltenham mceting a general "report on the marine testaceous mollusca of the North-east Atlantic and neighbouring seas, and the pliysical conditions affecting their development." The field of these ardunus labours extended from the Canary Islonds to the North Cape, over about 43 degrees of latitude, and many species are recorded ly him as having been dredged at depths between 160 and 200 fathoms off the coast of Norwny. Sulsequently, Mr. Gwyn duffeys went over some of the same ground, and mate many additions to the lists of his predecessors.

Nor were our neighlours ialle. In Scandinavia a Itrilliant trimuvirate- Tuvén ol Stockholm, Stuen-
strup of Copenhagen, and Michael Sars of Chris-tiania-were making perpetual ndvances in the knowledge of marine zoology. Milne-Edwards was illustrating the fauna of the coast of France, and Philippi, Grube, Oscar Schmidt, and others were continuing in the Mediterranean and the Adriatis the work so well begun by Donati, Olivi, Risso, Delle Chiage, Poli, and Cantraine; while Deshayes and Lacaze Duthiers illustrated the fauna of the coast of Algeria. So much progress had already heen made at home and abroad, that in the year 1854 Edward Forbes considered that the time had arrived for giving to the pullic, at all events a preliminary sketch of the fauna of the European seas -a work which he commenced, but did not live to finish..

I need scarcely say that these operations of the Mritish Association dredging committees were carried on generally under the idea that at the 100 -fathom line, by which amnteur work was practically limited, they approached the zero of animal life-n notion which was destined to be gradually undermined and finally completely overthrown. From time to time, however, there were not wanting men of great skill and experience to maintain, with Sir James Clark Ross, that " from however great a depth we may be enabled to bring up the mod and stones of the herl of the ocean, we shall find them teeminge with animal life." From the very gencral prevalence of the negative view there was little to stimulate to the investigation of the hothom at great depthe, and dat:a gathered very slowly.

I hate alpeaty refered (p. 18 et infore) to the
ohservatinus of Sir John Ross in 1818, of Sir James loss in 1810, and of Mr. Marry Coodsir in 18 何. In the year 1stid Professor Lnven contributed a paper, " on the bathymetrieal distribution of sulbmarine life on the northern shores of Scandinaria," to the British Associntion. He says, "With us the region of deep-sea corals is characterirad in the south ly Ocmlina vamea and Terelratula, and in the north by Astrophyton, Cidaris, Spatamgus purpureus of an immense size, all living; hesides Goryonia and the gigantic Alcyonium arboreum, which enntinues as far down as any fisherman's line on be sunk. As to the point where animal life ceases, it must he somewhere, but with us it is unknown."'

In 1863 the same naturalist, referring to the result of the Swerlish Spitzhergen expedition of 1861, when mollusca, ernstacea, and hydrozon were brought up from n depth of $1,4,00$ fathoms, expresses the remarkahle opivion, which later investigations appear generally to support, that at great depths, wherever the botinm is suitalle, "a fauna of the same general character extends from pole to pole through all degrees of latitude, some of the species of the fauna being very widely distributed." s

In 1816 Keferstein mentions haring som in Stockholm a whole collection of inverteluate animalscrustacea, phascolosoma, annelids, spatangus, mpriotrochus, sponges, liryozoa, rhizopoda, \&e.-taken at a depth of 1,400 fathoms during 0 . Torell's Spitz-

[^34]bergen expedition in the 'Maclean nets,' and in the same year 0 . Torell alludes to one of the crustaceans from that depth heing of a bright colour. ${ }^{1}$

In 1846 Captain Spratt, R.N., dredged at a depth of 310 fathoms forty miles east of Malta a number of mollusca which have been subsequently examined by Mr. Gwyn Jeffreys and found to he identical with species dredged at considerable depths in the northern seas during the 'Porcupine' expedition. The list includes Leda pellucida, Peilippi; Leda acuminata, Jeffreys; Dentalium agile, Sars; Hela tenella, Jeffreys; Eulima stenostoma, Jeffreys; Trophon barvicensis, Johnston; Pleurotoma carinatum, Brvona; and Philine quadrata, S. V. Woon. Captain Spratt observes that be "believed animal life to exist much lower, although the general character of the Agean is to limit it to 300 fathnms.' ${ }^{\prime \prime}$

In 1850 Michael Sars, in on account of a zoological excursion in Finland and Loffoten, expressed his conviction that there is a full development of animal life at considerable depths off the Norwegian coast. He enumerated nineteen species taken by himself at depths beyond 300 fathoms, and pointed out that two of these were the largest species known of their respective genera. ${ }^{\text {a }}$

[^35]I have referred likewise (p. 20) to Professor Fleming Jonkin's motes on thic living animals alfadiod io the Medituramean calbe at a depule of 1,210) lathems, and to the results of Dre. Wallich's special investigations on linard IIM.S. 'Bull-dog.'

In a gencmal review of the progress of knowledge as to the conditions of life at great flepthe, these investigations deserve special notice, as, even if they must still be regarded as somewhat unsatisfactory, they distinetly mark a stage in advance. Although, from the imperfection of the means at his disposal, Ir. Wallich conld not luing home cvidence sufficient albsolntely to sntisfly others, he was convinced in his own mind from what he saw, that living beings high in the seale of organization might exist at any depth in the ocenn; he expounded clearly and forcibly the train of reasoning which led him to this belief, and subsequent events have amply justified his conchnsinn. The space at my disposal will not allow me to quote and discuss Dr. W'allich's arguments, in some of which I thoroughly concur, while from others I am compelled to dissent. The facts were most important, and their significance increases now that they arc fully confirmed and illustrated by operations on a large scalc. Tn lat. 50 $0^{\circ} 27^{\prime}$ N., long. $\underline{2} 6^{\circ}$ 41' $W_{\text {., a }}$ depth of 1,260 fathoms having been pureriously ascertained, "a new kind of decp-sea dredge was lowered; but in couseguenee of its partial failure, a sconnd apparatus (namely, the conical cup) was cmployed, filty fathows of line in excess of the recorded depth being paid out in order to ensmre the uncliceked deseent and impact of the instrument at the hottom. The dresge had already hrought up a suall quantity
of unusually fine gloligerina deposit and some small stones. The second instrument came up guite full of the deposit ; butit was neither so free from amorphous matter, nor did it contain any of the small stones. Adhering, however, to the last fifty fathoms of line, which had rested on the ground for several moments, were thirteen ophiocomæ, varying in diameter across the arms from tro to five inches." The misfortune of these star-fishes was that they did not go into the dredge; had they done sn, they would at once have achieved immortality. Now, of course, we have no doubt that they came from the bottom, but their irregular mode of appearance left, in the condition of knowledge and prejudice at the time, a loophole for scepticism.

In three soundings, including that in which the star-fishes were obtained, int $1,260,1,913$, and 1,268 fathoms respectively, " minute cylindrictl tubes occurred, varying from one-eighth to half an inch in length, and from one-fiftieth to one-twentieth of an inch in diameter. These were built up almost exclusively of very small globigerina shells, and still more minute calcareous debbris cemented together." "The shells forming the outer layer of the tubes were colourless, and freed of all sarcodic matter; but the internal surface of the tubnlar cylinder was lined with a delicate yet distinct layer of reddish chitine." Dr. Wallich is satisfied that these tuhes contained some species of annelid. "In a sounding taken in lat. $63^{\circ} 31^{\prime} \mathrm{N}$., long. 13° d5' W ., in 682 fathoms, a portion of n serpulet-tule fivetwelths of an inch in length, and about threcsixteenths of an inch in diameter, helonging to a
known species, cand up in sucle a comblifion as to leave no room four daubt that it had been broken oll the rock or stome to which it was adherent by the sounding-mechine, and that the animal was living; whilst a smaller Serpula and a cluster of apparently living polyzoa were adberent to its extrimal surface. A minute Spirosbis also oceurucd in this sounding. Lastly, from a depth of 145 fathoms, within a short distance of the sontlo const of Iceland, a couple of living amphiporl custaceans were obtancd, and a filamentons anmelid ahont threc-quarters ol' an inch in leagth." Basing his opinion puincipally upon these facts, Dr. Wallich, in conclusion, suhmits several propositions, the two most important of which may he said to anticipate the more remarkable results ot' our sulisequent work. As the others are merely founded mpon what I conceive to be a mistaken determination of the animal species caplured, [need not now quote them.'
" 1. The conditions prevailing at great deptlos, althourh differing materially from those which prevail at the surface of the ocear, are not incoupatible with tha maintenance of animal life.
"5. 'The discovery of even a single species, living normally at great dopilis, warrants the inferenee that the de($]$ sea has its own special fanma, and that it has always had it in ages past ; and honce that many fossiliferons stratat heretofore regarded as having been

[^36]deposited in comparatively shallow water, have heen deposited at great depths."'

In 1864, Professor Sars made a great addition to his list of species from depths of from 200 to 300 fathoms off the coast of Norway. He remarks :"The species of animals named are not certainly very numerous (92), yet when we consider that most of them were taken accidentally, attached to the lines of the fishermen, and that only in a few instances the dredge was used at these great depths, it will be seen that there is a very interesting field here for the Naturalist furnished with the proper instruments."

In 1868 P rofessor Sars made a still further addition to the deep-sea launa of the Norwegian Seas; an addition so important, that he remarks "that it is so great as to give a tolerably complete idea of the general fauna of these coasts." This increase of knowledge, Professor Sars states, is almost entirely due to the indefatigable labours of his son, G. O. Sars, an Inspector of Fisheries under the Swerlish Government, who took advantage of the opportunities given by his ocenpation to dredge down to 450 fathoms on some parts of the coast, and among the Loffoten Islands. Sars likewise acknowledges many contributions from his old fellow-lahourers, Danielssen and Koren. The number of species from depths between 250 and 450 fathome on the const of Norway now reaches 427 , thus distributed :-

Of these 24 protozoa, 3 echinoderms, and 13 mollusca are from a depth of 450 fathoms. Professor Sars adds: "We may say, according to our present information, that the true deep-water belt commences at ahout 100 fathoms. The greater number of deepsea species hegin to appear then, though sparingly, and they increase in number of individuals as we descend to 300 fathoms, or in some cases to 450 , when investigations love been carried so far. To what depth this helt extends, or whether there is another below it of a different character, is not yet known." ${ }^{1}$

In the year 1864, M. Barhoza du Bocage, Director

[^37]of the Natural History Museum of Lisbon, greatly surprised the zoological world hy a notice of the occurrence on the coast of Portugal of whisps of silicious spicules resembling those of the Mynlouema of Japan.' They were brought up by the Setubal shark-fishers, who, it seemed-an equally singular circumstance-plied their vocation at a depth of 500 fathoms. Professor Perceval Wright, anxious to ascertain the full history of the case and to get Hyalonema in a fresh state, went to Lisbon in the autumn of 1868 , and with the assistance of Professor du Bocage and some of his friends procured at Setubal an open hoat and a crew of eight men, with " 600 fathoms of rope, the dredge, lots of hooks and bait, and provisions for a couple of days. Leaving the port of Setubal a little before five o'clock in the evening, we, after a fair night's sailing, reached what the fishermen signed to me to be the edge of the deep-sea valley, where they were in the habit of fishing for sharks, and there, while thus engaged, they had found the Hyalonema. It was now about five a'clock in the morning ; and the men, having had their breakfast, put the boat up to the wind, and let down the dredge; before it reached the hottom, about 480 fathoms of rope were run out, some thirty more were allowed for slack, and then we gently drew itby hoisting a small foresail-for the distance of about a mile along the hottom. It required the united efforts of six men, hauling the line hand over hand, with the assistance of a double pulley-block, to pull in the dredge: the time thus occupied was just an
' Proceedings oi the Zoolugienl Society of London for the Year 1864, p. 265.
hour. 'llue dredge was motrly full al' a temacious followish muk, through which sparhled inmomerable longe spicules of the Ifyolonoma; ; indecer, it you drew your fingers slowly through the mud, yon would thereby gather a handful of these spiculcs. One specimen ol' Mymanemm, with the long spicules inscited into the mod and crowned with its expanded sponge-like portions, rewarded my first attempt at dredging at such a depth."' This dredging is of especial interest, for it shows that although difficult and lalorious, and attended with a eertain amount of risk, it is not impossible in an open hoat and with a crew of alien fishermen, to test the nature of the bottom and the character of the falm, even to the great depill of 500 fathoms.

In the ycar 1868, Cominf. F. de Pourtales, one of the officers employed in the United States Coast Survey under Professor Pierce, commenced a series ot' derp dredgings across the ginlf-stream of the conast of Florida; which were continued in the following year, and were productive ol' most valuable rosults. Many important momoi's at the lands of Count Pourtales, Mr. Alexander Ag:ssiz, Mr. 'I'hcodere Lyman and others, have since emricherl the pages ol the Bulletin of the Musem of Comparative Zoology, and have greatly extended on knowledge of the deep-sen gulfi-stream fanma ; and much information has been gained as to the nature of the lontom in those regions, and the changes which are there taking place. Uufortmately a large part of the enllections were in Chicago in the

[^38]hands of Dr. Stimpson for description at the time of the terrible catastrople which laid a great part of that city in ashes, and were destroyed; but, by a singularly fortunate accident, our colleague Mr . Gwyn Jeffreys happened to be in Chicago shortly before the fire, and Dr. Stimpson gave him a series of duplicates of the mollusca for comparison with the species dredged in the 'Porcupine,' and a valuable remnant was thus saved. M. de Pourtales, writing to one of the editors of Silliman's Journal on the 20th of September, 1869, says: "The dredgings were made outside the Florida reef, at the same time as the deep-sea soundings, in lines extending from the reaf to a depth of about 400 to 500 fathoms, so as to develop the figure of the bottom, its formation and fauna. Six such lines were sounded out and dredged over in the space comprised between Sandy Bay and Coffin's Patches. All of them agree nearly in the following particu. lars: from the reef to about the 100 -fathom line, four or five miles off', the bottom consists chiefly of broken shells and very few corals, and is rather barren of life. A second region extends from the neighbourhood of the 100 -fathom line to ahout 300 fathoms; the slope is very gradual, particularly between 100 and 200 fathoms; the bottom is rocky, and is inhabited by quite a rich fauna. The breadth of this hand varies from ten to twenty miles. The third region begins between 250 and 300 fathoms, and is the great bed of foraminifera so widely extended over the bottom of the ocean.
"From the third region the dredges brought up fewer though not less interesting specimens, the
chicl' of which was a new erinoid helonging to the grmus Bomgucticrints of D'Orbigny; it may even lie the species maned by him 73. holessieri, which ocru's d'ossil in a recent formation in Guadaloupe, but ol which only small pieces of the stem are kuown. I obtained half-a-dozen specimens between 230 and 300 fathoms, unfortumately more or less injured lyy the dredge. 'The deepest cast made was in 517 fathoms; it gave a very honclsome Mopsen iund some anmelids." '
'Whe results of the 'Lightning' cruise in 1868, in which dredying was successfully carried down to Ghol fathoms, have alleady been recorded.

Tn the summer of 1870 , Mr. Minthall IIall, F.G.S. with an interest in science which is unfortunately lare among yachtsmen, devoted his yacht 'Norna' to decp-sen dredging work during a cruise along the coists of lootugal and Spain. If we may judge by several preliminary sketehes which have from tiane to time appeared at the hands of $\mathrm{Mr}^{\text {r. Saville }}$ lint, the collections made during this expedition must lave licen extensive and valuable. ${ }^{2}$
'flac last researches in order of time are those conducted on honwl W.M.S. "Poreopine' in 1869 and 1870. With the use of a Government surveying ship well found in all necessary appliances everything was in our favour, nud, as has been already told, dredging was carricd down to 2,435 fathoms;

[^39]aud the fact that thene is an abondant and charncteristic invertebrate fumma at all depths was placed begond further question. As yet, little more can be said. A grand new field of inquiry has been opened up, but its coltmre is terribly laborious. Every haul of the dredge hrings to light new and unfamiliar forms-forms, which link themselves strangely with the inlabitants of past perionds in the earth's history ; but as yet we have not the data for generalizing the deep-sea fauna, and speculating on its geological and biclogiral relations; for notwithstanding all our strength and will, the area of the bottom of the deep sea which has heen fairly dredged may still be reckoned by the square yard.

AHPENDIX A.

One of the Dredying Feepers issued by the British Assaciationt Committec, fulled up by Mr. MacAndreio.

dredging paper No. n.
Date-7th of Itrne, 1849.
Lacality.-GE Multa.
Depth.- 10 fathoms.
Diatancc from Share- 1 ta 2 miles.
Ground - Sand and atones.
Ragian-

CGAPTER VII.

DEEP-SEA TEMPERATITES.

Ocenn Curreata and their general Effecta on Climate.-Determination of Surface Temperatures,--Deep-sea Thermometere.-The ordinary Self-registering Tharmameter on Six's principle.-The MillerCasella modification.-The Temperature Ohservatione taken during the Thres Cruises of H.M.S. 'Porcupine' in the year 1869, atc.

Appendix A.-Surface Temperatures observed on boerd H.M.S. ' Porcupine' during the Summere of 1869 andil 1870.
Appendix B.-Temperature of the Sea at different Depthe near the Eastern Margin of the North Atlantic Basin, as ascertained by Serial and by Bottom Soundings.
Appendix C.-Comparativa lietes of Reduction of Temparature with Increses of Depth at Three Stations in differpnt Latitudes, all of them on the Fastern Margin of the Atlantic Bagin.
Appendir D.-Tbmparature of the Sea at different Depthe in the Warm and Cold Areas lying between the Narth of Scotlond, the Shetland Tslands, and the Frerce Telanda; as ascertained by Serial and by Boltom Soundinge.
Appendex E.-Intarmediate Battam Temperaturas ehosving the Intermisture of Warm and Cold Currents on the Horders of the Warm and Cold Areas.

If the surface of this world of ours were one uniform shell of dry land, other circumstances of its central heat, its relation in position to the sun, and to its investing atmospheric envelope, remaining the same, some zones would present certain pecu-
liarities in temperature, owing to the mixture of hot and cold eurrents of nir; but in the main, isothermal lines, that is to say, lines drawn through places having the same mean temperature, would coincide with prallels of latitude. A glance at any isothermal chart, whether for the whole year, for sumumer, for winter, or for a single month, will show that this is far from loing the case. The lines of equal temperature deviate everywhere, and often most widely, from their normal parallelism with the parallels of latitude and with each other. A glance at the same chart will also show, that while there is an attempt, as it were, on the part of the isothermal lines to maintain their normal direction through the centre of great continents, the most marked curves, indicating the widest extensions of uniform conditions of temperature, are where there is a wide stretch of open sea extending through many degrees of latitude, and consequently including very different climatal conditions.

The lands bordering upon the ocean partake in this general diffusion of heat and amelioration of climate, and hence we have the difference between continental and insular climates-the former giving extremes of summer heat and winter cold, and the latter a much more uniform temperature, somewhat below the normal temperature within the tropics, and usually greatly above it beyond their limits.

The islands of Irelaud and Great Britain and the west coast of the Scandinavian peninsula are involved in the most extreme system of abnormal curves which we have in any of the ocean basins: and to this peculianity in the distribution of tem-
perature in the North Atlantic we are indebted for the singular mildness of our winter climate. The chart PI. VII., the general result reduced from mavy hundreds of thousands of iudividual observations, gives the distribution of the lines of equal mean temperature for the surface of the North Atlantic for the month of July; and it will be seen that the isotherms, instend of passing directly across the ocean, form a series of loops widening and flattening northwards, all participating in certain secondary deflections which give them a sealloped appearance, but all of them primarily referred to some common cause of the distribution of heat, having its origin somewhere in the region of the Straits of Flovida.

These peculiarities in the distrihution of temperature on the surface of the sea may usually be very immediately traced to the movement of bodies of water to and from regions where the water is exposed to different climatal conditions;-to warm or cold ocean currents, which make themselves manifest likewise by their transporting power, their effect in speeding or retarding vessels, or diverting them from their courses. Frequently, however, the current, although possibly involving the movement of a vast mass of water, and exerting a powerful influence upon climate, is so slow as to be imperceptible; its steady onward progress being continually masked hy local or variable currents, or by the drift of the prevailing winds.
The Gulf-stream, the vast 'warm river' of the North Atlantic, which produces the most remarkable and valuable deviations of the isothermal lines which we neet with in any part of the world, is in
this way imperceptible by any direct effect upon navigation locyond the 45 th parallel of north latitude, a peculiarity which has produced and still produces great misconceptions as to its real character.

The mode of determining the surface temperature of the occan is sufficiently simple. A bucket is let down from the deck of the vessel, dashed about for a little in the water to equalize the temperature, and filled from a depth of a foot or so below the surface. The temperature of the water in the bucket is then trken by an ordinary thermometer, whose error is known. A common thermometer of the Kew Observatory pattern graduated to Fahrenheit degrees can be read with a little practice to a quarter of a degree, and a good-sized centigrade thermometer to a tenth. Observations of surfnce-temperature are usually made every two hours, the temperatare of the air being taken with each observation, and the latitude and longitude noted at noon, or more frequently by dead reckoning if required.

Every observation of the surface-temperature of the sea taken accurately and accompanied by an equally exact note of the date, the geograplical position, and the temperature of the air, is of value. The surface observations taken from H.M.S. 'Por'cupine' during her dredging cruise, in the summer of 1809, are given in Appendix A.

The smface-temperature of the North Atlantic has been the subject of nlmost an infinite number of such obscryations, more or less accurate. Dr. Petermann, in a valuable paper on the northern extension of the Gulf-stream, reduces the means of more than a hundred thonsand of these, and deduces the scheme
of curves which has been used with some slight modificntion in the construction of this chart.

Until very recently little or nothing has been known with any certainty about the temperature of the sea at depths below the surface. This is, however, a field of inquiry of very great importance in Physical Geography, as an accurate determination of the temperature at different depths is certainly the best, frequently the only available means of determining the depth, width, direction, and generally the path of the warm ocean currents, which are the chief agents in the diffusion of equatorial hent; and more especially of those deeper indraughts of frigid water which return to supply their place and to complete the general cycle of oceanic circulation. The main cause of this want of accurate knowledge of deep-sea temperatures is undoubtedly the defectiveness of the instruments which have leen hitherto employed.

The thermometer which has been almost universally used for this purpose is the ordinary self-registering thermometer on Six's construction, enclosed in a strong copper case, with valves or apertures below and above to allow a free current of water to pass through the case and over the surface of the instrument. Six's registering thermometer (Fig. 59) consists of a glass tube hent in the form of a V, one limb terminating in a large cylindrical bull, entirely filled with a mixture of creosote and water. 'The bend of the tube contains a column of mercury, and the other limh ends in a small bull partially filled with creosote and water, but with a large space emplty, or rather containing the vapour of the
liquid and slightly compressed nir. A small steel index, with a hair tied round it to act as a spring and maintain the index in any position which it way assume, lies free in the tube among the creosote at either end of the column of mercury. This thermometer gives its indications solely by the contraction and expansion of the liquid in the large full bulb, and is consequently liable to some slight error from the effect of variations of temperature upon the liquids in other parts of the tulue. When the liquid in the large bulb expands, the column of mercury is driven upwards towards the half-empty bulb, and the limb of the tube in which it rises is graduated from below upwards for increasing heat. When the liquid contracts in the bulb, the column of mercury falls in this limb, but rises in the limb terminating in the full bulb, which is graduated from above downwards. When the thermometer is gaing to be used the stecl indices are drawn down in each limb of the tube ly a strong magnet, till they rest on each side on the surface of the mercury. When the thermometer is brought up, the beight at which the lower end of the index stands in each tube indicates the limit to which the index has been driven by the mercury, the extreme of heat or cold to which the instrument has been exposed.

Unfortumately, the accuracy of the ordinary Six's thermometcr cannot be dependerl upon beyond a very limited depth, for the glass of the bulb which contains the expanding fluid yields to the pressure of the water, and, compressing the contained fluid, gives an indication higher than is due to temprature alone. This canse of error is not con-
stant in its action, as the amount to which the bulb is compressed depends upon its form and upon the thickness and quality of the glass; thus the error of good thermometers of the Hydrographic Office pattern varies from $7^{\circ} \mathrm{C}$. to 10° 占 C . at a pressure of 6-817 libs. on the square inch, representing a depth of 2,600 fathoms. In thoroughly wellconstructed thermometers, however, such as those made by Casella and Pastorelli for the English Admiralty, the pressure error is tolerably constant; and Captain Davis, R.N., who has lately conducted important experiments on this point, expresses his opinion that by an extended series of observations a scale might be obtained to correct the thermometers hitherto in use to a close approximation to the truth, and thus utilize to some extent observations which have been already made with our ordinary instruments.

In the 'Lightning' expedition in 1868 we used the ordinary Hydrographic Office pattern, and a large number by different makers were sent with us for testing and comparison. The depths not heing very great, the general temperature results came out well, and were among the most singular phenomena which we had to record. Many of the instruments were very wild at a few hundred fathoms, and several gave way under the pressure. On our return in April 1869, Dr. W. A. Miller, V.P.R.S., attended a meeting of the Deep-Sea Committce of the Royal Society at the Hydrographic Office, and proposed encasing the full bulb in an outer covering of glass containing air, in order to permit the air to be compressed by the pressure of the
water on the outer shell, and thus protecting the hulb within.

Mr. Casella was directed to construct some thermometers on this plan, only instead of being filled with air, the outer shell was nearly filled with alcohol warmed to expel a partion of the remaining air, and the chamber was then hermetically sealed, leaving a bell of nir and vapour of alcohol to yield to the pressure and relieve the bulb within. The 'Miller-Casella' thermometer proved so nearly perfection that it was slecided to adopt it in future, and to use it as a standard in a series of experiments which were undertuken to test the ordinary Six's thermometers of the Hydrographic Office pattern. We depended upon this thermometer alone in our subsequent cruises in the 'Porcupine,' and we found it most satisfactory. During the summer of 1869 temperature ohservations were taken at upwards of minety stations, at depths varying from 10 to 2,435 fathoms. Two thermometers, numbered 100 and 103 respectively were sent down at every station, and in no instance did they give the least reason to doubt their accuracy. Every

Fig. 53.-The MillerCasellia moditicention of Six's self-regis tering thermomoter. The farge luilb is doublo, with a layer of liquid and n bell of vapour between the shells, to relievo pressure. ohservation was taken by Captain Calver himself, the lead with the thermometers attached being in every single instance let down by his own hand,
and I have always regarded it as a remarkable evidence of my friend's care and skill that be landed those two precious instruments at the end of the year safe back at Woolwich.

Fig. 53 represents the latest improvements on the Miller-Casella modification of Six's self-registering thermometer. The ingtrument is of small size, to reduce as far as possible the friction in passing through the water. The tube is mounted in ebonite, to avoid the expansion of a wooden mounting in the water, by which the instrument is liable to get jammed in the case. The scale is of white porcelain, graduated to Fabrenkeit degrees; the large bulb is enclosed in an outer shell threefourths filled with alcohol and hermetically sealed. It is right to mention that I am informed by Sir Edward Sabine that the thermometers used by Sir John Ross in his Arctic voyage in 1818 were protected somewhat on the same principle, and that a thermometer for resisting pressure was constructed under the directinns of the late Admiral Fitzroy, at the suggestion of Mr. Glaisher, which differed from the Miller-Casella pattern in little else than the outer shell leing partially filled with mercury instead of alcohol, and in being somewhat less enmpact and more fragile than the latter instru-
ment.' A modification of Phillip's moximum thermometer devised by Sir William Thomson, in which the thermometer is entirely encased in an outer shell of clnss partly filled with alcohol, appears to have the smallest error of all.

A neat modification of Breguet's metallic thermometer was designed by Joseph Saxton, Esg, of the U.S. Office of Weights and Measures, for the use of the U.S. Coast Survey. A riband of platioum and one of silver are soldered with silver solder to an intermediate plate of gold, and the compound siband is coiled round a central axis of brass, with the silver within. Silver is the most expansible of the metals under the influence of heat, and platinum nearly the least. Gold bolds an intermediate place, and its intervention between the platinum and silver moderates the strain, and prevents the coil from cracking. The lower end of the coil is fixed to the brazen axis, while the upper

[^40]end is attached to the base of a short cylinder. Any variation of temperature causes the coil to wind or unwind, and its motion acts to rotate the axial stem. This motion is magnified by multiplying wheels, and is registered upon the dial of the instrument by an index which pushes before it a registering hand, moving with sufficient friction merely to retain its place when thrust forward by the index hand of the thermometer. The instrument is graduated by trial. The hrass and silver portions are thickly gilt by the electrotype process to prevent the action of sea-water upon them. The box which covers the coil and indicatory part of the thermometer is merely to protect it from accidental injury, and is open so as to permit the free passage of the sea-water. This instrument appears to answer tolerably well for moderate depths, its error up to 600 fathoms not greatly exceeding $0^{\circ} .5 \mathrm{C}$. at 1,500 fathoms, however, the error rises to $5^{\circ} \mathrm{C}$., quite as great as that of the unprotected Six's thermometers, and the error is not so constant. It is evident that under great pressure little confidence can be placed upon instruments which give their indications through metal machinery.

Before H.M.S. ‘ Porcupine ' started on her summer cruise in 186日, a valuable series of experiments were made upon the effect of pressure on various registering thermometers at Woolwich, under the superintendence of the Hydrographer and of the Deep-Sea Committee of the Royal Society. The ohject was to subject all the forms of deep-sea thermometers in use to pressures in a hydraulic press, equivalent to the pressures which they would encounter at different
depths in the ocean, to determine the amount and sources of error, to ascertain which was the most satisfactory instrument, and if possible to construct a scale by which the observations hitherto taken with ordinary instruments might be roughly corrected, so as to be made available. As there was some difficulty in getting the use of a suitable press, Mr. Casella undertook to lave a testing apparatus constructed at his own place in Hatton Garden, capable of producing a pressure of three tons on the square inch.

The results were very interesting. ${ }^{\text {. }}$ The first experiment went to test the value of the various instruments. A Miller-Casella thermometer was placed in the cylinder with No. 57, a good thermometer by Casella, of the ordinary Hydrographic Office pattern, and they were subjected together to a pressure of $4,032 \mathrm{lbs}$., equal to 1,480 fathoms, with the following result :-

Thermonstes.	al\|nimunt.		Max $\mathrm{man}_{\text {mam }}$		niftemene ne Maylnulu.
	Dofarem	Afles	Hefore.	Antar.	
2	$88^{\text {n. }} 6 \mathrm{C}$.	$8^{\circ} \cdot 6 \mathrm{C}$.	$8^{\circ} \cdot 6 \mathrm{C}$.	$\mathrm{g}^{\circ} \cdot 85 \mathrm{C}$.	Q. 25 C.
57	8-6	8-6	$8 \cdot \mathrm{G}$	12-75	4-15

That is to say, the temperature remaining the same, the pressure forcod up No. 57 to $12^{\circ}-75$ C., and left its index there.

[^41]This experiment at once proved the advantage of the encased bulb. It was repeated with other thermometers with the same pressure and for the same period of time, and it was found that while the mean difference of the encased bulbs was only $0^{\circ} 95$, that of the ordinary deep-sea thermometers was, as in No. 57, $7^{\circ} \cdot 25$. It follows, also, from these experiments, that very nearly all the difference or error is due to pressure on the full bulb, and that by encasing that bulb we have a nearly perfect instrument.

The next series of experiments was made to establish a scale by which observations by the ordinary instruments might be approximately corrected for pressure. The following table gives the errors of six thermometers at different pressures. The 'standard' is an encased Miller-Casella, the last a registering minimum thermometer by Casella enclosed in a hermetically sealed glass tube on Sir William Thomson's plan.

Pronure Frathamily	Stablard.	Na. 54.	No. cil	No: 80	Na. 79.	Trownan
2 a 0	0-4 4 C	$0^{\circ} .8 \mathrm{C}$	$1 \cdot 0 \mathrm{C}$	0.7.	$0 \cdot 8.8$	$0 \cdot 00$.
500	$0 \cdot 4$	1-7	1.5	1-4	$1 \cdot 7$	$0 \cdot 05$
750	$0 \cdot 7$	2.2	2.2	$2 \cdot 3$	2. 5	$0 \cdot 0$
1,000	0.8	2-9	2-9	1-7	$2 \cdot 7$	$0 \cdot 2$
1,250	$0 \cdot 8$	$3 \cdot 5$	$3 \cdot$ 白	9.5	$4 \cdot 1$	$0 \cdot 0.5$
1,500	O.A	4.9	4.3	4.0	$4 \cdot 3$	$0 \cdot 3$
1,750	0.95	4.6	$4 \cdot 9$	$4 \cdot 7$	$5 \cdot 7$	$0 \cdot 2$
2,000	1.1	$5 \cdot 4$	$5 \cdot 5$	$5 \cdot 3$	$6 \cdot 4$	$0 \cdot 3$
2,250	1-1	6.2	6. 0	6.0	6.8	$0 \cdot 4$
2,500	1.2	72	$\mathrm{G}^{6} 7$	6. 5	$7 \cdot 6$	0. 0^{1}

The mean difference for each 250 fathoms in each thermometer is as follows :-

Tluerumueler:	minierinces
Standard.	$+0^{2} \cdot 120$
54.	$+0.72$
56.	$+0.67$
76.	+0.65
73.	+0.76
Themeon.	+ 0.0 .3

During these experiments the water in the cylinder was of course maintained as far as possible at the same-or at a known temperature; a certain amount of calorific effect must, however, be produced by the sudden compression of the water, and the next series of experiments was performed in order to determine the nmount of that effect. Three of Phillips's encased maximum thermometers (Sir Williant Thomson's design), being entirely protected from any effect from compression, were employed for this purpose, with the following result :-

Pressure, $6,817 \mathrm{lbs} .=2,500$ fathoms.

So that this source of error is absolutely trifling.
The true error of the Miller-Casella thermometer, as deduced from these observations, is-

> For 250 fathoms $0^{\circ} \cdot 079 \mathrm{C}$
> For 2,500 fathoms $0^{\circ} \cdot 79 \mathrm{C}$.

This, therefore, may be regarded as a perfect instrument for all ordinary purposes.

A number of the instruments which had been previously tested in the press were sent out in the ' Porcupine' on her summer cruise in 1869, and on her return the results of Captain Calver's observations at different depths in the ocean were carefully compared with the effects of equivalent pressures applied to the thermometers in Mr. Casella's ' Bramah's press.' The result in the ocean, contrary to that in the hydraulic press, proves that the elasticity is not regular or in a ratio to the pressure, but that after continuing regular up to a pressure of 1,000 fathoms, it decreases in a compound ratio to a pressure of 2,000 fathoms, when its elasticity nearly ceases.

The following table gives an abstract of the behaviour of Casella's ordinary Hydrographic Office thermometers in the ocean and in the press:-

Finuers.	Eraor		Pra	
	Preat.	©rnan.	Prat	Ocmr
Falhoms.				
250	0.726 C .	0.738 C.	0. 726 C .	$0 \cdot 7388$.
500	1-548	1-564	0-774	0-782
750	2-123	$2 \cdot 223$	$0 \cdot 708$	$0 \cdot 741$
1,000	2. 474	3. 015	0. 674	$0 \cdot 754$
1,250	3. 255	a. 492	$0 \cdot 6.51$	$0 \cdot 698$
1,500	$4 \cdot 107$	3. 921	0.684	0-6.33
1,750	4-555	4. 0.56	0-9650	0-579
2,000	5. 954	4-284	$0 \cdot 669$	$0 \cdot 536$
2,250	6. 021	-	0. 6189	-
2,500	$6 \cdot 817$	-	0. 682	-

For taking bottom temperatures at great depths two or more of the Miller-Casella thermometers are
lashed to the sounding-line at a little distance from one another, a fer feet above the attaching ring of a 'detaching' sounding instrument. The lead is run down rapidly, and, after the weight has been disengaged by contact with the ground, an interval of five or ten minutes is allowed to elapse before hauling in. The shorter of these periods seems to be quite sufficient to insure the instrument acquiring the true temperature. In taking serial temperature soundings-that is to sny, in determining the temperature at certain intervals of depth in deep water -the thermometers are attached above an ordinary deep-sea lead, the required quantity of line for each olservation of the series run out, and the thermometers and lead are hove in each time. This is a very tedious process; one serial sounding in the Bay of Biscay, where the depth was 850 fathoms and the temperature was taken at every fifty fathoms, occupied a whole day.

I ought to mention that in taking the bottom temperature with the Six's thermometer the instrument simply indicates the lowest temperature to which it has been subjected; so that if the bottom water were warmer than any other stratum through which the thermometer had passed, the observation would he erroneous. This is only to be tested by serial soundings, but in every locality where the temperature was observed during the 'Porcupine' expeditions the temperature gradually sank, sometimes very steadily, sometimes irregularly, from the surface to the botton, the bottom water having been constantly the coldest. - It is probable that under certain conditions in the Polar seas, where the sur-
face is sometimes subjected to intense cold, warmer water may be found below, until the balance is restored hy convection. This I believe, however, to be entirely exceptional; and it may certainly be taken as the rule for all latitudes that if we disregard the film which is affected by diurnal alterations, the temperature sinks from the surface to the bottom.

The first important series of deep-water temperature observations was made during the Arctic voyage under Sir John Ross in the year 1818. On Sept. the 1st, lat. $73^{\circ} 37^{\prime}$ N., long. $77^{\circ} 25^{\prime} \mathrm{W}$. , the temperature at the surface being $1^{\circ} \cdot 3 \mathrm{C}$., the registering thermometer gave at eighty fathoms $0^{\circ} \mathrm{C}$., and at 250 fathoms $-1^{\circ} \cdot 4 \mathrm{C}$. On the 6th of September, lat. $72^{c} 23^{\prime} \mathrm{N}$., long. $73^{\circ} 07^{\prime} \mathrm{W}$., the first serial sounding on record was taken, the thermometer having been let down to $500,600,700,800$, and 1,000 fathoms in succession, the thermometer showing each time a lower temperature and indicating at the greatest depth named a temperature of $-3^{\circ} \cdot 6 \mathrm{C}$. On the 19th of September, in lat. $66^{\prime \prime} 50^{\prime}$ N., long. $60^{\circ} 30^{\prime}$ W., another serial sounding was taken, the temperature being registered at 100 fathoms -0.9 C ., at $200-1^{\circ} \cdot 7$ C., at $400-2^{\circ} \cdot 2$ C., and at 660 fathoms $-3^{a} \cdot 6 \mathrm{C}$. On the 4th of October, lat. $61^{\circ} 41^{\prime} \mathrm{N}$., long. $62^{\circ} 16^{\prime}$ W., Sir John Ross sounded, but found no ground in 950 fathoms; at the same time the self-registering thermometer was sent down, and the temperature of the sea at that depth was found to be $2^{\circ} \mathrm{C}$., while at the surface it was $4^{\circ} \mathrm{C}$., and the air at $2^{\circ} \cdot 7 \mathrm{C}$. I am informed by General Sir Edward Sabine, who accompanied Sir John Ross's expedition,
that these observations were made with regiatering thermometers guarded somewhat in the same way as those which we employed in the 'Porcupine.' There is almost sufficient internal evidence that the mode of protecting these thermometers must have been satisfactory, for the temperatures at the greatest depths are such as might have been expected from Miller-Casella thermometers. Unguarded instruments would certainly have given higher indications.

The last of the observations quoted, a considerable way up Davis' Strait, is of great interest. The temperature of the surface of the sea was nearly a degree and a half Centigrade above that of the air, and the temperature of the water was altogether unusually high. It is now well known that at certain seasons of the year a very marked extension of the Gulf-stream passes into the mouth of the Strait. The isotherms for September and July are shown on the chart from data kindly procured for me by Mr. Keith Johnston.

Sir Edmard Sahine, in an extract from his private Journal of Sir John Ross's voyage quoted by Dr. Carpenter, ${ }^{1}$ gives a lower temperature than any lithertn recorded. He says: "Having sounded on September 19th, 1818, in 750 fathoms, the registering thermometer was sent down to 680 fathoms, and on coming up the index of greatest cold was at $25^{\circ} 75$ Fahrenheit ($-3^{\circ} 5 \mathrm{C}$.), never having known it lower than 28° ($-2^{\circ} 2 \mathrm{C}$.) in former instances, even at a depth of 1,000 fathoms; and at other times

[^42]when close to the bottom, I was very careful in examining the thermometer, but could discover no other reason for it than the actual coldness of the water."

Notwithstanding these observations and several others telling in the same direction,-such as those of Lieutenant Lee of the U.S. Coast Survey, who in August 1847 found a temperature of $2^{\circ} \cdot 7 \mathrm{C}$. below the Gulf-stream, at the depth of 1,000 fathoms, in lat. $35^{\circ} 26^{\prime} \mathrm{N}$., and long. $73^{\circ} 12^{\prime} \mathrm{W}$.; and of Lieutenant Dayman, who found the temperature at 1,000 fathoms, in lat. $51^{\circ} \mathrm{N}$. and long. $40^{\circ} \mathrm{W}$. to be $0^{\circ} 4 \mathrm{C}$., the surface temperature heing $12^{\circ} 5 \mathrm{C}$., the impression seems to have prevailed among physiciste and physical geographers that salt water followed the same law as fresh water, attaining its greatest density at a temperature of $4^{\circ} \mathrm{C}$. The necessary result of this condition, were it to exist, is thus stated by Sir John Herschel: "In very deep water all over the globe a uniform temperature of 39° Fahrenheit ($4^{\circ} \mathrm{C}$.) is found to prevail; while above the level where that temperature is first reached, the ocean may be considered as divided into three great regions or zones-an equatorial and two polar. In the former of these warmer, and in the latter colder water is found on the surface. The lines of demarkation are of course the two isotherms of 39° mean annual temperature." Dr. Wallich gives an excellent résumé of this curious fallacy. He says: "But whilst the temperature of the atmosphere beyond the line of perpetual congelation goes on gradually increasing, that of the water below the isothermal line remains constant to the bottom.

Were it not for the operation of the law on which the latter phenomenon depends, the entire ocean would long since have become solidified, and both sen and land rendered unfit for the habitation of living organisms. Unlike other bodies which expand and hecome lighter with every rise in temperature, water attains its maximum density, not under the lowest degree of cold, but at $39^{\circ} 5$ Fabrenheit; and consequently so soon as the superficial layer of sea is cooled down to this degree, it descends, and allows a fresh portion to ascend and be in turn cooled. This process is continued until the whole upper stratum is reduced in temperature to $39^{\circ} \cdot 5$, when, instead of contracting further, it begins to expand and get lighter than the water beneath, floats on it, becomes further cooled down, and at $28^{\circ} \%$ is converted into ice. . . Thus under the operation of an apparently exceptional law, the equilibrium of the oceanic circulation is maintained; for whilst at the equator the mean temperature of the surface layer of water, which is 82°, gradually decreases, until at a depth of 1,200 fathoms it becomes stationary at 39° h, and retains that temperature to the bottom, within the Polar regions and extending to lat. $56^{\circ} 25^{\prime}$ in either hemisphere, the temperature increases from the surface downwards to the isothermal line, beyond which it remains uniform as in the former case. Hence in lat. $56^{\circ} 25^{\circ}$ the temperature is uniform the whole way from the surface to the bottom; and as has been found by observation about lat. 70°, the isothermal line occurs at 750 fathoms below the surface." ${ }^{1}$
${ }^{1}$ Dr. Wallich: North Atlentic Sea-bed, p. 90.

There can le no doubt that this view, which of late years has received almost universal acceptance, is entirely erroneaus. It has been shown by M. Despretz ${ }^{1}$ as the result of a series of carefully conducted experiments which have since been frequently repeated and verified, that sea-water, as a saline solution, contracts and increases steadily in density down to its freezing-point, which is, when kept perfectly still, ahout $-3^{\circ} \cdot 67 \mathrm{C}$. ($25^{\circ} \cdot 4 \mathrm{~F}$.), and when agitated $-2^{\circ} \cdot 550$.

The temperature observations of Sir James Clarke Ross during bis Antaretic voyage in 1840-41, seemed to give support to the theory of a constant temperature of $4^{\circ}-5 \mathrm{C}$. for deep water, but these observations lave as evidently been made with unguarded instrumenta, as those of Sir John Ross in 1818 with instruments defended from pressure; and although I believe they must be taken as proving that in high southern latitudes the surface temperature is sometimes lower than the temperature of the water at a considerable depth beneath, still the amount of correction for pressure is uncertain, depending upon the construction of the thermometers used, and in any case it must reduce the difference considerably.

A large number of thermometers of the ordinary Hydrographic Office pattern were sent out with us, as I have already mentioned, in the 'Lightning,' and these were of course the instruments used by Staff-Commander May for his temperature observations. There was an opportunity of testing these thermometers, however, on the return of the vessel,

[^43]so that we are tolerably certain by actual experiment of the amount of their error. In speaking of the 'Lightning' temperatures, I mean, therefore, the actual temperatures taken by the ordinary thermometers, corrected approximately to the standard of the Miller-Casella thermometers, afterwards used in the ' Porcupine.'

Leaving Stornoway in the 'Lightning,' on the 11th of August, 1868, and directing our course towards the Frore bnnks, we sounded in 500 fathoms about 60 miles to the north-west of the Butt of the Lews, and took a hottom temperature of $9^{\circ} \cdot 4$ Cent. with the ordinary Six's thermometerthe only form of the instrument in use at the time. This, when corrected for pressure, gives about $7^{\circ} \mathrm{S}$ C. We were surprised to find the temperature so high, and we were at the time inclined to think that the ohservation, which was taken in i breeze of wind, was scarcely to be depended upon. Subsequent observations, however, in the same locality, confirmed its accuracy. On the Ferroe Banks, at a depth under 100 fathoms, the lottom temperature averaged $9^{\prime \prime} C$., while that of the surface was about $12^{\circ} \mathrm{C}$. temperature indications on this bank were, however, of little value, as the water is no doubt affected to some extent through its entire depth by direct solar radiation. The next ohservation was in lat. $60^{\circ \prime} 45^{\prime} \mathrm{N}$. and long. $4^{\circ} 49^{\circ}$ W., at a depth of 510 fathoms, with a bottom temperature of -0° © $\mathrm{C}_{\text {en }}$ about 140 miles nearly directly north of Cape Wratio. Then followed a series of soundings, Nos. 7, 8, 10, and 11 of the chart (Plate I.), taken while traversing the northern portion of the
channel between Scotland and the Firoe plateau; and giving, respectively, the temperatures of $-1^{\circ} 1$, $-1^{n} \cdot 2,-0^{\circ} \cdot 7$, and $-0^{\circ} .5 \mathrm{C}$. No. 9, with a depth of 170 fathoms and a temperature of $5^{n} C_{\text {. }}$ is exceptional; it is apparently the top of a circumscribed ridge or bank. We dredged at this station and gat large numbers of the rare and beautiful Terebratula cranium; but when we tried for the same spot in the following year in the ' Porcupine,' we could not find it. On the 6th of September we sounded and took temperatures in lat. $59^{\circ} 36^{\prime} \mathrm{N}$. , long. $7^{\circ} 20^{\circ} \mathrm{W} .$, in 530 fathoms, when the mean of three thermometers, which anly differed from one another by about ' \unlhd of a degree, gave a hottom temperature of $6^{n} 4 \mathrm{C}$. A temperature sounding, at the moderate depth of 189 fathoms, was taken on the morning of the 7th September in lat. $59^{\circ} 5^{\prime}$ N., long. $7^{n} 29^{\prime}$ W., and gave a bottom temperature of $9^{\circ} 6 \mathrm{C}$. The three soundings, Nos. 13, 14, and 17, at the depths 650, 570, and 620 fathoms, extending into the North Atlantic as far westward as long. $12^{\circ} 36^{\prime}$ W., gave a bottom temperature of $5^{\circ} \cdot 8,6^{\circ} 4$, and $6^{\circ} 6 \mathrm{C}$, respectively.

The general result of these observations we could not but regard as very remarkable. The region which we had somewhat imperfectly examined included, in the first place, the channel about a couple of bundred miles in width, with an extreme depth of rather under 600 fathoms, extending between the northern boundary-line of the Rritisb plateau and the shoal which culminates in the 7erroe Islands and their extensive banks; and secondly, a small portion of the North Atlantic extending westwards
and northwards of the western entrance of the channel. We found that in these two areas, freely communicating with one another and in immediate proximity, two totally different conditions of climate existed at all depths below the immediate surface, where they differed but slightly. In the Feroe channel, at a depth of 500 fathome, the bottom temperature averaged $-1^{\circ} \cdot 0 \mathrm{C}$., while at a like depth in the Atlantic the minimum index stood at $+\mathrm{G}^{\circ} \mathrm{C}$., a difference of 7 degrees Centigrade, nearly 13 degrees Fahrenheit.

The conclusion at which we speedily arrived as the only feasible explanation of these phenomena was that an arctic stream of frigid water crept from the north-eastward into the Fïroe channel lying in the deeper part of the trough, owing to its higher specific gravity; while a body of water warmed even above the normal temperature of the lntitude, and therefore coming from some southern source, was passing northwards neross its western entrance and nccupying the whole depth of that comparatively shallow portion of the Atlantic from the surface to the bottom.

Several important facts of very general application in Physical Geography had been placed beyond doulst by these observations. It had heen shown that in nature, as in the experiments of M. Despretz, sea-water does not share in the peculiarities of fresh water, which, as has been long known, attains its maximum density at $44^{\circ} \mathrm{C}$.; lut, like most other liquids, increases in density to its freezing-point : and it had also been shown that, awing to the movement of great bodies of water at different temperatures in different directions, we may have in close proxi-
mity two ocean nreas with totally different bottom climates-a fact which, taken along with the discovery of abundant animal life at all depths, has most important bearings upon the distribution of marine life, and upon the interpretation of palseon tological data.

The conditions during the 'Lightning' cruise were so unfavourable to careful olservation, that we determined to take the earliest opportunity of going over this region again, and determining the limits of these warm and cold areas, and investigating their conditions move in detail. Accordingly, in the following year, when we bad H.M.S. 'Porcupine' at our disposal, Dr. Carpenter and I once more left Stornoway on the 15th of August, 1869 . On this occasion we had everything in our favour; the weather was beautiful, the vessel suitable, and we were provided with Miller-Casella thermometers on whose accuracy we could depend. A table of Captain Calver's valuable thermometrical observations during this cruise is given in Appendix A to this chapter.

We proceeded to very nearly the same spot where we had taken our first sounding on the former year, and took a warm area temperature of $7^{\circ} \cdot 7 \mathrm{C}$. Station No. 4 G (Plate IV.). We then moved on slowly towards the Färoe fishing lanks, finding in succession at Stations 47, 49, and 50, $-6^{\circ} \cdot 5,7^{\circ} \cdot 6$, and $7^{\circ} 9 \mathrm{C}$. At Station 51, about 40 miles south of the bank, there was a decided fall of temperature - the thermometer indicating $5^{c} 6 \mathrm{C}$. at a depth of 440 fathoms; and about 20 miles directly northwards a sounding at Station 52, lat. $60^{\circ} 25^{\prime} \mathrm{N} .$, long. $8^{\prime \prime} 10^{\prime} \mathrm{W}$., at a depth of only 380 fathoms, gave a minimum tem-
perature of $-0^{\circ} .8$ C., slowing that we bad passed the boundary, and were in the 'cold area.'

At this point we requested Captain Calver to take a serial sounding, nscertaining the temperature at deptls progressively increasing by 50 fathoms, which was done with the following result :-

We thus ascertained that the minimum temperature was at the bottom; and this we have found to be universally the case over the whole of the area which we have examined, whatever the bottom temperature might he. And we also ascertained that the decrease in heat from the surface downwards was by no means uniform, but that while after passing the surface layer it was tolerably regular for the first 200 fathoms, there was on extraordinary fall amounting to upwards of $7^{c} \mathrm{C}$. from 200 to 300 fathoms, at which latter depth the minimum is nearly gained.

The next few observations, Stations 58 to 59, were all within the limits of the cold area, the bottom tempeature at depths ranging from 360 to 630 fathoms, nowhere reaching the freezing-point of fresh water ; and at one point, Station 59, lat. $60^{\circ} 21^{\prime} \mathrm{N}$., lang. $5^{\circ} 41 \mathrm{~V}^{\circ}$, at a depth of 580 fathoms, the index stancling so low as $-\mathbf{1}^{\mathrm{a}} 3 \mathrm{C}$. On Saturday the 2] st we took a souncling in 187 fathoms, on the edge of the Fieroe
plateav, and about twenty miles north of the previous station, with a temperature of $6^{\circ} 9 \mathrm{C}$., and so found that we had passed the limits of the cold basin.

Our first two soundings after leaving Thorshavn (Stations 61 and 62) were in shallow water on the Faroe Bank, 114 and 125 fathoms, with a temperature of $7^{\mathrm{n}} 2$ and $7^{\mathrm{n}} 0 \mathrm{C}$. respectively; but the next Station, No. 63, after a run of eighty miles, gave 317 fathoms and $0^{\circ} 9 \mathrm{C}$., showing that we were once more in the cold region. From that point, passing in a south-easterly direction across the channel towards the northern point of Shetland, we traversed the cold area in its most characteristic form, finding at Station 64, lat. $61^{\circ} 21^{\prime} \mathrm{N}$., long. $3^{\circ} 44^{\prime}$ W., a depth of 640 fathoms, with a bottom temperature of $-1^{\circ} \cdot 2 \mathrm{C}$. Here we took another serial sounding, and its results corresponded generally with those of No. 62 . The surface temperature was lower, and the temperature down to 200 fathoms somewhat Iower ; at 350 fathoms it was a little higher :-

At this point, thereforc, the ice-cold water of the Arctic current flling up the hatiom of the trough is nearly 2,000 feet deep, while the temperate water above has nearly an equal depth. The lower half of the latter, however, has its temperature considerably reduced by intermixture and diffusion. Fig. ББ represents diagrammatically the general result of temperature observations in the cold area. The depth at the next Station, No. 65, was 354 fathoms, showing that the channel had hegun to shoal towards Shetland; the temperature was, however, still low, almost exactly $0^{\circ} \mathrm{C}$. The next Station, No. 66, eighteen miles further on towards the Shetland banks, gave a depth of 267 fathoms, with a bottom temperature of $7^{\circ} \cdot \mathrm{C}$. , the temperature at the surface being $11^{c}-3 \mathrm{C}$. We had therefore got beyond the edge of the trough filled by the cold stream, and passed into lesser depths occupied from the surface to the bottom by the warm southern stratum.

The next series of soundings, Nos. 67 to 75, are either in shallow water round Shetland, or in water on the shelving edge of the plateau, not deep enough to reach the frigirl stream. It is of some interest that the two soundings, Nos. 68 and 69, in 75 and 67 fathoms respectively, to the cast of Shetland, show a bottom temperature of $0^{\circ} 6 \mathrm{C}$., while a serial sounding in the warm area at the western entrance of the Frome Channel gives for the same depth a temperature of alout $8^{\circ} 8 \mathrm{C}$. This circumstance, aloug with others to be mentioned hereafter, would seem to show that a considemble indraught of cold water spreads over the hottom of the shallow north sea.

At Stations 76 to 86 , which are along the southem

horder of the cold area, temperature soundings were taken mainly with a view to define its southern limit, and they are sometimes on one side and sometimes on the other. The gemeral result is indicated on Plate IV. ly the southern border of the shaded space. Nos. 87 to 90 are once more in the warm area, the water reaching a depth of upwards of 700 fathoms, but maintaining, after the first 300 fathoms, a temperature of from 6° to $7^{\circ} \mathrm{C}$. ahove that of corresponding depths in the cold area. At Station 87, lat. $59^{\circ} 35^{\prime} \mathrm{N}$., long. $9^{\circ} 11^{\prime}$ W., with a depth of 767 fathoms, a serial sounding was taken, which contrasts remarkably with the series at Station 64. The general result of this sounding is represented diagrammatically by Fig 56. The temperature was taken at every 100 fathoms after the first 200.

It will he seen ly reference to the clart that two nearly parallel series of somdings were taken, extending from the shallow water on the Scottish side to the edge of the Freroe Bank close to the western opening of the Fierne Clamnel, and that one of these chains, inchuding Stations 52, 53, 54, and 86, are in the cold area, while the other chain of Stations, 48 ,

47, $90,49,50$, and 51 , are in the warm area. There is no great difference in depth hetween the two series of soundings ; and there is no indication of a ridge separating them. The only possible explanation of these two so widely different submarine climates, existing apparently under the same circumstances and in close proximity to one another, is that the Arctic indraught which passes into the deeper part of the Feroe Chamel is banked in at its entrance, by the warm snutbern strean slowly passing north wards. There is a slight hut very constant depression of the isothermal lines of surface temperature in the shallow water along the west coast of Britnin. This, I helieve, indicates that a portion of the cold Færoe stream makes its cscape, and, still bauked in close to the land by the warm water, gradually mokes its way southwards, so mixed and diluted as only to be perceptible ly its slight effect on the lines of mean temperature. Diagrams 55 and 56 illustrate the distribution of temperature in the cold and warm areas respectively; and in Fig. 57, the results of the serial soundings Nos. 52, 64, and 87, nee reduced to curves. From these diagrams, taken together, it will be seen that in the first 50 fathoms there is a rapid fall of nearly 3° C. Station No. 64 is a gond denl farther north than the other two, and the surface temperature is lower, so that the fall, which is nearly to the same amount, starts from a lower point. The surface temperature is doubtless due to the direct heat of the sun, and the first rapid fall is due to the rapid rlecrease of this direct effect. From 50 to 200 fathoms the temperature in all three cases falls but little, remaining considerably above the normal temperature

of the ocean for the parallel of latitude. At a depth of 200 fathoms, however, the divergence between the curves of the warm and cold areas is most remarkahle. The curve of the warm area, No. 87, shows a fall of scarcely half a degree at 500 fathoms, and less thian one degree more at 767 fathoms at the bottom. Hetween 200 and 300 fathoms the cold area curves run down from $8^{\circ} \mathrm{C}$. to $0^{\circ} \mathrm{C}$., leaving only one degree more of gradual descent for the next 300 fathoms. The ternperature of the 'hump' on the curves of the cold area' between 50 and 200 tathoms corresponds so nearly with that of the long gradual sinking of the curve of the warm area from the surface nearly to the bottom, that it seems natural to trace it to the same source. We therefore conclude that a shallow layer of Gulf-stream water drifting slowly northwards overlies in the cold area an indraught of cold water represented hy the sudden and great depression of tho curves, while in the warm area this cold indraught is absent, the Gulf-stream water reaching to the hottom.
Tracing the 'warm area' soutlwards from the mouth of the Færoe Channel aloug the coast of Scotland, we find that the arca between Feroe, the Lews, and Rockall, is a kind of plateau with a depth of from 700 to 800 fathoms; and we may he certain from analogy, although this region has not yet been actually examined, with a bottom temperature not lower than $4 \cdot 5 \mathrm{C}$. Commencing opposite Racknll, aud extending between the great shoal which culminates in the Rockall fishing lanks and the singular isolated rock, and the west coast of Ireland, there is a wide trough deepening gradually southwards, and at length Atlautic.

The temperature of this ocean valley was investigated with great care during the first and second cruises of the 'Porcupine' in 1869, and the reaults were so very uniform throughout the area that it will be needless to describe in detail the slight differences in different localities. These differences, in fact, only affected the surface layer of the water, and depended merely upon differences of latitude. The temperatures in deep water may be said to have been practically the same everywhere. The first chain of soundings, taken by Captain Calver during the first cruise under the scientific direction of Mr. Gwyn Jeffreys, was between Lough Swilly and Rockall. The greatest depth, 1,380 fathoms, is in the middle of the channel, and a sounding at that depth, lat. $66^{\circ} 24^{\prime}$ N., long. $11^{\prime \prime} 49^{\prime}$ W., gave a bottom temperature of $2^{\mathrm{n}} 8 \mathrm{O}$. A depth of 630 fathoms, No. 23, a lit1le to the south of Kockall, gave a temperature of $6^{\circ} 4 \mathrm{C}$., almost exactly the same as the temperature of a like depth in the warm area off the entrance of the Ferroe Channel; and a temperature at 500 fathoms, one of a series taken at Station 21 with a bottom temperature at 1,476 fathoms of $2^{\circ} \cdot \overline{1} \mathrm{C}$., was $8^{\circ} \cdot 5 \mathrm{C}$., rather less than a degree higher than the temperature at a corresponding depth at Station 87. At Station 21 the temperature was taken at every 250 fathoms.

We have here on a large scale, as Dr. Carpenter has pninted out, conditions very analognus to those which exist in comparatively shallow water, and on a small scale in the cold area in the Faproe Channel. There is a surface layer of about 50 fathoms, superheated in August by direct solar radiation, and, as we see by the variations of surface isothermals, varying greatly with the seasons of the year. Next, we have a band extending here to a depth of nearly 800 fathoms, in which the thermometer sinks slowly through a range of about $5^{\circ} \mathrm{C}$. Then a zone of intermixture of about 200 fathoms, where the temperature falls rapidly, and finally a mass of cold water from a depth of 1,000 fathoms to the bottom, through which, whatever be its depth, the thermometer falls almost imperceptibly, the water never reaching the dead cold of the Arctic undercurrent in the Faroe Clannel, and the lowest temperature being universally at the bottom (Fig. 58).

The area investigated during the second cruise of the 'Porcupine' at the mouth of the Bay of Biscay, about a couple of hundred miles west of Ushant, may he regarded as simply a continuation southwards of the tract hetween Scotland and Treland and the Rockall ridge. As, however, the depths were greater than any attained on any former occosion-were so great, indeed, as prohably to represent the average depth of the great ocean basins-it may be well to describe the methods of observation and the conditions of temperature somewhat in detail.

The sounding at Station No. 37, at a depth of 2,435 fathoms, has already been fully described as an example of the most recent method of determining extreme depths with accuracy. Two Miller-Casella thermometers, numbered 100 and 103 respectively, were lashed to the sounding-line in their copper cases, one a little alove the other, ahout a fathom and a fathom and a half above the 'Hydra' soundingmachine. These two instruments had been prepared and tested with extreme care, and had been employed throughout the first cruise; their freezing-points had been again verified at Belfast in case the enormous pressure to which they had been subjected might have affected the glass, and we had absolute confidence in their indications. The indices were set before the instruments were let down at the temperature of the surface, $21^{\circ} \cdot 1 \mathrm{C}$., and $21^{\circ} \cdot 15 \mathrm{C}$. They were allowed to remain at the bottom for ten minutes, and on their return to the surface in upwards of two hours and a half, they were unanimous in recording a minimum of $1^{\text {º }} 65 \mathrm{C}$., the slight differences between the two instruments, which gave the almost inappreciable error for one of them of $0^{\circ} 05 \mathrm{C}$. at $21^{\circ} \mathrm{C}$., being imperceptible at the lower temperature.

It had a strange interest to see these two little instruments, upon whose construction so mueh skilled labour and consideration had been lavished, consigned to their long and hazardous journey; and their return eagerly watched for by a knot of thoughtful men, standing, note-book in land, ready to register this first message, which should throw so much light upon the plysical conditions of a hitherto unknown world.

A series of temperature soundings, at depths increasing progressively hy 250 fathoms, was taken to a depth of 2,090 fathoms, on the 24th of July, lat. $47^{\circ} 39^{\prime} \mathrm{N}$., long. $11^{\wedge} 33^{\prime} \mathrm{W}$.

The same two Miller-Casella thermometers were employed as in the previous observation.

Another serial sounding was taken a few days later in water 862 fathoms deep, somewhat nearer the coast of Ireland. In this case the temperature was taken at intervals of 10 fathoms from the surface ta a depth of 50 fathnms, and thence at intervals of 50 fathoms to the bottom. This was done to determine exactly the rate of diminution of temperature, and the exact position of the most marked irregularities.

350	fathoms	20.5 C.	lesa than	300	athome	$0 \cdot 3 \mathrm{C}$.
400	:	9. 17	"	350	"	- $0 \cdot 3$
450	" .	8.7	;	400	"	0.5
500	"	B-55	"	450	"	- $0 \cdot 15$
550	, .	$8 \cdot 0$	"	¢00	"	- $0 \cdot 55$
600	』	$7 \cdot 4$	"	550	"	$\therefore 0.5$
650	".	(6. 4.8	"	600	"	- 0.0
700	" .	6. 44	"	650	"	- 0.4
750	„.	5. 83	,	700	,	- $0 \cdot 6$
800	"	$5 \cdot 55$	"	750	"	0-3
869	(Bottomi)	4-3	3	800	n	1-25

The general result of these two series of soundings is very important. The high temperature reduced by $7^{\circ} \cdot 5 \mathrm{C}$. in the first series at 250 fathoms is undoubtedly due to superbeating by direct solar radiation. This is shown still more clearly in the second series, where nearly $4^{\circ} \mathrm{C}$. are seen to be lost botween the surface and 30 fathoms, and somewhat above $2^{\circ} \mathrm{C}$. more between 30 and 100 fathoms. From 100 to 500 fathoms the temperature is still high and tolerably uniform, and it falls rapidly between 500 and 1,000 fathoms. A reference to the second series shows that this rapid fall is between 650 and 850 fathoms, in which interval there is a loss of more than $3^{\circ} \mathrm{C}$. This second stage of elevated temperature from 250 to 700 fathoms, which is represented graphically by the singular 'hump' on the temperature curves in Fig. 61 and Plate VI. would seem to be caused by the north-easterly reflux under peculiar conditions, which will be referred to in next chapter, of the great equatorial current. From 1,000 fathoms downwards, the loss of temperature goes on uniformly at the rate of about $0^{\circ} 3 \mathrm{C}$. for every 250 fathoms. The most singular feature in this decrease of tem-

perature for the last mile and three-quarters is its alssolute uniformity, which appears to be inconsistent with the idea of anything like a current in the ordinary sense, and rather to point to a slow and general indraught of cold water, falling in chiefly by gravitation from the coldest and deepest sources availnble, to supply the place of the warm water constantly moving to the northward.

In 1870, Mr. Gwyn Jeffreys took his first temperature observations at the mouth of the Channel, and found them to correspond very closely with those of the previous year ; on the 9th of July the bottom temperature at 358 fathoms, Station 6 Pl V., was $10^{\circ} .0 \mathrm{C}$, against $9^{\circ} .8 \mathrm{C}$., at about the same depth in a serial sounding in 1869, in the immediate neighbourbood. The next few soundings, Stations I0 to 13, are in comparatively shallow water, off the coast of Portugal, while the next four Stations, a little north of Lisbon, may serve as an example of the temperatures to a considerable depth in that latitude. Station 14, 469 fathoms, with a surface temperature of $18^{\circ} \cdot 3 \mathrm{C}$., bas a bottom temperature of $10^{\circ} 7 \mathrm{C}$. Station 15, at 722 fathoms, a temperature of $9^{\circ} 7 \mathrm{C}$. ; Station 16 , at 994 fathoms, $4^{\circ}-4 \mathrm{C}$.; and Station 17, at 1,095 fathoms, 4°. 4 C . This result is very similar to that which we met with in 1869 off Ushant. With certain differences, which seem to depend mainly upon the differences of latitude, we have the same phenomena-a thin surface-layer, superheated by the direct rays of the sun; a layer of warm water through which the temperature descends very slowly down to 800 fathoms; a zone of intermixture and rapid deseent of the thermoneter of nearly 200
fathoms in thickness; and finally the deep cold layer into which these soundings do not penetrate very far, through which the temperature sinks almost imperceptibly from $4^{\circ} \mathrm{C}$. The difference between these soundings and those of the year before at the mouth of the Bay of Biscay is that the temperatures at all depths are somewhat higher.

I refrain for the present from going into any detail with regard to the distribution of temperature in the Mediterranean, further than to give a mere outline of the remarkable conditions which were observed there by Dr. Carpenter.

Dr. Carpenter's olservations were principally confined to the western basin of the Mediterranean, and during the months of August and September the surface temperature averaged between $23^{\circ} \mathrm{C}$. and $26^{\circ} \mathrm{C}$. On two occasions only the surface temperature fell considerably lower, and the fall was attributed in both cases to the influence of the colder surface current passing from the Atlantic through the Straits of Gibraltar. The following table of the series taken at Station 53 gives about the average rate of fall of temperature for the first 100 fathoms:

and Dr. Carpenter made the remarkable observation that "whatever the temperature was at 100

fathoms, that was the temperature of the whole mass of water beneath, down to the greatest depth explored." The temperature at 100 fathoms varies very little from $19^{\circ} \mathrm{C}$. ($55^{-0^{\circ}}$ Fahrenbeit), and the Mediterranean attains in many places a depth of upwards of 1,500 fathoms, so that here we have the strange phenomenon of an underlying mass of water, 1,400 fathoms deep, of a uniform moderate temperature; a state of things singularly different from that which obtains at like depths in the Atlantic. Dr. Carpenter's ingenious speculations as to the cause of this difference will he considered lates.

APPENDIX A.

Shaface Temperntures obscrved on board H.M.S. 'Parcupine' during the Sumsmers of 1869 and 1870.

	$\begin{aligned} & \text { 首 } \end{aligned}$		㫛容		岳		部
June Alh．	0	$\begin{aligned} & D_{s n} \\ & e_{x n L} \\ & 10.0 \end{aligned}$		Junelith	θ	Dem	
	ค				8	10.6	12－7
In Griway Dock	10	152			10	11.1	149
	Noon，	21－1			Midn．	10.0	192
	8	2010		June 12th	2	10.0	184
	4	200	177		4	10.9	12．4
	d	200			6	11－3	19．0
	日		10.0		8	11.4	190
	10	116	127		10	1298	119
Junagth ．．	Midn．	111	120	Lat．$E 7^{n} 24^{4} \mathbf{N}$ ．			
	${ }_{2}$	79	128	Lonm． $\left.1 \mathrm{l}^{\circ} 24^{\prime} \mathrm{W}.\right\}$	Nort	129	12.7
	4	77	116		2	111	18．7
	6	105	12.2		4	18\％	19
	A	127	128		f	108	19.0
	10	161	$13 \cdot 3$		8	11－1	12日
It Gulway Doch	Nonn．	184	139		10	11.1	12.6
	2	174	13 日		Midn	105	12：3
	4	172	146	June 13．tb	Σ	10.1	117
	f	160	12 E		4	107	1918
	9	11.4	12\％		6	时	18．2
	10	106	12．5		8	87	118
	Midn．	105	12：6		10	8.4	18.0
Tune 10tla	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	10.0 10.5	$11 \cdot 6$ 11.6	Lat $\left.53^{\circ} 28^{\circ} \mathrm{N}.\right)$ Long． $15^{\circ} 00^{\circ} \mathrm{W}$ ．	Noon．	108	122
	4	$10 \cdot 5$ 102	11.8 12.8		2	10．6	18.5
	8	$12 \cdot 2$	12\％		4	11.4	199
	10	116	12－6		6	111	18－8
					8	107	18.3
	Noma．	127	12.6		10	11.1	18．8
	2 4	13.3 12.2	$12 \cdot 7$ $12 \cdot 8$	Tune 14th	Midn	1111	198 189
	6	11.6	$12 \cdot 7$	Ifone 14th	4	$11 \cdot 4$	19－2
	8	10\％	$12 \cdot 3$		6	11.4	$11 \cdot 9$
	10	100	12：3		8	11.9	18.5
	Minu．	100	123		10	111	198
June 11th	2 4	100 100	122 122	$\begin{array}{ll}\text { Tat．} & 63^{\circ} 49^{\prime} \mathrm{N} . \\ \text { Long } & 13^{\circ} 48^{\text {W }} \text { ．}\end{array}$	Nom．	193	18．8
	4	100	122	Lomg． $13^{\circ} 48^{\text {W W．}}$			
	${ }_{8}$	11.1	12.5		4	1176	19.8 18.8
Lat． $53^{\circ} 22^{\prime} \mathrm{N}$ ． Tong 12＂${ }^{2}$ W． W	10	12 K	18 F		θ	$12 \cdot 7$	18－2
					8	11.1	$11 \cdot 6$
	Noon．	100	122		10	11.1	11.1
	2	198	127		Midn．	$11 \cdot 1$	114
	4	14.4	12^{7}	June 15Lb	2	$10 \cdot 8$	1111

Luma minl loallion．	$\begin{aligned} & \text { 旨 } \\ & \text { 品 } \end{aligned}$		事	Trio and Frallum．	8		培
July tih ．	8			In Longh Swilly	Nomat	Cata 15	$\begin{aligned} & \log \\ & \operatorname{cosig}^{\cos } \\ & 13 \cdot 3 \end{aligned}$
	4	127	130			16.1	13－3
	6	324	$13 \cdot 8$		4	10.6	130
	9	129	141		1	153	13.9
	10	141	130		8	13 s	193
Tat．Ficin $22^{\prime} \mathbf{N}$. Long． $11^{\circ} 3{ }^{\circ} \mathrm{W}$ W．！	Noon．		$13 \cdot 0$		Mi0	12.9	
						11＇日	
	2			July 10Lh			$\begin{aligned} & 18.7 \\ & 19.6 \end{aligned}$
	4	163	14.1			18.8	12 A
	111	$13 \cdot 1$	$14 \cdot 4$		${ }_{\text {A }}^{4}$	141	
		$13 \cdot 3$	14.4		8	181	19.413.4
	10	120	139	It Lough Foyle	Noon．	181	
	Minn．	111	13：			177	
Julg 7th ．．．	4	127	1313			7	150
		141	13＇3			18：」	14.7
	4	147	$13 \cdot 3$		4 6	18.1	144
	6 8	$\begin{aligned} & 14 \cdot 7 \\ & 150 \end{aligned}$	133134		810	14.4	13.8
	10					198	13.313.8
	Noon．	150	123		Midn．	14.4	
	Nom．	150	$13 \cdot 8$	July l1th ．．	8 4	$\begin{aligned} & 150 \\ & 19.8 \end{aligned}$	14.4
	4	180	136		6	14＇7	$14 \cdot 4$
	68	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 139 \\ & 189 \end{aligned}$		810	183	138 19.6
						166	
	$\begin{gathered} 10 \\ \text { Mido } \end{gathered}$	$\begin{aligned} & 144 \\ & 144 \end{aligned}$	$\begin{aligned} & 133 \\ & 133 \end{aligned}$	$\left.\begin{array}{c}\text { At Moville，} \\ \text { Italugh Foyle }\end{array}\right\}$	Nnam．	189	14－4
						18，	
July 8th	2	144	18，		2	2015	16．5
	4	14＇4	139		4	${ }_{21} 1$	150
		${ }^{185}$	189			187	
	810	$\begin{aligned} & 15 \pi \\ & 150 \end{aligned}$	$\begin{aligned} & 119 \\ & 139 \end{aligned}$		8	180	4.4
					${ }^{10}$	158	$12 \cdot 8$
	Noon．	160	139		Mido	15	
	2	147	$\begin{aligned} & 196 \\ & 196 \end{aligned}$	July 1zth	${ }^{4}$	120	147114
	4	$\begin{aligned} & 160 \\ & 398 \end{aligned}$				129	
	$\begin{aligned} & 6 \\ & 8 \end{aligned}$		$\begin{aligned} & 190 \\ & 199 \\ & 196 \end{aligned}$		810	16.5	111
		$\begin{aligned} & 193 \\ & 193 \end{aligned}$		$\begin{gathered} \text { Off Eelfnet } \\ \text { Lough . . } \end{gathered}$			$\begin{aligned} & 10.6 \\ & 11.1 \end{aligned}$
	$\mathrm{Min}_{\mathrm{l}}^{10}$	$\begin{aligned} & 133 \\ & 124 \end{aligned}$	$\begin{aligned} & 138 \\ & 139 \end{aligned}$		Noon，	15．5	
	$\begin{array}{r} 2 \\ 4 \\ i \\ i \\ 10 \\ 10 \end{array}$	$\begin{aligned} & 1 \geq 2 \\ & 12: 8 \end{aligned}$			2	161	11114414414112.2
			$\begin{aligned} & 13 \cdot 9 \\ & 12.7 \end{aligned}$		4	129	
					1	144	
		141	$18 \cdot 3$		R	14.4	
		1at	133		10	12.7	

Hate ind Puation	$\stackrel{\text { e }}{\substack{e \\ 4 \\ 4}}$			Dale and Paztion．	鼻		
Alguat 17th．		Def，	Dig， Deni			Dag．	Disat
	4	129	11.1	Lat． $1040^{\circ} \mathrm{N}$	Noon．	$13 \cdot 3$	11.4
	A	$12 \cdot \mathrm{z}$	11．日	Long．6＊4］＇W．			
	g	198			9	18.7	114
	10	13.8	128		4	128	116
Lat．$n!]^{\circ} 30^{\circ} \mathrm{N}$ ． 	Nomn．	13.0	182		8	$9 \cdot 4$	11.4
	Nam．				8	94	10－5
	9	12－8	1110		30	87	100
	4	191	11 年		Midn	100	日起
	A	120	11．8．	August 2lat．	2	100	$8 \cdot 4$
	B	$18 \cdot 5$	114°		4	$8 \cdot 4$	$8 \cdot 4$
	10	12.7	11－1		B	10v］	974
	Midu．	$12 \cdot 1$	$31]$		日	100	$10 x$
Alygist 18th．	2	$12 \cdot 8$	10－5		10	120	$8 \cdot 7$
	4	128	11.1	Off Sandi io	Noob．	13－3	9．1
	${ }_{6}^{6}$	$12 \cdot 7$	$11{ }^{1 / 1}$	Frprae Talanis	Nout．	11.4	8
	\％	1319	$11 \cdot 4$		2	11.4	日＇
	10	136	10＇8		4	117	－1
$\begin{aligned} & \text { Lat. finco } 25^{\prime} \\ & \begin{array}{l} \text { N. } \\ \text { Lang. } \\ \Phi^{\prime} \end{array} \end{aligned}$					6	$11 \cdot 4$	$9 \cdot 1$
	Nond．	$12 \cdot 6$	11.4		白	$10 \cdot 6$	Q－1
	2	127	11.1		10	108	0.4
	4	18.5	$10 \cdot 8$		Midn．	10%	$9 \cdot 4$
	1	$12 \cdot 2$	$11]$	Anguat 28rad	9	10.6	8． 1
	8	12.2	11.1		4	$10 \cdot 1$	8.4
	10	$12 \cdot 2$	111		6	111	$8 \cdot 1$
	Midn．	12＇2	11］		8	$11 \cdot 6$	84
Angust 19th．	2	12.2	11］		10	19.7	Q＇4
	4	18．2	11．］	At Thershnyn	Noon．	14＇4	E－4
	6	127	11.4		2	$13 \cdot 3$	日 7
	A	$12 \cdot 7$	11.4		4	189	100
	11	193	11.4		6	$13: 3$	87
					8	10．6	g 4
	Nosa	127	111		10	100	$9 \cdot 4$
	2	$13 \cdot 3$	$11 \cdot 1$		Mido．	100	18.4
	4	13 B		Augut 29rd ．	2	9.4	8.4
	R	127	11.1		4		
	ค	127	$11 \cdot 1$		6	108	9.4
	10	$12 \cdot 7$	11＇1		8	108	9.4
	Minn，	12．2	10 b		10	$18 \cdot 7$	$8 \cdot 8$
Auguat 20nh，	2	122	105	At Thareham	Noon．	18＇7	97
	4	120	100		2	$12 \cdot 7$	14
	6	122	$10 \cdot 8$		4	12.7	$8 \cdot 4$
	8	$12 \cdot 5$	105		6	12.8	981
	10	18.6	$10 \cdot$		8	116	81

Diensma Prailloz．	哭	㜢		Tate and Poditan	岳		部
Auguat ESra Aggust 9Ath ．		Smit	Deg． $\substack{\text { Cent．} \\ 0.4}$			Tlog	Dea Cug 117
	Midn，	11－1		Augutet 27ah．	${ }_{10}^{8}$	1118	11 11.4
	2	11－1	94		Noan		11.6
	4	11－1	94	Lahg，O＊15＇${ }^{\text {E }}$	Nown	12.6	116
	6	11］	94		2	$13 \cdot 3$	12.2
	8	11－4	A^{-1}		4	$12 \cdot 8$	11.9
	10	116	91		f	11－1	11.8
About 10 milea Reft af Hanlaö					B	11－1	18＇2
	N00n．	16\％	9．		10	100	12.2
	2	120	87		Minn．	$9 \cdot 4$	111
	4	$12 \cdot 8$	100	Auguat 28th ．	2	108	11.6
	0	111	84		4	12＇8	11＇6
	8	$11 \cdot 1$	$8 \cdot 4$		E	11.6	11＇日
	10	10.5	Q 04		－	100	111
	Midn．	111	04		10	100	11．1
Angrat enth ．	2	$11 \cdot 6$	8.7	At Lerwick ．	Nown．	84	$11 \cdot 1$
	4	118	97		2	$10 \cdot 6$	111
	6	125	$9 \cdot 4$		4	11－1	111
	8	12 E	97		${ }^{1}$	9.7	11.1
	10	18.6	94		A	BB	11.1
			8.4		10	7.6	$11 \cdot 1$
	Nool．	］＇E	94		Midn	7.8	11－1
	2	12．2	07	Aggust 2fth．	Σ	78	111
	4	1140	94		4	77	$10 \cdot 3$
	6	$11 \cdot 6$	94		f	77	11.4
	8	114	97		8	04	J1＇1
	10	1144	91		10	$8 \cdot 7$	－11－1
	Minn	120	105	At Lerwiolk ．	Nons．	94	J1．1
Augurt 96th．．	2	120	11．］		9	Q＇4	111
	4	180	11＇1		4	$8 \cdot 4$	11．1
	8	120	111		6	01	11］
	8	120	114		8	77	11•］
	10	$18 \cdot 2$	116		10	77	$10 \cdot 8$
$\begin{aligned} & \text { Lat. } 6 I^{n} \\ & \text { lac } \\ & \text { Long } \\ & 1^{\circ} \\ & 5 A^{\prime} \end{aligned} \mathrm{N} .$	Noun．	$18 \cdot 7$	11•4	Augunt 30th．	$\underset{\text { Midn．}}{\text { ¢ }}$	8＂9	$10 \% 8$ 11.1
	2	12.7	$11 \cdot 4$		4	77	
	4	$11 \cdot 6$	$11 \cdot 4$		6	8×3	10.8
	6	11.1	11.4		8	$10 \cdot 3$	$11 \cdot 1$
	8	11.6	11.4		10	111	11．1
	10	118	$11 \cdot 1$	At Lerwick ．	Noon	$13 \cdot 6$	11－1
	Midn．	114	111		2	$12 \cdot 7$	11.4
Angust 27 th	$\mathbf{2}$	111	11.1		6	12－2	11－1
	4	111	$11 \cdot 1$		${ }^{6}$		
	1	111	11－1		8	77	$11 \cdot 1$

> c\|AT. vH.]

DERP－SRA TRMPERATURES．

Tale and loalimin．	占			Tata and Foultim	吕	年等	晨易
September ］ath		Cand 150	Dant． Cant． 1982	Abregat of Mul］	Noon	Dent Ener 18.7	Pent Cant 110
September	10	18－8	19 j		2	14.4	123
	Midn．	129	192		4	14－4	123
Soptember 1Jth	2	118	12 n		6	119	124
scpenter JJth	4	128	128		8	130	123
	θ	126	122		10	12．5	190
	A	12\％	18.7		Midn．	190	130
	10	116	19.7				

Tate and Parition	$\begin{aligned} & \text { 葛 } \end{aligned}$			Dete at Pralton．	吕		
St．Alban＇s Ed．，） Evglish Chan－ nel．．．．）	Nam． $\begin{aligned} & 8 \\ & 4 \end{aligned}$	The Canc． 186 1月－日 16．	E녕 Cont 16 160 $18 \cdot 8$	Cotober 8th ． At Cower ．．	（ $\begin{gathered}6 \\ 8 \\ 10 \\ \text { Midn．}\end{gathered}$		

APPENDIX B.

Temperature of the Sea at different Depths near the Eastern Margin of the North Atbantin Rasim, as ascortained by Serial and by Battom Soundings.

gymidi Sotinince,								Boitox Sommoince.			
D-4.th.	Trampa mbur ARE				$\left\lvert\, \begin{aligned} & \text { Tumpe } \\ & \text { mavise } \\ & \text { Gex. } 90 \end{aligned}\right.$	Trmpa Ber. 81	Tampa minam Ват. S8	Bta. tinn Na .	Dapth	Autlara Tarngariture	Batuna Tenipgmiure
Fmi.5050	Df Crul. 140 ...	Dea Cent 170 11 '8	Pent 138		Dleg. Cunt 18.0	Def. Cant 13.4	Ing. CenL 177		Fris.	Dr g Cout.	Deg Cunt
								27	54	181	90
								34	76	189	$0 \cdot 1$
								8	日 0	12'2	100
100	8.1	10.4						95	16	17.4	$10 \cdot 7$
								8	106	12 g	106
								24	108	$14 \cdot 8$	80
150	..'	10.5						7	158	11-8	10.2
								14	178	118	17
	8-8							11	188	11白	H-6
200			81	$8 \cdot 1$	§ 1		10-2	18	209	120	97
260	$8 \cdot 7$					00		4	251	120	07
200		$\begin{array}{r} 10 \cdot] \\ 9 \cdot 7 \end{array}$						26	Y45	$14]$	81
950	8 B	0.5						1	970	$12 \cdot 18$	94
400		Q1						15	422	11.2	
450	$7 \cdot 7$	86						46	468	159	89
500		$8 \cdot 5$	81	81	A'8	46	$8 \cdot 8$	40	617	$17 \cdot 5$	$8 \cdot 7$
550	$8 \cdot 6$	8.0						98	657	17.2	-8
800		d-88.						41	684	$17 \cdot 4$	80
680	89										
650 700	-..							2812	684 674	141	59 59
	\cdots							g	78	12.	$6]$
	\cdots		58	51	53	$5 \cdot 7$	52	96	729	177	6'6
750		$5 \cdot 6$6.5									
800								2	609	12-9	5'2
								16	816	11- ${ }^{\text {f }}$	$4 \cdot 1$
889	\cdots	4.918	$4-7$	86	87	84	3 5	44	Ef5	182	41
1000	\cdots							48	1207	148	91
								28	12] 5	14.9	2-8
	\cdots							17	12.90	11-8	92
1250		\cdots	\ldots	\cdots	8 I	82	31	88	1264	198	27
1800								52	Ig 20	198	90
1860	\cdots	...	\cdots	80				30	1960	14.8	28
14 CO											
1ddy	...	\cdots	\ldots	--	$2 \cdot 7$						
1474		ma	-	\cdots	\cdots	$2 \cdot 7$					
1500	\ldots	\cdots	\cdots	\cdots	'''	-	29				
1760	\cdots	- ${ }^{\text {m }}$	\cdots	\cdots	\cdots	$=$	2.1 2.4				
209	-	\cdots	...	\cdots	-.	-		87	2495	186	25

APPENDIX C .

Comparative Rates of Reduction of Temperature utith Increase of Depth ad Thrce Stations in differant Latitudes, all of them on the Eastern Margin of the Allantic Basins.

APPENDIX D.

Temperature of the Ne a al different Depths in ihe Davin and Cold Arent lysing batween the North of Scotland, the Shetland Fslands, and the Fövee Inkands; as asectanned by Serial and by Beitom Soundings
 мntrmind fir premure,

APPENDIX E.

Intermentiade Bottom Temperatures, shouning the Intermionture of. Warm and Cold Currents on the Borders of the Warm and Cold Areas.

Elation.	Depib.	Evifoce Tempere. ture.	Bottom Te.mpernthate.	Biation. $\mathrm{N} n$	Depth	Anrfinca Toinparatare.	Failnm Tет. ры" tars
72	Falbinme 78	Meg. Coul]] 3	$\begin{gathered} \text { Dog. } \\ \mathrm{Conl} . \\ \mathrm{g} 3 \end{gathered}$	75	Fintry nom 240	Dug Cinnt. 10'日	7 Fg Cent 日 5
79	76	1] 2	gax^{-8}	78	290] 19	E 3
73	84	11'5	93	82	312	113	51
71	108	11%	9•2	83	362	118	30
74	20.7	11-4	$8^{\prime 7}$		-		
66	267	II'4	7 G	1.	40	10.9	\% 6

CHAPTER VIII.

THE GULF-STREAM.

'The Ravge of the 'Porcupiue' Temparature Ohservations.-TAow Temperatures univergal at great Depths. The Diffeulty of investigating Ocead Currents.-The Doctrine of a gemaral Oceanic Circulation adyocated by Captain Maury and by Dr, Carpanter. Opinion expressed by Sir Jolhn Hererhel.-The Origin and Extedsion of the Gulfetreand.-The Views of Captain Maury; of Pro. feasor Huff; of Dr. Carpenter.-The Gulf-streatn off the Censt of North Americe.-Profeasor Reche's 'Seatione.'-The Gulfertregrn traced by the Surface Temparatures of the North Atlantic.-Mr. Findlay's Views.-Dr. Petermana's Temperature Charts.-Sources of the noderiying Cold Water.-The Arctic Return Currents.Antarctic Indraught.-Vertical Diatribution of Temperature in the North Atlantic Banin.

All the temperature investigations carried on in H.M.S.S. 'Lightning ' and 'Porcupine' during the years 1868-69 and 1870, with the exception of a series of observations already referred to taken in the Mediterranean under Dr. Carpenter's direction in the summer of 1870 , were included within an area nearly 2,000 English miles in length by 250 in width, extending from a little beyond the Færoe Islands, lat. $62^{\circ} 30^{\circ} \mathrm{N}$., to the Strait of Gibraltar, lat. $36^{\mathrm{n}} \mathrm{N}$.

The greater part of this belt may be described as
the eastern border of the North Atlantic fringing Western Europe. A small but very interesting portion of it forms the channel between the Firroe Islands and the North of Scotland, one of the channels of communication between the North Atlantic and the North Sea; and a few soundings in shallow water to the east of Shetland are in the shallow North Sea basin. It is evident, therefore, that the greater part if not the whole of this belt must participate in the general scheme of distribution of temperature in the North Atlantic, and must owe any peculiarities which its thermal conditions may present to some very general cause.

All our temperature observations, except the few taken in the 'Lightning' in 1868, were made with thermometers protected from pressure on Professor Miller's plan, and the thermometers were individually tested by Captain Davis at pressures rising to about three tons to the square inch before they were fuxnished to the vessel; they were also more than once reduced to the freezing-point during the voyage to ascertain that the glass had been in no way distorted. The results may therefore be received with absolute reliance within the limits of error of observation, which were reduced to a minimum by the care of Captain Calver.

A large number of scattered observations, most of which have unfortunately been made with instruments which cannot thoroughly be depended upon for accuracy of detail,-the error, however, being probably in the direction of excess of heat,-established the singular fact that although the temperature of the surface of the sea in equatorial regions
may reach $30^{\circ} \mathrm{C}$., at the greatest depths both in the Atlantic and in the Pacific the temperature is not higher than from 2° to $4^{\prime} C$., sometimes falling at great depths to 0° C. I quote from Mr. Prestwich's ahle presidential address to the Geolngical Society for the year 1871, a table of the most important of these earlier observations in the Atlantic and the Pacific: : ${ }^{1}$

Trmperatureg of the Athantic.

Lastlude	Longitude.	Depith Fallis.	Temperature.		Cbesiver ant Data.
			Surface.	Enttom,	
$42^{\circ} 0^{\circ} \mathrm{N}$.	$24^{\circ} 40^{\circ} \mathrm{W}$.	780	$18^{\circ}{ }^{\circ} \mathrm{C}$.	$6 \theta^{\circ} \mathrm{O}$.	Chevalier. . 1897
280	3460	1400	244	61	n . . 1837
721	2040	505	266	22	Levz . . 183a
425	266	1006	270	32	Tessan . . 1841
15 aS	2314	1200	25 0	41	" . . J841
2:5 10	7 的 E.	886	19'日	30	\cdots. . 1841
2938	$10 \quad 57$	1051	19.1	20	. . 1841
3220	4350	1074	21.6	24	Lenz . . . 1832
31812	5480 W .	23a	16-8	30	Tesann . . JEAI

Thmphatidreg af thr Pacific.

Latinda.	Langltude.	$\begin{aligned} & \text { Depth } \\ & \text { fill } \\ & \text { Fill. } \end{aligned}$	Temperative.		Oberrver and Date.
			Surtuce.	Dottome	
61* $34^{4} \mathrm{~N}$	$1 \mathrm{Al} 1^{\prime \prime} 41^{\prime} \mathrm{E}$.	957	$11 \cdot 8^{\circ} 0$.	$2.5{ }^{\circ} \mathrm{C}$.	Tegrat . . 1832
2R 52	1739	600	255	¢ 0	Hepr.hey - . 1828
18 5	17410	710	24.7	$4 \cdot 8$	\% - 1836
432	13424 W.	2045	27.2	$1 \cdot 7$	The 'Bouite' 1837
Equator.	17934	1000	300	25	Kotzebue , 1824
2 t 14 S .	1961	918	$27 \cdot 2$	22	Leлz . . - 1894
32 57	17642 E .	782	16.4	5.1	. 183
4347	80 ¢ W.	1066	130	2.3	Teprat . . 1841

[^44]To these may he added the olservations of lieutenant S. P. Lee, of the United States Coast Survey, who, in August 1847, recorded a temperature of $2^{\mathrm{C}} 7 \mathrm{C}$. below the Gulf-stream at a depth of 1,000 fathoms, lat. $35^{n} 26^{\prime} \mathrm{N}$. , long. $73^{\circ} 12^{\prime} \mathrm{W}$.; and of Lieutenant Dayman, who found the temperature at 1,000 fathoms in lat. $61^{\circ} \mathrm{N}$. and long. $40^{\circ} \mathrm{W}$. to he $-0^{\circ} 4 \mathrm{C}$., the surface temperature being $12^{\circ} \cdot 5 \mathrm{C}$. These results are fully borne out by the recent determinations of Captain Shortland, R.N., who ohserved a temperature of $2^{\circ} \cdot 5 \mathrm{C}$. in deep water in the Arabian Sea between Aden and Rombay, ${ }^{1}$ by those of Commander Chimmo, R.N., and Lieutenant Johnson, R.N., who found at various points in the Atlantic a temperature of about $\mathbf{3}^{\circ} 9 \mathrm{C}$. at 1,000 fathoms, and a slow decrease from that point to 2,270 fathoms, where the temperature registered by unprotected thermometers was $6^{\circ} 6 \mathrm{C}$., reduced by the necessary correction for pressure to alonut $1^{\circ} 6 \mathrm{O}_{\mathrm{o}}{ }^{2}$ and finally by the temperature determinations of the 'Porcupine' expeditions, carefully conducted with protected instruments, but not carried nearer the tropics thon the latitude of the Strait of Gibraltar ; and they appear to go far to establish a nearly uniform temperature for abyssal depths, not far from the freesing-point of fresh water.

As it was evident that the low temperature for deep water in tropical regions could not be acquired

[^45]by contact with the surface of the crust of the earth, the inevitable conclusion seems to have been early arrived at that, if such temperatures existed, they must be due to a general oceanic circulation, to surface currents of warm water passing towards the poles, and compensating counter-currents of cold water from the poles towards the equator. Humholdt states that he showed, in 1812, " that the low temperature of the tropical seas at great depths could only be owing to currents from the poles to the equator ${ }^{[1}$

D'Aubuisson, in 1819, also attributed the low temperature of the sea at great depths at or near the equator to the flow of eurrents from the poles. ${ }^{2}$

But although the fact of the existence of currents lowering the temperature of deep water in equatorial regions was admitted by various authorities in physical geography, little light was thrown upon the causes of this circulation. Latterly, the whole subject became obscured hy the very general adoption of the doctrine already referred to of a permanent temperature of $4^{\circ} \mathrm{C}$. all over the world bepond a certain depth; and it was not until the publieation of Captain Maury's fascinating book on the ' Physical Geography of the Sea 'had given an extraordinary stimulus to the study of this department of science, that the question was again raised.

It was natural from its geographical position, and from the much greater opportunity which it offered for the accumulation of the almost infinite number

[^46]of data required for the consideration of such subjects, that the basin of the North Atlantic should be selected for investigation, more particularly as peculiaritics of climate seemed there to be limited in space, and well defined and even extreme in character.

It seems at first somewhat singular that thers should be any room for question as to the causes, the sources, and the directions of the ocean currents which traverse the ocean in our immediate neighbourhood, and exercise a most important influence on our economy and well-being. The investigation is, however, one of singular difficulty. Some currents are palpable enough, going at a rate and with a force which make it easy to detect them, and even comparatively easy to gauge their volume and define their path; but it seems that the great movements of the water of the ocean, those which produce the most important results in the transfer of temperature and the modification of climate, are not of this character. These move so slowly that their surface movement is constantly masked by the drift of variable winds, and they thus produce no sensible effect upon navigation.

The path and limits of such bodies of moving water can only be determined by the use of the thermometer. The equalizing of the temperature of bodies of water in contact with one another and differently heated, by conduction, diffusion, and mixture, is however so slow, that we usually have but little difficulty in distinguishing currents from different sources.
U_{p} to the present time little had been done in detcrmining the depth and mass of currents by the
thermometer, and under-currents were practically unknown; but the limits of surface currents had been traced with considerable precision by observations of the temperature of the surfnce of the sea, even when the movement was so slow as not to be otherwise perceptible. The amount of heat received directly from the sun may be taken approximately to depend upon latitude only, and this heat is in addition to the heat of the surface water derived from other sources, whatever these may be. Ohservations of surface temperature accordingly give us the heat derived directly from the sun in the region, and the hent derived from the same source during the passage of the water to the region, in addition to the original heat of the water ; if, therefore, the water of any region be derived from-lhat is to say, form part of-a movement of water from a polar source, and if the surface water of another area on the same parallel of latitude form part of an equatocial current, although in that particular latitude they receive in both cases the same amount of heat from the sun, there will he a marked difference in their temperature. To take an extreme case; the mean temperature of the sea in the month of July off the Hebrides, in lat. 588^{\wedge} N., in the path of the Gulfstream, is $13^{\circ} \mathrm{C}$.; while in the same latitude off the coast of Labrador, in the course of the Labrador current, it is $4^{5} \cdot 5 \mathrm{C}$.

The distribution of surface temperature in the North Atlantic is certainly very exceptional. A glance at the chart PI. VII., represcnting the general distribution of leat for the month of July, shows that the isothermal lines for that month, instead of

Plate VII. -Physicat Chart of tha Norlh Allantic: showing the depth, and the gatiemp diainibntion of tempematura for the manth of July

tending in the least to coincide with the parallela of latitude, run up into a series of long loops, some of them continued into the Arctic Sea.

The temperature of the bordering land is not affected to any perceptible degree by direct radiation from the sea; but it is greatly affected by the temperature of the provailing winds. Setting aside the still more important point of the equalization of summer and winter temperature, the mean annual temperature of Bergen, lat. $60^{\circ} 24 i^{\prime} \mathrm{N}$., subject to the ameliorating influence of the prevailing southwest wind blowing over the temperate water of the North Atlantic, is $6^{\circ} \cdot 7 \mathrm{C}$.; while that of Tobolsk, lat. $5 S^{\circ} 13^{\prime} \mathrm{N}$, is $-2^{\circ} 4, \mathrm{C}$.

But the temperature of the North Atlanfic and its bordering lands is not only raised above that of places on the same parallel of latitude having a 'continental' climate, but it is greatly higher than that of places apparently similarly circumstanced to itself in the southern hemisphere. Thus the mean annual temperature of the Færoe Islands, lat. $62^{\circ} 2^{\prime} \mathrm{N}$., is $7^{\circ} \cdot 1 \mathrm{C}$., nearly equal to that of the Falkland Islands, lat. $52^{\circ} \mathrm{S}$., which is $8^{\circ} \cdot 2 \mathrm{C}$. ; and the temperature of Dublin, lat. $53^{\circ} 21^{\circ}$ N., is $9^{\circ}-6 \mathrm{C}$., while that of Port Framine, lat. $53^{\circ} 8^{\prime} \mathrm{S}$., is $5^{\circ} \cdot 3 \mathrm{C}$. Again, the high temperature of the North Atlantic is not equally distributed, but is very marked in its determination to the north-enst const. Thus the mean annual temperature of Walifax (Nova Scotia), lat. $4.4^{\circ} 39^{\prime}$ N., is $0^{\circ} \cdot \mathbf{2} \mathrm{C}$., while that of Dublin, lat $53^{\circ} 21^{\prime} \mathrm{N}$., is $9^{\circ} \cdot \mathrm{GC}$. ; and the temperature of Boston (Mass.), lat. $40^{\circ} 21^{\prime} \mathrm{N}$., is exactly the same as that of Jublin.

This remarkable diversion of the isothermal lines from their normal direction is admittedly caused by ocean currents affecting the temperature of the surface while conveying the warm tropical water towards the polar regions, whence there is a constant counterflow of cold water beneath to supply ita place.

We thus arrive at the well-known result that the temperature of the sea bathing the north-eastern shores of the North Atlantic is raised greatly above its normal point by currents involving an interchange of tropical and polar water; and that the lands bordering on the North Atlantic participate in this amelioration of climate by the heat imparted by the water to their prevailing winds.

This phenomenon is not confined to the North Atlantic, although fron its peculiar configuration and relation to the land that ocean presents the most marked example. A corresponding series of lonps, not so well defined, passes southwards along the east coast of South America, and a very marked series occopies the north-eastern angle of the Pacifin off the Aleutian Islands and the coast of California.

Two principal views have been held as to tha causes of the currents in the North Atlantic. One of these, which appears to have been first advanced in a definite form by Captain Maury, and which has received some vague support from Professor Buff, is that the great currents and counter-currents of warm and cold water are due to a circulation in the watery shell of the globe, comparable to the circulation of the atmosphere,-that is to say, caused by tropical heat and evaporation, and arctic cold.

It is not easy to understand Captain Maury's view. He traces all ocean currents to differences in specific gravity. He says: "If we except the tides, and the partial currents of the sea, such as those that may be created by the wind, we may lay it down as a rule that all the currents of the ocean owe their origin to the differences of epecific gravity between sea-water at one place and sea-water at another; for wherever there is such a difference, whether it be owing to difference of temperature or to difference of saltness, \&c., it is a difference that disturbs equilibrium, and currents are the consequence." ${ }^{11}$ These differences in specific gravity he attrihutes to two principal causes; differences in temperature, and excess of ealts produced by evaporation. Captain Maury explains his views as to the first of these causes by an illustration. "Let us now suppose that all the water within the tropics to the depth of one hundred fathoms suddenly becomes oil. The aqueous equilibrium of the planet would thereby be disturbed, and a general system of currents and counter-currents would be immediately commenced, the ail in an unbroken sheet on the surface running towards the poles, and the water as an under-current towards the equator. The oil is supposed, as it reaches the polar basin, to be reconverted into water, and the water to become oil as it crosses Cancer and Capricorn, rising to the surface in intertropical regions, and returning as before." "Now, do not the cold water of the north, and the warm water of the gulf made specifically lighter by tropical heat, and which we see actually presenting

[^47]such a system of counter-currents, hold at least, in some degree, the relation of the supposed water and oil." ${ }^{1}$
"There can be no doubt that Maury concludes that the waters in intertropical regions are expanded by heat, and those in polar regions are contracted by cold, and that this tends to produce a surface-current from the equator to the poles, and an under-current from the poles to the equator." ${ }^{2}$

With regard to increased specific gravity produced by excess of salt, Captain Maury says -
"The brine of the ocean is the ley of the earth. From it the sea derives dynamical power, and its currents their main strength." "One of the purposes which in the grand design it was probably intended to accomplish by leaving the sea salt and not fresh, was to impart to its waters the forces and powers necessary to make their circulation complete." " "In the present state of our knowledge concerning this wonderful phenomenon (for the Gulf-stream is one of the most marvellous things in the ocean), we can do little more than conjecture. But we have the causes in oparation, which we may safely assume are among those concerned in producing the Gulfstream. One of these is the increased saltness of its water after the trade-winds have been supplied with vapour from it, be it much or little; and the other is the diminished quantum of salt which the
${ }^{1}$ Coptain Maury, op. cit.
${ }^{2}$ On Ocann Curronte. Part III. On the Phyeiral Cause of Ocenn Carrenta. By Jamea Croll, of the Geological Survey af Scotland. (Philoaophical Magnzine, October 1870.)

[^48]Baltic and the northern seas contain." "Now, here we havo on one side the Caribhean Sea and Gulf of Mexico with their waters of brine; on the other, the great Polar Basin, the Baltic, and the North Sea, the tiwo latter with waters that are but little more than brackish. In one set of these sea-basins the water is heavy, in the other it is light. Between them the ocean intervenes; but water is bound to seek and to maintain its level; and here, therefore, we unmask one of the agents concerned in causing the Gulf-stream." ${ }^{2}$

As Mr. James Croll has very clearly pointed out, Captain Maury's two causes tend to neutralize each other.
"Now it is perfectly obvious that if difference in saltuess is to co-operate with difference in temperature in the production of ocean currents, the saltest waters, and consequently the densest, must be in the polar regions; and the waters least salt, and consequently lightest, must be in equatorial and intertropical regions. Were the snltest water at the equator and the freshest at the poles, it would tend to neutralize the effect due to heat, and, instead of producing a current, would simply tend to prevent the existence of the currents which otherwise would result from difference of temperature." "According to both theories it is the differences of density between the equatorial and polar waters that gives rise to currents; but according to the one theory, the equatorial waters are lighter than the polar, whilst according to the other theory they are heavier than the polar. Either the one theory or the other may

[^49]he true, or neither; but it is logically impossible that both of these can, for the simple reason that the waters of the equator cannot at the same time be both lighter and heavier than the water at the poles." "So long as the two causes continue in action, no current can arise unless the energy of the one cause should happen to exceed that of the other, and even then a current will only exist to the extent by which the strength of the one exceeds that of the other." ${ }^{1}$

It seems scarcely necessary to enter further into detail in reference to Captain Maury's theory of ocean currents, which is really chiefly remarkable for its ambiguity, and for the pleasant popular style in which it is advocated; since my friend and colleague Dr. Carpenter has latterly brought into great prominence what appears to be a modification of the same view, put in a more definite form.

Professor Buff, in his excellent little volume on the Physics of the Earth, speaking of the layer of cold water derived from the Arctic seas which underlies the tropical ocean, and its method of transport, says: " The following well-known experiment clearly illustrates the manner of the movement. A glass vessel is to be filled with water with which some powder has been mixed, and is then to be heated at bottom. You will soon see, from the motion of the particles of powder, that currents are set up in opposite directions through the water. Warm water rises from the hottom, up through the middle of the vessel, and spreads over the surface; while the colder, and therefore heavier liquid, falls down at the sides of the

[^50]glass. Currents like these must arise in all waterhasins, and even in the oceans if different parts of their surfiace are unequally heated. ${ }^{\prime \prime}$

This is of course a common class-experiment illustrating convection. It is evidently impossible that movements of ocenn water can be produced in this way, for it is well known that everywhere, except under certain exceptional circumstances in the polar basin, the temperature of the sea decreases from the surface to a minimum at the bottom, and tropical heat is applied at the surface only. It is singular that this irrelevant illustration should have been introduced by Professor Buff; for hie account of the origin and extension of the Gulf-stream, which may be taken as the type and exponent of ocean currents, is quite consistent with the commonly received opinions.

On working up the temperature results of the ' Porcupine' expedition of 1869, Dr. Carpenter satisfied himself that the mass of comparatively warm water, 800 fathoms deep, which we had established as existing, and probably moving in a north-easterly direction, along the west coasts of Britain and the Lusitanian peninsula, could not be an extension of the Gulf-stream, but must be due to a general circulation of the waters of the ocean comparable with the circulation of the atmosphere.
" The influence of the Gulf-stream proper (meaning

[^51]by this the body of superheated water which issues through the 'narrows' from the Gulf of Mexico), if it reaches this locality at all-which is very doubtful -could only affect the most saperficial stratum; and the same may be said of the surtace-drift caused by the prevalence of south-westerly winds, to which some have attributed the phenomena usually accounted for by the extension of the Gulf-stream to these regions. And the presence of the body of water which lies letween 100 and 600 fathoms depth, und the range of whose temperature is from 48° ($8^{\circ} .85 \mathrm{C}$.) to 42° ($5^{\circ} .5 \mathrm{C}$.), can scarcely be accounted for on any other hypothesis than that of a great general movement of equatorial water towards the polar area, of which movement the Gulf-stream constitutes a peculiar case, modified by local conditions. In like manner the arctic stream which underlies the warm superficial strata in our cold area, constitutes a peculiar case, modified by the local conditions, to be presently explained, of a great general movement of polar water towarda the equatorial area, which depresses the temperature of the deepest parts of the great oceanic basins nearly to the freezing-point." ${ }^{1}$

At first Dr. Carpenter appears to have regarded this aceanic circulation as a case of simple convection. "To what, then, is the north-east movement of the warm upper stratum of the North Atlantic attributable? I have attempted to show that it is part of a general interchange between polar and equatorial waters, which is quite independent of any such

[^52]local accidents as those which produce the Gulfstream proper, and which gives movement to a much larger and deeper hody of water than the latter can affect. The evidence of auch an interchange is two-fold--that of physical theory, and that of actual observation. Such a movement must take place, as was long since pointed out by Professor Buff, whenever an extended hody of water is heated at one part and cooled at another ; it is made use of in the warming of buildings by the hot-water apparatus, and it was admirably displayed at the Royal Institution a few months since in the following experiment kindly prepared for me by Dr. Odling." Dr. Carpenter then repcats Professor Buff's convection experiment, the heat heing applied by a steam jet introduced vertically at one end of a narrow glass trough while a hlock of ice was wedged into the other end. "Thus a circulation was shown to be maintained in the trough by the application of heat at one of its extremities and of cold at the other, the heated water flowing along the surface from the warm to the cold end, and the cooled water flowing along the bottom from the cold to the warm end; just as it has been maintained that equatorial water streams on the surface towards the poles, and that polar water returns along the bottom towards the equator, if the movement be not interfered with by interposed obstacles, or prevented by antagonistic currents arising from local peculiarities." ${ }^{1}$

That such a movement cannot take place on this hypothesis has been already shown; and Dr. Car-

[^53]1. 12
penter in a lecture to the Royal Geographical Society, in an illustration drawn from two supposed basins, one under equatorial conditions and the other under polar, connected hy a strait, ${ }^{1}$ says: "The effect of surface-heat upon the water of the tropical basin will be for the most part limited to its uppermost stratum, and may here be practically disregarded. But the effect of surface-cold upon the water of the polar hasin will be to reduce the temperature of its whole mass below the freezing-point of fresh water, the surface stratum sinking as it is cooled, by virtue of its diminished bulk and increased density, and being replaced by water not yet cooled to the same degree. The warmer water will not come up from below, but will he drawn into the basin from the surface of the surrounding area; and since what is thus drawn away must be supplied from a yet greater distance, the continual cooling of the surface stratum in the polar basin will cause a 'set' of water towarda it to be propagated backwards through the whole intervening ocean in connection with it, until it reaches the tropical area." And further on in the same address: "It is seen that the application of cold at the surface is precisely equivalent as a moving power to that application of heat at the bottom by which the circulation of water is sustained in every heating apparatus that makes use of it." No doult the application of cold to the surface of a mass of water previously at the same temperature throughout, would
${ }^{1}$ On the Gibraltar Current, the Gulfatream, and the reneral Oceanic Circnlation. By Dr. W. B. Carpenter, F.R.S. Reprinted from the Proceadinga of the Ruyal Geographical Society of London, 1870.
have the same effect as the application of heat to the bottom, and in either case we should have an instance of simple convection, the warmer underwater rising through a colder upper layer; but that is not what we have in the polar rea; for the temperature of the arctic sea gradually sinks from a few fathoms beneath the surface to a minimum temperature, and consequent maximum density, at the bottom. Therefore in this case the application of cold at the surface is not equivalent to the application of heat to the bottom in a hot-water heating apparatus, and Dr. Carpenter has shown that he is aware of this by requiring the backward propagation of a surface-current.

That a certain effect in inerease of specific gravity must be produced by the cooling of the surface film of the arctic ocean there seems to be little doubt; but the area of maximum effect is very limited, and during the long arctic winter the greater part of that area is protected by a thick layer of ice, one of the worst possible conductors.

It certainly appears to me that this cause is totally inadequate to induce a powerful current of great depth, six thousand miles long and several thousand miles in width, the effect which Dr. Carpenter attributes to it.

During the summer of 1870 , and afterwards in 1871, Dr. Carpenter made a series of observations on the current in the Strait of Giliraltar. The existence of an under-current out of the Mediterranean was considered to be established by these observations, and the conclusions arrived at as to its cause did not differ materially from those already very generally
accepted. Dr. Carpenter believes, however, that the conditions in the Strait of Gibraltar and in the Baltic Sound aptly illustrate the general circulation in the ocean, and confirm his views.

I quote from the general summary of Dr. Carpenter's address to the Geographical Society :-
"The application of the foregoing principles to the particular cases discussed in the paper is as follows :-
" VIII.-A vertical circulation is maintained in the Strait of Gibraltar by the excess of evaporation in the Mediterranean over the amount of freah water returned into its basin, which at the same time lowers its level and increases its density; so that the surface inflow of salt water which restores its level (exceeding by the weight of salt contained in it the weight of fresh water which has passed off by evaporation) disturbs the equilibrium and produces a deep outflow, which in its turn lowers the level. The same may be assumed to be the case in the Strait of Babelmandeb.
" IX.-A vertical circulation is maintained in the Baltic Sound by an excess in the influx of fresh water into the Baltio; which at the same time raises its level and diminishes its density, so as to produce a aurface outfow, leaving the Baltic column the lighter of the two, so that a deep inflow must take place to restore the equilibrium. The same may be assumed to be the case in the Bosphorus and Dardanelles.
"X.-A vertical circulation must, on the same principles, be maintained between polar and equatorial waters by the difference of their temperatures:
the level of the polar water being reduced, and ita density increased by the surface-cold to which it is subjected, whilst a downward motion is also imparted to each stratum euccessively exposed to it; and the level of equatorial water being raised and its density diminished by the surface-heat to which it is exposed. (The first of these agencies is by far the more effective, since it extends to the whole depth of the water, whilst the second only affects, in any considerable degree, the superficial stratum.) Thus a movement will be imparted to the upper stratum of oceanic water from the equator tnwards the poles, whilst a movement will be imparted to the deeper stratum from the poles towards the equator."

It seems to me that the doctrine here propounded by my distinguished colleague, if I understand it aright, is open to the objection to which I have already referred in connection with the speculations of Captain Maury.

If the currents flow in the direction and with the permanence accepted by Dr. Carpenter in the Strait of Gibraltar and in the Baltic Sound, if their flow and its direction be due to the causes to which Mr . Carpenter attributes them, and if there be any analogy whatever between the conditions of equilibrium of these inland seas and that of the outer ocean,-none of which propositions appear to me at all satisfactorily proved,-I should think that the vast equatorial region, the path of the trade-winds and the belt of yertical solar radiation, must, so far as evaporation is concerned, resemble, or rather greatly exaggerate, the conditions of the Mediterranean. The consequent accumulation of salt,-through the whole
depth of course, the brine sinking downwards, -must greatly outweigh (I give this as what Petermann would call a gratuitous speculation) the slight expansion caused by the heating of the surface layer. The more restricted arctic basin on the other hand, as was long ago pointed out by Capt. Maury, participates to a certain extent in the characteristics of the Baltic; and I am greatly mistaken if the low specific gravity of the polar sea, the result of the condensation and precipitation of vapour evaporated from the intertropical area, do not fully counterbalance the contraction of the superficial film by a rotic cold.

The North Atlantic ocean hears a proportion in depth to the mass of the earth considerably less than that of the paper covering an eighteeninch globe to that of the globe it covers, while the film heated by direct solar radiation may be represented by its surface coating of varnish, and is not actually thicker than the height of St. Paul's. Physicists seem to find a difficulty in giving us the amount of palpable effect in producing currents in this shell of water, six thousand miles in length by three thousand in width and two miles in thickness, which may be due to causes auch as those relied upon by Dr. Carpenter, acting under the peouliar circumstances and to the amount in which we find them in nature; and probahly we are not yet in a position to give them sufficient data to enable them to do so. Mr. Croll, a good authority in such matters, has attempted to make some calcutions, and comes to the conclusion that none of them are sufficient to overcome the friction of water and to
produce any current whatever ; ${ }^{1}$ but in this view he does not certainly receive universal support. I am myself inclined to believe that in a grent body of salt water at different temperatures, with unequal amounts of evaporation, under varying barometric pressures, and subject to the drift of variable winds, currents of all kinds, great and amall, variable and more or less permanent, must be set up; ${ }^{2}$ but the probable result appears to be reduced to a minimum when we find that causes, themselves of doubtful efficiency, actually antagonize one another; and that we are ohliged to trust for the final effect to the amount by which the least feeble of these exceeds the others in strength. Speaking in the total absence of all reliable data, it is my general impression that, if we were to set aside all otber agencies, and to trust for an oceanic circulation to those conditions only which are relied upon by Dr. Carpenter, if there were any general circulation at all, which seems very problematical, the odds are rather in favour of a warm under-current travelling northwards by virtue of its excess of salt, balnaced by a surface return-current of fresher though colder arctic water.

With regard, then, to this question of a general circulation caused by difference in specific gravity, for the present I cordially endorse the opinion expressed ly the late Sir John Herschel in a cautious

[^54]and excellent letter addressed to Dr. Carpenter-a letter which there is no impropriety in my quoting in full as it is already in print, and which has a special interest as being probably one of the last written by Sir John Herschel on scientific subjects:-

'" Collinawood, April geth $18 \% 1$.

"My dedr Sir, Many thanks for your paper on the Gillraltar current and the Gulf-stresm. Assuredly, after well considering all you suy, as well os the common sense of the matter, and the experience of our bot-water circulation pipes in our greenhouses, \&c, there is no refusing to admit that an oceanic circulation of some sort must arise from mere heat, cold, and evaporation, as veras causce, and you have brought forward with singular emphasis the more powerful action of the polar cold, or rather the more intense action, as its maximum effect is limited to a much smaller area than that of the maximum of equatorial heat.
"The action of the trade and counter-trade winds, in like manner, cannct be ignored; and henceforward the question of ocegn cirrents will have to be studied under a twofold point of view. The wind-currents, however, are of easier investigntion: all the causes lie on the surface; none of the agencies escape our notice; the confguration of coasta, which mainly determines their direction, is patent to sight. It is otherwise with the other class of movementa. They take place in the depths of the ocean; and their movements and directions and channels of concentration are limited to the configuration of the sea-bottom, which has to be atudied over ite entire eurface by the very imperfect methad of sounding.
"I am glar you succeeded in getting specimens of Mediterranean water near the place of the preaumed salt spring of Smyth and Wollaston, making it clear that the whole affair must have arizen from some accidental substitution of one bottle for another, or from evaporation. I never put nay hearty faith in it.
" So, after all, there is an under-current setting outwards in the Straits of Gibraltor.
"Repeating my thanks for this interesting memoir, believe me, dear Sir,

" Yours very truly,
"J. F. W. Hrrechel.

"Dr. W. B. Carpenter." ${ }^{1}$

The second view, supported by Dr. Petermann of Gotha, and by most of the leading authorities in physical geography in Germany and Northern Europe, and strongly urged by the late Sir John Herschel in his 'Outlines of Physical Geography' published in the year 1846, attributes nearly the whole of the sensible phenomena of hert-distribution in the North Atlantic to the Gulf-stream, and to the arctic return-currents which are induced by the removal of tropical water towards the polar regions by the Gulf-stream. If we for a moment admit that to the Gulf-stream is due almost exclusively the singular advantage in climate which the eastern horders of the North Atlantic possess over the western, the origin of this great current, its extent and direction, and the nature and amount of its influence, become questions of surpassing interest. Before considering these, however, it will be well to define what is here meant by the term 'Gulfstream, ' for even on this point there has been a good deal of misconception.

I mean by the Gulf-stream that mass of heated water which pours from the Strait of Florida across the Narth Atlantic, and likewise a wider but less definite warm current, evidently forming part of the same great movement of water, which curves north${ }^{1}$ Natnre, vol. iv. p. 71
wards to the eastward of the West Indian Islands. I am myself inclined, without hesitation, to regard this stream as simply the reflux of the equatorial current, added to no douht during its north-easterly course, hy the surface-drift of the anti-trades which follows in the main the same dircetion.

The scope and limit of the Gulf-stream will be better understood if we inquire in the first place into its arigin and cause. As is well known,-in two bands, one to the north and the other to the south of the equator,- the north-east and south-east tradewinds, reduced to meridional directions by the eastward frictional impulse of the earth's rotation, drive before them a magnificent surface current of hot water 4,000 miles long by 450 miles broad at an average rate of thirty miles a day. Off the coast of Africa near its starting-point to the south of the Islends of St. Thomas and Anna Bon, this 'Equatorial Current' has a speed of forty miles in the twenty-four hours, and a temperature of $23^{\circ} \mathrm{C}$.

Increasing quickly in bulk, and spreading out more and more on both sides of the equator, it flows rapidly due west towards the coast of South America. At the eastern point of South America, Cape St. Roque, the equatorial current splits into two, and one portion trends southwards to deflect the isotherms of $21^{\circ}, 15^{\circ} \mathrm{F}, 10^{\circ}$, and $4^{\circ}-5 \mathrm{C}$. into loops upon our maps, thus carrying a scrap of comfort to the Falkland Islands and Cape Hoorn; while the northern portion follows the north-east coast of South America, gaining continually in temperature under the influence of the tropical sun. Its speed has now increased to sixtyeight miles in twenty-four hours, and hy the union
with it of the waters of the river Amazon, it rises to one hundred miles ($6 \cdot 5$ feet in a second), hut it soon falls off again when it gets into the Caribhean sea. Flowing slowly through the whole length of this sea, it reaches the Gulf of Mexico through the Strait of Yucatan, when a part of it sweeps immediately round Cuba; but the main stream "having made the circuit of the Gulf of Mexico, passes through the Strait of Florida; thence it issues as the 'Gulf-stream 'in a majestic current upwards of thirty miles broad, two thousand two hundred feet deep, with an average velocity of four miles an hour, and a temperature of 86° Fahr. ($30^{\circ} \mathrm{C}$)." ${ }^{1}$ The hot water pours from the strait with a decided though slight north-easterly impulse on account of its grest initial velocity. Mr. Croll calculates the Gulf-stream as equal to a stream of water fifty miles broad and a thousand feet deep flowing at a rate of four miles an hour: consequently conveying $5,575,680,000,000$ cubic feet of water per hour, or $193,816,320,000,000$ cuhic feet per day. This mass of water has a mean temperature of $18^{\circ} \mathrm{C}$. as it passes out of the gulf, and on its northern journey it is cooled down to 4°, thus losing heat to the amount of $13^{\circ}: 5 \mathrm{C}$. The total quantity of heat therefore transferred from the equatorial regions per day amounts to something like $154,959,300,000,000,000,000$ footpounds. ${ }^{\text {a }}$

This is nearly equal to the whole of the heat

[^55]received from the sun by the Arctic regions, and, reduced hy a half to avoid all possibility of exaggeration, it is still equal to one-fifth of the whole amount received from the sun by the entire area of the North Atlantic. The Gulf-stream, as it issues from the Strait of Florida and expands into the ocean on its northward course, is probably the most glorious natural phenomenon on the face of the earth. The water is of a clear crystalline transparency and an intense blue, and long after it has passed into the open sea it keeps itself apart, easily distinguished by its warmth, its colour, and its clearness; and with its edges so sharply defined that a ship may have her atem in the clear blue stream while her stern is still in the common water of the ocean.
"The dynamics of the Gulf-stream have of late, in the work of Lieutenant Maury already mentioned, been made the subject of much (we cannot but think misplaced) wonder, as if there could be any possible ground for doubting that it owes its origin entirely to the trade-winds." ${ }^{1}$ Setting aside the wider question of the possibility of a general oceanic circulation arising from heat, cold, and evaporation, I believe that Captain Maury and Dr. Carpenter are the only authorities who of late years have disputed this source of the current which we see, and can gauge and measure as it passes out of the Strait of Florida; for it is scarcely necessary to refer to the earlier speculations that it is caused by the Mississippi river, or that it flows downwards by gravitation from a ' head' of water produced by the trade-winds in the Caribbean sea.

[^56]Captain Maury writes ${ }^{1}$ that "the dynamical force that calls forth the Gulf-stream is to be found in the difference as to specific gravity of intertropical and polar waters." "The dynamical forces which are expressed hy the Gulf-stream may with as much propriety be said to reside in those northern waters as in the West India seas: for on one side we have the Caribbean sea and Gulf of Mexico with their waters of brine; on the other the great polar basin, the Baltic, and the North Sea, the two latter with waters which are little more than brackish. In one set of these sen-basins the water is heavy; in the other it is light. Between them the ocean intervenes; but water is bound to seek and to maintain its level ; and here, therefore, we unmask one of those agents concerned in causing the Gulf-stream. What is the power of this agent if Is it greater than that of other agenta ? and how much P We cannot say how much; we only know it is one of the chief agents concerned. Moreover, speculate as we may as to all the agencies concerned in collecting these waters, that have supplied the trade-winds with vapour, into the Caribhean Sea, and then in driving them across the Atlantic, we are forced to conclude that the salt which the trade-wind vapour leaves behind it in the tropics has to be conveyed away from the trade-wind region, to be mixed up again in due proportion with the other water of the sea-the Baltic Sea and the Arctic Ocean included -and that these are some of the waters, at least, which we see running off through the Gulf-stream. To convey them away is doubtless one of the offices which in the economy of the ocean has heen assigned

[^57]to it. But as for the seat of the forces which put and keep the Gulf-stream in motion, theorists may place them exclusively on one side of the ocean with as much philosophical propriety as on the other. Its waters find their way into the North Sea and Arctic Ocean by virtue of their specific gravity, while water thence, to take their place, is, by virtue of its specific gravity and by counter-currents, carried back into the gulf. The dynamical foree which causes the Gulf-stream may therefore be said to reside both in the polar and in the intertropical waters of the Atlantic."

According to this view, the tropical water finds its way on account of its greater weight towards the poles, while the polar water, owing to its less weight, moves southwards to replace it. The general result would be of course a system of warm under- and cold surface-currents, and these we do not find. I merely quote the passage as a curious illustration of the adage that on most questions a good deal can be said on hoth sides.
We have already considered the doctrine of a general oceanic circulation, which has been so strongly advocated of late by Dr. Carpenter, and I have marely to advert in this place to the bearing which that doctrine has upon our views as to the origin of the Gulf-stream; its bearings on the extension and distribution of the current will be discussed hereafter. As already stated, Dr. Carpenter attributes all the great movements of ocean whter to a general convective circulation, and of this general circulation he regards the Gulf-stream as a pecoliarly modified case. In the passage already quoted (p. 370) of
his arld'ess to the Royal Institution, Dr. Carpenter states, that " the Gulf-stream constitutes a peculiar case, modlified by local conditions," of "A great general movement of equatorial water towards the polar nrea." I confess I feel myself compelled to take a totally different view. It seems to me that the Gulf-stream is the one natural physical phenomenon on the surface of the earth whose origin and principal cause, the drift of the trade-winde, can be most clearly and easily traced.

The further progress and extension of the Gulfstream through the North Atlantic in relation to influence upon climate has been, however, a fruitful source of controversy. The first part of its course, after leaving the strait, is sufficiently evident, for its water long remains conspicuously different in colnur and temperature from that of the ocean, and a current having a marked effect on navigation is long perceptible in the peculiar Gulf-stream water. "Narrow at first it flows round the peninsula of Florida, and, with a speed of about 70 or 80 miles, follows the coast at first in a due north, nfterwards in a north-east direction. At the latitude of Washington it leaves the North American coast altogether, keeping its north-eastward course; and to the south of the St. George's and Newfoundland Banks it spreads its waters more and more over the Atlantic Ocean, as far as the Açores. At these islands n part of it turns oouthwards again lowards the African coast. The Gulf-stream has, so long as its waters are kept together along the American coast, a temperature of $26^{\circ} 6 \mathrm{C}$.; but, even under morth latitude $\mathbf{3 6}{ }^{\circ}$, Sabine found that
$23^{\circ}-3 \mathrm{C}$. at the beginning of December, while the sen-water beyond the stream showed only $16^{\circ} 9 \mathrm{C}$. Under north latitude $40-41^{\circ}$ the water is, according to Humboldt, at $22^{\circ} \cdot 6$ C. within, and $17^{\circ} \cdot 5 \mathrm{C}$. without the stream." ${ }^{1}$

The Gulf-stream off the coast of North America has been most carefully examined by the officers of the United States Coast Survey, at first under the superintendence of Professor Bache, and latterly under the direction of the present able head of the bureau, Professor Pierce. In 1860 Professor Bache published an account of the general result. ${ }^{2}$ Fourteen sections through the Gulf-stream had been carefully surveyed at intervals of about 100 miles along the coast-the first almost within the Gulf of Mexico, from Fortingas to Havana, and the last off Cape Cod, lat. 41° N., where the stream loses all parallelism with the American coast and trends to the eastward. These sections fully illustrate the leading phenomena during this earlier part of its course of this wonderful current, which Professor Bache well characterizes as "the great hydrographic feature of the United States."

Opposite Fortingas, passing along the Cuban coast, the stream is unbroken and the current feeble; the temperature at the surface is about $26^{\circ} \cdot 7 \mathrm{C}$. Issuing from the Strait of Bemini the current is turned nearly directly northwards by the form of the land;

[^58]a little to the north of the strait, the rate is from three to five miles an hour. The depth is only 325 fathoms, and the bottom, which in the Strait of Florida was a simple slope and counter-slope, is now corrugated. The surface temperature is about $26^{n} \cdot 5$ C., while the bottom temperature is $4^{\circ}{ }^{\circ}$; so that in the moderate depth of 325 fathoms the equatorial current above and the polar counter-current henenth have room to pass one another, the current from the north being evidently tempered cansiderably by mixture. North of Mosquito inlet the stream trends to the eastward of north, and off St. Augustine it has a decided set to the eastward Between St. Augustine and Cape Hatteras the set of the stream and the trend of the coast differ but little, making 5° of easting in 5° of northing. At Hatteras it curves to the northward, and then runs easterly. In the latitude of Cape Charles it turns quite to the eastward, having a velocity of from a mile to a mile and a half in the hour.

A brief account of one of the sections will best explain the general phenomena of the stream off the coast of America. I will take the section following a line at right angles to the coast off Sandy Hook. From the shore out, for a distance of about 250 miles, the surface temperature gradually rises from 21° to $24^{\circ} \mathrm{C}$.; at 10 fathoms it rises from 19^{n} to $22^{\circ} \mathrm{C}$.; and at 20 fathoms it maintains, with a few irregularities, a temperature of $19^{\circ} \mathrm{C}$. throughout the whole space; while at $100,200,300$, and 400 fathoms it maintains in like manner the respective temperatures of $8^{\circ} 8,8,5^{\circ} \cdot 7,4^{\circ} 5$, and $2^{\circ} 5 \mathrm{C}$. This space is therefore occupied by cold water, and observation has suffi-
ciently proved that the low temperature is due to a branch of the Labrador current creeping down along the coast in a direction opposite to that of the Gulf-strenm. In the Strait of Florida this cold stream divides-one portion of it passing under the hot Gulf-stream water into the Gulf of Mexico, while the remainder courses round the western end of Cubs. 240 miles from the shore the whole mass of water takes a sudden rise of about $10^{\circ} \mathrm{C}$. within 25 miles, a rise affecting nearly equally the water at all depths, and thus producing the singular phenomenon of two masses of water in contact-one passing slowly southwards, and the other more rapidly northwards, at widely different temperatures at the same levels. This abutting of the side of the cold current against that of the Gulf-stream is so abrupt that it has been aptly called by Lieutenant George M. Bache the 'Cold wall.' Passing the cold wall we reach the Gulf-stream, presenting all its apecial characters of colour and transparency and of temperature. In the section which we have chosen as an example, upwards of three hundred miles in length, the surface temperature is about $26^{\circ} \cdot \mathrm{C}$., but the heat is not uniform across the stream, for we find that throughout its entire length, as far south as the Cape Canaveral section, the stresm is broken up into longitudinal alternating bands of warmer and cooler water. Off Sandy Hook, beyond the cold wall, the stream rises to a maximum of $27^{\circ} 8 \mathrm{C}$., ond this warm band extends for about 60 miles. The temperature then falls to a minimum of $26^{\wedge} \cdot \overline{\mathrm{i}} \mathrm{C}$., which it retains for ahout 80 miles, when a second maximum of $27^{\circ} 4$ succeeds, which includes
the axis of the Gulf-stream, and is about 170 miles wide. T'his is followed by a second minimum of $25^{\circ} \cdot 5 \mathrm{C}$., and this by a third maximum, when the bands hecome indistinct. It is singular that the minimum bands correspond with valley-like depressions in the bottom, which follow in succession the outline of the coast and lodge desp southward extensions of the polar indraught.

The last section of the Gulf-stream surveyed by the American Hydrographers extends in a southeasterly direction from Cape Cod, lat. $41^{\circ} \mathrm{N}$., and traces the Gulf-stream, still broken up ly its bands of unequal temperature, spreading directly eastward across the Atlantic; its velocity has, however, now hecome inconsiderable, and its limits are hest traced by the thermometer.

The course of the Gull-stream beyond this point has given rise to much discussion. I again quote Professor Buff for what may be regarded as the view most generally received among Physical Geo-graphers:-
"A great part of the warm water is carried partly hy its own motion, but chiefly by the prevailing weat and north-west winds, towards the coasts of Europe and even beyond Spitzbergen and Nova Zembla; and thus a part of the heat of the south reaches far into the Arctic Ocean. Hence, on the north coast of the old Continent, we always find driftwood from the southern regions, and on this side the Arctic Ocean remains free from ice during a great part of the year, even as far up as 80° north latitude; while on the opposite coast (of Greenland) the ice is not quite thawed even in summer." The two forces invoked
by Professor Buff to perform the work are thus the vis a tergo of the trade-wind drift, and the direct driving power of the anti-trades, producing what has been called the anti-trade drift. This is quite in accordance with the views here advocated. The proportion in which these two forces act, it is undoubtedly impossible in the present state of our knowledge to determine.

Mr. A. G. Findlay, a high authority on all hydrographic matters, read a paper on the Gulf-stream before the Royal Geographical Society, reported in the 13th volume of the Proceedings of the Society. Mr. Findlay, while admitting that the temperature of north-eastern Europe is abnormally ameliorated by a surface-current of the warm water of the Atlantic which reaches it, contends that the Gulf-stream proper, that is to say the water injected, as it were, into the Atlantic through the Strait of Florida by the impulse of the trade-winds, becomes entirely thinned out, dissipated, and lost, opposite the Newfoundland banks ahout lat. $45^{\circ} \mathrm{N}$. The warm water of the southern portion of the North Atlantic basin is still carried northwards; but Mr. Findlay attributes this movement solely to the anti-trades-the south-west winds-which by their prevalence keep up a balance of progress in a north-easterly direction in the surface layer of the water.

Dr. Carpenter entertains a very strong opinion that the dispersion of the Gulf-stream may be affirmed to he complete in about lat. $45^{\circ} \mathrm{N}$. and long. $35^{\circ} \mathrm{W}$. Dr. Carpenter admits the accuracy of the projection of the isotherms on the maps of Berghaus, Dove Petermann, and Keith Johnston, and he admits like-
wise the conclusion that the abnormal mildness of the climate on the north-western coast of Europe is due to a movement of equatorinl water in a north-easterly direction. "What I question is the correctness of the doctrine that the north-east flow is an extension or prolongation of the Gulf-stream, still driven on by the vis a tergo of the trade-winds--a doctrine which (greatly to my surprise) has been adopted and defended by my colleague Professor Wyville Thomson. But while these authorities attribute the whole or nearly the whole of this flow to the trie Gulfstream, I regard a large part, if not the whole, of that which takes place along our own western coast, and passes north and north-east between Iceland and Norway towards Spitzbergen, as quite independent of that agency; so that it would continue if the North and South American continents were so completely disunited that the equatorial currents would be driven straight onwards by the trade-winds into the Pacific Ocean, instead of heing embayed in the Gulf of Mexico and driven out in a northeast direction through the 'narrows' off Cnpe Florida." Dr. Carpenter does not mean by this to endorse Mr. Findlay's opinion that the movement beyond the 45 th parallel of latitude is due solely to the drift of the anti-trades; he says, "On the view I advocate, the north-easterly flow is regarded as due to the vis a fronte originating in the action of cold unon the water of the polar area, whereby its level is always tending to depression." ${ }^{2}$ The amelioration of the climate of north-western Europe is thus

[^59]caused by a 'modified case' of the general oceanic circulation, and neither hy the Gulf-stream nor by the anti-trade drift.

Although there are, up to the present time, very few trustworthy observations of deep-sea temperatures, the surface temperature of the North Atlantic has been investigated with considerable care. The general character of the isothermal lines with their singular loop-like northern deflections, has long been familiar through the temperature charts of the geographers already quoted, and of late years a prodigious amount of data have been accumulated both abroad and by our own Admiralty and Meteoro. logical Department.

In 1870, Dr. Petermann, of Gotha, puhlished ${ }^{1}$ an extremely valuable series of temperature charts, embodying the results of the reduction of upwards of 100,000 observations, derived chiefly from the following sources:-

1. From the wind and current charts of Lieutenant Maury, emhodying about 30,000 distinct temperature observations.
2. From 50,000 observations made hy Dutch seacaptains, and puhlished by the Government of the Netherlands.
3. From the journal of the Cunard steamers between Liverpool and New York, and of the steamers of the Montreal Company between Glasgow and Belleisle.
4. From the data collected by the secretary of the
[^60]Scottish Meteorological Society, Mr. Buchan, with regard to the temperature of the sea on the coasta of Scotland.
5. From the publications of the Norwegian Institute on sea-temperatures between Norway, Scotland, and Iceland.
6. From the data furnished by the Danish RearAdmiral Irminger on sea-temperature between Denmark and the Danish settlements in Greenland.
7. From the observations made by Earl Dufferin on board his yacht 'Foam' between Scotland, Iceland, Spitzbergen, and Norway.

And finally, from the recent observations collected by the English, Swedish, German, and Russian expeditions to the arctic regions and towards the North Pole.

Dr. Petermann has devoted the special attention of a great part of his life to the distribution of heat on the surface of the ocean, and the accuracy and conscientiousness of his work in every detail are beyond the shadow of a doubt. Plate VII. is in the main copied from his charts, with a few modifications and additions derived from additional data. The remarkable diversion of the isothermal lines from their normal course is undouhtedly caused by surface oceancurrents conveying warm tropical water towards the polar regions. This is no matter of speculation, for the current is in many places perceptible through its effect on navigation, and the path of the warm water may be traced by dipping the thermometer into it and noting its temperature.

In the North Atlantic every curve of equal temperature, whether for the summer, for the winter, for
a single month, or for the whole year, instantly declares itself as one of a system of curves which are referred to the Strait of Florida as a source of heat, and the flow of warm water may be traced in a continuous stream, indicated when its movement can no longer be observed by its form,-fanning out from the neighbourhood of the Strait across the Atlantic, skirting the coasts of France, Britain, and Scandinavia, rounding the North Cape and passing the White Sea and the Sea of Kari, bathing the western shores of Novaja Semla and Spitzbergen, and finally coursing round the coast of Siberia, a trace of it atill remaining to find its way through the narrow and shallow Behring's Strait into the North Pacific (see Plate VII.).

Now, it seems to me that if we had only these curves upon the chart, deduced from an almost infinite number of observations which are themselves merely laboriously multiplied corroborations of many previous ones, without having any clue to their rationale, we should be compelled to admit that whatever might be the amount and distribution of heat derived from a general oceanic circulation, whether produced by the prevailing winds of the region, by convection, by unequal barometric pressure, by tropical heat, or by arctic cold,-the Gulfstream, the majestic atream of warm water whose course is indicated by the deflections of the isothermal lines, is sufficiently powerful to mask all the rest, and, hroadly speaking, to produce of itself all the abnormal thermal phenomena.

The deep-sea temperatures taken in the 'Porcupine' have an important bearing upon this question,
since they give us the depth and volume of the mass of water which is heated above its normal temperature, and which we must regard as the softener of the winds blowing on the consts of Europe. Referring to Fig. 60, in the Bay of Hiscay, after passing through a shallow band superheated by direct radiation, a zone of warm water extends to the depth of 800 fathoms, succeeded by cold water to a depth of nearly two miles. In the Rockall channel (Fig. 59) the warm layer has nearly the same thickness, and the cold underlying water is 500 fathoms deep. Off the Butt of the Lews (Fig. 56) the bottom temperature is $5^{\circ} \cdot 2$ C. at 767 fathoms, so that there the warm layer evidently reaches to the bottom. In the Fieroe channel (Fig. 55) the warm water forms a surface layer, and the cold water underlies it, commencing at a depth of 200 fathoms, - 567 fathoms above the level of the bottom of the warm water aft the Butt of the Tews. The cold water abuts against the warm-there is no barrier between them. Part of the warm water flows ower the cold indraught, and forms the upper layer in the Föroe channel. Whaf prevents the cold water from slipping, by virtue of its greater weight, under the warm water off the Butt of the Lews? It is quite evident that there must be some force at work keeping the warm water in that particular position, or, if it be moving, compelling it to follow that particular course. The comparatively high temperature from 100 fathoms to 900 fathoms I have alswys attributed to the northerm accumulation of the water of the Gulf-stream. The amount of heat derived directly from the sun by the water as it
passes through any particular region, must be regarded, as I have already said, as depending almost entirely upon latitude. Taking this into account, the surface temperatures in what we were in the habit of calling the 'warm area 'coincided precisely with Petermann's curves indicating the northward path of the Gulf-stream.

I extract the following from a letter dated 23rd September, 1872, from Professor \mathbf{H}. Mohn, director of the Norwegian Meteorological Institute at Christiania, to Mr. Buchan, the excellent secretary of the Scottish Meteorological Society :-"I have this summer got some deep-sea temperatures which may be of general interest for our elimate. In the Throndhjems-fjord I found $16^{\circ} 5 \mathrm{C}$. on the surface, and from 50 fathoms to the bottom (200 fathoms) a very uniform temperature of $6^{\circ} 5 \mathrm{C}$. in one place, and $6^{\circ} \mathrm{C}$. in another place further in. In the Sceguefjord I found $16^{\circ} \mathrm{C}$. on the surface, and 6.5 C . constantly from 10 to 700 fathoms. Between Iceland and Fwroe, Lieutenant Müller, commander of the Bergen and Iceland steamer, has found this summer $8^{\circ} \mathrm{C}$. at the bottom in 300 fathoms. This proves that the Gulf-stream water fills the whole of the channel, contrary to what is the case in the Fexree-Shetland channel, where there is ice-cold water in a depth of 300 fathoms." The facts here mentioned are very important, and entirely confirm our resulta; but my chief object in giving the quotation is to show the unhesitating way in which the explanation which attrihutes the high temperature of the sea on the Scandinavian coast to the Gulf-stream is adopted by those best qualified to form an opinion.

The North Atlantic and Arctic seas form together a cul de sac closed to the northward, for there is practically no passoge for a lody of water through Behring's Strait. While, therefore, a large portion of the water, finding no free outlet towards the north-east, turns southward at the Açores, the remainder, instead of thinning off, has rather a tendency to accumulate against the coasts bounding the northern portions of the trough. We accordingly find that it has a depth off the west coast of Iceland of at least 4,800 feet, with an unknown lateral extension. Dr. Carpenter, discussing this opinion, says: "It is to me physically inconceivable that this surface film of lighter (because warmer) water should collect itself together again-even supposing it still to retain any excess of temperature-and should burrow downwards into the 'trough,' displacing colder and heavier water, to a depth much greater than that which it possesses at the point of its greatest 'glory'-its passage through the Florida Narrows. The upholders of this hypothesis have to explain how such a re-collection and dipping-down of the Gulf-stream water is to be accounted for on physical principles. ${ }^{11}$ I believe that as a rule, experimental imitations on a small scale are of little use in the illustration of natural phenomena; a very simple experiment will, however, show that such a process is possilile. If we put a tablesponnful of cochineal into a can of hot water, so as to give it a red tint, and then run it through a piece of indiaruliber tube with a considerable impulse along the surface of a quantity of cold water in a bath, we see

[^61]the red stream widening out and becoming paler over the general surface of the water till it reaches the opposite edge, and very shortly the rapidly heightening colour of a band along the opposite wall indicates an accumulation of the coloured water where its current is arrested. If we now dip the hand into the water of the centre of the bath, a warm bracelet merely encircles the wrist; while at the end of the bath opposite the warm influx, the hot water, though considerably mixed, envelopes the whole hand.

The North Λ tlantic forms a basin closed to the northward. Into the corner of this basin, as into a bath,-with a north-easterly direction given to it by its initial velocity, as if the supply pipe of the bath were turned so as to give the hot water a definite impulse,-this enormous flood is poured, day and night, winter and summer. When the basin is full -and not till then-overcoming its northern impulse, the surplus water turns southwards in a southern eddy, so that there is a certain tendency for the hot water to accumulate in the northern basin, to 'bank down' ${ }^{\text {h}}$ along the north-eastern coasts.

It is scarcely necessary to say that for every unit of water which enters the basin of the North Atlantic, and which is not evaporated, an equivalent must return. As cold water can gravitate into the deeper parts of the ocean from all directions, it is only under peculiar circumatances that any movement having the character of a current is induced;
${ }^{1}$ Ocean Currenta. An Adrrees delivered to the Rayal United Service Inatitution June 15th, 1871. By J. K. Laughton, M.A., Naval Inflructor at the Royal Naval Callage. (From tha Jnurnal of the Inatitution, vol. xv.)
these circumstances occur, however, in the confined and contracted communication between the North Atlantíc and the Arctic Sea. Between Cape Farewell and North Cape there are only two channels of any considerable depth, the one very narrow along the east coast of Iceland, and the other along the east coast of Greenland. The shallow part of the sea is entirely occupied, at all events during aummer, by the warm water of the Gulfstream, except at one point, where a rapid current of cold water, very restricted and very shallow, sweeps round the south of Spitzbergen and then dips under the Gulf-stream water at the northern entrance of the German (Jcean.

This cold flow, at first a current, finally a mere indraught, affects greatly the temperature of the German Ocean; but it is entirely lost, for the slight current which is again produced by the great contraction at the Strait of Dover, has a summer temperature of $7^{\circ} \cdot 5 \mathrm{C}$. The path of the cold indraught from Spitzbergen may he readily traced on the map by the depressions in the surface isothermal lines, and in dredging by the abundance of gigantic amphipodous and isopodous crustaceans, and other wellknown Arctic animal forms.

From its low initial velocity the Arctic return current, or indraught, must doubtless tend slightly in a westerly direction, and the higher specific gravity of the cold water may probably even more powerfully lead it into the deepest channels; or possibly the two causes may combine, and in the course of ages the currents may hollow out deep southwesterly grooves. At all events, the main Arctic
return currents ure very visible on the chart taking this direction, indicated by marked deflections of the iscthermal lines. The most marked is the Labrador current, which passes down inside the Gulf-stream along the consts of Carolina and New Jersey, meeting it in the strange abrupt 'cold wall,' dipping under it as it issues from the Gulf, coming to the surface again on the other side, and a portion of it actually passing, under the Gulfstream, as a cold counter-current into the Gulf of Mexico.

Fifiy or sixty miles out from the west const of Scotlanf, I believe the Gulf-stream forms another, though a very mitigated, 'cold wall.' In 1868, after our first investigation of the very remarkable cold indraught into the channel between Shetland and Færoe, I stated my belief that the current was entirely banked up in the Freroe Channel by the Gulf-stream passing its gorge. Since that time I have been led to suspect that a part of the Aretic water oozes dnwn the Scottish coast, much mixed, and sufficiently shallow to he affected throughout by solar radiation. About sixty or seventy miles from shore the isothermal lines bave a slight but uniform deflection. Within that line types charactaristio of the Scandinavian fauna are numerous in slallow water, and in the course of many years' use of the towing net I have never met with any of the Gulf-stream pteropods, or of the lovely Polycystina and Acanthometrina which absolutely swarm beyond that limit. The difference in mean temperature between the east and west coasts of Scotland, amounting to about 1"C., is also somewhat less than might he
expected if the Gulf-stream came clnse to the western shore.

While the communication between the North Atlantic, and the Arctic Sea-itself a second cul de sac-is thus restricted, limiting the interchange of warm and cold water in the normal direction of the flow of the Gulf-stream, and causing the diversion of a large part of the strenm to the southwards, the communication with the Antaretic basin is as open as the day;-a continuous and wide valley upwards of 2,000 fathoms in depth stretching northwards along the western coasts of Africa and Europe.

That the southern water wells up into this valley there could be little doubt from the form of the ground; lut here again we have curious corroborative evidence on the map in the remarkable reversal of the curves of the isotherms. The temperature of the bottom water at 1,230 fathoms off Rockall is $3^{\circ} \cdot 22 \mathrm{C}$., exactly the same as that of water at the same depth in the serial sounding, lat. $47^{\circ} 38^{\prime} \mathrm{N}$., long. $12^{\circ} 08^{\prime} \mathrm{W}$. in the Bay of Biscay, which affords a strong presumption that the water in both cases is derived from the same source; and the bottom water off Rockall is warmer than the bottom water in the Bay of Biscay ($2^{\circ} .5 \mathrm{C}$.), while a cordon of temperature soundings drawn from the north-west of Scotland to a point on the Iceland shallow gives no temperature lower than $6^{\circ} \cdot 5 \mathrm{C}$. This makes it very improbable that the low temperature of the Bay of Biscay is due to any considerable partion of the Spitzbergen current passing down the west coast of Scotland; and as the cold current to the east of Tceland passes southwards considerably to the westward, as indicated on the map by the successive
depressions in the surface isotherms, the balance of probability seems to be in favour of the view that the conditions of temperature and the slow movement of this vast mass of moderately cold water, nearly two statute miles in depth, are to be referred to an Antarctic rather than to an Arctic origin.

The North Atlantic Ocean seems to consist first of a great sheet of warm water, the general northerly reflux of the equatorial current. Of this the greater part passes through the Strait of Florida, and its north-easterly flow is aided and maintained by the anti-trades, the whole being generally called the Gulf-stream. 'This layer is of varying depths, apparently from the observations of Captain Chimmo and others, thinning to a hundred fathoms or so in the mid-Atlantic, butattaining a depth of 700 to 800 fathoms off the west coasts of Ireland and Spain. Secondly of a 'stratum of intermixture' which extends to about 200 fathoms in the Bay of Biscay, through which the temperature falls rather rapidly; and thirdly, of an underlying mass of cold water, in the Bay of Biscay 1,500 fathoms deep, derived as an indraught falling in by gravitation from the deepest available source, whether Arctic or Antarctic. It seems at first sight a startling suggestion, that the cold water filling deep ocean valleys in the northern hemisphere may be partly derived from the southern; but this difficulty, I believe, arises from the idea that there is a kind of diaphragm at the equator between the northern and southern ocean basins, one of the many misconceptions which follow in the train of a notion of a convective circulation in the sea similar to that in the atmosphere. There is
undoubtedly a gradual elevation of an intertropical belt of the underlying cold water, which is being raised by the subsiding of still colder water into its bed to supply the place of the water removed by the equatorial current and by excessive evaporation; but such a movement must be widely and irregularly diffused and excessively slow, not in any sense comparable with the diaphragm produced in the atmosphere by the rushing upwards of the north-east and south-east trade-winds in the zone of calms. Perhaps one of the most conclusive proofs of the extreme slowness of the movement of the deep indraught is the nature of the bottom. Over a great part of the floor of the Atlantic a deposit is being formed of microscopic shells. These with their living inhabitants differ little in specific weight from the water itself, and form a creamy flocculent layer, which must be at once removed wherever there is a perceptible movement. In water of moderate depth, in the course of any of the currents, this deposit is entirely absent, and is replaced by coarser or finer gravel.

It is only on the surface of the sea that a line is drawn between the two hemispheres by the equatorial current, whose effect in shedding a vast intertropical drift of water on either side as it breaks against the eastern shores of equatorial land may be seen at a glance on the most elementary physical chart.

The Gulf-stream loses an enormous amount of heat in its northern tour. At a point 200 miles west of Ushant, where observations at the greatest depths were made on board the 'Porcupine,' a section of the water of the Atlantic shows three surfaces at which interchange of temperature is taking place.

First, the surface of the sea-that is to say, the upper surface of the Gulf-stream layer-is losing heat rapidly by radiation, by contact with a layer of air which is in constant motion and being perpetually cooled by convection, and hy the conversion of water into vapour.' As this cooling of the Gulf-streain layer takes place principally at the surface, the temperature of the mass is kept pretty uniform by convection. Secondly, the band of contact of the lower surface of the Gulf-stream water with the upper surface of the cold indraught. Here the interchange of tcmperature must be very slow, though that it does take place is shown hy the slight depression of the surface isotherms over the principal paths of the indraught. But there is a good deal of intermixture extending through a considerable layer. The cold water being beneath, convection in the ordinary sense cannot occur, and interchange of temperature must depend mainly upon conduction and diffusion, causes which in the case of masses of water must be almost secular in their action, and probably to a much greater extent upon mixture produced by local currents and by the tides. The third surface is that of contact between the cold indraught and the bottom of the sea. The temperature of the crust of the earth has been variously calculated at from 4° to $11^{\circ} \mathrm{C}$., but it must be completely cooled down by anything like a movement and constant renewal of cold wrater.

[^62]All we can say, therefore, is that contact with the bottom can never be n source of depression of temperature. As a genernl result the Gulf-stream water is nearly uniform in temperature throughout the greater part of its depth; there is a marked zone of intermixture at the junction between the warm water and the cold, and the water of the cold indraught is regularly stratified by gravitation; so that in deep water the contour lines of the sea-bottom are, speaking generally, lines of equal temperature. Keeping in view the enormous influence which ocean currents exercise in the distribution of climates at the present time, I think it is scareely gaing too far to suppose that such currents-movements communicated to the water by constant winds-existed at all geological periods as the great means, I had almost said the sole meann, of producing a general oceanic circulation, and thus distributing leat in the ocean. They must have existed, in fact, wherever equatorial land interrupted the path of the drift of the trade-winds. Wherever a warm chment was deflected to north or south from the equatorial belt a polar indraught crept in benenth to supply its place; and the ocean consequently consister, as in the Atlantic and doubtless in the Pacific at the present day, of an upper warm stratum, and a lnwer layer of cold water becoming gradually colder with increasing depth.

I fear, then, that in opposition to the views of my distinguished collengue, I must repeat that I have seen as yet un reason to modify the opinion which I have consistently held from the first, that
the remarkulle conditions of climate on the coasts of Northern Europe are due in a broad sense solely to the Gulf-stream. That is to say, that although movements, some of them possibly of considerable importance, must be produced by differences of specific gravity, yet the influence of the great current which we call the Gulf-stream, the reflux of the great equatorial current, is so paramount as to reduce all other causes to utter insignificance.

CHAP'TER IX

THE DFTPP-SEA FATNA.

The Protazon of the Deep sea-Bathyhius.- 'Cocealithe,' and "Cacco-apherea.'-The Foraminifuru of the Warm and Cold Areas.-Deepsea Sponges. - The Hexactinellidex - Roasella.- Hyalonema.Deep.sen Corals.-'The Slalked Crinoids.-Pentacizinus.-Whizocrinus. - Bothycrinus, - The Star fobtes of the Deep-ball-The general Mistritution and Relalions of Deep-sea Urchine-The Crustaceß the Molluar, and the Fighes of the 'Porcupine' Expeditions.

The time las not yet arrived for giving anything like a detailed account of the deep-sea fauna; even if it were possible to do so in a popular sketch of the general results of a wide investigation. T must therefore confine myself at present to a brief outline of the distribution of the forms of animal life which were met with in the belt partially examined during the 'Porcupine' dredgings, a belt which carries the British zoological area about a hundred miles further out to seaward along the northern and western coasts of the British Isles, and into depths extending from 200 fathoms, the previous limit of accurate knowledge, to 800 and 1,000 fathoms, and in one or two instances to the extreme depth of upwards of 2,000 fathoms.

The remarkahle geveral result that even to these great depths the fauna is varied and rich in all the marine invertebrate groups, has inundated us with new material which in several of the larger departments it will take years of the labour of specialists to work up. While referring very briefly to those orders which it has been found impossible as yet to overtake, I will enter a little more fully into the history of certain restricted groups which more particularly illustrate the conditions of the abyssal region, and the relations of its special fauna to the faunæ of other zoological provinces, or to those of earlier times. And very prominent among these special groups we find the first and simplest of the invertebrate sul-kingdoms, the Protozon, represented by three of its classes, - ihe monera, the rhizopoda, and the sponges.

The monera have been lately defined as a distinct class by Professor Ernst Haeckel, ${ }^{1}$ for a vast assemblage of almost formless beings, apparently absolutely devoid of internal structure, and consisting simply of living and moving expansions of jelly-like protoplasm ; and although the special character on which Haeckel separates them from the remainder of the protozoa, -that they are propagated by no form of sexual reproduction, but simply hy spontaneous division,-may probably prove deceptive as our knowledge increases, still their numher, their general resemblance to one another, presenting obviously different and recognizable kinds although with very indefinalile claracters, and the important pinet which

[^63]they play in the economy of nature, would seem to entille them to a systematic position of more than ordinal value. The German naturalists of the new school, in their enthusiastic adoption of the Darwinian theory of evolution, naturally welcome in these 'moners' the essential attribute of the ' Dr_{r} schleim,' an infinite capacity for improvement in every conceivable direction; and to more prosaic physiologists they are of the deepest interest, as presenting the essential phenomena of life, nutrition and irritability, existing apparently simply as the properties of a homogeneous chemical compound, and independent of organization.

The monera pass into the rbizopoda, which give a slight indication of advance, in the definite form of the gracefinl calcareous shell-like structures which most of them secrete, and the two groups may be taken together.

The dredging at 2,43 an fathoms at the mouth of the Bay of Biscay gave a very fair idea of the condition of the bottom of the sea over an enormous area, as we know from mnny observations which have now been made, with the various sounding instruments contrived to bring up a sample of the boltom. On that occasion the dredge brought up shout $1 \frac{1}{2}$ cwt. of calcareons mud. There could be little doubt, from the appearance of the contents of the dredge, that the heavy dredge-frame had gone down with a plunge, and partly buried itself in the soft, yielding bottom. The throat of the dredge thus became partly choked, and the free entrance of the organisms on the sea-floor had been thus prevented. The matter contained in the dredge con-
sisted mainly of a compact 'mortar,' of a bluislı colour, passing into a thin-evidently superficiallayer, much softer and more creamy in consistence, and of a yellowish colour. Under the microscope the surface-layer was found to consist chiefly of entire shells of Globigerina bulloides (Fig. 2, p. 22), large and small, and fragments of such shells mixed with a quantity of amorphous calcareous matter in fine particles, a little fine sand, and many spicules, portions of spicules, and shells of Radinharia, a few spicules of sponges, and a few frustules of diatoms. Below the surface-layer the sediment becomes gradually more compact, and a slight grey colour, due probally to the decomposing organic matter, becomes more pronounced, while perfect shells of globigerina almost entirely disappear, fragments become amaller, and calcareous mud, structureless and in a fine state of division, is in greatly preponderating proportion. One can have no doubt, on examining this sediment, that it is formed in the main by the accumulation and disintegration of the shells of globigerina-the shells fresh, whole, and living in the aurface-layer of the deposit, and in the lower layers dead, and gradually crumbling down by the decomposition of their organic cement, and by the pressure of the layers above-an animal formation in fact heing formed very much in the same way as in the accumulation of vegetable matter in a peat hag, ly life and growth above, and death, retarded decomposition, and compression beneath.

In this dredging, as in most others in the bed of the Atlantic, there was evidence of a considerable quantity of soft gelatinous organic matter, emough
to give a slight viscosity to the mud of the surface layer. If the mud be shaken with weak spirit of wine, fine flakes separate like coagulated mucus; and if a little of the mud in which this viscid condition is most marked be placed in a drop of seawater under the microscope, we can usually see, after a time, an irregular network of matter resembling white of egg , distinguishable by its maintaining its outline and not mixing with the water. This network may be seen gradually altering in form, and entangled granules and foreign bodies clange their relative positions. The gelatinous matter is therefore capable of a certain amount of movement, and there can be no doubt that it manifests the phenomena of a very simple form of life.

To this organism, if a being can be so called which shows no trace of differentiation of organs, consisting apparently of an amorphous sheet of a protein compound, irritable to a low degree and capable of assimilating food, Professor Huxley has given the name of Bathybius haeckelii (Fig. 63). If this have a claim to be recognized as a distinct living entity, exhibiting its mature and final form, it must be referred to the simplest division of the shell-less rhizopoda, or if we adopt the class proposed by Professor Haeckel, to the monora. The circumstance which gives its special interest to Bathybius is its enormous extent: whether it be continuous in one vast sheet, or broken up into circumscribed individual particles, it appears to extend over a large part of the bed of the ocean; and as no living thing, however slowly it may live, is cver jerfectly at rest, but is continually acting and reacting with its surroundings, the bottom of the
sea becomes like the surface of the sea and of the land, -a theatre of change, performing its part in maintaining the 'balance of organic nature.'

 Etragen.' (x. 700.11
${ }^{1}$ Hiologiaghe Studien. Von Dr. Ernat Haeskel, Prolegser an der Univergität Jena Laiprig, 1870.

Entangled and borne along in the viscid streams of Bathybius, we so constantly find a multitude of minute calcareous bodies of a peculiar shape, that the two were for long supposed to have some mutual relation to one another. These small bodies, which have been carefully studied by Huxley, ${ }^{1}$ Sorhy, ${ }^{2}$ Haeckel, ${ }^{4}$ Carter, ${ }^{4}$ Gumbel, ${ }^{5}$ and others, are in shape somewhat like oval shirt-studs. There is first a little oval disk about 0.01 mm . in length, with an ohlong rudely facetted elevation in the centre, and round that, in fresh specimens, what seems to be a kind of frill of organic matter, then a short neck, and lastly a second smaller flat disk, like the disk at the back of a stud. To these bodies, which are met with in all stages of development, Professor Huxley has given the name of 'coccoliths.' Sometimes they are found aggregated on the surface of small transparent membranous balls, and these which seemed at first to have something to do with the production of the 'coccoliths' Dr. Wallich has called 'coccospheres' (Fig. 64). Professor Ernst Haeckel has lately described a very elegant organism belonging to the radiolaria and apparantly allied to Thalassicolla,-Myxobrachia rhopalum,-and at the ends of some curious diverging appendages of this creature he has detected accumnlations of bodies closely resembling, if not identical with, the coccoliths and coccospheres of the sea-bottom. These

[^64]bodies seem to have been taken in to the Myxobrachia as food, the hard parts accumulating in cavities in the animal's body after all the available nourishment had been absorbed. It is undouhted that a large number of the organisms whose skeletons are mixed with the ooze of the bottom of the sea live on the surface, the delicate silicious or calcareous shields or spines falling gradually through

Fia. $\mathbf{H - ' C o c o s}$ -
the water and finally reaching the bottom, whatever he the depth. I think that now the balance of opinion is in favour of the view that the coccoliths are joints of a minute unicellular alga living on the sea-surface and sinking down and mixing with the sarcode of Bathybias, very probably taken into it with a purpose, for the sake of the vegetalle matter they may contain, and which may afford lood for the animal jelly. What the coccospheres are, and
what relation, if any, they have to the coccoliths, we do not know.

Living upon and among this Bathybius, we find a multitude of other protozon,-foraminifera and other rhizopods, radiolarians, and sponges; and we as yet know very little of the life-history of these groups. There can be no doubt that when their development has been fully traced many of them will be found to be di- or poly-morphic, and that when we are acquainted with their mode of multiplication we shall meet with many cases of pleomorphism and wide differences between the organs and products involved in propagation and in reproduction. I feel by no means satisfied that Bathybius is the permanent form of any distinct living being. It has seemed to me that different samples have been different in appearance and consistence; and although there is nothing at all improbable in the abundance of a very simple shell-less 'moner' at the bottom of the sea, I think it not impossible that a great deal of the 'bathybius,' that is to say the diffused formless protoplasm which we find at great depths, may be a kind of mycelium-a formless condition connected either with the growth and multiplication or with the decay-of many different things.

Many foraminifera of different groups inhabit the deep water, lying upon or mixed in the upper layer of the globigerina ooze, or fixed to some foreign body, such as π sponge, coral, or stone; and all of these are remarkable for their large size. In the 'warm area,' aud wherever the bottom is covered with ooze, calcareous forms predominate, and large sandy cristellarians, with their sand-grains bound together
by calcareous cement, so that the sand-grains show out, dark and conspicuous, scattered on the surface of the white shell. Miliolines are abundant, and the specimens of Cormuspira and Biloculina are greatly larger than anything which has been hitherto met with in temperate regions, recalling the tropical forms which abound among the Pacific Islands.

In the cold area, and in the paths of cold currents, foraminifers with sandy tests are more numerous; some of those of the genera Astrorhiza, Lituola, and Botellina are gigantic-large examples 30 mm . long by 8 mm . in diameter.

The few hauls of the dredge which we have already had in deep water have been enough to teach us that our knowledge of sponges is in its infancy,-that those which we have collected from shallow water along our shores, and even those few which have been brought up from deep water on fishing lines, and have surprised us by the beauty of their forms and the delicacy of their lustre, are the mere margin and remnant of a wonderfully diversified sponge-fauna which appears to extend in endless variety over the whole of the bottom of the sea. I cannct attempt. here more than a mere outline of the general chsracter of the additions which have been made to our knowledge of this group. The sponges of the 'Porcupine' Expedition are now in the hands of Mr. Henry Carter, F.R.S., for description; and an excellent sketch of the sponge-fauna of the deep Atlantic, hringiug information on certain groups up to a late date, has heen published by the best authority we have on sponges, Professor Oscar Schmidt of Grat\%.

As I have already said, the most remarkable new forms are referable to the group which seems to $\mathrm{be}_{\text {, }}$ in a sense special to reep water, the Hexactinellidas. I have already (p. 70) briefly described one of the most abundant and singular forms belonging to this order, Holtenia carpenteri; and all the others, though running through most remarkable variations in form and general appearance, agree with Holtenia in essential structure. In the Hexactinellidæ all the spicules, so far as we know, are formed on the hexradiate plan; that is to say, there is a primary axis, which may be long or short, and at one point four secondary rays cross this central shaft at right angles. Very often one-half of the central shaft is absent or is represented by a slight rounded bose, and in that case we have a spicule with a cross-shaped head, a very favonrite form in the manufacture, defence, and ornament of the surface layer of these sponges; and often the secondary rays are undeveloped: but if that be so,-as in the long fibres of the whisp of Hyalonema, -in young spicules and in others which are slightly abnormal, four little elevations near the middle of the spicule, which contain four secondary branches of the central canal, maintain the permanence of the type. In many of the Hexactinellidæ the spicules are all distinct, and combined, as in Holtenia, by a small quantity of nearly transparent sarcode; but in others, as in 'Venus's flowerbasket,' and the nearly equally beautiful genera Iphiteon, Aphrocallistes, and Farrea, the spicules run together and make a continuous silicious network. When this is the case the sponge may be boiled in nitric acid, and all the organic matter and
oiber impurities thus removed, when the skeleton comes out a lovely lacy structure of the clearest glass. The six-rayed form of the spicules gives the network which is the result of their fusion great flexibility of design, with a characteristic tendency, however, to square meshes.

On the 30th of August, 1870, Mr. Gwyn Jeffreyn dredged in 651 fathoms in the Atlantic off the mouth of the Strait of Gibraltar an exquisite sponge, resembling Holtenia in ite general appearance, but differing from it in the singular and beautiful character of having a delicate outer veil ahout a centimetre from the surface of the sponge, formed by the interlacing of the four secondary rays of large fiverayed spicules, which send their long shafts from that point vertically into the sponge body (Fig. 65). The surface of the sponge is formed of a network of large five-radiate apicules, arranged very much as in Holtenia; but the spicules of the sarcode-the small spicules which are imbedded in the living sponge-jelly -are of a totally different form. A single large 'osculum' opens, as in Holtenia, at the top of the eponge, but instead of forming a cup uniformly lined with a netted membrane, the oscular cavity divides at the bottom into a number of branching passages as in Pheronema anne, described by Dr. Leidy. I was inclined at first to place this species in the genus Pheronema, but Dr. Leidy's description and figure are by no means satisfactory, and may refer to some other form of the Holtenia group. The spicules of the ' beard ' are more rigid and thicker than those of Holtenia, and scattered among them are some very large four-harhed grappling hooks.

Off the Butt of the Lews, in water of 450 to 500 fathoms, we met on two occasions with full-grown specimens of a species of the remarkable genus Hyalonema (Fig. 66), with the coils in the larger examples upwards of 40 centimetres in lengtl. Hyalonema is certainly a very striking object; and although our specimens belong apparently to the same species, \boldsymbol{H}. lusitanicum, which has already been recorded by Professor Barboza du Bocage from the coast of Portugal, it is one of the most interesting additions made to the British fauna during our cruise.

A bundle of from 200 to 300 threads of transparent silica, glistening with a silky lustre, like the most brilliant spun-glass,-each thread from 30 to 40 centimetres long, in the middle the thickness of a knitting needle, and gradually tapering towards either end to a fine point; the whole hundle coiled like a strand of rope into a lengthened spiral, the threads of the middle and upper portions remaining compactly coiled by a permanent twist of the individual threads ; the lower part of the coil, which, when the sponge is living, is imbedded in the mud, frayed out so that the glasey threads stand separate from one another, like the bristles of a glittering brush; the upper portion of the coil close and compact, imbedded perpendicularly in a conical or cylindrical spange; and usually part of the upper portion of the silicions coil, and part of the sponge-substance, covered with a brownish leathery coating, whose ourface is studded with the polyps of an alcyonarian zoophyte: -such is the general effect of a complete specimen of Hyalonema.

Fid. ©

The genus was first known in Europe by specimens brought from Japan by the celebrated naturalist and traveller, Von Siebold; and Japanese examples of Hyalonema sieboldi, Gray, may now be found more or less perfect in most of the European musenms. When the first specimen of Hyalonema was brought home, the other vitreous sponges which approach it so closely in all essential points of structure were unknown, and the history of opinion as to its relations is curious.

The heing consisted of three very distinct parts: first, and greatly the most remarkable, the coil of silicious needles; then the sponge, and for long it was supposed that this was the base of the structure, -from which the glossy brush projected, spreading out above it in the water; and thirdly, the opparently constant encrusting zoophyte.

This complicated association suggested many possihilities. Was Hyalonema a natural production at all? Was it complete? Were all the three parts essentially connected together P And if not, were all the three independent, or did two of three parts belong to the same thing? and if so, which two?

Hyalonema was first described and named in 1835 by Dr. John Edward Gray, who has since, in one or two notices in the "Annals of Natural History' and elsewhere, vigoronsly defended the essential part of his original position. Dr. Gray associated the silicious whisp with the zooplyte, and regarded the sponge as a separate organism. He looked upon the silicious coil as the representative of the horny axis of the sea-fans (Gorgoniz), and the leather-like coat he regarded as its fleshy
rind. He supposed that between this zoophyte and the sponge at its base, there subsisted a relation of guest and host, the zoophyte being constantly associated with the sponge; and in accordance with this view he proposed for the reception of the zoophyte a new group of alcyonarians under the name of 'Spongicolæ,' as distinguished from the 'Sabulicolæ' (Pennatula) and the 'Rupicolæ' (Gorgonics).

Dr. Gray's view seemed in many respects a natural one, and it was adopted in the main by Dr. Brandt of St. Petersburg, who in 1859 published a long memoir, describing a number of apecimens brought from Japan to Russia. Dr. Brandt referred what he believed to be a zoophyte consisting of the coil and the crust, to a special group of sclerobasic zoanthcarians with a silicious axis.

One consideration militated strongly against this lypothesis of Dr. Gray and Professor Brandt. No known zoophyte had a purely silicious axis; and such an axis made up of loose separate spicules seemed strangely inconsistent with the harmony of the class. On the other hand, silicious spicules of all forms and sizes were conceivable in sponges; and in 1857 Professor Milne-Edwards, on the authority of Valenciennes, who was thoroughly versed in the structure of the Gorgonice, combined the sponge with the silicious rope, and degraded the zoophyte to the rank of an encrusting parasite.

Anything very strange coming from Japan is to be regarded with some distrust. The Japanese are wonderfully ingenious, and one favourite aim of their misdirected industry is the fabrication of impossible monsters by the curious combination of the
parts of different animals. Tt was therefore quite possible that the whole thing might be an imposition: that some beautiful spicules eeparated from an unknown organism had heen twisted into a whisp by the Japanese, and then manipulated so as to have their fibres naturally bound tngether by the sponges and zoophytes which are doubtless rapidly developed in the Mongolian rock-pools. Ehrenberg, when he examined Hyalonemo, took this view. He af once recognized the silicious strands as the spicules of a sponge quite independent of the zoophyte with which they were encrusted; but he suggested that these might have been artificially combined into the spiral coil and placed under artificial circumstances favourable to the growth of a sponge of a different species round their base. The condition in which many specimens reach Europe is certainly calculated to throw same douht on their genuineness. It seems that the bundles of spicules made up in varions ways, are largely sold as ornaments in China and Japan. The coils of spicules are often stuck upright with their mpper ends in circular holes in stones. Mr. Huxley exhibited a few years ago at the Linnæan Society a beautiful specimen of this kind now in che British Museum:-a stone has been bored, probably by a colony of boring molluscs, and a whole colony of Hyalonemas, old and young, are apparently growing out of the hurrows, the larger individuals more than a foot in length, and the young ones down to an inch or ea, like tiny camel'shair pencils. All these are encrusted by the usual zoophyte, which also extends here and there over the stone (glued on probably), but there is no trace
of the sponge. Such an association is undoubtedly artificinl.

Dr. Bowerbank, another great sponge authority, takes get another view. He maintains "that the silicious axis, its envelopment, and the basal sponge are all parts of the same animal." The polyps he regards as 'oscula,' forming with the coil a ' columnar cloacal system.'

Professor Max Schultze, of Bonn, examined with great care several perfect and imperfect specimens of Hyalonema in the Museum of Leyden, and in 1860 published an elaluorate description of its structure. According to Schultze, the conical sponge is the body-mass of Hyalonema, a sponge allied in every respect to Euplectella; and the siliceous coil is an appendage of the sponge formed of modified spicules. The zoophyte is of course a distinct animal altogether, and its only connection with the sponge is one of 'commensalism.' It 'chums' with the sponge for some purpose of its owd, certainly getting support from the coil, probably sharing the oxygen and organic matters carried in by the ciliary system of the sponge passages. This style of association is very common. We have another example of the same thing in Palythoa axinelle, Sснмmт, a constant 'commensal' with Axinelle cinnamomea and A. verrueosa two Adriatic sponges.

In 1864 Professor Barboza du Bocage, director of the Museum of Natural History in Lisbon, communicated to the Zoological Society of London the unexpected news that a species of Hyalonema had been discovered off the coast of Portugal ; and in 1865 he published, in the Proceedings of the same Society,
an additional note on the habitat of Fyalonema lusitanicum. It appears that the fishermen of Setuhal frequently bring up on their lines, from a considerable depth, coils of silicious threads closely resembling those of the Japanese species, which they even surpass in size, sometimes attaining a length of about 50 centimetres. The fishermen seem to he very familiar with them. They call them 'sea-whips,' but with the characteristic superstition of their class they regard all these extraneous matters as ' unlucky,' and usually tear them in pieces and throw them into the water. ludging from some specimens in the British Museum, and from Senhor du Bocage's figure, the 'glass-rope' of the Portuguese form is not so thick as that of H. sieholdi. There is also some slight difference in the sculpture of the long needles, but the structure of the sponge and the very characteristic forms of the small spicules are identical in the two. I doubt if there be more than varietal distinctions between the two forma; and if that be so, it adds another to the list of species common to our seas and the seas of Japan.

Perhaps the most singular circumstance connected with this discussion was that all this time we had been looking at the sponge upside down, and that it had never occurred to anyone to reverse it. We had probably taken this notion from the specimens stuck in stones, brought from Japan, and the eponge certainly looked very like the hase of the edifice. Whenever the sponges were dredged on the coasts of Europe and compared with allied things, it became evident that the whisp was an organ of support passing out of the lower part of the oponge, and that the flat,
or slightly-cupped disk, with a papilln in the centre receiving the upper end of the coil, with large oscular openings, and a fringe of delicate radiating epicules round the edge, was the top of the sponge, spreading out probably level with the surface of the ooze.

In essential atructure Hyalonema very closely resembles Hollenia, and the more characteristic forms of the Hexactinellids. The surface of the sponge is smpported by a square network, formed by the symmetrical arrangement of the four secondary rays of five-rayed spicules, and the snrcode which binds these branches together is full of minute feathered fiverayed spicules, which project from the branches like a delicate fringe. The oscula are chiefly on the upper disk, and lead into a number of irregolar passages which traverse the body of the eponge in all directions. When we trace its development, the coil loses its mystery. On one of the Holtenice from the Butt of the Lews, there was a little accumulation of greenish granular matter among the fibres. On placing this under the microscope it turned out to be a number of very young sponges, scarcely out of their germ state. They were all at first sight very much alike, minute pear-shaped bodies, with a long delicate pencil of silky spicules taking the place of the pear-stalk. On closer examination, however, these little germs proved to helong to different species, each slowing unmistakeably the characteristic forms of its special spicules. Most of them were the young of Tisiphonia, but among them were several Holtenice, and one or two were at once referred to Hyalonema. In two or three havis in the same locality we got them in every suhsequent stage-heautiful little
pear-shaped things, a centimetre long, with a single osculnm at the top, and the whisp like a small hrush. At this stage the Palythoa is usually ahsent, but then the body of the sponge has attained 15 mm . or so in length very generally a little pink tubercle may be detected at the point of junction between the sponge body and the coil, the germ of the first polyp.

Hyalonema lubitanicum, Barboza jo Bocage, the species met with in the British seas and along the coast of western Europe, appears to be local, hut very abundant at the atations where it cocurs. I am still in doubt whether we are to regard it as identical with the Japanese species, \boldsymbol{H}. sieboldi, Gray.

During Mr. Gwyn Jeffreys' cruise in 1870, two specimens of a wonderful sponge helonging also to the Hexactinellidme were dredgerl in 374 fathoms in rocky ground off Cape St. Vincent. The larger of these forms a complete vase of a very elegant form, nearly ninety centimetres in diameter at the top and about sixty in height (Fig. 67). The sponge came up folded together, and had much the appearance of a piece of conrse, greyish-coloured blanket. Its minute structure is, however, very beautiful. It consists, like Holtenia, of two netted layers, an outer and an inner, formed by the symmetrical interlacing of the four cross branches of five-rayed spicules; and, as in Holtenia and Rossella, the sarcode is full of extremely minute five and six-rayed spicules, which, however, have a thoroughly distinct character of their own, with here and there n very beautiful rosette-like spicule, another singular modification of
the hexradiate type characteristic of this group. Between the two netted surfaces the sponge substance is formed of loose curving meshes of loosely nggregated bundles of long simple fihres, sparsely mixed with spicules of other forms. This sponge seems to live fixed to a stone. There are no anchoring spicules, and the battom of the vase,

which in uur two specimens is a good deal contracted and has a square shape something like an old Irish 'mether,' has apparently been torn from some attachment. This fine species was named Askonema setubalense, and very briefly described from a specimen in the Lisbon Museum hy Mr. Saville Kent, in a paper in which he noticed some
of the sponges dredged from Mr. Marshall Hall s yacht. ${ }^{1}$

Sponges belonging to ather groups from the deep water were nearly equally interesting. I have already alluded, p. 188, to the handsome branching sponges belonging to the Esperadiæ, which abound off the coasts of Scotland and Portugal. Near the mouth of the Strait of Gibraltar a number of epecies were taken in considerable quantity, belonging to a group which were at first confused with the Hexacttinellida, on account of their frequently forming a similar and equally beautiful continuous network of silica, so as to assume the same resemblance to delicate lace when boiled in nitric acid. The Corallinspongia differ, however, from the Hexactinellidæ in one very fundamental character. While in the latter the spicule is hexradiate, in the former it consists of a shaft with three diverging rays at one end. These frequently spread in one plane, and they often re-divide, and frequently the spaces between them are filled up with a secondary expanse of ailica, variously frilled and netted on the edge, so as to give the spicule the appearance of an ornamental flat-headed tack. These three-rayed stars or disks, in comhination, sup. port the outer membrane of sponges of this order; and spicules of the same type, fused together according to various plans, form the sponge skeleton.

This group of sponges are as yet imperfectly known. They seem to pass into such forms as Geodia and Tethya; and the typical example with which we are most familiar is the genus Dactylocalyx represented by the cup-shaped pumice-like d Monliby Mirmecopic Jnurnal, November 1, 1870.
masses which are fhrown ashore from time to time on the West Indian Islands.

Professor P. Martin Duncan has already published an account of the stony corals (the Madreporaria) of the cruise of the 'Porcupine' in 1869, and he has now in hand those procured off the coast of Portugal in 1870, some of which are of even greater interest from their close resemhlance to certain cretaceous forms. Twelve species of stony corals were dredged in 1869.

Caryophyllia borealis, Fleming (Fig. 4, p. 27), is very abundant at moderate deptha, particularly along the west coast of Ireland, where many varieties are found. The greatest depth at which this species was dredged is 705 fathoms. Yt is found fossil in the miocene and pliocene beds of Sicily.

Ceratocyathus ornatus, Seginenza.-Of this pretty coral only a single specimen was taken in 705 fathoms, off the Butt of the Lews. It had not pre. viously been known as a recent species, and was described hy Seguenza from the Sicilian miocene tertiaries. Flabellum laciniatum, Edwards and Нaime, was frequent in water from 100 to 400 fathoms, from Fëroe to Cape Clear. From the extreme thinness of the outer crust, this coral is excessively hrittle; and although many hundreds came up in the dredge, scarcely half-a-dozen examples were entire. Another fine species of the same genus, Flabellum distinctum (Fig. 68), was dredged on several occasions off the Portuguese coast in 1570. The special interest attaching to this species, is that it appears to be identical with a form living in the seas of Japan.

Lophohelia prolifera, Pallas (Fig. 80, p. 169). - Many varieties; abundant at depths from 150 to 500 fathoms all along the west coasts of Scotland and Yreland, at temperatures varying from 0° to $10^{\circ} \mathrm{C}$. In some places, as, for example, at Station 54, between Scotland and Fexroe, and Station 15, between the west coast of Treland and the Porcupine Bank, -there seem to be regular hanks of it, the dredge coming up loaded with fragments, living and dead.

Five allied species of the genus Amphihelia occurred more sparingly.

Allopota oculina, Efrpnierg, a very beautiful form, of whicl a few specimens were procured in the ' cold area,' at depths a little over 300 fathoms.

Thecopsammia socialin, Pourtales (Fig. 69), a form closely allied to Halanophyllia, and resembling some crag apecies. It had been previously dredged by Count Pourtales in the Gulf of Florida. Thecopsammia is tolerably common in deep water in the ' cold area,' growing in patches, five or six examples sometimes coming up on one stone.

I have already adverted to the danger we run in estimating the relative proportions in which any special groups may enter into the sum of the abyssal fauna, by the proportion in which they are recovered by any single method of capture. From their considerable size, the length and rigidity of their straggling rays, and their hahit of clinging to fixed objects, the Echinodermatn are not very readily taken

by the dredge, but they fall an easy prey to the 'hempen tangles.' It is possible that this circumstance may to a certain extent exaggerate their apparent abundance at great depths, but we have direct evidence in the actual numbers which are brought up, that in some places they must be won-
derfully numerous; and we frequently dredge sponges and corals actually covered with them in the attitudes in which they lived, nestling among their fibres and in the angles of their branches. I have counted seventy-three examples of Amphiura abyssicola, small and large, sticking to one Holtenia.

Both on account of their beauty and extreme rarity, and of the important part they have borne in the fauna of some of the past periods of the earth's history, the first order of the Echinoderms, the Crinoidea, has always had a special interest to naturalists; and, on the watch as we were for missing links which might connect the present with the past, we eagerly welcomed any indication of their presence. Crinoids were very ahundant in the seas of the Silurian period; deep beds of carboniferous limestone are often formed by the accumulation of little else than their skeletons, the stem joints and cups cemented together by limy sediment; and dozens of the perfect crowns of the elegant lilyencrinite are often scattered over the surface of slabs of the muechelkalk. But during the lapse of ages the whole order seems to have been worsted in the 'struggle for life.' They become scarce in the newer mezozoic beds, still scarcer in the tertiaries, and up to within the last few years only two living stalked crinoids were known in the seas of the present period, and these appeared to be confined to deep water in the seas of the Antilles, whence fishermen from time to time bring up mutilated specimens on their lines. Their existence has been known for more than a century; but although many eyes have been watching for them, until very
lately not more than twenty specimens had reached Europe, and of these only two showed all the joints and plates of the skeleton, and the soft parts were lost in all.

These two species belong to the genus Pentacrinus, which is well represented in the beds of the lias and oolite, and sparingly in the white chalk; and are named respectively Pentacrinus asteria, $L_{\text {., }}$ and P. millleri, Oersive. Fig. 70 represents the first of these. This species has been known in Europe since the year 1755, when a specimen was brought to Paris from the island of Martinigue, and described by Guettard in the Memoirs of the Royal Academy of Sciences. For the next hundred years an example turned up now and then from the Antilles. Ellis described one, now in the Hunterian Museum in Glasgow University, in the Philosophical Transactions for 1761. One or two found their way into the museums of Copenhagen, Bristol, and Paris; two into the British Museum; and one fortnnately fell into the hands of the late Professor Johannes Müller of Berlin, who pullished an elaborate account of it in the Transactions of the Royal Berlin Academy for 1843. Within the last few years, Mr. Damon of Weymouth, a well-known collector of natural history objects, has procured several very good specimens, which are now lodged in the museums of Moscow, Melbourne, Liverpoal, and London.

Pentacrinus asteria may he taken as the type of its order; I will therefore describe it briefly. The animal consists of two well-marked portions, a stem and a head. The stem, which is often from 40 to (i) centimetres in length, consists of a series of

flattened calcareous joints; it may be snapped over at the point of junction between any two of these joints, and ly slipping the point of a pen-knife into the next suture a single joint may be removed entire. The joint has a hole in the centre, through which one might pass a fine needle. This hole forms part of a canal filled during life with a gelatinous nutrient matter which runs through the whole length of the stem, branches in a complicated way through the plates of the cup, and finally passes through the axis of each of the joints of the arms, and of the ultimate pinnules which fringe them. On the upper and lower surfaces of the stem-jnint there is a very graceful and characteristic figure of five radiating oval leaf-like spaces, each space surrounded by a border of minute alternate ridges and grooves. The ridges of the upper surface of a joint fit into the grooves of the lower surface of the joint ahove it; so that, though from being made up of man joints the stem admits of a certain amount of motion, that motion is very limited.

As the border of each star-like figure exactly fits the border of the star above and below, the five leaflets within the border are likewise placed directly one above the other. Within these leaflets the limy matter which makes up the great bulk of the joint is more loosely arranged than it is outside, and tive oval bands of strong fibres pass in the interspaces right through the joints, from joint to joint, from one end of the stem to the other. These fibrous bands give the column great strength. It is ly no means easily hroken even when dead and dey. 'They also, by their elasticity, admit a certain
amount of passive motion. There are no muscles between the joints of the stem, so that the animal does not appear to be able to move its stalk at will. It is probably only gently waved by the tides and currents, and by the movements of its own arms.

In Pentacrinus asteria about every seventeenth joint of the lower mature part of the stem, is a little deeper or thicker than the others, and bears a whorl of five long tendrils or cirri. The stem is, even near the base, slightly pentagonal in section, and it becomes more markedly so towards the head. The cirri start from shallow grooves hetween the projecting angles of the pentagon, so that they are ranged in five straight rows up and down the stem. The cirri are made up of about thirty-six to thirtyseven short joints; they start straight out from the stem rigid and stiff, but at the end they usually curve downwards, and the last joint is sharp and clawlike. These tendrils have no true muscles ; they have, however, some power of contracting round resisting ohjects which they touch, and there are often star-fishes and other sea animals entangled among them. The specimen figured has thus become the temporary abode of a very elegant species of Asteroporpa.

Near the head the cirri become shorter and smaller, and their whorls closer. The reason of this is that the stem grows immediately below the head, and the cirrus-bearing joints are formed in this position, the intermediate joints being produced afterwards b3low and above each cirrated joint which they gradually separate from the one on either side of it, till the numbar of savantean or eighteen
infermediate joints is complete. At the top of the stem five little calcareous lumps like buttons stand out from the projecting ridges, and upon these and upon the upper part of the stem the cup which holds the viscera of the animal is placed. These hutions are of but little moment in this form, but they represent joints which are often developed into large, highly-ornamented plates in the various tribes of its fossil ancestors. They are called the "basal' plates of the cup. Next, in an upper tier, alternating with the last, we have a row of five oblong plates opposite the grooves of the stem, and all cemented into a ring. These plates are separate when the animal is young; they are called the 'first radial' plates. They are the first of long chains of joint which are continued to the ends of the arms. Immediately ahove these plates, and resting upon them, there is a second row of plates nearly of the same size and shape, only they remain separate from one another, never uniting jnto a ring. These are the ' second radials,' and immediately upon these rest a third series of five, very like the plates of the other two rows, only their upper surfaces rise into a cross ridge in the centre, and they have the two sides hevelled off like the eaves of a gable, to admit of two joints being seated upon each of them instead of one. This last ring of joints are the 'radial axillaries,' and above these we have the first lifurcation of the arms. These three rings of radial joints form the true cup. In the modern species they are very small, but in many fossils they acquire a large size, and enclose, frequently with the aid of various rows of intermediate or
inter-radial plates and a row of basals, a large body-cavity. The two upper joints of each ray are separated from those of the ray next it by a prolongation downwards of the plated skin which covers the upper surface or 'disk' of the body. Seated upon the bevelled sides of each radial-axillary joint, there is a series of five joints, the last of the five bevelled again like the radial axillaries for the insertion of two joints. These five joints form the first series of 'brachials,' and from the base of this series the arms become free.

The first of the brachial joints, that is to say, the joint immediately above the radial axillary, is, as it were, split in two by a peculiar kind of joint, called, by Müller, a 'syzygy.' All the ordinary joints of the arms are provided with muscles producing various motions, and hinding the joints firmly together. The syzygies are not so provided, and the arms are consequently easily snapped across where these occur. This is a beautiful provision for the safety of an animal which has so wide and complicated a crown of appendages. If one of the arms get entangled, or fall into the jaws or claws of an enemy, by a jerk the star-fish can at once get rid of the embarrassed urm; and as all this group have a wonderful power of reproducing lost parts, the arm is soon restored.

When the animal is dying, it generally breaks off its arms at these syzygies; so that almost all the specimens which have been brought to Eurnpe have arrived with the arms separate from the body.

About six arm-joints or so above the first on either branch there is a second brachial accessory and
another bifurcation, and seven or eight joints farther on another, and so on, but more irregularly the farther from the centre, till each of the five primary rays has divided into from twenty to thirty ultimate branches, producing a rich crown of more than a hundred arms. The upper surface of each arm-joint is deeply grooved, the lower arched; and from one side of each, alternately on either side of the arm, there springs a series of flattened ossicles. These form the ultimate branchlets, or 'pinnules,' which fringe the arms as the barbs fringe the shaft of a feather. Unfortunately, most of the examples of Pentacrinus asteria hitherto procured have had the soft parts destrayed and the disk more or less injured. One specimen, however, in my possession is quite perfect. The body is covered above by a membrane closely tesselated with irregularly-formed flat plates; this membrane, after covering the disk, dips into the spaces between the series of radial jointa, and with the joints of the cup completes the body-wall. The mouth is a rounded opening of considerable size in the sentre of the disk, and opens into a stomach passing into a short curved intestine which ends in a long excretory tube,-the so-called 'proboscis' of the fossil crinoids, -which rises from the surface of the risk near the mouth. From the mouth five deep grooves, bordered on either side by small square plates, run out to the edge of the disk, and are contimons with the grooves on the upper surface of the arms and pinnules, while in the angles between them five thickened masses of the mailing of the disk surround the month like valves. These were at first supposed to answer the purpose of teeth. The
crinoids, however, are not predatory animals. Their nutrition is effected in a very gentle manner. The grooves of the pinnules and arms are richly ciliated. The crinoid expands its arms like the petals of a fullblown flower, and a current of sea-water hearing organic matter in solution and suspension is carried by the cilia along the brachial and radial grooves to the mouth. In the stomach and intestine the water is exhausted of assimilable matter, and the length and direction of the excretory proboscis prevent the exhausted water from returning at once into the ciliated passages.

The other West Indian Pentacrinus - P. Mülleriseams to be more common off the Danish Islands than P. asteria. The animal is more delicate in form. The stern attains nearly the same height, but is more slender. The rings of cirri occur about every twelfth joint, and at each whorl two stemjoints are modified. The upper joint bears the facet for the insertion of the cirrus, and the second is grooved to receive its thick basal portion, which hends downwards for a little way closely adpressed to the stem, before becoming free. The syzygy is between the two modified joints, and in all the complete specimens which I have seen the stem is broken through at one of these stem syzygies, and the termimal stem-joint is worn and ahsorbed, khowing that the animal must lave been for long free from any attachment to the ground.

On the 21st of July, 1870, Mr. Gwyn Jeffreys, dredging from the 'Porcupine' at a depth of 1,095 fnthoms, lat. $39^{\prime \prime} 42^{\prime} \mathrm{N}$., long. $9^{\circ} 43^{\prime}$ W., with a bottorn temperature of $4^{\circ} \cdot 3 \mathrm{C}$. and a hottom of soft

mud, took about twenty specimens of a liandsome Pentacrinus involved in the 'hempen tangles;' and this splendid addition to the fauna of the European seas my friend has done me the honour to associate with my name.

Pentacrinus wyville-thomsoni, Jeffreys (Fig. 71), is intermediate in some of its characters between \boldsymbol{P}. asteria and P. mülleri; it appronches the latter species, however, the more nearly. In a mature specimen the stem is about 120 mm . in length, and consists of five or six internodes. The whorls of cirri towards the lower part of the stem are 40 mm . apart, and the internodes contain from thirty to thirty-five joints. The cirri are rather short and stand straight out from the nodal joint, or curve sharply downwards, as in \boldsymbol{P}. asteria. The nodal joint is single, and the syzyey separates it from the joint immediately beneath it, which does not differ waterially from the ordinary internodal stem-joint. All the stems of mature examples of this species end uniformly in a nodal joint, surrounded with jte whorl of cirri, which curve downwards into a kind of grappling root. The lower surface of the terminal joint is in all smoothed and rounded, evidently by absorption, showing that the animal had for long been free. This character I bave remarked as occurring in some specimens of P. mülleri. I have no dount that it is constant in the present species, and that the animal lives loosely rooted in the soft mud, and can change its place at pleasure by swimming with its pinnated arms; that it is in fact intermediate in this respect between the free genus Antedon and the permanently fixed crinoids.

A young specimen of P. voyville-thomsoni gives the mode in which this freedom is acquired. The total length of this specimen is 95 mm ., of which the head occupies 35 mm . The stem is broken off in the middle of the eighth internode from the head. The lowest complete internode consists of 14 joints, the next of 18 , the next of 20 , and the next of 26 joints. There are 8 joinţs in the cirri of the lowest whorl, 10 in those of the second, 12 in those of the third, and 14 in those of the fourth. This is the reverse of the condilion in adult specimens, in all of which the numbers of joints in the internodes, and of joints in the cirri, decrease regularly from below upwards. The hroken internode in the young example, and the three internodes alove it, are atrophied and undeveloped, and suddenly at the third node from the head the stem increases in thickness, and looks as if it were fully nourished. There can be no doubt that in early life the crinoid is attached, and that it hecomes disengaged by the withering of the lower part of the stem.

The structure of the cup is the same as in P. asteria and P. mülleri. The basals appear in the form of shield-like projections crowning the salient angles of the stem. Alternating with these we have well-developed first radials, forming a closed ring and articulating to free second radials by muscular joints. The second radials are united by a syzygy to the radial axillaries, which as usual give off each two first brachials from their bevelled sides. A secoud brachial is united by syzygy to the first, and normally this second brachial is an axillary, and gives off two simple arms; sometimes, bowever,
the radial axillary originates a simple arm only from one or hoth of its sides, thus reducing the total number of the arms; and sometimes one of the four arms given off from the brachial axillaries again divides, in which case the total number of arms is increased. The structure of the disk is much the same as in the species of the genus previously known.

Two other fixed crinoids were dredged from the 'Porcupine, ${ }^{1}$ and these must be referred to the Apiocrinidm, which differ from all other sections of the order in the structure of the upper part of the stem. At a certain point, considerably below the crown of arms, the joints of the stem widen by the greater development of the calcareous ring, the central tube only increasing very slightly in width. The widening of the stem joints increases upwards until a pear-shaped body is produced, usually very elegant in form, which, looking from the outside, one would take for the calyx. It is, however, nothing more than a symmetrical thickening of the stem, and the body-cavity occupies a shallow depression in the top of it included within the plates of the cup-the hasals and radials-which are thicker and more solid then in other crinoids, but otherwise normally arranged. The stem is usually long and simple until near the base, where it forms some means of attachment, either as in the celebrated pear-encrinites of the forest marble, a complicated arrangement of concentric layers of calcareous cement which fix it firmly to some foreign body, or, as in the chalk Bourguetticrinus and in the recent Rhizocrinus, an irregular series of jointed branching cirri.

The Apiocrimidse attained their maximum during
the Iurassic period, when they were represented by many fine species of the genera Apiocrinus and Millericrinus. The chalk genus Bourguetticrinus shows many symptoms of degeneracy. The head is small, and the arms are small and short. The arm-joints are so minute that it is scarcely possible to make up a series from the fragments scattered through the chalk in the neighbourhood of a cluster of heads. The stem, on the other hand, is disproportionately large and long, and one is led to suspect that the animal was nourished chiefly by the general surface absorption of organic matter, and that the head and special assimilative organs were principally concerned in the function of reproduction. Rhizocrinhs loffotensis, M. Sars (Fig. 72), was discovered in the year 1864 , at a depth of about 300 fathoma, off the Loffoten islands, by G. O. Sars, a son of the celebrated Professor of Natural History in the University of Christiania by whom it was described in the year 1868. It is obviously a form of the A piocrinidæ still more degraded than Bourguetticrinas, which it closely resembles. The stem is long and of considerable thickness in proportion to the size of the head. The joints of the stem are individually long and dice-box shaped, and between the joints spaces are left on either side of the stem alternately, as in Bourguettioninus and in the pentacrinoid of Antedon, for the insertion of fascicles of contractile fibres. Towards the hase of the stem branches spring from the upper part of the joints; and these, ench composed of a succession of gradually diminishing joints, divide and re-rlivide into a hunch of fibres, which frequently expand at the ends into thin
calcareous laminæ, clinging to small pieces of shell, grains of sand-anything which may improve the anchorage of the crinuid in the soft mud which is nearly universal at great depths.

In Rhizocrinus the basal series of plates of the cup are not distinguishable. They are masked in a closed ring at the top of the stem; and whether the ring be composed of the fused basals alone, or of an upper stem-joint with the hasals within it forming a 'rosette,' as in the calyx of Antedon, is a question which can only be solved by a careful tracing of successive stages of development. The first radials are likewise fused, and form the upper wider portion of the funnel-shaped calyx. The first radinls are deeply excavated above for the insertion of the muscles and ligaments which unite them to the second radials by a true (or moveable) joint. One of the most remarkable points in connection with this species is, that the first radials-the first joints of the arm-are variable in number, some examples having four rays, some five, some six, and a very small number seven, in the following proportions. Out of seventy-five specimens examined by Sars, there were-

15	wilh	4	日rma
43	$"$	5	$"$
15	$"$	6	$"$
2	$"$	7	$"$

This variability in so important a character, particularly when associated with so great a preponderance in bulk of the vegetative over the more specially animal parts of the organism, must undoubtedly be accepted as indicating a deterioration
from the symmetry and compactness of the Λ piocrinidfe of the Jurassic period.

The anchylosed ring of first radials is succeeded by s tier of free second radials, which are united hy a straight syzygial suture to the next series-the radial axillaries. The surface of the funnel-shaped dilatation of the stem, headed by the ring of first radials, is smooth and unifarm, and the second radials and radial nxillaries present ą smooth, regularly-arched nuter surface. The radial axillaries differ from the corresponding joints in most other known crinoids in contracting slightly ahove, presenting only one articulating facet, and giving origin to a single arm. The arms, which in the larger specimens are from 10 to 12 mm . in length, consist of a reries of from ahout twenty-eight to thirty-four jointa, uniformly transversely arched externally, and deeply grooved within to receive the soft parts. Each alternate joint bears a pinnule, the pinnules alternating on either side of the axis of the arm, and the joint which does not bear a pinnule is united to the pinnule-bearing joint ahove it by a syzygy: thus joints with muscular connections and syzygies alternate throughout the whole length of the arm.

The pinnules, twelve to fourteen in number, consist of a uniform series of minute joints, united by muscular connections. The grooves of the arms and of the pinnules are bordered ly a double series of delicate round fenestrated calcareons plates, which, when the animal is contracted and at rest, form a closely imbricated cavering to the nerve, and the radial vessel with its delicate cemed tentacles. The mouth is placed in the centre of the diak, and radial
canals, equal in number to the number of arms, pass across the disk, and are continuons with the armgrooves. The mouth is surrounded by a rove of flexible cirri, arranged nearly as in the pentacrinoid of Antedon, and is provided with five oval calcareous valve-like plates occupying the interradial angles, and closing over the mouth at will. A low papilla in one of the interradial spaces indicates the position of the minute excretory orifice.

Rhizoorinus loffotensis is a very interesting addition to the British fauna. We met with it in the Fexroe Channel in the year 1869-three examples, greatly mutilated, at a depth of 530 fathoms, with a bottom temperature of $6^{\circ} .4 \mathrm{C}$., Station 12 (1868). Several occurred attached to the heards of the Holtenia, off the Butt of the Lews, and specimens of considerable size were dredged in 862 fathoms off Cape Clear. The range of this species is evidently very wide. It has been dredged by G. O. Sars off the north of Norway; ly Count Pourtales in the Gulf stream off the coast of Florida; by the Naturalists on hoard the 'Josephine,' on the 'Josephine Bank,' near the entrance of the Strait of Gibraltar ; and by ourselves between Shetland and Færce, and off Ushant and Cape Clear.

The genus Bathycrinus must also be referred to the Apiocrinida, since the lower portion of the head consists of a gradually expanding funnel-shaped piece, which seems to be composed of conalesced upper stemjoints.

The stem of Bathyerinus gracilis (Fig. 73) is long and delicate; in one example of a stem alone, which came $u p$ in the same baul with the one nearly perfect speci-

men which was procured, it was 90 mm . in length. The joints are dice-box shaped, as in Rhizocrinus, long and delicate towards the lower part of the stem, 3.0 mm . in length by 0.5 in width in the centre of the joint, the ends expanding to a width of 1.0 mm As in Rhizonrinus, the joints of the stem diminish in length towards the head, and additions are made in the form of calcareous laminæ heneath the coalesced jointe which form the base of the cup.

The first radials are five in number. They are closely apposed, but they do not seem to be fused as in Rhizocrinus, since the sutures show quite distinctly. The centre of each of these firat radials rises into a sharp keel, while the sides are slightly depressed towards the suture, which gives the calyx in fluted appearance, like a folded filter-paper. The second radials are long, and free from one another, joining the radial axillaries by a straight syzygial union. They are most peculiar in form. A strong plate-like keel runs down the centre of the outer surfaces, and the joint is deeply excavated on either side, rising again slightly towards the edges. The radial axillary showe a continuation of the same keel through ita lower half, and midway up the joint the keel bifurcates, leaving a very characteristic diamondshaped space in the centre, towards the top of the joint; two facets are thus formed for the insertion of two first radials; the number of arms is therefore ten. The arms are perfectly simple, and in our single specimen consist of twelve joints each. There is no trace of pinnules, and the arms resemble in charncter the pinnules of Rhizocrinus. The first brachial is united to the second by a syzygial joint, lut after

that the syzygies are not repeated, so thint there is only one of these peculiar junctions in each arm. The arm-grooves are lordered ly circular fenestrated plates, as in Rhizocrinus.

Certain marked resenblances in the structure of the stem, in the structure of the base of the cup, and in the form and arrangement of the ultimate parts of the arnis, evidently associate Bathyorinus with luhizocrinus, but the differences are very wide. Five free keeled and sculptured first radials replace the uniform smooth ring formed by these plates in Rhizocrinus. The radial axillaries give off each two arms, thus recurring to the more usual arrangement in the order, and the alternate syzygies on the amus, which form so remarkable a character in luhizocrinus, are absent.

Only one nearly complete specimen and a deLached stem of this very remarkable species were met with, and they were both brought up from the very greatest depth which has as jet been reached with the dredge, 2,435 fathoms, at the month of the Bay of Biscay, 200 miles south of Cape Clear.

It would seem, in our present state of knowledge, that the stalked crinoids are members of the deepsea fauna. A second specimen of another very remarkable form, Holopus s'angi, D'Onitigny, has lately been procured from deep water off Barbadoes, and that species, with those already noted, makes up the tale of living forms belonging to the order which are known at the present time. It is unwise to prophesy; but when we consider that the first few scrapes of the dredge at great depths have added two remarkable new species to the living
representatives of this group, until now supposed to le on the verge of extinction, and that all the known species are from depths beyond the limit of ordinary dredging, we are led to anticipate that crinoids may probably form rather an important element in the abyssal fauna.

 (Na, G4, 1808, 1

The general distribution of the deep-sea Asteridea has already heen referred to. Perhaps the most ohvious peonlinrity which they present is the great preponderance of the genera Astrogonium, Archaster, Astropesten, and their allies. Genera belonging to other groups do not apparently hecome less
numerous, for species of Asteracanthion, Cribrella, Asteriscus, and Ophidiaster are as abundant as they are at lesser depths; butas we go down new species with tesselated mailing on the disk and massive marginal plates seem to be perpetually added. In our own seas anme few very chacacteristic forms, such as Astroganium phrygianum and Archaster andromeda and parellii, are on the verge of the deep water, and are now and then taken at the outer limit of shore dredging, or on fishing-lines; while in the deep water all along the north and west of Scotland Astrogonium granulare, Archnster tenuispinus, and Astropecten arcticus abound, and the dredge is enriched from time to time with examples of such forms as Archaster bifrons (Fig. 74), A. vexillifer, and Astrogonium langinanum, Mobites. Many additions have been made to the singular little group of which Pteraster may be taken as a typa, but I am inclined to think that these are to he referred along with most of the characteristic Ophiuridans rather to a fauna inhabiting median depths, and coming within range of the naturalist's dredge on the coast of Scandinavia, than to the abyesal fauma; and the same may be said of a few other forms, such as Solaster furcifer (Fig. 75), and Pedicellaster typicus which, although beyond the 200 -fathom line on the coast of Britain, do not appear to have a great range of depth.

Twenty-six Echinideans were observed during the 'Lightning ' and 'Porcupine' cruises off the coasts of Britain and Portugal at depths ranging from 100 to 2,435 fathoms, at which latter depth the group was represented by a amall variety of Echinus norvegicus, and a young example of Brissopsis lyrifera.

Among the Cidaridx, Cidaris papillata, Leske, occurs in enormous numbers over hard ground, at depths from 100 to 400 fathoms. This species has a very wide range, inhabiting an apparently unbroken belt from the North Cape to the Strait of Gihmaltar, and then passing into the Mediterranean. This is a variable form, within narrow limits of variation. The southern specimens gradually pass into the form,-it can scarcely be called a variety,which is the type of Lamarck's species, C. hystrix. Cidaris affinis, Philipri, is very common in the Mediterranean, especially along the African coast. I think this pretty little form must for the present be considered distinct. The body spines are bright scarlet, and the long spines, in marked specimens, are brown banded with red or rose, so that it is a singularly pretty object.

The genus Porocidaris and the three species of the family Echinotburidx, and their interesting relations to fossil forms, have already been considered; but even these are scarcely more suggestive of early times than two genera of irregular urchins, one dredged off the coast of Scotland, and the other at the mouth of the English Channel.

The first of these is Pourtalesia, one species of which, P. jeffreysi, has alreaty heen figured and described (p. 108). According to the classification of

Desor, which makes the disjunct arrangement of the ambulacin at the apex the test character of the Dysasteridæ, this genus should be referred to that group, for the ajpical disk is truly decomposed as in Dysuster aud Collyrites, and not merely drawn out as in Ananchytes. From the arrangement and form of the pore areas, however, and the general appearance and habit of the animal, I am inclined to think with Alexander Agassiz, that its affinities are more with such forms as Infulaster. Pourtalesia must be aberrant in whatever group it may be placed.

The other genus Neolanupas, A. Ag., associates itself with the Cassidulides in virtue of the nearly central pentagonal mouth with a tolerably distinct flocelle, the anal opening at the bottom of a deep posterior groove excavated in a projecting rostellum, the narrow ambulacral areas, and the small compact group of apical plates; but it differs from all known genera of the family, living or extinct, in having no trace of a petaloid arrangement of the ambulacra, which are reduced on the apical surface of the test to a single pore passing through each ambulacral plate, and thus forming a double row of alternating simple pores for each ambulacral area. I think I am right in identifying a single specimen, nearly 20 mm . in length, which we dredged in 800 fathoms water at the mouth of the Channel, with the species dredged by Count Pourtales at depths from 100 to 160 fathoms, in the Strait of Floridu, and described by Alexander Agassiz under the name of Neolampas rostellatus.

Of the twenty-six Echinoderms dredged from the ' Porcupine,' six-Echinus flemingii, Echinus esculen-

Lts, 7^{2} stmmeohinus miliavis, Echinocyamus angulatus, Amphidetus corrlatus, and Spatangus purpureus-may ho regarden as denizens of moderate depths in the ' Celtic province,' recent olservations laving merely shown that they have a somewhat greater range in repith than was previously supposed. Prohnbly Spatungus raschi way lee an essentially deep-water form having its head-quarters in the same region. Seven species-Cidaris pupillata, Echinus clegans, E. norvegicus, E. rarispina, L. microstona, Brissopsis lyrifert, and Tripylus fragilis-are members of a fauna of intermediate depth; and all, with the doubtful example of Echinus microstoma, have heen ohserved in comparatively shallow water off the coasts of Scandinavia. Five species-Cidavis affinis, Echinus melo, Toxopneustes brevispinosus, Psammechinus microtuberculatus, and Schizaster canaliferus-are recognized nembers of the Lusitanian and Mediterranean faunx: and seven-Poracidaris purpurata, Phormosomat placenta, Calveria hystrix, C. fenestrata, Neolampas rostellatus, Pourtalesia jeffreysi, and P. phiale-are forms which have been for the first time brought to light during the late deep-sen dredging operations, whether on this or on the other side of the Atlantic. There seema little doubt that these unust be referred to the abyssal fauna, upon whose confines we are now only beginning to encroach. Three of the most remarkable generic forms-Cabveria, Noolumpas, and Pourtalesia-have heen found by Alexander Agassiz among the results of the deep dredging operations of Count Pourtales in the Strait of Floridn, showing a wide lateral distribntion, while cven a deeper interest attaches to the fact that
while one family type, the Echinothurides, has beers hitherto only known in a fossil state, the entire group find nearer allies in the extinct fauna of the chalk or of the earlier tertiaries than in that of the present period.

As I have already said, the mollusca procured during the three years' dredging are in the hands of Mr. Gwyn Jeffreys for identification and description. From the large number of new species, and from the complicated relations which many of the forms from deep water hear to species now widely separated from them in space, or belonging to past geological periods, the task will he a difficult one, and we cannot expect its completion for some time to come. In the meanwhile, Mr. Gwyn Jeffreys has published several preliminary sketches which are full of promise that his complete results will be of the highest interest.

Mr. Gwyn Jeffreys believes that the deep-water mollusca which were dredged throughout the whole of the area examined from the Frroe Islands to the coast of Spain, are almost all of northern origin. Most of the species which have been already described were previously known from the Scandinavian seas, and many of the undescribed species belong to northern genera. He points out that the molluscan fauna of the Arctic Sea is as yet almost unknown; but he reasons from the large collections made at Spitzbergen by Professor Torell, and from the fact that fragments of mollusca have heen brought up in many deep-sea soundings within the Arctic circle, that the fauna is probably varied and rich. He instances soundings taken in 1868 by the Swedish

Arctic Expedition, which reached 2,600 fathoms, when a Cuma and a fragment of an Astarte enme up in the ' Bulldog ' machine. He adds, " It is evident that the majority, if not the whole of our submarine (as contradistinguished from littoral or phytophagous), mollusea originated in the North, whence they have in the course of time been transported southwards by the great Arctic currents. Many of them appear to have found their way into the Mediterranean, or to have left their remains in the tertiary or quaternary formations of the south of Italy; some have even migrated into the Gulf of Mexico."

I have great hesitation in questioning any of the conclusions of my friend Mr. Gwyn Jeffreys on a subject in which he is so excellent an authority. hut I confess I do not quite see the cogency of his reasoning on this point. It would seem rather that the last change in the mollusean fama of the British area, at moderate depths, consisted in the retirement of northern apecies at the close of the glacial period and the immigration of southern forms. The quaternary beds of the Clyde district contain a rich assemblage of mollusca; those of the neighbourhoed of Rothesay especially representing the deeper part of the Laminarian and the Coralline zone. The broad characteristic of the fauna of this bed is that many of the most numerous species-for example, Pecten islandicus, Tellina calcarea, and Natica clausa-nre now extinct in the seas of Britain, but are still met with in abundance in the seas of Scandinavia and Labrador ; while many forms now extremely common in the British seas and having a southern extension are entirely nbsent.

We found some of the glacial shells of the Clyde beds living on the northern outskirts of our region, -Tellince calcarea, for instance, was very common in some of the lyords in lieroe. It seems evident that this fauna quietly retreated northwards in the face of slowly altering circumstances. Such an instance of clange of fauna, which we are able in a great degree to trace step by step, has an interesting bearing upon the great question of the contemporaneity of beds containing generally the same fauna at distant localities. We can well imagine that a block of perfectly recent silt might he brought from a locality on the verge of the Arctic circle, imbedding precisely the same species of mollusca as those contained in a block of the Clyde glacial clay, and the mineral character of the matrix in the two cases might correspond most closely; applying the ordinary geological rule, those two blocks agreeing in their palæontological characters ought to be contemporaneous,-but we know that while the northern silt helongs to the present period, the Aritish glacial clays are overlain hy a deep series of modern deposits, representing the lapse of a period of time considerable even in a geological sense, and containing a fauna of a very different character. This is no doubt a comparatively trinling case, involving beds of no great depth or importance, but it is a case in which two heds correspond palmontologically, and yet we lenovo that they are not contemporanenus fron one of them being overlain hy a considerable thickness of newer strata, while the other is now forming, and thus fumishes a date, a rare and valuable thing in geology.

I have already pointed out that in reasoning upon the ground of identity of deep-sen forms with species hitherto found in Scandinavia, we must remember that the conditions of temperature of our southern seas at great depths-the conditions which appear to have the greatest influence upon the distribution of species-correspond very closely with those of much shallower water in the Scandinavian seas; and that consequently the corresponding fauna in the northern regions was much earlier, and is still much better known. Mr. Gwyn Jeffreys lays great stress upon the grenter numbers and the greater development in size and in prominent characters of sculpture and other ornament, of the Arctic examples of species common to our deep water. This is no doubt often the case, but we must admit that in many groups, and particularly among the mollusca, there is a tendency to dwarfing in deep water, and I should think it very possible that a epecies may attain a greater size and development in that region where its zone of special temperature conditions comes nearest the surface, -most under the influence of air and light.

Many of the mollusca from the deep water have hitherto been found only in the northern portions of the area examined, and are generally allied to northern forms. As examples of this group I may mention two interesting additions to the already fannous Shetland fama, Buccinopsis shi iata, Jeffreys (Tig. 76), a form somewhat allied to Ducciaopsis dulei, which has long heen one of the prizes of the Shetland seas, and Latirus mlbus, Jepfileys (Fig. 77), known also from the const of Norway. Cerithiunn granosum, \mathbf{S}.
V. Wood, also common to Norway and Ehetland, is found fossil in the coralline and red crag, and Fusus sarsi, Jeffreys, common to Shetland and Norway, is found fossil at Bridlington.

Several species have hitherto been known only from the south, and Mr. Jeffreys finds a difficulty in accounting for their presence. Thus, Tellina compressa, Broceni, is known from the Canary Islands and the Mediterranean, and is fossil in the newer Italian tertiaries. Vericoordia aeuticostata, Philippi,

 Kmide Chamant.

Fia 77.-Indìruanlban, Jepfatun
 Channel.

I have already referred to as being found on the coasts of Portugal and of Japan. It is a common fossil in the coralline chag of Calabria. The mollusea which are of the most special interest, however, are those which we must refer to the abyssal fauna. Ahout this group we know as yet very little. Like the Echinoderms, they seem to be special, and to have a wide lateral extension. Pleuronectia lucida, Jeffrets (Fig. 78), a pretty little clam belonging to the Pecten pleuronentes set, is figured both from the North Atlantic and from the Gulf of

Mcxico. The ahyssal mollusca are hy no means devoid of colour, though, as a rule, they are paler than those from shallow water. Dacrydium vitreum-a curious little mytiloid shell-fish which makes and inhabits a delicate flask-shaped tube of foraminifera,

 J_{1} framin the Gulf of Mexlao.
sponge spicules, coccoliths, and other foreign bodies, cemented together by organic matter and lined by a delicate membrane--is of a fine reddish brown colour dashod with green, from 2,435 fathoms; and the

aminals of one or two species of Lima from extreme depths are of the usual vivid orange scarlet. Neither are the abyssal mollusca universally destitute of eyes. A now species of Pleurotoma from 2,090 fathoms had a pair of well-developed eyes on short footstalks ; and
a Fusus from 1,207 fathoms was similarly provided. The presence of organs of sight at these great depths leaves little room to doubt that light must reach even these abysses from some source. From many nonsiderations it can scarcely be sun-light. I have already thrown out the suggestion that the whole of the light beyond a certain depth might be due to phosphorescence, which is certainly very general, particularly among the larva and young of deepsea animals; but the question is one of extreme interest and difficulty, and will require careful investigation.

CHAPTER X.

THE CONTINUITY OF TGE CHALK.

Paints of Resemblance between the Atlantic Ooze and the White Chalk.-Differences between them.-Composition of Cbalk.-The Doctrine of the Continuity of the Cbalk.-Objections.-Argomenke in favorr of the Views from Pbysical Geology and Geography. Farrar Dibtribution of Sea and Lend.-Palæontolngical Evidence. --Chalk-fints.-Modern Spanges, and Ventriculites.-Corale.Fchinoderme. Molluaca - Opinions of Profegeor Huxley and Mr. Prestwich.-The Composition of Sar-water. -Presence of Organic Matter.-Analyais of the contained Gases.-Differences of Specific Gravily.-Canolusion.

Appendix A.-Summary of the Rearulte of the Examination of Samplea of Sea-watar taken at the Surface and at varioue Deplbs. By William Lant Carpenter, B. A., R.Sc.
Appfndir T3.-Resulta of the Anelyaes of Eight Samples of Sar-water collected during the Third Cruise of the 'Porcupine' By Dr. Franklond, F.R.S.
Aprexdix C.-Nates on Spacimens of the Bottom collected during the Firat Cruise of the 'Porcupine' in 1899. By Devid Furbes, F.R.S.

Appendix D.-Nate on the Carbonic Acid contained in Sea-water. Hy John Young Buchanan, M.A., Chemist to the 'Chulenger' Expedition.

Very speedily after the first samples of the bottom of the mid-Atlantic had heen brought up by the sound-ing-line, and suhmitted to chemical analysis and
to microscopical examination, many observers were struck with the grent similarity between its composition and structure and that of the ancient chalk. I have already described the general character and the mode of origin of the great calcareous deposit which seems to occupy the greater part of the bed of the Atlantic. If we take a piece of the ordinary soft white chalk of the south of England, wash it down with a brush in water, and place a drop of the milky product on the slide of a microscope, we find that it consists, like the Atlantic ooze, of a large proportion of fine amorphous particles of lime, with here and there a portion of a Globigerina shell, and more rarely one of these shells entire, and a considerable proportion-in some examples coming up to nearly one-tenth of the whole-of 'coccoliths,' which are indistinguishable from those of the ooze. Altogether two slides-one of washed down white chalk, and the other of Atlantic ooze-resemble one another so clearly, that it is not always easy for even an accomplished microscopist to distinguish them. The nature of chalk can also be well shown, as has been done hy Ehrenberg and Sorby, by cutting it into thin diaphanous slices, when the mode of aggregation of the different materials can be readily demonstrated.

But while successive observers lave brought out more and more clearly those resemblances,-sufficiently striking to place it heyond a doubt that the chalk of the cretaceous period and the chalk-mud of the modern Atlantic are substantially the same,-a more careful investigation shows that there are very important differences between them. The white cbalk is very homogeneous, more so perhaps than any other
sedimentary rock, and may be said to be almost pure carbonate of lime. I quote an analysis of the white chalk of Shoreham (Sussex), by Mr. David Forbes. ${ }^{1}$

Culcium carlonnte $98 \cdot 40$
Mogntainum corbounte 0.0 O
Tnsoluble rack débris $1 \cdot 10$
Alumina and losa 0.42
10000
Even the grey chalk of Folkestone contains a very large proportion of carbonate of lime, the other substances existing merely as impurities which can scarcely be said to enter into the composition of the rock. The following is an analysis by Mr. Forbes of the lase of the Folkestone grey chalk:-

Colcium carbounte 9409
Magneaium carbonatb 0.31
Insoluble rock dêtris 3.61
Phospharic acid
Alumina and loas a trace
Sndium chloride $1 \cdot 29$
Water 0770
$100 \cdot 00$
The most remarkable point in this analysis is that while white chalk is almost almays associated with chert and flints, the chalk itself does not contain a particle of silica.

The chalk-mud of the Atlantic on the other hand contaius not more than 60 per cent. of calcium carbonnte, with 20 to 30 per cent. of silica, and varying proportions of alumina, magnesia, and oxide of iron. We must remember, however, that in the English

[^65]cliffs we have the chalk in its very purest form, and that in various parts of the world it assumes a very dilferent character, and contains carbonate of lime in very different proportions. Mr. Prestwich instanecs a bed 28 to 30 feet thick of the white chalk (Terrain Senonien) of Touraine, in which carbonate of lime is entirely absent.

There can be no donlt whatever that we have forming at the bnttom of the present ocean, a vast sheet of rock which very closely resembles chalk; and there can he as little doubt that the old chalk, the cretaceous formation which in some parts of Eng. land has been subjected to enormous denudation, and which is overlaid by the beds of the tertingy series, was produced in the same manner, and under closely similar circumstances; and not the chalk only, hut most probably all the great limestone formations. In almost all of these the remains of foraminifera are abundant, some of them apparently specifically identical with living forms; and in a large numher of limestones of all ages Dr. Gümbel has detected the characteristic 'coccoliths.'

Long before commencing the present investigation, certain considerations had led me to regard it as highly proboble that in the deeper parts of the Atlantic a deposit, differing possilly from time to time in composition but always of the same general character, might have been accumulating continunusly from the cretaceous or even earlier periods to the present day. This view I suggested in my first letter to Dr. Carpenter urging the exploration of the seahed ; and from the first it has had the cordial support of my colleague, whose intimate acquaintance with
some of the animal groups whose remains enter most largely into the chalk both old and new, makes his opinion on such n question particularly valuable.

On our return from the 'Lightning ' cruise, during which we believed that our speculation had received strong confirmation, we used the expression, - perhaps somewhat an unfortunate one since it was capable of misconstruction,-that we might be regarded in a certain sense as atill living in the cretaceous period. Several very eminent geologists, among whom were Sir Roderick Murchison and Sir Charles Lyell, took exception to this statement; but it seems that their censure was directed less against the opinion than the mode in which it was expressed; and I think I may say that the doctrine of the continuity of the chalk, in the sense in which we understond it, is now very generally accepted.

I do not maintain that the phrase 'we are still living in the cretaceous epoch,' is defensible in a strictly scientific sense, chiefly because the terms 'geological epoch' and 'geological perind' are fhoroughly indefinite. We speak indifferently of the 'Silurian period,' and the 'Glacial period,' without consideration of their totally unequal value; and of the 'Tertiary period,' and of the ' Miocene period,' although the one includes the other. The expression is intended rather in a popular sense to meet what was certainly until very lately the general popular impression, that a geological period has, in the region where it has been stadied and rlefined, something like a leginning and an end; that it is bounded by periods of change-elevation, denudation, or some other evidence of the lapse of
unrecorded time; and that it would be inadmissible to speak of two portions of the same continuous deposit, however distant the times of their deposition might be, and however distinct their imbedded faunm, as belonging to different 'Geological periods.'

It was certainly in this sense that in an address to a popular audience in April 1869 I ventured to state my belief that it is not only chalk which is being formed in the Atlantic, "but the chalk, the chalk of the cretaceous period." Sir Charles Lyell says, in summing up his objections to this view, "The reader will at once perceive that the present Atlantic, Pacific, and Indian oceans, are geographical terms which must be wholly without meaning when applied to the eocene, and still more to the cretaceous period, so that to talk of the chalk laving been uninterruptedly formed in the Atlantic is as inadmissible in a geographical as in a geological sense." I confess I do not see the geographical difficulty; the "Atlantic ocean" is, undoubtedly, a geographical term, but the depression under discussion occupies the area at present expressed hy that term, and to use it seems to be the simplest way of indicating its position. We helieve that the balance of probability is greatly in favour of the chalk having been uninterruptedly forming over some parts of the area in question, and our belief is founded upon many considerations, physical and palmontological.

All the principal axes of elevation in the north of Europe and in North America have a date long anterior to the deposition of the tertiary, or even of the

[^66]newer secondary heds, although some of them, such as the Alps and the Pyrenees, have received great accessions to their leight in later times. All these newer beds have therefore been deposited with a certain relation in position to certain main features of contour which are maintained to the present day. Many oscillations have doubtless taken place since, and every spot on the European plateau may have probably alternated many times between sea and land; but it is difficult to show that these oscillations have occurred in the north of Lurope to a greater extent than from 4,000 to 5,000 feet, the extreme vertical distance between the base of the tertiaries and the highest point at which tertiary or post-tertiary shells are found on the slopes and ridges of mountains. A subsidence of even 1,000 feet would, however, be sufficient to produce over most of the northern land a sea 100 fathoms deep, deeper than the German Ocean; and an elevation to a like amount would connect the Shetland and Orkney Islands and Great Britain and Ireland with Denmark and Holland, leaving only a long deep Fjord separating a British peninsula from Scandinavia. When we bear in mind the abundant evidence which we have that these minor oscillations, with a maximum range of 4,000 to 5,000 feet, have occurred again and again all over the world within comparatively recent periods, alternately uniting lands and separating them ly shallow seas, the position of the deep water remaining throughout the same, the importance of an accurate determination of the depth of intervening sea in all speculations as to geographical distribution and the origin of special faunz becomes most apparent.

Pratp VIIT.-Map showing the general distribution of the Tertiary, the Crelacenus, and the IJ Tosric systems in the nowth-west of Furope with references to montour.

From a glance at the map (Pl. VIII.), and remembering that nearly the same arrangement exists in regard to the newer rocks of North America, it would seem that the sum of these minor elevations and subsidences has produced a general elevation of the edges, and a general contraction, -of a basin the long axis of which coincides roughly with the long axie of the Atlantic. The Jurassic beds crop out along the outer edge of the basin, the cretaceous beds form a middle band, while the tertiaries occupy the troughs and valleys. All of these, however, maintain a certain parallelism determined by the contour of the earlier land and the direction of the older mountain ridges, to one another, and to the shores of the present sea.

From the parallel of 55° north latitude, at all events to the equator, we have on either side of the Atlantic a depression 600 or 700 miles in width, averaging 15,000 feet in depth. These two valleys are separated by the modern volcanic platean of the Açores. It does not seem to us to be at all probable that any general oscillations have taken place in the northern hemisphere sufficient either to form these immense ahysses, or, once formed, to convert them into dry land.

Reasoning partly upon physical and partly upon palæontological grounds, Mr. Prestwich thinks it probable that the ancient chalk ocean which formed a great transverse helt entirely across southern and eastern Europe and central Asia on the one hand, and across the Isthmus of Panama and southern North America on the other, was cut off by a land barrier from the Aretic Sea, and on that account possessed n
much higher and more equable temperature to the bottom; and there is every reason to believe that such a land barrier did exist to the north of the great Atlantic hasin, and continuous with the belt of northern land on which there is an deposition of cretaceous rocks. He says that "if such a lend barrier existed at the period of the cbalk, and that barrier was submerged during the earlier part of the tertiary period, it would, taken in conjunetion with the very different conditions of depth under which the chalk and lower tertiaries were found, go far to account for the great break in the fauna of the two periods."

From the information we have as to the depths in the South Atlantic and the North Pacific, there seems to be no reason, however, to suppose that a barrier has recently existed shutting off the polar sea of the southern hemisphere; and I confess I cannot quite see how the result suggested by Mr. Prestwich could follow, without taking into account another condition of whose existence we seem to have evidevice. A band of cretacenus rocks has been shown to extend round the world a little to the north of the equator wherever we have dry land; and it has likewise been shown, from considerations of depth, that this chalk band probably extended also across our great ocean basins. At that time, then, it seems that no continent ranging from north to south interrupted the drift of the equatorial current, deflecting the heated equatorial water to north and south and inducing a retmrn indraught of polar water. This wrould undoubtedly remove one great cause, if not the sole cause, of the present low temperature of deep water between the tropics.

According to this view, the reduction of the temperature, the cause of the hreak in the fauna, would clepend mare upan the elevation of Central America and the Isthmus of Panama and the intertropical eastern coast of the continent of Asia, than even upon the depression of the northern barrier and the throwing open of the Arctic basin.
" If at any former period the climate of the globe was much warmer or colder than it is now, it would have a tendency to retain that higher or lower temperature for a succession of genlogical epochs. . . . The slowness of climatical change here alluded to would arise from the great depth of the sea as compared with the height of the land, and the consequent lapse of time required to alter the position of continents and great oceanic basins. . . . The mean height of the land is only 1,000 feet, the depth of the sea 15,000 feet. The effect, therefore, of vertical movements equally 1,000 feet in both directions, upwards and downwards, is to cause a vast transposition of land and sea in those areas which are now continental, and adjoining to which there is much sea not exceeding 1,000 feet in depth. But movements of equal amount would have no tendency to produce a sensible alteration in the Atlantic or Pacific oceans, or to cause the oceanic or continental areas to change places. Depressions of 1,000 feet would auhmerge large areas of existing land; but fifteen times as much movement would he required to convert such land into an ncean of average depth, or to canse an ocean three miles deep to replace any one of the existing continents." ${ }^{11}$

[^67]The wide extent of 'lertiaries in Eurape and the north of Africa sufficiently proves that much dry land has been gained in tertiary and post-tertiary times, and the great mountain-masses of Southern Europe give evidence of great local disturbance. But although the Alps and the Pyrenees are of sufficient magnitude to make a deep impression upon the senses of men, taking them together, these mountains would if spread out only cover the surface of the North Atlantic to the depth of six feet, and it would take at least two thousand times as much to fill up its hed. It would seem hy no means improbable, that while the edges of what we call the great Atlantic depression have been gradually raised, the central portion may have acquired an equivalent increase in depth; but it seems most unlikely that while the main features of the contour of the northern hemisphere remain the same, an area of so vast extent should have been depressed by more than the height of Mont Blanc. On these physical grounds alone we are inclined to believe that a considerable portion of this area has been continually under water, and that consequently a deposit has been forming there uninterruptedly, from the period of the chalk to our own.

I will now turn to the palæontalogical bearings of the question. Long ago Mr. Lonsdale showed that the white chalk was mainly made up of the debris of foraminifera, and Dr. Mantell estimates the number of these shells at more than a million to a culic inch. In 1818 Dr. Mantell, speaking of the chalk, says that it "forms such an assemblage of sedimentary deposits as would prohnhly be presented to observation if a mass of the bed of the Atlantic, 2,000 feet
in thickness，were elevated above the waters and became dry land；the only essential difference would be in the generic and specific characters of the im－ bedded animal and vegetable remains．＂${ }^{1}$ In 1858 Professor Huxley spoke of the Atlantic mud as ＂modern chalk．＂${ }^{2}$ Very early the identity of some of the chalk foraminifera with species now living was olserved．Mr．Prestwich，in his able resume of this question，so often quoted，gives a table drawn up by Professor Rupert Jones of 19 species of foraminifera out of 110 from the Atlantic mud identical with chalk forms，viz．：－

Specles or Farsminifere faund in hoth the atloptle Mud aud the Cheile or Enginnd and Furnjo．	Other aldor Formablom in whled thay are almo found．				
	穓	醨要		发	部启家
Glandmbina heviguta，T＇Orfign	\times	－	\times	－	－
Nodosaria radiouta，Linn．．	\times	x	\times	－	－
n tajhanua，Yinn	－	\times	\times	－	\square
Deminlina commonis，D＇Ornagy	\times	\times	\times	\times	\times
Cristellatia euttrata，Mont．	\times	\times	\times	－	－
gatulata，Lam．	\times	\times	\times	－	－
＂eqepidula，F and M	－	\times	－	－	－
Lagena sulcata，W．and J．．	\pm	\times	－	－	－
＂globaba，Montagn ．	－	－	－	－	－
Pulymorphina lacisa，W．and I．．．	\times	－	－	－	－
＂enmmumis，D＇Onbigny．	－	－	－	－	－
＂compreana，D＇Ormienp．	\times	\times	\times	－	－
．＂orlignii，Kra．．．	\times	$\underline{-}$	－	＿	－
Qlohigerina bullmides，D＇Onargnt．	－	－	－	－	－
Planorhinlina Lnhatula，W．and J．	－	－	－	－	－
Pudvinulina michediann，D＇Ondigny	－	－	＿	－	－
Spisplecta biformis，P．and I．	－	－	－	－	－
Verneutilina triquita，Von M．	－	－	－	－	＿－
，polyatropha，Tieuss	－	－	－	－	－

[^68]And the following table, showing the number of foraminilera common to the Atlantic mud and various geological formations in England:-

	Cemmen lo idie trilowing Priminilame							
$\begin{aligned} & \text { Tolna } \\ & \text { Ining } \\ & \text { deep } \\ & \text { Allontte. } \end{aligned}$	Cras	Landen clay.	Chalk.	Uррмк Jитаяй	Lowar	Thiadie nnd Ipper Trin	Par. unlan.	Carhanifarotur
110	53	28	19	7	7	7	1	1

The morphology of the foraminifera has leen studied with great care, and the differences between closely allied so-called species are so slight that it is possible that in many cases they should only be regarded as varieties; but this careful criticism and appreciation of minute differences renders it all the more likely that the determinations are correct, and that animal forms which are substantially identical have persisted in the depths of the sea during a considerable lapse of geological time.

In the late deep-sea dredgings hy M. de Pourtales off the American coast, and by H.M. ships ' Lightning ' and ' Porcupine,' and Mr. Marshall Hall's yacht 'Norna' off the west coast of Europe, no animal forms have been discovered belonging to any of the higher groups, so far as we are as yet aware, specifically identical with chalk fossils; and I do not think that we have any right to expect that such will be found. To a depth of 5,000 feet or so a large portion of the North Atlantic is at present heated very considerably above its normal temperature, while the Arctic and Antarctic indraught depresses the bottom
temperature in deep water to a like extreme degree. These abnormal temperatures are dependent upon the present distrihution of sea and land; and I have alreddy shown that we have evidence of many oscillations, in modern times geologically speaking, which must have produced totally different conditions of temperature over the same area. Accepting, as I believe we nre now bound to do in some form, the gradual alteration of species through natural causes, we must be prepared to expect a total absence of forms identical with those found in the old chalk, belonging to groups in which there is sufficient structural differentiation to require or to admit of marked variation under altering circumstances. The utmost which can be expected is the persistence of some of the old generic types, and such a resemblance between the two faunse as to justify the opinion that, making due allowance for emigration, immigration, and extermination, the later fanna bears to the earlier the relation of descent with extreme modification.

I have already mentioned that one of the most remarkable differences between the recent Atlantic chalk-mud and the ancient white chalk is the total absence in the latter of free silica. It would seem, from the analysis of chalk, that silicious organisms were entirely wanting in the ancient cretaceous seas. In the chalk mud, on the other hand, silica is found in abundance, in most specimens to the amount of from 30 to 40 per cent. A considerable portion of this is inorganio silica-sand; and its presence is doubtless due to the circumstance that our dredgings have hitherto been carried on in the neighbourhood
of land and in the path of slight currents, whilst the extreme purity of the white chalk of Sussex would seem to judicate that it had heen laid down in deep still water far from land. Λ considerable proportion of the silica of the chalk-mud, however, consists of the spicules of sponges, of the spicules and shields of radiolarians, and of the frustules of diatoms; and this organic silica is uniformly distributed through the whole mass. Taken in connection with the absence of diffused silica in the white chalk, we have the singular fact of the presence of regular layers of flinty masses of nearly pure silica, presenting frequently the external form of more or less regularly-shaped sponges, and frequently flling up the cavities of sea-urchins or bivalve shells. If we take the simple instance of pure grey flint flling up entirely the cavity of an urchin, such as Galerites albo-galerus, or Ananchytes ovatus, and showing at the oral opening of the shell a little projecting knol, like a bullet-mould filled with lead, we have no escape from the conclusion that after the death of the urchin the silica has percolated into the shell in solution or in a gelatinous condition, and the silica must have previously existed in some other form, either in the chalk or elsewhere. In the chalk which contains not a trace of silica we often find the moulds and outlines of organisms which we know to have heen silicious, from which the whole of the silica has been removed; and I have more than once seen cases in which a portion of the delicate tracery of a silicious sponge has been preserved entire in a flint, while the remainder of the vase which projected beyond the outline of the flint appeared in the chalk as a trellis-
work of spaces, vacant, or loosely filled with peroxide or carhonate of iron. It therefore seems certain that by some means or other the organic silica, distributed in the shape of sponge spicules and other silicious organisme in the chalk, has been dissolved or reduced to a colloid state, and accumulated in moulds formed by the shells or outer walls of imbedded animals of various classes. How the solution of the silica is effected we do not precisely know. Once reduced to a colloid condition, it is easy enough to imagine that it may be sifted from the water by a process of endosmose, the chalk matrix acting as a porous medium, and accumulated in any convenient cavities.

In various localities in the chalk and green-sand of the North of England the peculiar bodies which are called Ventriculites are excessively abundant,-elegant vases and cups with branching root-like bases, or groups of regularly or irregularly spreading tubes, delicately fretted on the surface with an impressed network like the finest lace. In the year 1840 the late Mr. Toulmin Smith published the result of many years' careful study of these bodies, and gave a minute and most accurate description of their structure. He found them to consist of tubes of extreme tenuity, delicately meshed, and having between them interspaces usually with very regular cubial or octohedral forms. These tubes in the Ventriculites found in chalk were empty, or contained a little red ochreous matter; but when a ventriculite or a portion of one happened to be entangled in a flint, it was either incorporated with the flint or replaced by silica. Mr. Toulmin Smith supposed that the skeleton of the ventriculite had been originally calcareous,
and he referred the group to the Polyzoa. When Mr. Toulmin Smith studied the Ventriculites, the Hexactinellidm-the sponges with six-rayed meshes or spicules-were practically unknown, though there

were arready a few examples in museums. One of the first results of deep-sea dredging was the discovery that the chalk-mud of the deep sea is in many places literally crowded with these; and when we compare
such recent forms as Aphrocallistes, Iphiteon, Hol. tenia, and Askonema with certain series of the chalk Ventriculites, there cannot he the slightest doubt that they belong to the same family-in some cases to very nearly allied genera. Fig. 80 represents a very beautiful specimen of Ventriculites simplex preserved in flint, for which I am indebted to Mr. Sanderson of Edinburgh. Looking at this in the light of our knowledge of Enuplectella or Aphrocallistes beatrix, we have no difficulty in working out its structure, even to the most minute microsoopic detail.

Other sponges, helonging chiefly to the Lithistidas and the Corticatæ, reproduce with wonderful accuracy the more irregular sponge-forms of the chalk and greensand; and a group, as yet undescribed, but apparently an aberrant family of the Esperiadæ, send out long delicate tubes, which contract slightly, but in a most characteristic way, at the point of their insertion into the sponge lody, recalling very forcibly the peculiar manner' in which the tube-like root processes join the sponge in such genera as the vaguely defined Chounites.

One sponge belonging to the group is represented at Fig. 83. A sphere 15 to 20 mm . in diameter consists of a smoath glossy external rind, composed of closely meshed pin-headed spicules, with two kincls
of 'spicules of the sarcode, one large, C-shaped, the other much more minute, answering to Bowerbank's 'tridentate equianchorate' type; every now and then

 attuctare of the allimigu notwork. (x. E0)
the rind thus formed coming to the margin of a small pore. The interior of the sphere is filled with soft semi-fluid sarcode, supported ly the loosest possible

mesh-work of granular horny matter and pinheaded spicules. From points apparently irregularly placed on the surface of the sponge, tubes about 3 mm . in diameter ran out in all directions; the walls of the tuhes are thin and delicate, being
more so towards the distant ends, where the tubes contract slightly to an open orifice. At the proximal end, at the junction between the tube and the sponge body, there is also a contraction, and a slight pit-like involution of the surface of the sponge. There is something very characteristic in this pecu-

liar form of junction which it is not easy to define, hut which almost forces the conviction that there is the closest relation between these recent forms and tnbe-hearing fossil sponges such as Choanites.

Professor Martin Duncan mentions several corals
from the coast of Portugal more nearly allied to clualk forms than to any others, but it is in the Echinodermata that the peculiar relation between the ancient and the modern faunu becomes most apparent. To review briefly the chief points bearing upon this question. The Apiocrinida, the group of fixed crinoids which I have already described, are abundant throughout the whole range of the Jurassic rocks, their remains being frequently very abundant in the thick cream-coloured limestone beds of the oolites. Towards the close of the Jurassic period, the typical genera disappear, and in the chalk we find the group represented by an evidently degenerate form, Bourguetdicrinus. In some tertiary-beds fragments of the stems of a small Bourguetticrinus have been found, and such were likewise discovered in the recent lime breccia of Guadaloupe, which contained the well-known human skeleton now in the Pritisl Museum. There can be little doubt that these tertiary and post-tertiary fragments are to be referred rather to the genus Rhizoorinus, which we now know to be so widely distributed, living, in deep water. Now in this series of Apiocrinids, extending from the Forest marble to the present time, although there is a succession of constantly changing species, yet the gradual degradation in development in the same direction throughout the series seems to point unmistakeably to some form of continuity, to a type gradually succumbing to conditions slowly altering in an unfavourable direction.

The other family of the stalked crinoids, the lentacrinidæ, are in a different position. They are ahundent in the Lias; very abundant in the lower
colite, where slabs are often found almost made up of them, with a characteristic deep-water association of Cidaris, Astrogoniun, and Astropecten; and although not abundant in the English chalk, several species are found, and these show no tendency to degeneracy. As might be expected, such remains are rare in the shallow-water tertiaries. With regard to their distribution in modern seas, from the apparent abundance of \boldsymbol{P}. asteris and P. mülleri in deep water in the West Indies, and of P. nywillethamsoni off the coast of Portugal, it is very possible, as I have already said, that they may occupy a much more important place in the ahyssal fauna than we at present imagine.

Nearly all the additions from the deep water to the list of the Asteridea fall into the genera Archaster and Astropecten, or into the various subdivisions of the old genus Goniaster. From their breaking up into a multitude of undistinguishable ossicles by the decomposition of their soft organic matter immediately after death, the fossil remains of star-fishes are comparatively rare, and are scarcely met with except in fine calcareous formations, such as the Wenlock limestone, -and in later times in the fine yellow limestones of the oolites, and in the white chalk. In the latter formation, deposited apparently very much under the same circumstances as the Atlantic chalk-mud, the general character of the group of imbedded star-fishes is almost the same as in the modern fauna of the deep Atlantic.

The Echinidea are a more typical order. From the compantness of their tests they are more readily preserved entire, and from the earliest periods their
characteristic and harmoniously varying series are of considerable value in the discrimination of the different formations. In the soft white chalk of the sonth of England their remains are-extremely abundant. Perhaps the most abundant and characteristio fossils in the chalk are the Cidaridse, and these more than any other chalk fossils illuetrate the peculiar conditions under which the chalk has been laid down. The great spines of Cidaris are attached to the plates of the shell hy a central ligament which passes from the cup on the spine to a perforation in the ball on the plate, and by a membrane which rises from the plate and passes over the base of the spine. The spines are, however, so disproportionately large, and the soft matter softens and decomposes so rapidly after death, that it is difficult to keep the spines attached to a specimen prepared even with considerable care. In the chalk, tests of Cidaris are frequently preserved absolutely entire, with all the spines in position; so that by carefully working out the chalk with a penknife, we can here have the whole animal perfect. It is difficult to see precisely low this result can have been produced. The urchin must have sunk into the soft chalk-mud and been covered up hy a sufficient quantity to support its spines and test, and nllow the whole to become gradually compacted into a solid mass. One of the new deep-sea Cidarites belongs to a genus which had previously been supposed to be extinct, but the chalk-mud forms generally do not show any special approach to any particular shalk species. Still the general character of the group is the same. The Echinothuridse were previnusly known only as chalk
fossils, , that their presence apparently in abundance in the recent chalk-mud is a clear instance of the preservation of one of the old types bitherto supposed to be extinct. The same may be said of Pourtalesia, which must associate itself either with Ananchytes or with Dysaster, both of which are types of groups likewise supposed to have been lost. We thus find that, while no Echinoderm litherto discovered in the deep water is specifically identical with any chalk form, not only does the abyesel fauna with its abundance of the Cidaridæ, Echinathuridæ, and irregular urchins, and the disproportionate numbers of the genera Astropeaten, Astrogonium, and Stellaster, and their allies among starfishes, singularly resemble the chalk in general facies; but several genera approach chalk forms more closely than they do any hitherto known in a living state -approach them so closely as almost to force upon us the conviction that their relation is one of descent, accompanied by change of conditions and consequent modification, though not to any extreme degree.

As I have already atated, the whole of the mollusca from the deep water which had been previously described as fossils were known from tertiary and post-tertiary beds; with the very doubtful exception of our common Terebratulina caput-serpentis, which certainly approaches very closely Terebratula striata from the chalk.

It is not surprising that this should be the case. It is a marked character of the European Tertiaries that with the exception of some of the older beds in the south of Europe, all of them have been deposited in shallow water; so that the tertiary beds represent
the mineral accumulntions and the fauna of the margin of some sea. We may say that they have been deposited in the shallow water of tertiary seas whose deep-sea fauna is unknown, and this mode of expression is most in accordance with previous ideas; but if the view here advocated be correct, we must regard the tertiaries as the deposits formed and exposed by depressions and upheavals of the borders of the cretaceous sea; of a sea which, with many changes of condition produced by the same oscillations which alternately exposed and submerged the tertiaries, existed continuously, depositing conformable beds of chalk-mud from the period of the ancient chalk.

Mollusca are chiefly shallow-water forms, although some of them are special to deep water, and others have a great vertical range. As I have already said, considering the many changes in the conditions which most affect animal life which have occorred during later geological times, we cannot expect to find any animals of the higher groups specifically identical with chalk fossils; the difficulty in the case seems rather to be to account for the identity of many living deep-water species with species found in the Tertiaries. I think, however, that we can find a clue. Most of the species common to the modern Atlantic and to tertiary beds are now found in the Atlantic at much greater depths than those at which they were imbedded in the tertiary seas. This we know by the species from shallower water which are associated with them in the Tertiaries. They are, therefore, species which had a considersble vertical range; and probally while many of the shallower water forms were exterminated by elevations or other change
affecting the first one or two hinndred fathoms, they were enahled to survive, the depper part of their habitat having suffered but little alteration.

Sir Charles Lyell says: "The reader should he reminded that in geology we have heen in the habit of founding our great chronological divisions, not on foraminifera and sponges, nor even on echinoderms or corals, but on the remains of the most highly organized beings available to us, such as mollusca. . . . In dealing with the mollusca, it is those of the highest or most specialized organizations which afford us the best characters in proportion as their vertical range is the most limited. Thus the cephalopoda are the most valuable, as having a more restricted range in time than the gasteropoda, and these again are more characteristic of the particular stratigraphical subdivisions than the lamellibranchiate bivalves, while these last again are more serviceable in classification than the brachiopoda, a still lower class of shell-fish, which are the most enduring of all." With great deference to Sir Charles Lyell, I cannot regard the most highly specialized animal groups as those most fitted to gange the limits of great chronological divisions, though I admit their ivfinite value in determining the minor subdivisions.

The culmination of such animal groups, such as we find in the marvellous ahundance and variety of both orders of cephalopods at the end of the Jurassic and the commencement of the eretaceous period, undoubtedly brings into bigh relief, and admirahly illustrates to the student, the broad distinctive characters of the mezozoic fauna; but speaking very generally, the more highly a molluse is specialized
the shallower is the water which it inhabite. The cephalopods are chiefly pelagic and surface things, and their remains are consequently found in deposits from all depths. To this general pelagic distribution of cephalopods there seem to be two remarkable exceptions, and these the two members of their class which are by far the most interesting in their geological relations. Nautilus pompilius inhabits the deep water of the Pacific, while the habitat of Spirula australis is unknown. The shell of Spirula is thin and light, and, probably after the death of the animal and by the decomposition of organic matter, it becomes filled with air, and the emptied shell floats, and is drifted along on the surface of the sea. Tropical shores are strewn with the pearly little coil, which attracts attention by the elegance of its form. It is abundant on all shores in the path of the Gulf-stream. Sysselmann Müller gave me, a few years ago, a quantity which had been drifted on the south-western shores of different islands of the Figroe group. Still the structure of the animal of Spirula may be said to be unknown. One specimen only, which was described by Professor Owen, was found nearly perfect on the coast of New Zealand by Mr. Percy Noel. I suppose there can be little doubt that this is a deep-water form, and I hope that with our deep-sea dredging we shall soon clear up its economy; but in the meantime the evident abundance of the animal and our ignorance of its history are very suggestive. In the London clay one or two examples of a fossil have been found, nearly allied to Spirula, but differing in this respect-that a solid conical rostrum projects backwards, its half-calcified, half-
horny substance enclosing the greater part of the curved spiral shell. Now if the recent Spirula had been weighted with such a rostrum it would probably have remained up to the present time utterly unknown to us. It is unwise to prophesy, but I certainly look upon some form allied to Spirulirostris as one of the most likely spoils of the deep sea. From the Tertiaries we pass to the Cretaceous forms, and find in Belemnitella the chambered shell straightened and reduced, and the 'guard ${ }^{1}$ greatly increased in size. If Belemnites were deep-sea animals, as seems very probable, and if any of them still exist,-from the form and weight of their shells it is scarcely possible that they should ever be thrown up on the shore, and without deep-sea dredging they might remain for ever unknown. I merely mention this to show that it is hy no means safe to base even what little argument might rest upon it, upon the absence at the present time of all representatives of the cretaceous cephalopodous fauna.

The gasteropods, witl comparatively few exceptions, range from the shore to a depth of 100 to 200 fathoms, and lamellibranchs become scarcer at a slightly greater depth; while some orders of brachiopods, crustacea, echinoderms, sponges, and foraminifera, descend in scarcely diminished numbers to a depth of 10,000 feet. In fact, the bathymetrical range of the various groups in modern seas corresponds remarkably with their vertical range in ancient strata.

A change in the distribution of sea and land involving a mere change in the course of an oceancurrent might modify the conditions of an area for
most cephalopods and all pteropods, heteropods, and other surface living animals of high type, even to their extinction. By oscillations of 500 feet up or down, the great mass of gasteropods, and all reefbuilding corals, would be forced to emigrate, would become modified, or would he destroyed, -and another hundred fathoms would exterminate the greater number of bivalves; while elevations and depressions to ten times that amount might only slightly affect the region of brachiopods, echinoderms, and sponges.

After a careful consideration of the results of recent investigations, we are strengthened in our confidence in the truth of the opinion which we previously held, that the various groups of fossils characterizing the tertiary beds of Europe and North America represent the constantly altering fauna of the shallower portions of an ocean whose depths are still occupied by a deposit which has been accumulating continuously from the period of the pre-tertiary chalk, and which perpetuates with much modification the pre-tertiary chalk fauna. I do not see that this view militates in the lenst against the "reasoning and classification" of that geology which we have learned from Sir Charles Lyell; our dredgings only show that these abyases of the ocean-abysses which Sir Charles Lyell admits in the passage quoted above, to have outlasted on account of their depth a succession of geological epochs-are inhabited by a special deep-sea fauna, possibly as persistent in its general features as the alysses themselves. I have said at the leginning of this chapter, that I believe the doctrine of the 'continuity of the chalk,' as understood by those who first suggested it, now meets with very general acceptance ; and in evidence
of this I will quote two passages in two consecutive anniversary addresses by Presidents of the Geological Society, and we may have every confidence that the statements of men of so great weight, made under such circumstances, indicate the tendency of sound and judicious thought. Professor Huxley, in the anniversary address for the year 1870, says :-" Many years ago ${ }^{1} 1$ ventured to speak of the Λ tlantic mud as ' modern chalk,' and I know of no fact inconsistent with the view which Professor Wyville Thomson has advocated, that the modern chalk is not only the lineal descendant, so to speak, of the ancient chalk, but that it remains, so to speak, in possession of the ancestral estate; and that from the cretaceous period (if not much earlier) to the present day, the deep sea has covered a large part of what is now the area of the Atlantic. But if GloLigerina and Terebratula caput-serpentis and Beryx, not to mention other forms of animals and of plants, thus bridge over the interval between the present and the mezozoic periods, is it possible that the majority of other living things underwent a sea-change into something new and strange all at once?"

And Mr. Prestwich, in the presidential address for 1871, says :-" Therefore, although I think it highly probable that some considerable portion of the deep sea-bed of the mid-Atlantic has continued submerged since the period of our chalk, and although the more adaptable forms of life may have been transmitted in unbroken succession through this channel, the immigrations of other and more recent faunas may have so modified the old population, that the original

[^69]chalk element is of no more importance than is the original British element in our own English people." Mr. Prestwich thus fully admits the high prolability of the 'continuity' for which we contend. The last question which he raises in the sentence quoted is one of enormous difficulty, which we have as yet no data to solve. It is perhaps not very much harder, however, after all, than the problem in ethno$\log y$ which he has selected as an illustration.

Several other very important questions bearing upon the conditions of the ocean at great depths, occupied the attention of the naturaliste in scientific charge of the dredging cruises of the 'Lightning' and 'Porcupine.' An assistant versed in the methods of chemical and physical research accompanied the vessel on each occasion. A son of Dr. Carpenter, Mr. William Lant Carpenter, B.A., B.Sc., went on the first cruise with Mr. Jeffreys. Mr. John Hunter, P.C.S., a promising young chemist, since deceased, accompanied me to the Bay of Biscay, and Mr. Herbert Carpenter, a younger son of my colleague, was our companion during the third long cruise in the Ftroe channel.

The specific gravity of the water was taken at each station, and in the serial soundings the waterbottle was let down to the intermediate depths and the water carefully tested. The differences olserved were very slight, but they were as a rule confirmatory of Professor Forschammer's opinion that Arctic water contains less salt than the sea-water of temperate and intertropical regions.

As I lave already mentioned (page 46), organic matter in appreciable quantity was detected ly the
permanganate test everywhere, and at all depths. The gas contained in the water was carefully analysed, and it was found, as a general result, that the amount of free carbon dioxide increased and the proportion of oxygen diminished with increased depth. There seemed to be reason to believe, however, that the quantity of carbon dioxide depended to a great degree upon the abundance of the higher forms of life. Mr. Lant Carpenter used always to predict a bad haul for the zoologists when he found the proportion of carbon dioxide to the oxygen and nitrogen unusually low. The grent increase in the quantity of carbon diozide was just above the bottom. The general average of thirty analyses of surfacewater gives the following as the proportions of the contained gases present:-Oxygen 25.1, nitrogen 54.2, carbon dioxide 20.7 ; this proportion was subject, however, to great variations. Intermediate water gave an average percentage of oxygen $22 \cdot 0$, nitrogen 628, and carbon dioxide 26.2 ; while bottom waters gave-oxygen 19•5, nitrogen 52.6, and carbon dioxide 27.9 . But hottom water, at a comparatively small depth, often contained as much carbon dioxide as intermediate water at much greater depths. In one of the serial soundings, in which the water was taken at every 50 fathoms, three analyses gave the following singular result:-

	750 Falliame	Rac Pntliount.	Eotuom, Ren Falla
Orygan.	- 18.8	178	$17 \cdot 2$
Nitrogen	493	48.5	34.5
Carhan diazida	31.9	33.7	48.3

The greatly increased percentage of carbon dioxide in the stratum of sea-water immediately overlying
the sea-hed, was bere accompanied hy a great abundance of animal life.

I can scarcely regret that the space at my disposal will not allow me to enter at present into the many very important bearings of these physical investigations, for I nm compelled to admit that I do not place thorough confidence in our results. The observations and analyses were undoubtedly conducted with great care and skill, but the difference between different samples-in specific gravity, and more especially in chemical composition and the relative proportion of the ingredients-is so very slight, that more exact methods than those which have been hitherto employed will be required to insure accurate results.

In such investigations everything depends upon the perfection of the means of bringing up water from any given depth; and the principle of the construction of the water-bottle used in the 'Porcupine ${ }^{1}$ was faulty. It consists of a strong tube of brass about two feet in length and two inches in internal diameter, containing rather more than a litre and a half, and closed at each end hy a brass disk. In the centre of each of these disks there is a round aperture closed by a well-ground conical valve, both valves opening upwards when the instrument is in position for being let down.

In passing down through the water, a continuous current is supposed to raise the valves and run through the bottle, thus keeping it constantly filled with the water of the layer through which it is passing. On reversing the motion in hauling up, the valves fall into their places, and the contents of the tule at the greatest depth are brought to
the surfáce. This bottle appeared to answer fairly, and we often had evidence, from its turbidity, that bottom-water eame up; but sulsequent experiments have shown that it cannot he depended upon, and some of the reasons are sufficiently obvious. The instrument will not work at all unless the descending motion be sufficiently steady and rapid to maintain a current capable of keeping two heavy brass valves open to their full extent; if there be the slightest reversal, or jerk, or irregularity in hauling up, the water is-at all events partially-changed; the two valves, even when thnoroughly open, are directly in the path of the ingress and egress of the water-and there is reason to believe that the water is not so rapidly and thoroughly changed as we at first imagined. A perfectly satisfactory waterbottle is still a desideratum, but T believe that one which was used by Dr. Mayer and Dr. Jacobsen in the German North Sea expedition of the past summer, goes far to remedy most of these defects. I hope we may be in a better position to give an opinion a year hence.

I give, in the appendix to this chapter, an abstract of the general results of the chemical investigations carried on during the 'Porcupine' cruises of 1869; and I add a note, for which I am indebted to my friend Mr. J. Y. Buchanan, who accompanies me as chemist to the 'Challenger' expedition, which will show how much has yet to be done before we can hope to come to any really satisfactory conclusion as to the amount and condition of the gases contained in sea-water. Neither, I regret to say, can we place much reliance on the determination of
organic matter in sen-water by the permanganate method, although there is every probability that the general result at which we arrived-that organic matter is contained in the water of the ocean in all localities and at all depths-is substantially true. The application of the exact methods of modern science to this line of inquiry is new, and it will require long and patient work to bring it to perfection. The one real adrance which has been made in this direction is the addition to the appliances for the investigation of the physics of the deep sea; of a correct and trustworthy instrument by which ocean temperatures can be ascertained to any depth with what may be regarded as absolute accuracy for all practical purposes.

APPENDIX A.

Summary of the Resubls of the Examination of Samples of Seawater taken at the Surface and at various Depths. Hy Wm. Lant Carpenter, B.A., B.Sc.

Surface-waters,-Care was taken to obtain these samples re pure as possible, nud free frorn auy coutamination caused by matters derived from the vessel, by dipping them up in clean vessels at a few inches below the surface at or mear the bow of the ship. In two instances, however, the samples were taken from abaft the paddles.

Waters taken at depths below the surface. It was found desivable to coat the brass Water-Bottles internally with sealing-wax varnish, owing to the corrosive action of the seawater. The apparatus was thea found to work perfectly satisfactorily in all cases in which there was sufficient weight on the sounding-line to which they were attached to keep the bottles perpendicular, or nearly so. When, from the smallness of the attacherl weight, or the roughness of the "sen, the sounding-line was at an acute angle with the general level of the sea-surface while it was being drawn up, the results of the exatrination of water thus obtained rendered it highly prolnhle that some water at or near the surface had found its way into the bottle, and that its contents were not to be relied on as coming from the lowest depths.

When bottom-water was oltained from depths beyond 500 fathoms, it was almost invariably charged with a quantity of very fine murl in suspension, rendering it quite turbid. Many hours' atanding was necessary for the deposit of this; but it was readily remnved lyy filtration. In no instance was there any evidence of water from great depths being much more highly
charged with dissolved gases than surface-watere; a considerable elevation of temperature being in all cnses necessary for the evolution of any dissolved gas.

Mode of examining Samples.-The ammples of water thus taken were exnmined with na little delay as possible, with a view to determine :-
(1) The specific gravity of the water.
(2) The tatal quantity of dissolved gases contained in them, and the relative proportinns of oxygen, nitrogen, aud carbonic ncicl.
(3) The quantity of oxygen necessary to oxidize the organic matter contained in the water ; distinguishing between $a_{\text {, }}$ the decomposed organic matter, and b, the easily decomposnhie organic matter.
(1) The specific gravity determinations were mnde"at a temperature as near 60° Falir. as possible, with delicate glass hydrometers, so gradluated that the specific grevity could be read off directly to the fourth decimal place with ense.
(2) The apparatus for the amalysis of the gases dissalved in the sea-water. was essentially that described by Prof. Miller in the second volume of his 'Elements of Chemistry.' It was found vecessary to make several modifications in it, to adnpt it to the motion of the vessel. These consisted chiefly in suspending much of it from the cabin-ceiling, instead of supporting it from bementh, rand in rendering all the parts lass rigid by a freen use of enoutchouc tubing, K_{c}, the utmost care being taken to keep all jaints tight.

It was found possible to make correct analyses, even when the vessel was rolling sufficiently to upset chairs and cabinfiviniture.

The method of analysis may be thus summarized:-From 700 to 800 cubic centimetres of the sample to be examined were boiled for about thirty minutes, in such a way that the steam and mixed gases evolved wape collected over mercury in a small graduated Bunsen's gas-holder, all access of air being earefolly guarded ngainst. The mixed gases were then transferreal to two graduated tubes in a mercurial trongh, where the
carbanic arid was first absorbed by a strong solution of caustic patash; and subsequently the oxygen whs aboorbed by the addition of pyrogallic ncid, the remaining gas being assumed to be nitrogen.

The results of the analyses were always corrected to the standard temperature of 0^{n} Cent, and to 760 millimetres' bainmetric pressure, for comparison among themselves and with others. In nearly every case the duplicate analyses from the same ghseons mixture agreed closely, if they were not identical.
(3) The examination of the gea-water for orgnnic matter was marip according to the methnd detailed by Prof. Miller in the Journal of the Chemical Saciety for May 1865, with an addition suggested by Dr. Angus Smith. Each sample of water was divided into two; to one of these a little free acid wes added, and to both an excess of a atandard solution of permanganate of potasl. At the end of thrae houra the reaction was stopped by the addition of iodide of potassiun and starch, and the excess of permanganate estimated by a standard solution of byposulphide of soda. The portion to which free acid was added gave the nxygen required to oxidize the decomposed and easily deenmposalile organic matter; the second portion gave the oxygen required by the decomposed organic matter alone, which was usually from about one-half to one-third of the whole.

The following is a summary of the total number of observations, analyses, \&e., made during the three cruses respec-tively:-

Spreific Gravily-The apecific gravity of surface-water was found to diminish alightly as land was approached; but the
avernge of thirty-two observations upen water at a sufficient distance from land to he unaflected by local disturbences was 102779 , the maximum being 10284 and the minimum 10270 .

It was almost alwaye noticed that, during a high wind, the speritic gravity of surface-water was above the average.

The nvernge of thirty observations upon the specific gravity of intermedinte water wns 1.0275 , the maximum heing 1.0281 and the minimum 1.0272 .

The specific gravity of bottom-waters at depthe varying from 77 to 2,090 fnthonss, deduced from an avarage of fortythree chervations, was 10277, the maximum being 1.0283 and the minimum $1 \cdot 0267$.

It will be noticed that the average specific gravity of bottomwater is slightly less than that of surface-water. In sevaral instances the specific gravities of surface-and of bottom-waters taken at the same place having been compared, that of the bottom-water was found to be appreciably less than that of the surface-water. Thus-

$$
\begin{aligned}
& \text { At } 1425 \text { fathoms' deptb (Station 17) it wns . . } 1 \cdot 0260 \\
& \text { Surface at the gnne } 100280
\end{aligned}
$$

And

$$
\begin{aligned}
& \text { At } 664 \text { fothoms' depth (Slation } 26 \text { () it wna . . } 10272 \\
& \text { Surface at the snma } 10280
\end{aligned}
$$

According, however, to n series of observations made at the sarne spot (Station 42) at intervals of fifty fathoms, from 50 to 800, the specific gravity increased with the depth from 1.0272 at 50 fathoms to $\mathbf{1 . 0 2 7 7}$ at 800 fathoms.

Several series of specific-gravity observations were made near the monthe of rivers and streams; showing the gradual mixture of fresh and salt water, and the floating of lighter portiona above the denser sea-water, as well as the reverse effect produced by the influence of tidal currents. Thus outside Belfast Lough a rapid atream of water of specific gravity 10270 was found above water which, at a depth of seventy-three fathoms, had a apecific gravity of 10265.

Gases of Sea-water. -The analyses of the gaseous constituents of sea-water may be divided into two groups: (1) Analyses of
surface-waters. (2) Analyses of waters below the surface; and these last may be again subdivided into (a) intermediate, and (b) bottom-waters.

The total quantity of dissolved gases in sea-water', whether at the surface or below it, was found to average about 28 volumes in 100 volumes of water.

The average of thirty analysea of surface-waters made during the expedition gave the following proportions :-

	Pricetintage	Proprictin
Ongget .	26.046	100
Nitrogen	84,211	216
Carbonic acid	20.74, ${ }^{\text {a }}$	80

These were thus distributed over the three cmises, and the maxima aud minima of ench constituent are thus shown :-

It is interesting to remark that surface-water contains a greater quantity of oxygen and a less quantity of carbonic acid during the prevalence of strong wind. The following is an average of five analyses made under such conditions:-

	Percmit	Properilson,	Gederal everage	
Oxygen .	29:30	100	25046	110
5 - Nitrogen	62.87	182	54-211	216
(Carhenic acid	1809	62	20 74:1	

In the two cases which preaented the remarkable amall minima of carbonic acid with a grant excess of oxygen, the water had been accidentally taken from immediately abaft the paddles, where it bad been subject to vialent agitation in contact with air.

Of water at various depths beneath the surface, fifty-nine analyses ware made. Those in the first curise, twenty-six in number, were chiefly from bottom-water at depthe from 25 to 1,476 fathoms. In the second craise the twenty-one analyges chiefly belonged to two series,-the firat of eamples taken at intervals of 250 fatheme, from 2008 to 250 fathome incluaive; and the sacond of samples taken at intervals of fifty fathoms from 862 to 400 fathoms inclusive. In the third cruise twelve analysea were made,-eight of battom-water, of which one-halr were in the "cold area" and four at intermediate depthe.

The general average of the fifty-nine analysee of water taken below the surface gives:-

	Pniesmiagt.	Proportion.
Oxygen .	20.868	100
Nitrogen . .	52.240	254
Carbonic acid.	23.192	132

It will he seen from this that while the quantity of nitrogen is anly 1.97 per cent less then in eurface-water, the quantity of oxygen is diminished by 448 per cent, and the quantity of carbonic acid increased by 6.45 per cent. This difference is greater if hothom-waters only are compared with surface-waters.

	80 Surface.		14 Intermadiala,		94 Hettam.	
	Fer cent	Proportion.	Per cant.	Propustinn	Percant	ProparHon
Oxygen	25'05	100	2203	100	18.69	100
Nitrogen .	54:21	216	51.82	236	52.60	281
Carbonic acid	20.74	83	2010	119	- $27 \cdot 67$	14.9
	10000		$100 \cdot 0$		10000	

The two series of analyses, before referred to, performed during the second cruise upon intermediate watera at successive depths over the seme spot, both show a reguler incresse of the
carbonic acid and diminution of the oxygen, as the depth increases, the percentnge of nitrogen varying but slightly.

These general results appear to show that the oxygen diminishes and the carbonic acid increases with the depth until the bottom is reached; but that at the botfom, whatever the depth from the surfece, the propertions of carbonic acid and of oxygen do not conform to this law, bottom-water at a comparatively small depth often containing as nuch carbonic acid and as little oxygen as intermediate water at a greater depth. No instance occurred during the first two cruises in which (where samples of surface and intermediate or bottom-waters were taken at the same place) the quantity of carbonic acid was less and of oxygen greater than at the surface; the only exception occurred in the third cruise, at a place where, it is believed, currents of water were meeting.

It was frequently noticed that a lerge percentage of carbonic acid in bottom-water was accompanied by an ebundence of animal life, as shown by the dredge; and that where the dredgeresulta were barren, the quantity of carbonic acid was much amaller. The greatest percentage of carbonic acid ever found was accompanied by an abundance of life; while at a short distance (62 fathoms) above the bottom, the proportion of carhonic acid was conformable to the law of variation with depth before raferred to :-

	Cottam, 888 fmir	600 fmis.	760 tras
Oxygen	17.22	1778	18'76
Nitrogen.	34:50	$48 \cdot 46$	49.32
Carbonic acid	48.28	32.75	31.92
	100.00	10000	10000

The lowest percentage of carbonic acid (7.98) ever found in bottom-water, occurring at a depth of 362 fathoms, was accompanied by a " very bad haul,"

In crossing the wide channel from the north-west of Irelend towerds Rockall, where the water for some distance is aver 1,000 fathoms depth, so that the other circumstances varied very little, if at all, the proportion of carbonic acid appeared to vary with the dredge-results; so that the analyst ventured to predict
whether the collection would be good or not hefore the dredge came to the surfnce-drawing his inference from the resulte of his analyses of the gases of the bottom-water. In each case his prediction was justified by the result.

	statian 17. 1,426 finc.	Exation 19 1,900 fran.	Byatian 20. 1,44 Ata.	Examais 1,474 Ame
Oxygen	16.14	17.92	21.34	18.68
Nitrogen	48.78	45.E日	47:51	43.46
Curbonic acid	36.07	30^{20}	21-15	3988
	10000 Good haul.	$100 \cdot 00$ Good haul.	$\begin{gathered} 100 \text { no } \\ \text { Bad haul. } \end{gathered}$	$100 \cdot 0$ Good hanl.

In the analyses made of the water in the cold area, and geuerally in the third cruise, there appears, as might be expected from the various currents, \&e, a greater variation in the results than in the other series. In the bottom and intermedinte waters the nitrogen appears to be rather in excess of the average, and the carbonic acid has a large range of varia-tion-from 758 per cent. at Station 47 (540 fathoms, ternp. $43^{\circ} 8$) to $45-79$ per cent. at Station 52 (384 fathoms, $30^{\circ} 6$ Falme.). The average of the surface-waters is much the same as in the other parts of the cruise.

IL may be worth notice that in localities where the greatest depth did not exceed 150 fathoms, the results of the gas-analysis of lottom- and surface-water were frequently so nearly the same, whatever the amount of animal life on the bottom, as to lead to the aupposition that there might be at that limit a anfficient circulation, either of the particles of the water itself or of the gases dissolved in it, to keep the gaseous constitution slike throughnat. The coincidence of this depth with the extreme depth at which fish are usually found to exist in these seas is sugrestive.

Organif matter. - With a view to test the method of analysis by permanganate of potnsh, two or three series of analyses were made where fresh and salt water mixed together, as in Killibegs Harbour, Donegal Bay, \&c. ; and the reaulta in all cases justified the expectation formed, that the amount of permangenate was an index of the comparative purity of the water, both as regards the "decomposed" and the " decumposable" organic matter.

Disregarding the above series, a total of 134 experiments were made upon sea-water, which may he thus divided :-

56	upan aurlace-water,
18	intermedinite watpr,
60	battam-water,

during the first and third cruises.
The results are given in the quantity of oxygen in fractions of a gramme required to oxidize the organic matter in a litre of water.

Average of 56 analyses of surface-water:-
No.

Average of 18 analyses of intermediate water :-
No.
日. Decomposed . . . 000005
g. Decompossble. . . 000024$\}^{\text {Total } 000035 \text {. }}$

In 7 out of 9 there was no "decomposed " organic matter ; and in 3 out of 9 there was no organic matter at all, as indicated by this test.

In this series the analyses of the observations mede during the second cruise nre mot included, as the calculations have been differently made.

Average of 60 analyses of bottom-water:-
No.
26. Decomposed . . . 0 n0047
34. Decomposable.

000041
Totul nonors

Maximitm. Minlmnm

Decomposed	.	000105	000000	2 enecs
Decompoanhle	.	000148	000000	1 case
Total	.	000253	00000	1 ense.

Thege figurea appear to show (1) that intermediate weters are more free from organic contamination than either surface- or battom-waters, as might be expected from the comparative absence of animal life in these watera; (2) that the intal absence of organic matter is least frequent in bottom-waters, and most frequent in intermediate waters, surface-waters occupying a middle place in this respect; and (a) that there is not much difference between bottom- and surface-waters, either in the total quantity of organic contamination or in the relative proportions of the "decomposed " and "easily decomposable" organic matter.

It may be worth natice that when the battom-water from great deptls was muddy, tests made before and efter filtration showed that some of the organic matter was removed by this operation.

Abstract

APPENDIX \quad.

Results of the Analyses of Eight Samples of Sea-Water collected during the Third Cruise of the 'Porcupine' By Dr. Frankland, F.B.S.

> Royal Collent of Cgremigity,November 1thth, 146日.

Dfar Dr. Cahpenteh, -Herewith I enclose results of andyses of the samples of sea-water collected during your recent craise in the ' Porcupine.'

I shall not attempt to draw any general conclusions from these results; your own intimata knowledge of the circumstances under which the different samples were collected will enable you to do this much better than I.

There is, however, one point which is highly remarkable, and to which I would draw your attention ; it is the large amount of very highly nitrogenized organic matter contained in most of
the samples, as shown of the determinations of organic carbon and organic nitrogen, and the proportion of organic carbon to organic nitrogen. For the purposes of comparison, I have appended the results of enalyses of Thames-water and of the water of Loch Katrine, the former representing probably about a fair average of the propertion of organio nitrogen reaching the sea in the rivers of this country, but being presumably considerably greater than that contributed by rivere in other parts of the world If this be ac, it follnwe either that soluble nitrogenous organic matter is being generated from inorganic materials in the sea, or that this matter is undergoing concentration by the evaporation of the ncean,-the rivers and streams continually furnishing additional quantities whilst the water evaporated takes none away.

The emounts of carbonate of lime given in the table are oltained by adding the number three (representing the solubility of carbonate of line in pure water) to the temporary hardness which denotes the carbonate of lime thrown down on boiling. As the determination of temparary hardness in water containing so much saline matter is not very accurate, the numbera in the calumns headed ' Temporery Harduess ' and 'Carbonate nf Lime' must only le regarded as rough approximations to the truth ; moreover, a small proportion of carbonate of mngnesia is mixed with the carbonate of lime and estimated with it

In all their peculiar features these analytical results agree with those whioh I have previously obtained from numerous samples of sen-water collected by nyself off Worthing and Hestinga.
Rebolite of Analybis exprasaed in Grammes per 100,000 Cubie Centimetres of Water.

APPENDIX C.

Notes on Specimens of the Bottom collected during the First Gruise of the ' Porcupine' in 1869. By Davin Fordre, F. R.S.
atlantic Mid contained in a small bottle marked 'Soundínge No. 20, 1.443 fntlomg.'

A complete analysis of this sample shows its chemical compnsition to be as follows :-

$$
\begin{aligned}
& \text { Carbonate of lime } 50 \mathrm{j} 2 \\
& \text { Alumine }{ }^{3} \text { ('anhuble in scids') } 132 \\
& \text { Sesquiaxide of íron ('anlıhle in acidg ')' . . . } 2 \cdot 17 \\
& \text { Silica (in a arluble condition) } 604 \\
& \text { Fine ingoluble gritty sand (rock défris) . . . } 26.77 \\
& \text { Water } 2 \mathrm{CO} \\
& \text { Orgnic matter 4.19 } \\
& \text { Chloride of andium and nther aoluble salta . . } 7 \cdot 48 \\
& 100.00
\end{aligned}
$$

If we compare the chemical composition as above with that of nidinary chalk, which consists all but entirely of carlonate of lime, and seldom contains more then from 2 to 4 per cent. of foreign matter (clay, silica, \&c.), it will be seen that it differe chiefly in contnining so vary Targe an amount of rock-matter in a fine atate of division. If we subtract the water, oryanic matter, and marine salts, which would probably in greatest part be ramoved before such mud could in process of ages be couvertad into aolid rock, even then the amount of carhnnate of lime or pure chalk would not be more than at highest some 60 per cent. of the mass.

As such deposits must naturally be expected to vary greatily in mechanical clamacter and chemical enmposition, it would be
${ }^{2}$ With phosphorioncid.
premature to genermlize as to the actual gature of the depasits now in course of furmation in the deptle of the Atlantic, before a carelul examinntion had been made of a apriea of euch specimens from different locslities. The solnhle silica is principally from ailicious organisms.

As regards the probable origin of the pebbles and grivel found in the varions dredgings, it will be at once aeen, from the description, that they consist principully of fragments of valcanic ronks and cryatalline schists. The former of these lave in all prolenbility come from Iceland or Jan Mayen; whilat the Jatter, associated as they are with amall fragments of grey and bomewhat altered calcareous rock, would appear to have proceeded from the north-west coust of lreland, where the rocks are quite identical ju mineral cbaracter The morth of Scotland and its ishnds also contain aimilar racks; but, without being at all positive on this head, I am rather inclined to the opinion that they have been derived from Iraland, and not necessarily connected with any glacial phenomens, believing that their presence may be accounted for by the ordinary action of warine curreates,

Peibleg facm 1,215 Fathoms (Station 28).

The stones were nll subougular, the pdges heing all more or less warn or altogether rounded off. The specimens were thittyeight in number, and upor examination were found to couriat of-

5 Horblende schist; the lergest of thease (which alao was the largest in aize of the antire series) weighed 421 graina (f of an ounce), wha extremaly compact, and was compored of black hornblende, dirty-coloured quartz, and some garnet.
2 Mira shhist; quartz with mica, the largest weighing 20 graing.
备 Grey pretty compact limestane, the largest being 7 graing in weight.
2 Fragmente (showing the cleavage fires munded off on edges) of orthaclase (potssh felspar), evidently derived
from granite; the largest of the two frigments weiglied 15 grains.
5. Quartz, milky in colour or colourless; the largest of these weighed 903 grains, and showed evidence of having been derived from the guartz-veins so common in clay-slate.
19 Fragments of true voleanic lava, most of which were very

- light and scorinceaus (vesicular), although some small ones were compact and crystalline; and in these the minerals angite, olivine, and glassy felspar (Snnadine) could be distinctly recognized. Ameng these were fragments of trachytic, trachydoleritic, and pyroxenic (besaltic) levas, quite similar to those of Iceland or Ian Mayen of the present period, from which they had probally been derived.

Gravel from 1,443 Fathoms (Statiun 20).

This sample of gravel consisted of 718 subangular fragments, in general not shove from $\frac{1}{4}$ to $\frac{1}{2}$ grain in weight, with necasionally some of a little greater size; but the most considerable of all (a fragment of mica schist) ouly waighed 3 grains. They consisted of:-

3 Fraguents of orthoclese felspar.
4 Bituminous or carbonaceous shale (7 if not accidental).
5 Fragments of shell (undistinguishable species).
4 Granite, containing quart z_{2} orthoclase, and muscovite.
15 Grey compact limestone.
69 Quartzose mica schist.
317 Hornblende achist; 的metimes contnining garnets.
273 Quartzite fragments, with a very few fragmenta of rilenr quartz. The majority of the pieces being of a dirty colour, often cemented together, were evidently the debris of quartzite rocks or beds of indurated sandstone, and not from granite.
28 Black compact rack, containing augite, most probnlly a - volcanic liasalt.
718.

From 1.263 Fathoms (Station 22).
A single rounded pebble, weinhing 18 grains, cbiefy quaris. with a little of a black minemi hornblende or tourmaline, probably frow a metamorplic schist,

Ghavel fhom 1,36f Fathoms (Station 19a).

Consisted of 51 amall subangular pieces of rock, all lesa than $\frac{1}{2}$ grain in weight, excepting ouly one fragment (angular) of quartz, which weighed 2 graine ; they consisted of -
19 Framments of quartz, all of which appeared to have proceeded from the disintegration of crystalline schists, and not from granite.
9 Hornllende echist.
8 Mica schist.
7 Loose, dirty-white tufacenus limestone.
3 Sinall fragments of angite or tournaline (? whicl).
1 Fragment of quartz, with tourmaliue.
4 Fragments of indistinet and uncertain character.
$\overline{51}$

> Gravel from 1,47G Fathoms (Station 21).

Six amall suhangulat fiagments, the largest of which did not exceed two grains in weight; they were respectively-

1 Yellow quirtz.
1 Quartzose clllorite schist.
3 Mica schist.
1 Small frngment, apparently of volcanic lava.
-
6
The specimen from Rockall is not a fragmetut of any normal rock, but is only a brecciaform aggregate, principally cousisting of quartz, felspar, and crystals of gretn hormblende, held together by n silicious cement. It has evidently been broken from the projecting edge of a fault or vein fissura; and although it cannot settle the matter definitely 89 to what rocks this islent may really be composed of, it would indicate that it mast
probably is a mass of hornblendic gneiss or schist, and certainly ront of true valcenic arigin. I may mention that it does not at all resemble any of the fragments found in the deap-sea dredgings which I have as yet exhmined.

APPENDIX D.

Notr an the Carbonic Acid contained in Suct-woter. Bh Jown Young Pochanan, M.A, Chemist to the 'Challenger' Expedition.

At a meeting' of the Chemical Society last summer, Dr. Himly mentioned that Dr. Jacabsen, of Kiel, han found that carlonic acid is only very imperfectly separated from sea-water by boiling in vacua. This wes confirmed by Dr. Jacobsen himself in a letter to Nature of August 8, 1872. Almost at the very same time the German North Sea Fxpedition arrived in Leith, when I had the privilege of hearing the coufirmation of it from lis own mouth, as well as his conjecture that it was probably owing to the presencee of salts with water of halhydration, such as sulphate of magnesia, that the enrbonic acid wes retained with such vigour.

Having assured myself by experiment that, as a matter of fact, carloonic acid is retaived by aea-whter with considerable energy, the last traces of it having sabrealy disappeared before the contents of the retort were reduced to dryness, I set on loot a series of analytical experiments, so as to determine which of the salts it was, whose presence was the cause of thi' nnomaly in question. The result of these experiments was shortly this: Distilled water, solution of ehlaride of sodium and solution of chloride of magnesium, ench saturated with carbonic acid, behaved on distillation alike, giving off the whole of their carbonic acid in the first eighth of the distillate. Solutious, however, of anlplante of mannesia and of sulphate of lime hehaved like

[^70]the others at fret, giving off the surplus carbonic acid diesolved in the first eighth of the distillate. The amount of carbnnic acid coming off then fell very low, gradually increasing, however, util a bulf had been distilled over, when the amount coming off again reached a maximum, the quantity then diminishing, but rarely entirely disappearing as the contents of the retort approached dreness. It is cleat, then, that in the sulphates of magnesin and lime we have an agent capable of retaining carbonic acid in the way in which we aee it in sea-water; whether there may be other ngents present, capable of doing the same wark, will be brought to light when the aubject hes been more fully investigated. An independent set of experimente were made on the variation with pressure of the coefficient of absorption for carbonic acid of a solution contriuing $1-23$ рer cent. of cryatallized sulphate of magnesia, kept at a constant temperature of $11^{\circ} \mathrm{C}$. The result was, that at 610 mm . pressure the sulphate of magnesia solution dissolved sensibly the snme quanlity of carbanic acid as the same volume of water would have done; in other words, their coefficients of absorption were identical. Helow 610 mm . that of the saline solution was the greater ; bbove 610 mm , the reverse was the case. The curve, however, is not a straight line, and it appears to cut that of whter again at a pressure of about 800 mm .

The facts alove related naturally suggest to the chemist the question, what is the body formed when sulphate of magnesia and carbonic acid meet each other in solution ?

It is olear that, besides the carbonic acid dissolved, there is some retained by a stronger bond, and which is only liberated when the conoentration has proceeded a certain distance. Is the decomposition caused by the loss of water, or by the rise of boiling-point? The difference between the boiling-points of the solution, when it has just ceased to give off the merely dissolved carbonic acid, and when the retnined gas is heing given off in grentest quartity, does not exceed $\mathbf{I}^{c} \mathrm{C}$.; and it is difficult to believe that the compound should remain practically infact at 101° and decompose tapidly at 102°. Again, if the compound is decomposed by the water alone, we should expect, that the
wore dilute the solution, the easier would be the decomposition. Adopting Frlenmeyer's view of the position of the halhydration water in sulphate of magnesia ($\mathrm{HO}-\mathrm{Mg}-\mathrm{O}-\mathrm{SO}_{2}-\mathrm{OH}$), we might suppose the carbonic acid aimply to replace the molecule of water, thus- $\mathrm{Mg}\left\langle\begin{array}{c}\mathrm{O}-\mathrm{SO}_{8} \\ \mathrm{O}-\mathrm{CO}\end{array}\right\rangle$; but it would be contrary to all analogy for such a body to be mare stable in dilute than in moderately concentrated solutions of the same ternperature. If, on the other hand, we suppose the CO_{2} to interpose jtself letween the Mg and the besic HO , we have a body of this form: $\mathrm{HO}-\mathrm{CO}-\mathrm{O}-\mathrm{Mg}-\mathrm{O}-\mathrm{SO}_{2}-\mathrm{OH}$. It is conceivable that such a body would in the process of conceutration become delydenter, when the anhydrous salt $\mathrm{Mg}<\mathrm{O}-\mathrm{SO}_{2}>\mathrm{O}$ wauld be formed, which would then eplit up intn CO_{2} and MgSO . Assuming now that the hody formed has this constitution, it is evident that, for a given mixture of sulpbate of mngnesia, water and carhonic asid, the nmount of the alove hody formed will be a function of the temparnture, the pressure and the duration of their artion upan one another. Now, at great depths in the sea, where atmospheric influences are insensihle, these conditions are most completely fulfilled. The temperature is law, the pressure bigh, and the time practically unlimited. Sea-water contains on an average about two grammes of cryatallized sulphate of magnesia in the litre; and if the reaction weie complete, the two grammes of sulphate of magnesia, or one litre of sen-water, would absorb 181.4 euhic centimetres of carbonic acid. Supposing only one-tiftl part of the sulphate of mngnesin to be thus saturated with carlonic acid, we have provision in one litre of senwhter for the removal of over 3 fi cubic centimetres of carhonic acid. We have thus in the sulphates (for the linue-salt appeara to act even wore energoticully) an agent which in the ocean depths performs oue of the twa important functions of plants in shallow watery and in the sir, namely, the removal uf tlie carbouic acid eliminated ly the amimals; the task of replenishing the oxygen supply is accomplished by the system of ocenn circulation. Moreover, it would lie difficult to conceive
circumstances mate favourable to the formation of this bady than thnse which exist at the bottom of the ocean. The temperature is generally little over that of melting ice; the pressure often exceeds several hundred atmospheres; whilst the carbonic acid, being produced gradually, and coming in statu nascendis in contact with the ealine solution is in the condition moct favorable for easily entering into chemical combination.

The amount of this salt formed depending on the pressure, it is evident that, ou bringing up a sample of water from a great depth, a part of the carbonic acid, which was bound before, will become free under the atmospheric pressure; and, moreover, as the amount decomposed varies with the time, it is evident that the amount of free carbonic acid, oltained by bailing in vacua, will vary with the depths from which the eample was obtained, with the time it stands before boiling, with the temperature to which it is exposed during boiling, and with the duration of that operation. Hence it is ensy to see how, assuming the body ebove meutioned to have been formed, Dr. Jacobsen found that the quantity of carbonic acid obtained by boiling in vacuo was no measure of the amount actually present, and that even portions of the same sample gave discordant results.

It will be seen from the alove remarks that solutions of carbonic acid in sen-water and in blood ressmble each other in almost every particular; only in the latter the retaining body is phosphate of sode, whilat in the former it is aulphate of magnesia, both of which contain conatitntional water. The phyaical conditions, under which carbonic acid is eliminated from the blood and from sen-water, are also very similar.

In the investigation of the belaviour of carbenic acid and of other gases to oaline solutions, there is a practically unlinited field for useful research. The determination of the absorption coefficients of sulphate of mngneala solution for carbonic acid alone, under varying conditions of temperature, pressure, concentration, and duration of action, would afford interesting and profitable accupation for more thau one chemist.

I NDEX．

A．

Acuw／hamelrina，98，
chign warnta， 127.
Rupan San．Mollurean aud Radinin of， 5 ．
Agnaig，Alennoder，Eehinoderm Fquta on the two sidea of the lstbmus of
 272
Al｜man，Prufemar，F．R．S，Hst of amimal forma foumrl at great depthe， 27.
A lopens arylina，169，176，482，
A mabia covjunipri， 176.
Amphidetna carfutur， 45 E ．
Amphilalia profurida－A．andata－A．
 189.

A mphíma abourisala．123．
Avterlou celtheas，74；A．escrichiz－A， sarmi， 124.

 A．avdrameda，150；A．pareiii，da6；
A．tenainpinw，456，
Atals тxs baffini，127，12日，
Arlmanare sataintense， 429
A stampligunar lin liti， 16.
A』rロrhara limieota」 76.
Atavian，自．

R．

Baaha，Ptofannat A．D．，Superinhatodont U．\＆．Gonat Survey，on the Gulf－direan， 3 16.
Anthyina haechelii，412

Andiguidinm carpenteri， 77.
Berryman，Libutenant，U．S．N．，deep－ren soundingg in the Us．brg＇Dolphin，＇ 277－428
Anmage，Profansor Earbaga diu，Diractor nf the Nat．Hist，Muasum，Lishan，

Hawminnt： Dr_{1} F．R S．，on IHyalanama， 425．

Mrandt，Dr．，on Fywlosema，42S．
Ariscinga caronela，67，116；B．Endemt． cmanes，66，昭，118；deacription of，by Abajerame，P．Chr．，6d．
Ariumpria lyrifera，118，467，466，
Hrooke，J．M．，US．N．，вoundigg eppe． ralne，2］，21］， 218.
Hrawning，ISeutanant， 89.

Enirhanam，John Young，M．A．，en the Carbovic A cid contained in Bear－ater， 518，521．
Buff，Pinfessor Henty，on acann cur－ renis， 368 ；an the Gulf－atream， 8 BB ．

c．

Calvar，Captnin，shill in conducting： imarging operations， 89 ；menal mound－ in 8 日， 906 ．
Calreria hyedrix，156，450；C．fexertala， ］50，18L， 456.
Caproika apinasiasinen， $12 g$ ．
Crppenter，Dr．Willim B．，F．R．E．， g ；2 Praliminnry Foport of the Dredging
 Tempernhire Ohservatione in tne Me． diterranean，gidi Theory of Ocean
 the currenta in the Etrait of Glbraltar， 978；on the Gulf zinnam，fist．
Earpanter，W．Lant，B．A，B．BA，85；

Coryophylita bormatin 27， 491.
Cingatocyathwa armatial， 481.
Cotilh itu granarys，489．
Challe，4018；analyais of， 46 G ．
Chimmo，W．，Commander R．N，200； tampenaturea of the Atlantic，9f，
Channites， 494.
Chandrnelndia zirgaia， 187.
Cidaris papillatd，76；C．hyalrix，116，

（！latorniag afyericole 112．
Concolithe， 413 ．
Clnactsonheren， 414.

Camalling Zong， 16
Cnnoiden， 49.4.
Croll，James，on noaln eurrinta， 976 891.

D

Darwin，Charles，M．A，F．R．S．，＇Origia of Apecica，＇ 8.
D＇Aubwisan，on deap－son tew peratures 480
Davin，Captaing R N．，tasang tharmo－ metars， 240,205
Dagman Joweph，Commander R N．， 28，229，302；tamparaturas of the Alinntia 959.
Desp－ate Sounding，205；cup－lear， 210 ； Erooke＇s deap－mea mounding apparztun， 21］，219；the＇Hulldor eourading manhive， 215 ；the＇Fitgernld＇（xommin－ ing manhive 217 ；the＇Bydru＇mund． ing－machine，21月；donkey－engina， 221 derricke，221；the＇accumblaicor， 222 ；abserved rate of degcent of the annmdigg imbtument，223；Mnesey＇a enuding－mnchina， 225.
Deep－bea Temparature，doctrine of，哖； distribution of beat in the esa，yb； oold well， 97 ；minimum inmparntire of the san，praximity of anrm and acld arans，191；grant unifarmity of teroperature nt a］degths in the Medīlarranésu，191， 285 i merial mondinge for temparature， 809 ． 82 ．
Dapth of the Sea，1；firat buccasaful fredgivge at great daytha，g；animal firme fatud nt ispthe of from 70 ta 1，200 fathoms， 27 ；Animnl life shuodnat at the hattom nif the efa，Sl；nverade depth of the sen， 81 a at great diptha， 57 ；peantrakoz of light， 45 ；bhumance of the penera Aairaperien end Arrhader， 121.
Derprete．M．，renearchen on the maxi－ mum denaiky of naline oolutions，95； tamparghure oifgraleat denily of mas． meter， 807.
Ltoryseh withomeni， 174.
Dredging Apparatus：Millaris Hirenige， －2M1 ；Ball draige，2d0；deap－man dredgen，246；therriah，247；Heoumu． later， 247 ；Aunt Sallies， 249 ； 4 retgea mpes， 249 ；dredging in bhallow water． 븐，2A5；hredging in daep watar， 299；bempen tangle 26，26，257；ampty－ irg the dredge，25月；dredging eveves，

Dredping Oommittap，member of，2AS； Belfart Dredging Committes，2fit．
Dredging Opemtiane，on the aonst of Tre－ land，知日；of Fingland，206；of khet－ land and Wb Hefrides，2af；ar Par． tugal and the Merlitorranoury， 2 A 7 ；of the North bast A tinnife， 267 ；nf Nor－ way，Seadan，men Denmerk， 2 fis ；al
tbs Arintic，2AK：of Alguria， 248 ； Epitzberyen，2dy；Maltn，2？M；Finland and Lofolen Jalande，270；Uniked Etning， 277.
Dradging Fipeir，281．
Dincon，Proleasor P．Markin，F．R．E，on dogp－8ea corale， 431.

E

Schivacnamin typieat 125，175：Etchiso－ cyanme angulaius 117，45G；Echmo－ thmridas，wila dialsiluting of， 171 ；

 E．Narmgicus， $7 \mathrm{FA}_{1} 116,45 \mathrm{y}$ ；N．Tetri－

Ethen granvlata， 176.
Rinplectedia， 73

Zvolution，dortrine of， 8 ，

F．

Fudlay，A． 6 ，on the Gulf atranm，S日ח，
Fighes，naw apecier of 180.
Findelium distikctum，SD2．
Fiaride，fanman of the Strait uf， 171.
Thrminiuifara，115，166，415，47B，
Forhes，Dinvirl，FR．．．．，annlywin of the white chall of thovehum， 4 Nis ；nil the Falkentinne gray ohnll， 469 ；on speci－ mens of Atlantio mud，5］＋hil B．
Forbag，Fhwnti，F．R．S．，4；ou the तls． ribution af manna formin， 6 ；on tha immulability of speoies，f，apecite ountres of diatribution， 7 ；tha fow of represanintion， 8 ， 18 ；zones of clepth， 15 ；representative forme， 17 ；inverted sonalogy bedenen tha dintrikulino al the farnna nod fara of the land and of the eea， 44 ；on rredging，2ffi，
Fowil Enhimidm，169
Framelanri，Dr．F．H．Gi，analybis of bed－ watar 6j］－513．
Feres mori，4fis．

G.

Geryon trílems，日是．
17oligerfan brifaides，22，41A
Ganeplas rhandaider， 87 ．
Goodsir，Henty，deap dredixig in Dnvi» Atrait， 21.
Gray，Mr．Jalin Melward，F，RS，an I／watanomn， 422
Gulfithrasm，284，36A；deteripting of， 876；progreas nud extemaion of，thraugl the North Atlantic， 385 ．

H

Haechel，Pinfegar Ermat，自；hintergical neudien，Jos．
Halichondrida， 74.

Fall Morabell，FG．S．，oruian of the ＇Norna，＇ 279.
Ferambl，Elr John F．W．，the doctrine of a conntant temperature of 4．©．at great deptha， 85 ；latter to Dr．Conr－ pentar， 578 ；description of the Gulf－ alream， 581.
Hayantivelliula，70， $\mathbf{4 1 6}$ ．
Bolatha ria endion ran， 125 ．
Fadronis carpantari， 71 wide dintriba． tion of，75，101，167，417，427．
Humbaldt，Haron vor，on deep－ack tum－ perataren， $9 f 0$
 of efe－vater， 497.
Hurlay，Profanmor T．H．，Sea R． $\mathbb{S}_{\text {，on life }}$ at great depthn，约；an the chalk－mud of the Atlantic， 486.
Hyalonemn，79，101，167，27f，417，422，
 siflaidi，423
Hymenanter fellucidm， 120.

I．

Inakip，Stanf－Commander， 6 6．
Iethmun of Panatora，Echinoderm Fenioa on the treo eider of， 19 ．

3.

Jeffrege，J．Geyn，F，R S．，distributinn nf marine mollugca，40；first omize of the＇Porcupine，＇84；Aredging off the arouth cosst of Irelnnd，jli］fourth cruies of the＇Parcupine，＇178，2fi， 278，418 428；temperature ohserva－ tinnm， $92 \hbar$
denkin，Proiestar Fleeming，C．F，F．R．S．， anble hetween Gardinis and Eove， 24 firat absolute proof af the existonce of highly－arganizad mimnla nt depthe of upwards of 1,001 fathome， 30 ．

k．

lient，W．Slaville，F．L．S．，the＇Noros＇
 brifese， 42 a ．

I

Inminarian Zane， 15.
Latipne aldul， 4 d ．
Taughton，i．K．，M A．，on negan mir－ rents， 898 ．
Lee，Lieuterant，US． N_{L} ，debp－sea sound－ inमe，299， 982
＇Tjplitning，cruise nf the， $\mathbf{5 7}$ ；Lhe Farna Ennlea，nifit the Firrog lalonia， 61 ； Thireshann，fl：fimt nitompt at dredg－

Ing ln deap wator， 64 ；the＇cold aran，＇
 74；ganeral mosulta of the cruise， 78.
Littoral Zont， 15.
Eiluatn，115， 1 IAd．
Lophohelia prolefera，7f，169， 432.
Laven，Pralemor，additiona to the know－ ledganf marine 2anlogs，2A7；an bathy－ metrical dinitibution of Eubmainas life， 2 月月．
Ifgella，Gir Cbarles，Bart．，F．RE．，on the cretarenua pariod， $472:$ on the con－

Lymnn，Thendore，mamoirs in the＇Bul－ letin of the Museum of Comparstive Zoologg，＇ 277.

M．

M＇Clintoele，Admipal Sir Laopold，voyago

Maury，M．F．，LL D．，Captain UEEN．， 229 thenry of coean currents， 968 ；ou the Gulf etrenm， 883
May，Staff－Commander，aruies of the －Lightring，67， 304
Menn annual temperatures．Hebridea， 492 ；Labrador，962；Bergen， 369 ； Toholah，968：Fizrne Inlanda，atas： Falkiand lalanda，y69；Dublia，963；
 tan， 863.
＇Mareury，arujan of tha，ezsal．
Miloo－Edwands，Alphonae，liat of the animang lound an the Mediterrandan enbla from the depth of $1,10 f f$ fathnme． 2月， 268.
Molin，Piofessar B．，on rurfece and deep－ aen temparaturea on the wast count of Normay． 886.
Muller，Otho Fraderiak， 237 ；hil dmige， 238.

N．

Nortom，Rap．A．Merle，addirion to the Sbetinnd fuuna， 124 i preliminary no： tice of the cmistaces of the＇Porcupine＇ Expedition， 17 fl ；Shetlamil dredginga， 267 ．
Nutritinn of animaly it groat dapthe， 45 ．

0.

Oceanio airculation 78，224；Dr．Car－ peillar＇s theary of， 972.
Ophiamaiha apinnian，76，148，172．
$0 \mu h$ iocten seriass，7日， 129.
Ophinmaninm ymari， 172.
Oph iopmaisanerurigena， 124.
0） 1 ghoseder pinfynsea，J29；Oghciafia， 124

Ophiodrar／ilideni， 100.
Urhitalites taninionm，91，394．
Dututian unzoura，29，

P．

Padicellanter typickn，45ul．
Penturyinem acivilie－themmon i_{1} 189， 414 ： P．antarin，446；P．P．Jfilitri，442．
Petermand，Dr，on the Gulf－ntrenm，287， 37日，듸․
fhevorewn arne， 418
Piarsuasama phecesta，131，469
Fhaphntesomet D8，148．
Pieras，Prafessog nn the Gulf－ntream， 384．
Platynlia annwiaindes，14A．
Pidumnedia ineida， $4 \operatorname{ld}_{1}$ 46i5．
Polyayitina，9R．
＇Pnrcupine，Gral crusse of the， 89 ；equip－ ment ni the ressal，88；ruaulks of the Giral dredging，80；Hiskt trial of tha Miller Casalla thermometara，is：Por－ oupine Bank， 88 ；trip to Rraknh，AN； escond aruise 的；dredging ac the depth of 9.48 fathoms， 85 ；raturn to Helfant， 100 ；therd cranie， 191 ；Holle． uia prannd，103；the bempen tangles， 105；Tharabevo，100；dincovery of Arction atream，110；Shethnd platean， 11］；predominance of the Aratial［aven， 181；fmuna of rihe warm nrea olf the norih coast of Scatland， 177 ；return da Rellest，178；fouith onisa af the ＇Parupine，179；aruise in the Medi－
 coant，19］；Advonture Bank，192； Malta， 18 ；temperature gomodiug near Stramboli，19j；ralurn to Camea， 174．
Pardridaris jurgwtata，102， 458.
Faurtalea，Count L．F．de，deep－nen dredg． ings across the Guldatiranmeff the erost al＇Fioridg， 277.
faximimia jforemi，103，457，45日，489； f．phia／e，60，הJ．
Praiaminanca al pratazan， 47.
Preareatian of apecimuna， 261.
Prestura，conditiona of，at great depiha， N2；moihade of teating the actual prof－ mure，S4；affect of promilirg on the thermometer， 204.
Preatwivh，Jolaph，F．R S．，President of the Gajoricnl Socioly：Tamperstures of the Atlanile．S．i日；on the continuily of the chalk， 498.
Pammechinus minotadersialus，457；ρ ． miliaria，45］．
Proden equmitis， 125.
PLeviler militaris， 171.

R．

Rhablatumian abyewornin 75.

Riobarda，Reber－Admiral，C．E．，F．N．E， Hydroprapher to the Navy， g^{2} ．
Rors，Sir James Glark，R N．，defp drudgings in tha Antarctio Ses，evi； tomparaturo observations， 304
Rese，Slir alnhm，vayage of dianovery in Bntfin＇s Bry， 18 ；maching for takiug＇ up soundiugs from giont depila， 216 ； tamperaivive ehearvationa diring the Arclic voyage， 800 ．
Ronspila vetatex， 419 ．
Rayal Suaioty，lettar to，frorn Dr．Car－ penter recammending n nyatemntio caurse of deep－wen drorgiog，5id；lelter from the Secretary of，tu the Shemetary of the Arlminalty，55；reply from the Admirolty，fif：（Mee alsa lilis－141）

s.

Snbina，Ganeral Mir Elward，F．C．E．， exlreate fram private jourdal，18，300．
Sam，Pioferacor Minhnel，list of nmimals of all the invercebrale gioupa liviug at n depth of 300 to 400 finthoms， $98,2 t 6$, $270,275$.
Schitrastar comeniffrras， 459.
Selimidt，Profegser Ogear，an Henactinel． lidg，70；Cometella，114，208，41g
Schultar，Prolesar Miar，on Iyalanema， 485
Surjuiat 27 s．
Gharlan at great depths， 94.
Sharkland，Soptain，R N．，temperaturen af dapp water in the Arnbing Eea， $85!$ ．
Emith，loulmin J ，on Yentriculiten， $4 R$ g．
sadoter furifer，118，456；S．papyoxия， 116．
 459.

Spimorlia， 27 ．
Epratl．Captain，R．N．，dredgiog in the Hediterramean， 970.
Stegatinp，Prolegeur．ndidiLiong tn che hnowledige of marine matogy，2at．
Stytocorvedy ha harvalin，114．
Surfaed temneratim，norla af determin－ ing the，287：dintribution of ${ }_{1}$ in the North Athotic， 862.

T．

Thake for the tramportation of living Hish，6R
Tellina colearen，4fu；T．minanvala， 4 BA．
Tempernture of tho erust ut the enrth， 4.2

Trurlamivin ceptuin，130．
Thecophoras emmameritua， 147 ；T．ib／n， 148
Threnpanmmin mrinlis， 488
＇Thorruometer＇，Six＇m，298；Hillor－「raqellu．

201 ; Ereguet'a metallis thammomoter, 201 ; Negretti and Zambra'n thermomotar, 29 .
Thomenn, Eir Willem, F.R.G, thermometer in a salad glard tube, 9 of.
Tiniphowia aganceyformis, 74 167.
Toraponastu frringircand, 4a.
Tripgtea fragulis, 118, 456.

∇.

Vnriation, 0.
Venirientited timplar, 489 ; outar aurfaca, 484; 解ction of the auter tall, 485.
Verticorrlala acaucontata, 4 A4.
W.

Wellinge, Alfad Rumel, on matural geleationg 8 .
Waliar, Fidward, dradging off the South congent of Lreland, Hebrides, and Gbatland lolandu. 121; on the fanos of the Bebrides, 207.
Welliah, G C C M.D ELE, whe North Abantic Max-bed, 24, 271, 102
Wright, Profesor Parbesal, deap dredging nff the cosht of Portugal, 274.

2.

Znna of deap-zen comin, 14.
Zarcarter fulgett, 1 여․

MADAME HOLTEN

1*
GRATEPUL HEMEABRANCF OF T'HE PLEARANT TIMER
GPENT EY HIMSFLE ANE HIS COMRATIRS
At tim
GOVERNOR'g HOUSE 1N THORS日AVN,
nT
THE ADTHOR

[^0]: ${ }^{1}$ Repart on the Mollusca and Pudiata of tha Aggean Sea, and on their Distribution, considered na bearing on Geolngy. By Edward Forkes, F.I.S., M. W.S., Professor of Botany in King's College, Lendon. (Report of the Thirteenth Mectivg of the British Aegociation for the Advancement of Science; held at Cark in August 1843. London, 1844.)
 ${ }^{n}$ On the Connection batween the Distribution of the existing Fauna nad Flore of the British Isles and the geological Changes which bave affected their Area, eapecially during the Epoch of the Northern Mrift. Tly Ldward Forbes, F.R.S., L.S., G.S., Prafegsor of Botany at King's College, Iandon; Pnlmantologist to the Geological Survey of the United Kingdom. (Memoirs of the Gealugical Survey of Great Britain, vol. i. Lomdon, 1846.)
 ${ }^{2}$ The Natural Wistory of the Finropean Sene, by the late Profensor Fiward Forlues, F.R.S., \&c. Edited and continued by Roleert Godwin Austen, F.R.S. Iandon, 18:59.

[^1]: ' The Origin of Speaire by ments of Natural Selection; or, the Preservation of Favourad Races in the Struggle for Life. By Charlea Darwin, M.A., F.R.S., L.S., G.S., \&c. \&ec. Londan, 1859, and subseguent editions.
 ${ }^{2}$ Cundributions to the Theory of Notural Selection. A Series of Essays by Alfred Russel Wallace. London, 1870.

[^2]: ' Genarelle Morphalogio der Organismen. Allgemeina Grundzigge der arganischen Farmen-Wiesenechaft mechanisch begriindet durch die von Charles Darwin reformírte Descendenz-Thenrie. Von Einat Haeckel. Bealin, 186G.-Natiixliche Schäpfungsgeachichte, Von Dr. Finst Facckel, Profesant no der Universilat Jemn. Berlin, 1870.
 ${ }^{2}$ Fiir Tarwin. Von Lir, Fritz Miillet. Leipzig, 18fa4. Tronslated from the German by W. S. Dallas, F.L.S. London, 1969.

[^3]: ${ }^{1}$ Ernst Haeckel, or. cit.

[^4]: ${ }^{1}$ Fidward Fiarhes, Report on Agean Invertehmata, op. cit. p. 17.9.

[^5]: ' Preliminary Repurt on the Echini anol Starishes dreaged in Deep Water hetween Caba aud the FJarida lieel', by L. F. de Pourtales, Assistant U.S. Const Survey; prepared by Alexander Agngsiz. Cammuniented by Professor 11, Prirce, Supprintemident U.S. Const Survey, to the Rulletin of the Mnseum of Comparativa Zoology, Cambrillae, Mase., I869.

[^6]:

[^7]: 1 A Voynge of Diacovery mada moder the Ordera of the Admiralty in His Mnjeaty'e abips 'Isabella' and 'Alexunder,' far the purposo af exploring Balfin's Inny, and inquiring into the Possibility al' n North-wost Passage. By Julan Ilues, K.G., Cnptain lhogal Navy. Loudon, 1819.

[^8]: ' Preliminary Raport, hy 1lr. Willinm R. Carpenter, V.P.R.S., of Dredging Operations in the Seas to the North of the Mritish Izlanda, carried on in Her Mnjesty's sleamevessel 'Lighining,' by Dr. ('arpenter and J)r. Wyville Thomson. (Praceedings of the Raynl Soricty, 186s, p. 175.)

[^9]: ' A Voyage of Discovery and Resparch in the Santhprn and Antarctic Reginna during the Years 1839-43. Ty Cuptain Sir Tames Clark Hoss, R.N. Lindon, 1 \&it.

[^10]: 1 Notural History of tha Eritiah Seas. By Profegsar Edward Forbes and R. Godwin Austen. P. 51.

[^11]: ${ }^{1}$ The North Atlantic Sea-bed: comprising a Diary of the Voyage on baard H.M.S. 'Bnlldog,' in 1860; and Observations on the presence of Animsl Life, and the Farmation and Nature of Organic Teposits at great Depths in the Ocean. By G. C. Wallich, M.D., F.L.S., F.G.S., \&e. Published with the sanction of the Lords Commissioners of the Admiralty. London, 1863.

[^12]: - Observatione eur l'Exigtence de divere Molluaques et Zoophytea a de très grandes profondeurs dana ln Mer Méditerrenće: Annalea dea Sciencer Naturelles; quatrième eérie-Zoologie. Tome xv. p. 149. Paris, 1861.

[^13]: ' Preliminary Report, hy Dr. William Carpenier, V_P.RS, of Uredging Operations in the Seas to the north of the British Islands, carried on in Her Majesty's ateam-veasel ' Lichhaning' hy Di. Carperiler and Dr. Wyville Thomson, Penfessor of Natural Histary in Qupen'e Callege, Eelfast. (Procerdinge of the Royal Sncirty of Laminn, IBG8.)

 Prelinuinary Repart of the Scientific Explaration of the Deep Sen in H.M. surveying-vessel ' Poreupine,' during thr Summer of 18G!, Conducted by Dr. Carpenter, V.P.R.S., J. Gwyu Jelfreja, F.IRS. nul Professor W'yville Thomson, LL.D., F.E.S. (Truceedings of the liogal Snciey y of Londov, 1870.)

 Repnat of Leep Sea Resenvehes eurriasl on turing the montlis of

[^14]: 1 Notes on Deep Sea Dredging, by Fuward Parceval Wlight, M. I., F. [. S., Professar of Zoology, I'rinity Collpgo, Jublin. (Amals amd Bangatiae of Nataral History, Deepmber 19fig)

[^15]: 1 Physical Gengraphy; fram the "Encyclapadia Britannica" By Sir John F. W. Ilerschel, Dart. K.II. \&c. ©c., p. 45 Edinburgh, 18 GI.

 - Ablantic Sro-hed, p. DA.
 ' Recherches sur le Maximans ale Densitú dea I)issolutinne nqueuses.

[^16]: ${ }^{1}$ A Manual of the Molluaca. Dy S. I'. Woodward. Lamdon, 185. 1'. 3.54.

[^17]: ' Distribution of Marine Life. By Professor Edward Forbes, F.R S., 1'resident of the Geologienl Sociely. (From the Physical Atlas of Natural Phenomenn, hy Alexander Keith lohnstun, F.R.G.S., \&e, T.ditulurgh, 18.51.$)$

[^18]: ' North Allantic Sandom, p 1 a1.

[^19]: - On the Hexnetinallidx, or Hexthdiate Spiculed Silicious Sponger, taken in the 'Norna' Expadition off the conat of Portugal; with Lescription of New Species and Revision of the Order. By W. Saville Kent, F.LS, F.R.M.S., of the Geological Depmoment, Hritish Museum. (Monthly Microsenpie Journal, November 1st 1870.)

[^20]: 1 Repearcher on the Farmuinifara Part I. In the Philosophisal Tmasactions of the Royal Saciety ol London fur the year 1 wis. P. 193 et sep

 Iutroduction to the Stuily of the Jinaminiferm Hy William $\mathrm{I}_{\text {. }}$. Carpenter, M.D., F.R.S., F.l.S., F.C.S., dec. Published for tho lizy

[^21]: I I hnve the pleasure of dedienting this intercating apecies to our actomplished eullengre, J. fiwg ondicya, F. R.s.

[^22]:
 xvii petll.)

[^23]: I lliu sprongien der Kitisle van Alunier. Vnn Tur. Oirar Schaidt 1'tuftesim der Zaulugie and vergleichemen Anatomic, Diterior des

[^24]: ${ }^{1}$ Philosophital Tranarctions, 1869 , p. 806

[^25]: ${ }^{1}$ Pullelin of the Museum of Comparalive Zoolngy, No. B, Г 291.

[^26]: A S'nyage of Discurery nul Resparch, val. i. p. 90 .

[^27]: (1Si小),
 1. 3014.

[^28]: ${ }^{1}$ Loc. cit.

[^29]: ' A Voynge of Discovery made under the Urdere of the Admiralty in Ilis Mujesly's Ships ' Ismbelhn and 'Alexnudur,' for the purpase of "xploring Badin's lany, and imeduitug into the l'assibility of a Nords-
 1819: p. 1is.

[^30]: 1 Deep Sea Soundinga in the North Athntic Ocenn, butween Ireland and Newfoundiand, made in II.M.S. ' Uyelapis,' Liult.-Consmander Joseph Daymau, in June and July 185i. I'ublished by order of the Lords Commiasinnere af the Admimenty. Lendon : 1858 ,
 ${ }^{2}$ Remarke illustrative of the Suurding Voyaye of H.M.S. ' Bulldug' in 1860; Captain Sir Tenpold M'Clintock combuading. Publiseled hy ardire of the Larda Comminationers ul' tha Admirulty. Luturborn: Jatil.

[^31]: ' Sounding V̈aynge nf ILM.s. ' IVylru,' Cuphin

[^32]: ${ }^{1}$ Cruise of the Schanlship 'Merenry' in the Tropienl Athntif, with a lieport to the Commissioners of I'ublic Charities and Correction of the Cisy of New York on the Chemical and Physical Facts collected from the lleep-sea Iteseavehes male during the Voynge of the Nantiral Sh hool-ship "Mereury, umburlnken in the 'Tropical Allantic and Caribbean Sea, lsíu-ti. I'y Hemry Toraper, M.I)., Profeesor of Analytionl Chemistry and Physiology in the University of New Yerm. Absiractud in Natare, vol v. p. 3294.

[^33]: ac minva holarym leacriptiones at ItisLaria. Aveturu Othene Friderica Miiller. Hivniue, 1 ass.

[^34]: 1 Teport of the Fourleenilh Merting of the Erilish Absorinian, lepld nt Yark in September 1844. (Transnelions of the Sections, p. 50.)
 ${ }^{2}$ Forli. ved de sikami. Naturforskeres Miisle i Stochholm, 1863, p 38.t.

[^35]: ${ }^{1}$ Nachrichten der Königl. Geallsch. der Wiasensch. zu Gotingen. Maiz 1846.
 ${ }^{2}$ On the Tnfuence of Tenperature upan the Distribution of the Fauns in the Egean Sen. Report of the Righteenth Meeting of the British Aesocintinn, 1848.
 ${ }^{3}$ Deretning om en \mathbf{i} Sommeren, 1A4S, forelagen zoologisk Reise ; Lofoten og Finmarkeu. Chriatianin, 1850.

[^36]: ' And arp I'mfussor S'ars' " Demaukinger over aled slypiske liva Uduredniran i llavets lybuler, ued sorligat Hensyn iblet of Lr.

[^37]: 1 Fortantite Benctrkninger aver det dyriahe Liva Udhredning j JIavela Dybder af M. Sars. (Yidensk-Selsk, Forbondinger for 1808.)

[^38]:
 besember 1 shis.

[^39]: I American Jomrmal of S'ience, vml. xevi. pr. +13.

 līi. Sutnt, vol. iv. p. 1Ji.

[^40]: - In Messrs. Nogratti and Zanbra's list of metearolagical insirumenta pullished in 1864, a deep-sen thermometer on this plan is mentioned (p. 90) : "Tloe thermometers constructed for this purpose do not dilfer materiully from thinse usually made under the denomination of Six'e tharmometera, except in the following most impertant particulara :The nawal Six's thermometera lave a ceutral reservoir or cylinder containing alcahol; this reservoir, which is the only partion of the instrument likely to he affected by pressure, las been, in Negretti and Zambra's now instrument, superaeded by a strong outer cylinder of glass, contnining mercury and ratefled air. By this menns the portion of the instrument susceptible of conpression has been acosirengthened, that mn noourt of pressure can possibly make the inetrument vary." Scme obscurity is intraluced into this pessige by the use of the wort 'supprseded;' but I am assured by Messras. Negretti nod Zumbra that in principle this instrument wns exactly the eame as that devied by I'rnfessor Miller and construcled by Mr. Casella.

[^41]: ${ }^{1}$ On Decp Sea Thermometers, by Captain J. F. Davis, R.N. Nrature, vol. iii. p. 124. Abridged from a laper read before the Meteorologicnl Society, April 191h, 1871.

[^42]: ${ }^{1}$ Dr. Carpenter's Preliminary Repart on Deap.Sea Dredginga. Pracendinge of the Royal Society of London, vol. xvii. p. 1EG.

[^43]: ${ }^{1}$ Recherches sur le Maximam de Denaité des Diesolutions equeuess. Lac. cit.

[^44]: ${ }^{1}$ Addrese delivered at the Annivereary Meeting of tha Gealngical Society of Landon on the 17th of February, 1871, by Jobeph Preatwich, F.R.S. Pp. 36, 37.

[^45]: ${ }^{1}$ Scunding Voyage of H.M.S. 'IIydra, Captnin P. F. Shortland. Tamduv: 1869.

 Sontrding and Temperaturea in the Gulf-simam. By Commander Wr. ('himmo, R.N. (Proceedings of the Toyal Gengrophical Society, rul. xīi.)

[^46]: 1 Tragomente de Gdol. et de Climatal. Asiat., 18.31.
 2 Traitr de Geognosia.-Quoted in the Anniversary Addrasa to the Gieolegical Society of Landon, 1871.

[^47]: The Phyaicel Geogrephy of the Sea, nnd its Meteorolagy. By M. T. Maury, IL.D.

[^48]: ${ }^{3}$ Captain Maury, op. cit.
 1 Ildu.

[^49]: 1 C'iptaim Marry, op. cit. ${ }^{2}$ Jhid.

[^50]: ' Jnmes Croll, op. cit.

[^51]: ${ }^{1}$ Farmiliar Letters on the Phyeice of the Earth; treating of the chief Movements of the Land, the Water, and the Air, and the Forces that give rise to tham. Hy Henry Buff, Professor of Phyaica in the University of Giemen. Edited by A. W. Hofmana, Ph.D., F.R.A. Iondinn 1851.

[^52]: 1 A Lecture delivered at the Reyal Inatitution, nbatracted wilh the Author's siguature in Nature, vol. i. p. 488 (March 10th, 1870).

[^53]: ${ }^{1}$ The Gulfegream. A letter from Dr. Carpenter to the Editor of Nature, daled Gibraltar, Auguat 11th, 1870 . (Nature, vol. ii p. 384.)

[^54]: ' James Croll, op. cit.
 1 On the Distribution of Temperatures in the North Atlantic. An Address delivered to the Metearological Saciety of Scatland at the General Meating of the Society July [th, 1871, by Professor Wyville Themson.

[^55]: 1 Phyeical Gengraphy. From the Encyclopmdia Britannica.' By Sir John F. W. Herschel, Hart., K. If.P. Edinburgh, 1891, p. 49.
 ${ }^{2}$ On Ocean Currents. By Jampa Croll, of the Gealogical Survey of Sculland. Part I. Ocean Currents in relation to the Diatribution of llent over the Glabe (Philosophical Magazing. Fehrunry 1870.)

[^56]: ' Herseliel, op. cil. p. si.

[^57]: ${ }^{1}$ Maury's Physical Geography of the Sea, ap. cit.

[^58]: , Prafensor Buff, op. cit. p. 199.
 2 Lecture on the Gulf-stream, preporad at the requeat of the Amerienn Ageociation fer the Advancement of Science, by A. D. Rache, Soperintendent D.S. Coant Surpey. From the Ameri'an Jonrnal of Science and Arts, vol. xxx. November 1 Ago.

[^59]: ${ }^{1}$ Dr. Carpenter : Proceedings of the Reyal Geogrophicnl Sociely for 1870, op cit. ${ }^{2}$ Op. cit.

[^60]: Der Golf-Strom und Standpunkt der thermometriachen Kenutojas dea Nord-Atlantiachen Oceana und Landgebietes im Jahre 1870 , Tuatus Perthe's 'Geographische Mitheilungen,' Hend 16. Gothe, 1870.

[^61]: ${ }^{1}$ De. Carpenter's Address ta Geographical Society, op. cit.

[^62]: Or Depp-sea Climolea. The Sulatarice of a Lecture delivered to the Natural Science Class in Queen'e Collage, Ilellust, at the close of the Summer Seasinn 18i0, by Profersor Wywille Thomson. (Nature, July 28Lli, 1870.)

[^63]: Bialogische SIudien. Von Dr. Ernat Ifacekal, Proferser an dar Uuiversitiit Joma. Leipzig, 1870.

[^64]: ${ }^{1}$ Quarletly Journal of Microscapical Science, 1868, F. 203.

 - Prnceadinga of the Sleffield Titemry ond Philnsophical Society, Ortoler 1860.

 4 Ann. nnd Mig. Nal. Hiet. 1871, p. 184.
 BJalurbuch Mineh. 1870, p 753.

[^65]: 1 ?luried in Mr. Prestwich's Presilentinl Adilresa, 1871.

[^66]: ${ }^{1}$ The Student's Elementa of Geology. By Sir Cberles Lyall, Bart., F.R.S. T.ondon, 1871. P. 265.

[^67]: ${ }^{1}$ Lyall, Principles of Geology, 18G7. Pp. 2G5-6.

[^68]: ${ }^{1}$ Wandert of Genlogy，6ith edition， 1848 ．Vol．i．p． 30 i．
 ${ }^{2}$ Saturday Review．

[^69]: ${ }^{1}$ Saturday Review, 1858: "Chalk, Ancient and Moderu."

[^70]: ${ }^{1}$ Chemical Society Journul, 1972, p. 4ifi.

