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Abstract

Four different expressions for wave energy dissipation by bottom friction are intercompared. For this purpose, the SWAN
Ž .wave model and the wave data set of Lake George Australia are used. Three formulations are already present in SWAN

Ž .ver. 40.01 : the JONSWAP expression, the drag law friction model of Collins and the eddy–viscosity model of Madsen.
The eddy–viscosity model of Weber was incorporated into the SWAN code. Using Collins’ and Weber’s expressions, the
depth- and fetch-limited wave growth laws obtained in the nearly idealized situation of Lake George can be reproduced. The
wave model has shown the best performance using the formulation of Weber. This formula has some advantages over the
other formulations. The expression is based on theoretical and physical principles. The wave height and the peak frequency
obtained from the SWAN runs using Weber’s bottom friction expression are more consistent with the measurements. The
formula of Weber should therefore be preferred when modelling waves in very shallow water.q2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

One of the main problems to advance our knowl-
edge about how to model wind waves in very shal-
low water is lack of data from measurements. Con-
trary to the situation in deep water, the dynamics of
waves in shallow water areas are dominated by their
interaction with the bottom. The growth by wind,
propagation, non-linear interactions, energy decay
and possibly the enhancement of whitecapping, are
all linked to how the waves interact with the bottom.
To this respect, the wave measurements campaign in
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ŽLake George, Australia Young and Verhagen, 1996.
.Hereafter YV is as unique as the JONSWAP experi-

Ž .ment Hasselmann et al., 1973 . The data obtained
from the lake in water of limited depth provide a
nearly idealized situation to test and analyze several
of the most widely used bottom friction formula-
tions.

There are different mechanisms for wave energy
dissipation at the bottom, such as energy dissipation
through percolation, friction, motion of a soft muddy
bottom and bottom scattering. The relative strength
of those mechanisms depends on the bottom condi-
tions; type of sediment and the presence or absence
of sand ripples, and on the dimensions of such
ripples. It appears that the bottom friction is the most
important mechanism for energy decay in sandy
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Ž .coastal regions Shemdin et al., 1978 . The energy
decay by bottom friction has been a subject of
investigation and a large number of dissipation mod-
els for bottom friction have been proposed since the

Ž .pioneering paper of Putman and Johnson 1949 . All
those models reflect the divergence of opinions on
how to model physical mechanisms present in the
wave–bottom interaction process. One of the recent
formulations proposed to simulate the wave energy
dissipation by bottom friction is the eddy–viscosity

Ž .model of Weber 1989 . Investigating the effect of
the bottom friction dissipation on the energy balance

Ž .using several formulations, Luo and Monbaliu 1994
concluded that there was no evidence to determine
which friction formulation performs best. The work
presented here reflects the search for evidence.

To reach the objective, the numerical wave model
SWAN was run with the bottom friction source term
as ‘unknown’ in order to reproduce the Lake George

Ž .measurements YV in the best possible way. Be-
sides the three formulations already present in SWAN
Ž .Booij et al., 1999; Section 3.2 , also the formulation

Ž .for bottom friction formulation by Weber 1989 was
used. To this end, it was introduced in the SWAN
model code. Although all of the individual source
term formulations are open to discussion, it is as-
sumed that the SWAN model computes the energy
balance as a whole correctly. By only analyzing the
term of dissipation by bottom friction, an attempt is
made to select a formulation to be used in depth-
limited situations.

2. The SWAN wave model

ŽThe SWAN Simulation of WAves in Nearshore
.areas model is based on the action balance equation.

The equation solved by the SWAN model reads

EN E E E
q c N q c N q c NŽ . Ž .Ž .x y s

Et Ex E y Es

E Stot
q c N s 1Ž . Ž .u

Eu s

Ž . Žwhere N s ,u is the wave action densitys
Ž . .F s ,u rs ; F is the wave energy density;t is the

time; s is the relative frequency;u is the wave
direction; c , c , are the propagation velocities inx y

geographical x-, y-space; andc and c are thes u

Žpropagation velocities in spectral space frequency
. Ž .and directional space . The first term of Eq. 1

represents the local rate of change of action density
in time. The second and third terms stand for propa-
gation of action in geographical space. The fourth
term expresses the shifting of action density in fre-
quency space due to variations in depth and currents.
And the fifth term reproduces depth-induced and

Žcurrent-induced refraction. The source termS s
Ž ..S s ,u at the right-hand side of the action balance

equation accounts for the effects of generation, dissi-
pation and nonlinear wave–wave interactions. More
explicitly, the source terms in SWAN include wave
energy growth by wind inputS ; wave energy trans-in

fer due to wave–wave non-linear interactionsSnl
Ž .both quadruplets and triads ; decay of wave energy
due to whitecappingS ; bottom friction S ; andds bf

depth-induced wave breakingS .bk
Ž .A detailed description of the SWAN Cycle 2

model, the incorporated source terms and the numer-
Ž .ical solution method can be found in Ris 1997 ,

Ž . Ž .Holthuijsen et al. 1999 and Booij et al. 1999 .

3. The models of bottom friction dissipation

3.1. Dissipation of waÕe energy as a function of
bottom stress

Ž .Komen et al. 1994 start with the linearized
momentum equation for the bottom boundary layer

Žflow which in the case of pure wave motion without
.ambient currents reads

Eu 1 1 Et
q = ps 2Ž .

Et r r Ez

where t is time, z is the vertical coordinate,r is the
density of the water,u and p the Reynolds-average
horizontal velocity and pressure, respectively, andt

the turbulent stress in the wave boundary layer. They
obtain an expression for the wave energy dissipation
due to bottom friction:

1 t
S k sy PU 3Ž . Ž .bf k¦ ;g r

where the bottom friction depends on the known free
Ž .orbital velocity U of the waves at the bottom andk
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Ž .on the unknown turbulent bottom stresst ; the
subscriptk denotes a given wave number.

Ž . ŽAn exact solution fort in Eq. 2 and hence for
Ž . Ž ..S k in Eq. 3 does not exist, not even for abf

simple flow. To overcome the problem, several ap-
proaches have been proposed. Most of the ap-
proaches result in a turbulent shear stress expressed
as a function of a friction coefficient and of a

Žfree-stream orbital velocity orbital velocity at the
.top of the boundary layer . There are two distinct

formulations fort ; the first is to retain a spectral
description. The second is to represent the range of
frequencies by a single frequency, for example, the
peak frequency, resulting in an integral form.

Usually, t is expressed in a drag law asts
< <1r2rC U U or, alternatively, asts1r2rC -D D

Ž .U U, where C is a drag coefficient,U is therms D

wave orbital velocity at the bottom andU is therms

root mean square of the orbital velocity. Taking
< <C s1r2C U or in the alternative expressionCf D f

Ž .s1r2C U results inD rms

tsrC U 4Ž .f

Ž . Ž .Substitution of Eq. 4 in the dissipation Eq. 3
yields for every wave component with wavenumber
k:

1 2S k sy C U 5Ž . Ž . Ž .² :bf f kg

²Ž .2:The mean square of the bottom velocity,U ,k

can be associated with the wave component having
Ž .the wavenumberk. Rewriting the expression 5 in

terms of the wave spectrum, one obtains:

k
S k sy2C F k 6Ž . Ž . Ž .bf f sinh2kh

Ž .or equivalently as expressed in SWAN model

C s 2
f

S s ,u sy F s ,u 7Ž . Ž . Ž .bf 2g sinh kh

whereC is a dissipation coefficient with the dimen-f
y1 Ž . Ž .sion in m s , andF k and F s ,u are the en-

ergy–density spectrum in wavenumber-space or in
frequency-direction space, respectively. The vector

Ž . Ž .ks k , k s kcosu , ksinu is the wavenumber1 2

vector with modulusk and directionu , ands is the
relative frequency. The different formulations for the

bottom friction dissipation differ mainly in the ex-
pression given to the dissipation coefficientC .f

Below, the expressions that are currently imple-
Žmented in the SWAN model version 40.01, Holthui-

.jsen et al. 1999 as well as Weber’s formulation for
bottom friction dissipation are explained briefly.

3.2. Expressions for the dissipation coefficient Cf

3.2.1. The JONSWAP model
This is the simplest expression for bottom dissipa-

Ž .tion. It was proposed by Hasselmann et al. 1973 .
C is assumed to be constant and is given byfJ

G
C s 8Ž .fJ g

where g is the acceleration due to gravity. From the
results of the JONSWAP experiment, they found a
value for G of 0.038 m2 sy3. As long as a suitable
value forG is chosen, this expression performs well
in many different conditions. The value forG can be
different for swell and for wind sea. Bouws and

Ž .Komen 1983 found that the JONSWAP expression
with a value of 0.038 m2 sy3 for G yielded too low
dissipation rates for depth-limited wind sea condi-
tions in the North Sea. They selected a value of
0.067 m2 sy3 in order to obtain a correct equilibrium
solution for a steady state. The JONSWAP formula-
tion is also implemented as the default friction for-

Ž .mulation in the WAM model Komen et al., 1994 .

3.2.2. The Madsen model
Ž .Madsen et al. 1988 derived a bottom friction

formulation based on the eddy–viscosity concept,
fw 1r22² :C s U 9Ž .fM '2

where
1r22gk1r22² :U s F s ,u ds du 10Ž . Ž .HH

sinh2kh

and f is a non-dimensional friction factor. In thew

SWAN model, the following formulation, based on
Ž .the work of Jonsson 1966 , forf is used:w

ab
f s0.3 for F1.57w KN

1 1 a ab b
qlog sm qlog for )1.5710 f 10 K K4 f 4 f' ' N Nw w

11Ž .
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where m sy0.08, a is a representative near-bot-f b

tom excursion amplitude:
1

1 2a s 2 F s ,u ds du 12Ž . Ž .HHb 2sinh kh

and K is the bottom roughness length. Graber andN
Ž .Madsen 1988 implemented the expression of Mad-

sen in a parametric wind sea model for finite water
depths.

3.2.3. The Collins model
Ž .Hasselmann and Collins 1968 derived a formu-

lation for the bottom friction dissipation. They re-
lated the turbulent bottom stress to the external flow
by means of a quadratic friction law. The dissipation
coefficient they derived reads:

U Ui j² :C s2c d U q 13Ž .f i j ¦ ;½ 5U

² :whered is the Kroneker delta function; denotesi j
Ž 2 2.1r2the ensemble average,U is equal to U qU ,1 2

U and U are the near bottom orbital velocity1 2

components, andc is a drag coefficient determined
experimentally as a function of the bottom rough-
ness. Hasselmann and Collins proposed a value forc
equal to 0.015.

Ž . Ž .Collins 1972 simplified the expression 13 for
the dissipation coefficient by leaving out the depen-
dence on the direction of the wave component and
by using the total wave induced bottom velocity:

1

22² :C s2c U 14Ž .fC

² 2: Ž .where U can be computed from Eq. 10 . Ex-
Ž .pression 14 is the one implemented in the SWAN

model. The value of the drag coefficientc was set to
Ž .0.015. Cavaleri and Malanotte-Rizzoli 1981 imple-

mented this friction model in a parametric wave
model.

3.2.4. The Weber eddy–Õiscosity model
Weber’s model for the spectral energy dissipation

due to friction in the turbulent wave boundary layer
is based on the eddy–viscosity concept. In this model,
the turbulent shear stress is parameterized in analogy
with the viscous stress, with the coefficient of molec-
ular viscosity replaced by a turbulent eddy–viscosity
coefficient.

Solving the Navier–Stokes equations in the turbu-
lent boundary layer and using perturbation theory,
Weber derived the following dissipation coefficient.

C su) T j qT ) j . 15� 4Ž . Ž . Ž .fW k 0 k 0

Ž .C depends on the wave spectrumF k , the waterfW

depth h, and the bottom roughnessK through theN

friction velocity u), and on the radian frequency
Ž .vs2ps through j .0

1 1
4 y qh v 4K vŽ . 20 N 2

j s s 16Ž .0
) )ž /ž /k u 30k u

The variable j reflects the ratio between the0

roughness length and the boundary layer thickness,
which scales withu)rv ; k is the von Karman´ ´

Ž .constant set equal to 0.4;y qh is the theoretical0

bottom level andT is defined ask

1 KerX j q iKeiX jŽ . Ž .0 0
T j sy kj 17Ž . Ž .k 0 02 Ker j q iKei jŽ . Ž .0 0

T is a dimensionless complex function and dependsk

on the radian frequency and thus on the wavenumber
through the argumentj . Kerq iKei is the zero0

Žorder Kelvin function Abramowitz and Stegun,
.1965 . The prime denotes the derivative with respect

to the argumentj . Details of the derivation of the0

dissipation coefficient in the eddy–viscosity model
Ž .are given in Weber 1989, 1991 . It is of interest to

look at the differences and similarities between the
different formulations. The expression by Weber will
be used here as the reference since it models explic-
itly the bottom friction dissipation mechanism.

The JONSWAP friction model does not interpret
bottom dissipation in terms of a physical mechanism
such as percolation, friction or bottom motion.

Weber’s and Madsen’s formulations differ in the
fact that Madsen’s model approximates the random
wave field by anAequivalentB monochromatic wave.
This approximation is applied at an early stage of
their calculations. Therefore, Madsen’s expression is
only valid for a narrow, singled-peaked spectrum. In
fact, Collins’ drag-law dissipation expression is red-
erived. However, in the Madsen formulation the
friction coefficient f depends explicitly on the wavew

field and on the roughness length.
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The formula of Weber is able to compute the
dissipation rate directly from the bottom roughness
length through the stress parameterization. That of-
fers the possibility to adapt the dissipation rate ac-
cording to the changing roughness under different
wave–current regimes. This could be important in
some coastal areas. Moreover, the expression of
Weber maintains the spectral description and can be
applied to complex situations, where the wave field
cannot be easily represented by one wave component
Ž .Weber, 1991 .

4. Numerical experiments

4.1. Introduction

In the following numerical experiments, the goal
is to analyze the performance of the bottom friction

Ž .formulations of Hasselmann et al. 1973 , the eddy–
Ž .viscosity model of Madsen et al. 1988 , the drag

Ž .law turbulent friction model of Collins 1972 and
Ž .the eddy–viscosity model of Weber 1989 .

A comparison is made of SWAN model output
with the data from the Lake George experiment
Ž .YV . The input files and the data for the SWAN
runs are taken from case F41LAKGR of theASuite
40.01.a of the bench mark tests for the shallow water
wave model SWAN Cycle 2, version 40.01
Ž . Ž .SBMSWAN B WL Delft Hydraulics, 1999 .

4.2. Statistical analysis

In order to analyze the results from the SWAN
model using the different bottom friction models by
comparing them with measurements, a set of statisti-

Ž .cal parameters following Dingemans 1997 is used:
The bias. The difference between the mean of the

Ž .observations x and the mean of the model resultsi
Ž .yi

BiassXyY 18Ž .
Ž .where MeansXs S x rN , N is the number ofi i

data.
The rmse. The root mean square error

1
1 22rmses y yx 19Ž . Ž .Ý i iN i

The si. The scatter index
rmse

sis 20Ž .(XY

The re. The relative error or index of agreement

N= rmse2

res1y
pe

< < 2y yxÝ i i
is1y 21Ž .2

< < < <y yX q x yXŽ .Ý i i
i

The relative error reflects the degree to which the
observations are approached by the model results.

Ž .Willmott 1981 introduced re as an index of agree-
Žment. res1, for perfect agreement, normally 0- re

.-1 . The parameter pe is known as the potential
variance.

In the computations of the different statistical
parameters, the imposed values of the wave parame-
ters at the grid model boundary are not included in
the analysis.

4.3. Lake George

4.3.1. Situation
The Lake George experiment represents nearly

idealized wave growth in depth- and fetch-limited
conditions. The lake is fairly shallow with a relative

Ž .uniform bathymetry depth about 2 m . It is approxi-
mately 20 km long and 10 km wide. A series of eight
wave gauges were situated along the North–South

Ž .axis of the lake Fig. 1 . The bottom is rather smooth
Ž .bottom ripples were practically absent and the bot-

Ž .tom material consists of fine clay Ris, 1997 . The
wave measurements were carried out during the pe-
riod from April 1992 until October 1993. Only data
for which the wind speed and direction were rela-
tively constant during the 30-min sampling period
have been retained. The criteria used for this selec-
tion were that the wind speed should not vary by
more than 10% nor should the wind direction turn by
more than 108 to each side of the alignment of the

Ž .instrument array northrsouth during the 30-min
Žsampling period. For a complete description see

.YV.
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Fig. 1. Bathymetry of Lake George and the locations of the eight
wave gauges. Depth contour interval is 0.5 m starting from 0.

For the computations, three northerly wind cases
were selected from the bench mark data set for

Ž .SWAN SBMSWAN, case F41LAKGR . These cases
are three typical examples, i.e., a low wind speed
Ž y1. ŽU s6.5 m s , medium wind speedU s10.810 10

y1. Ž y1.m s and a high wind speedU s15.2 m s .10

The computations were carried out with SWAN
version 40.01 using the WAM Cycle 3 formulations
Ž .Booij et al., 1999 . The wave–wave triad interac-
tions and depth-induced wave breaking were turned
on with default parameter values. For the bottom
friction, one of the above formulations is used. As in

Ž .Ris 1997 , Station 1 is taken as the up-wave bound-
ary in the simulation. This avoids uncertainty in the
location of the northern shore because of seasonal
variation in water depth. Since no directional wave
spectrum is available at Station 1, the directional
distribution of the waves is approximated with a

2Ž .cos u directional distribution. For the computa-
tions, a directional resolution of 100 and a logarith-

Ž .mic frequency resolutionD fs0.1f between 0.166
and 2.0 Hz for the low wind case and between 0.125
and 1.0 Hz for the medium and high wind case are
chosen. The spatial resolution is 250 m both inx
and y direction. To account for seasonal variations
in water level, the water level was increased over the
entire lake withq0.1, q0.3 andq0.27 m for the
low, medium and high wind case, respectively.

4.3.2. Calibration
In order to tune the friction coefficients of every

Ž .friction model, the third case high wind speed was
Ž .chosen. The combined scatter index sic forH ands

T was taken as the cost function value to be mini-p

mized. The definition for the sic reads

sics si H qsi T r2 22Ž . Ž . Ž .s P

The results using the default value for the friction
coefficient in every friction model is taken as a

Ž .reference see Table 1 . An identical definition for
Ž .the combined relative error rec is used, replacing re

Ž .for si in Eq. 22 .
The si for H andT and the sic are shown in Fig.s p

2. As can be observed in the figure, the behavior of
the si is different for the different models. This

Žfigure shows how sensitive the wave parametersHs
.andT are to variations in the friction coefficient inp

the case of the JONSWAP and the Collins expres-
sions, and to variations in the roughness length, in
the case of the Madsen and the Weber expressions.

For the JONSWAP formulation and starting from
the default value, it is clear that lowering the value
of the friction coefficient decreases the sic ofH ands

T . The si of T reaches a minimum at a value ofp p

0.030 m2 sy3 for G . For an interval ofG-values, the
si of T is constant, but the results forH startp s

Table 1
Friction coefficient values for the different friction models and the
resulting sic
The values in bold are the default and the underlined are the
optimal values for the Lake George case.

Run No. JONSWAP Madsen Collins Weber

G sic K sic c sic K sicN N
w x w xmm mm

1 0.005 0.105 0.10 0.091 0.0005 0.120 0.01 0.079
2 0.010 0.090 0.25 0.090 0.0025 0.106 0.10 0.074
3 0.020 0.079 0.50 0.086 0.005 0.093 0.25 0.071
4 0.025 0.074 1.0 0.080 0.010 0.089 0.50 0.070
5 0.030 0.070 3.0 0.0760.015 0.081 0.75 0.070
6 0.034 0.082 5.0 0.082 0.020 0.078 1.0 0.074
7 0.038 0.080 10.0 0.093 0.025 0.074 2.5 0.111
8 0.045 0.078 20.0 0.172 0.030 0.071 5.0 0.165
9 0.055 0.082 30.0 0.211 0.035 0.077 10.0 0.203

10 0.067 0.092 50.0 0.214 0.040 0.081 20.0 0.236
11 0.075 0.096 70.0 0.214 0.045 0.08140.0 0.241
12 0.085 0.120 80.0 0.214 0.060 0.085 60.0 0.242
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Fig. 2. The si forH andT , and sic in the function of the friction coefficient value in the Lake George case. The friction coefficient defaults p
Ž .value is indicated by a vertical line and the optimal value the chosen value to run the three cases of Lake George is indicated by a circle.

deteriorating. Nevertheless, lowering the value ofG

improves the sic about 23% compared with the
Ž .results using the default value forG see Table 1 .

The value retained forG is 0.030. It should be noted

that the reference value forG was taken as 0.067,
which is the appropriate value for depth-limited

Žwind-sea case in the Southern North Sea Bouws and
.Komen, 1983 , and not as 0.038 which corresponds

Fig. 3. Idem Fig. 2 but for rmse.
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to swell conditions. The most suitable value for this
case is even smaller than the value for swell condi-
tions. The lowest value of the sic here corresponds
with the lowest value of si forT .p

Using the formulation of Madsen improvement of
sic leads to improvement for bothH andT . That iss p

because both parametersH and T are underesti-s p

mated using the reference value. The optimal value
for K was chosen as 3=10y3 m. The improve-N

ment for the sic compared to the sic with the default
value is about 64%. The lowest value of the sic does
not correspond neither with the lowest value of the si
for H nor with the lowest value of the si forT .s p

The sic varies little using the formulation of
Collins for a region ofc-values around the reference
value. For higher than the reference value ofc, the si
for H improves but the si forT increases. Going tos p

lower values ofc, the si of both wave parameters
increases. The value retained forc was taken equal
to 0.030. According to Table 1 and Fig. 2, the sic has
the best value but is only 14% different from the sic
with the default c-value. The value retained forc,
however, does neither produce the lowest value of

Ž .the si for H nor for T . Looking at the rmse Fig. 3s p
Ž .and the rec Fig. 4 , it is not so clear that the wave

model gives the best results for ac-value equal to
0.030.

For the friction model of Weber, lowering the sic
leads to improvement for bothH and T . Thes p

changes of the si are rather smooth making the
choice of the best value forK easy. The optimalN

value for K in Weber’s formulation was chosenN

equal to 7.5=10y4 m. The improvement for the sic
using the optimum value compared to the sic with
the default value is about 71%.

ŽComparing the si, rmse and the re Figs. 2, 3 and
.4, respectively , the results using the formulation of

Weber are more consistent in a statistical sense. The
optimal value for K , according to the sic costN

function, gives also the best value for the si, the rmse
and the re forH . For T , the magnitude of thoses p

statistical parameters is quite close to the best values.
That is not the case for the other formulations,
especially not for the Collins’ and Madsen’s formu-

Žlations. The lowest value for the sic highest value of
.rec does not correspond neither to the lowest si and

Ž .rmse highest re forH nor to the lowest si ands
Ž .rmse highest re forT . As can be seen in Figs. 2, 3p

and 4, the choice of the best value for the friction
coefficient or the roughness length is prescribed
mainly by the si of T . T is the parameter thatp p

improves most during the tuning process. Note that
Ž .Ris et al. 1999 remarked that using the WAM cycle

3 formulations, SWAN systematically overestimates

Fig. 4. Idem Fig. 2 but for the re and rec.
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the significant wave height and underestimates the
mean wave period.

It should be mentioned that a wave model run was
made using a roughness length corresponding to the
grain size at the bottom of the lake which is fine clay
Ž . y6Ris, 1997 of about 1.=10 m in diameter. The
model was run using the expressions of Weber and
Madsen. Comparing the results, using the expression

Žof Weber, between the retained value forK 7.5=N
y4 .10 m and the roughness length corresponding to

Ž y6 .the grain size 1.=10 m the sic increases by
about 30%. The si forH increases by 54% and thes

si for T decreases by 12%. Using the Madsenp

expression withK equal to 1=10y6 m, the differ-N

ence in the sic between the retained value forK N
Ž y3 .3=10 m and the roughness length correspond-

Ž y6 .ing to the grain size 1=10 m is about 38%. The
si gets worse by 13% forT and by 55% forH . Asp s

can be seen from these results, even at very small
values forK the dissipation by bottom friction stillN

plays a role.
A wave model run without bottom friction for the

case of high wind speed was made to see how
important the bottom friction is. The value of the sic
not considering the bottom friction is about 0.119.

Comparing it with the value of 0.070, which is
approximately the value of the sic using the optimal
coefficients in the four bottom dissipation expres-

Ž .sions see Table 1 , the difference is about 70%.

4.3.3. Validation
Once the appropriate values for the friction coeffi-

Žcients and roughness length were chosen see Table
.1, values underlined , the other two selected cases

for Lake George were run using these values. It is
assumed that the bottom condition did not change.

As can be see in Fig. 5, the significant wave
height and the peak period are relatively well mod-
eled by SWAN using either of the four friction
models, except at the last three stations in case one.

Ž .At these stations from 6 to 8 , the wave parameters
do not show a monotonic behavior. That can possi-
bly be ascribed to unresolved variation in the wind
field. Such variation has been observed by YV.
Those three stations were therefore eliminated from
the statistical calculations for case one only. A small
underestimation ofT can be observed in the mediump

and low wind cases.
Fig. 6 shows the statistical parameters for the

three wind cases for each of the four bottom friction

Ž .Fig. 5. SWAN model results for the different bottom friction formulations with the optimal value for the friction coefficients and
Ž . Ž .observations of the significant wave height left panels and peak period right panels in nearly ideal generation conditions in Lake George.

Ž) . Ž . Ž . Ž . Ž .Observations , JONSWAPq , Madsen \ , Collins ` and Webere formulations.
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Ž . Ž . Ž . Ž . Ž .Fig. 6. rmse top panels , si middle panels and re bottom panels for wave height left panels and peak period right panels , for the three
Ž . Ž . Ž .cases in Lake George. TheAmeanB case represents the mean value for the three cases. JONSWAPq , Madsen \ , Collins ` and

Ž .Weber e formulations.

dissipation formulations used. The results from the
SWAN runs are to a certain extent similar. The
statistics show that using the formula of Collins,

SWAN gives the best approximation forH but thes

approximation forT is not that good. From results,p

not shown here, using the default value forcs0.015,

Ž . Ž .Fig. 7. Combined scatter index sic top panel and the combined relative error rec bottom panel for the wave height and the peak period.
Ž . Ž . Ž . Ž .The AmeanB case represents the mean values for the three cases. JONSWAPq , Madsen \ , Collins ` and Webere formulations.
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Table 2
Ž . Ž .Formulas for non-dimensional energý and non-dimensional frequencyn against non-dimensional depth, obtained from the results of

SWAN using the different bottom friction models

Model JONSWAP Madsen Collins Weber
y3 1.76 y3 1.66 y3 1.42 y3 1.46´s 4.1=10 d 2.9=10 d 1.4=10 d 1.4=10 d

y0 .472 y0.430 y0.375 y0.375ns 0.14d 0.15d 0.20d 0.20d

C gives the worst approximation forH but thefC s

best approximation forT .p

Using the four bottom friction dissipation expres-
sions, the largest error forH is in the high winds

case compared with the other two cases. This can be
partially ascribed to a ‘deviation’ of the measure-
ments from the monotonic behavior in the locations
2 and 7 as can be seen in Fig. 5. Looking at the
mean values of rmse, si and re for the three cases
Ž .Fig. 6 , the best performance forH corresponds tos

the use of the Collins formulation and the best
performance forT corresponds to the Weber formu-p

lation. Fig. 7 shows the performance of the SWAN
using the different bottom friction formulations in

Ž .the function of the combined statistics sic and rec
of H and T . As can be seen, SWAN has the bests p

performance using Weber’s formulation followed by
Collins, and then by the JONSWAP and the Madsen

formulations. The peak period in the low wind case
Žfor this wind field the bottom friction plays hardly

.any role is very well reproduced using the formula-
tion of Weber. This is not the case using the other
formulations, as can be seen in Figs. 5 and 6.

4.3.4. Depth-limited waÕe growth
In order to refine the expressions of Bretschneider

Ž . Ž .1958 for both non-dimensional energý and
Ž .non-dimensional peak frequencyn , YV used their

full data set of about 65,000 data points. They found
that the asymptotic depth-limited growth can be con-

Ž .sidered dependent on the non-dimensional depthd

only. They found the following limits:

´s1.06=10y3 d 1.3 23Ž .
ns0.20dy0 .375 24Ž .

The non-dimensional parameters are defined as
2 4 Ž .g ErU for the non-dimensional energy´ ,10

Ž .Fig. 8. Comparison of the SWAN results using the different bottom friction formulations and the formula from Young and Verhagen 1996
Ž . Ž .for non-dimensional energý top panel and non-dimensional peak frequencyn bottom panel against non-dimensional depth.
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Table 3
Statistics comparing the values obtained from SWAN using the
different friction formulations with the values according to the
formulae from YV in the case of depth-limited growth

Model JONSWAP Madsen Collins Weber

´ bias y0.002 y0.001 0.000 0.000
rmse 0.003 0.002 0.000 0.000
si 1.969 1.404 0.368 0.380
re 0.800 0.816 0.955 0.953

n bias 0.055 0.055 0.000 0.000
rmse 0.055 0.055 0.000 0.000
si 0.243 0.241 0.000 0.000
re 0.950 0.941 1.000 1.000

f U rg for the non-dimensional peak frequencyp 10
Ž . 2 Ž .n , gdrU for the non-dimensional depthd , g10

is the gravitational acceleration,E is the total energy
of the spectrum,U is the wind speed measured at a10

reference height of 10 m, andd is the water depth.
To calculate the depth-limited growth, SWAN

was run in one-dimensional mode for each of the
friction models. Several runs were performed using
different depths ranging from 2.5 to 20 m. The wind

y1 Žspeed was set equal to 20 m s to work in the
.same non-dimensional depth interval as YV . The

results were stored for different fetches ranging from
15 to 15,000 km. The friction coefficients and rough-
ness length used have the optimal values retained
from the tuning runs. The expressions given in Table
2 were computed taking the maximum levels of
non-dimensional energy and the minimum non-di-
mensional peak frequency at every non-dimensional
fetch of the different runs.

Fig. 8 shows the different retained results for´

Ž . Ž .and n together with the expressions 23 and 24 of
YV. Table 3 shows the statistics comparing them
with the formulas obtained by YV. Although all of
them give a good approximation to the measure-
ments, it is clear that the formulae of Weber and
Collins give the best results. The fit to then curve of
YV is perfect. Because of the good approximation of
all formulations to the formula from YV, Table 3
confirms that selecting sic as the parameter to be
minimized was a good selection.

Even though YV considered that the asymptotic
depth-limited energy growth depends on non-dimen-
sional depth only, the numerical results show that the
depth-limited growth is a function of the roughness
length as well. If the bottom friction and bed mate-
rial were not important in fetch- and depth-limited

Ž .Fig. 9. Comparison of the SWAN results using the formulation of Weber with different roughness lengthK and the formula from YoungN
Ž . Ž . Ž .and Verhagen 1996 for non-dimensional energy´ top panel and non-dimensional peak frequencyn bottom panel against non-dimen-

sional depth.
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Ž .conditions as assumed by YV , then the value as-
signed to K should not matter and the resultsN

would be expected to be the same. This is not the
case when the wave model is run using a different
roughness length in the friction dissipation formula-
tion. To exemplify this, the SWAN model was run
for depth-limited wave growth with Weber’s formu-
lation for bottom friction. Fig. 9 shows the results for
different values forK . Going from larger to smallerN

values of K , the ´ increases and then decreases.N

Hence, one should expect that the curves for´

growth against non-dimensional fetch change as well.
Ž . Ž .This implies that the expressions 23 and 24 should

take into account the bottom roughness. The asymp-
totes for´ and n can be expressed as:

´sAd B 25Ž .

nsCd D 26Ž .

One can see from Fig. 9 that the roughness length
has more influence onA and C than on B and D.
ChangingK from 0.10 to 5=10y5 m, A changesN

around 250%,B changes 8%.C and D change 30%
and 9%, respectively.K has more impact on theN

energy than on the frequency. This suggests thatA
and C are functions ofK .N

4.3.5. Fetch-limited waÕe growth
Using their data from Lake George, YV proposed

a generalized form to the shallow water limits for the
Ž .growth of non-dimensional energý and non-di-

Ž .mensional peak frequencyn with non-dimensional
Ž .fetch x

n
B1y3´s3.64=10 tanhA tanh 27Ž .1½ 5tanhA1

m
B2

ns0.133 tanhA tanh 28Ž .2½ 5tanhA2

where

A s0.2921r n d 1.3r n 29Ž .1

1rny5 1r nB s 4.396=10 x 30Ž . Ž .1

Ž 2 .and x is the non-dimensional fetch.xsgxrU ,10

x is the distance and

A s1.5051r m dy0 .375rm 31Ž .2

B s16.3911r m xy0 .27rm 32Ž .2

The coefficients n and m control the rate of
transition fromAdeepB to Adepth limitedB conditions.
YV performed a non-linear least squares analysis on
their selected data set to determinen and m. Their
analysis yieldedn equal to 1.74 andm equal to

Ž . Ž .y0.37. Expressions 27 and 28 give a family of
curves, one for each value ofd.

The results from SWAN are compared with the
equations given by YV. Figs. 10 and 11 show the
results from SWAN using the different bottom fric-
tion formulations for d equal to 0.10 and 0.50,
respectively. The deep water asymptotic forms of

Ž . Ž .Eqs. 27 and 28 and the same equations but for
Žshallow water n equal to 1.74 andm equal to

.y0.37 are also shown. As can be seen from those
figures, SWAN overestimates the total energy for
very short x . In particular, energy growth in the

Ž .high frequency range very short fetches is usually
overestimated by SWAN. This overestimation is ob-

Ž .served systematically. According to Ris et al. 1999 ,
the overestimation of energy at short fetches can be
ascribed to the linear wave growth term of Cavaleri

Ž .and Malanotte-Rizzoli 1981 . But in this work, the
linear growth term was not taken into account. Re-
sults from the wave model using the linear wave
growth shows no relevant differences with the results
without the linear growth term. The observed overes-
timation of energy should be ascribed to another
reason. The search for such reason is beyond the
scope of this work.

The SWAN runs with the formulations of Collins
and Weber for bottom friction dissipation catch the
asymptotic levels of́ and n given by the expres-
sion of YV quite well, better than when using the
expressions of JONSWAP and Madsen. But as can
be seen in Fig. 11, the wave model reproduces better
the levels of non-dimensional energy when using the
expression of Weber than when using the expression
of Collins.

To quantify the differences between the model
results and the expression of YV for fetch-limited
growth, the wave model was run for a range of
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Ž . Ž .Fig. 10. a Non-dimensional energýand b non-dimensional peak frequencyn against non-dimensional fetchx for a non-dimensional
Ž . Ž .depthd of 0.10. The deep water asymptotic form of Eqs. 20 and 23 is shown in dashed line. The same equations but for shallow water

Ž . Ž . Ž . Ž .as found by YV ns1.74 andmsy0.375 is in solid line. SWAN was run using JONSWAPq , Madsen \ , Collins ` and Weber
Ž .e formulation.

values ofd. The four statistical parameters given in
Section 4.2 are computed.

Fig. 12 shows the statistical parameters compar-
ing ´ from the wave model results against the´

Ž . Ž . Ž .Fig. 11. Idem Fig. 10 but for a non-dimensional depthd of 0.50. SWAN was run using JONSWAPq , Madsen ` , Collins dotted and
Ž .Webers e formulations.



( )R. Padilla-Hernandez, J. MonbaliurCoastal Engineering 43 2001 131–148´ 145

Fig. 12. The bias, rmse, si and re against non-dimensional depthd. The comparison is done for wave growth in fetch-limited conditions
between the non-dimensional energy´ from SWAN with the different bottom friction dissipation formulations and the formula from Young

Ž .and Verhagen 1996 .

Ž Ž ..computed from the YV expression Eq. 27 for a
range of values ofd. Fig. 13 shows the same as Fig.
12 but for n . In this way, Figs. 10 and 11 are
represented statistically in Figs. 12 and 13 as two

points atd-values of 0.10 and 0.50, respectively. To
calculate the fetch-limited growth, SWAN was run in
one-dimensional mode for each of the friction mod-
els. Several runs were performed using a depth equal

Fig. 13. Idem Fig. 12 but for non-dimensional frequency.
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to 20 m and wind speed ranging from 10 to 31.3 m
y1 Žs to work in the non-dimensional depth range

.from 0.1 to 1.0 . The total fetch for every run was
15,000 km with a resolution of 5 km. The fetch to
compute the statistical parameters was different for
every d , depending on when the energy computed

Ž . Žfrom Eq. 27 becomes constant no changes in the
.seventh significant digit . The fetch range is from

440 km for d equal to 0.1 to 997 km whend is
equal to 1.0. At smalld-values, SWAN gives results
which have almost the same bias and rmse using
either of the four bottom friction dissipation expres-
sions. From Fig. 12a and b, it is evident that results
start diverging going to deeper waters. At higher
d-values, the use of the expressions of JONSWAP
and Madsen gives the largest bias and rmse. Apply-
ing the formulations of Collins and Weber, one
obtains smaller bias and rmse, with a preference for
Weber’s expression. Looking at the four statistical

Ž .parameters Fig. 12 , the results of SWAN using the
formula of Weber approach better the non-dimen-

Ž .sional energý computed by Eq. 27 and its behav-
ior is more uniform along the non-dimensional depth
axis, as can be seen in Fig. 12d.

Fig. 13 shows the statistics for the non-dimen-
sional frequencyn of the SWAN results using the
different bottom friction dissipation formulations. In
contrast with´ , the bias and the rmse ofn do not
have the same value for smalld. Contrary to the
results for ´ , the bias and the rmse decrease with
increasingd.

The statistical measures foŕ indicate that using
the expressions of Weber the wave model results
approach quite well the values computed from Eq.
Ž .27 , better than using the other three bottom friction
formulations. With respect ton , the wave results are
of similar quality when the expressions of Collins
and Weber are used and better than when using one
of the other two expressions.

One can therefore conclude that in fetch- and
depth-limited conditions, the computed wave param-
eters are more consistent when the bottom friction
dissipation expression of Weber is used.

5. Summary and conclusions

The main objective was to investigate and clarify
which bottom friction formulation performs best or

is more consistent in shallow water regions. The
SWAN model was run with the three formulations
originally included plus the eddy–viscosity formula-
tion of Weber. The data of Lake George were used
to tune the friction coefficients of every formulation
such that the combined scatter index was minimal.
This exercise revealed different levels of difficulty in
tuning the different friction coefficients.

Weber’s model showed the best performance in
the cases of depth- and fetch-limited wave growth. In
the case of depth-limited wave growth, the fit of the
calculated curve for the non-dimensional peak fre-
quency to the one obtained by YV is as good as
perfect. For the non-dimensional energy, the statisti-
cal values, rmse, si and re, show that the results
using Weber’s formulation are superior in approach-
ing the equations obtained from YV. In the case of
fetch-limited wave growth, the formulation of Weber
showed the best performance in approaching the
equations of YV derived from the measurements.
Running the SWAN model using Weber’s formula
with different roughness length suggests that in the
equations for depth- and fetch-limited wave growth
the effect of bottom roughness should be included.

Formulations for dissipation by bottom friction,
such as the model by Madsen or Weber, which take
explicitly physical parameters for bottom roughness
into account, should be preferred in wave modeling
in shallow water areas. They offer the possibility to
adapt the dissipation rate according to the changing
roughness under different wave or wave–current
conditions.

Besides showing the best performance, the for-
mula of Weber has some other advantages. It was, at
least for the Lake George case, easier to tune than
the other formulations. The tuning parameter, namely,
the bottom roughness length has a physical meaning.
It gives information about the bottom boundary layer,
through the friction velocity. It retains a spectral
description making this formulation more reliable for
a multi-modal wave spectra. It can be extended to
the combined wave–current situation, important in
situations where the tidal currents play a significant
role in the dynamics of the coastal zone.

The above conclusions are based on two major
assumptions. The first assumption states that the
bottom friction dissipation is the only ‘unknown’
source term and the other source terms are repre-
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sented correctly. The second assumption states that
the conclusions would be the same if the bottom
characteristics of the Lake George would, for exam-
ple, change from fine clay to a sandy bottom. It
would therefore be interesting to redo the above
exercise when better formulations for the other source
terms andror when similar measurements but in a
situation with a different bottom material become
available.

Notation
ab w xNear bottom excursion-amplitude m
c Coefficient in the Collins expression for the

w xdissipation coefficient –
fw w xNon-dimensional friction factor –
Cf w y1 xDissipation coefficient ms
CfJ w y1 xJONSWAP dissipation coefficient m s
CfM w y1 xMadsen dissipation coefficient m s
CfC w y1 xCollins dissipation coefficient m s
CfW w y1 xWeber dissipation coefficient m s
c , cx y Wave propagation velocities in geographi-

w y1 xcal x-, y-space m s
c , cs u Wave propagation velocities in spectrals-,

w y2 y1xu-space s , rad s
d w xWater depth m
E w 2 xTotal energy of the wave spectrum m
f w xFrequency Hz
F w 2 y1xEnergy density spectrum m s rad
g w y2 xAcceleration due to gravity m s
h w xTotal water depth m
Hs w xSignificant wave height m
k w y1 xWavenumber vector m
k w y1 xWavenumber m
K N w xRoughness length m
N w 2 2 y1xWave action density m s rad
p w y2 xReynolds-average pressure N m
re w xRelative error –
rec Ž Ž .Combined relative errors re H q re-s

Ž .. w xT r2 –p

rmse w xRoot mean square error –
Sbf Dissipation of wave energy by bottom fric-

w 2 y1xtion m s rad
Sbk Dissipation due to depth-induced wave

w 2 y1xbreaking m s rad
Sds w 2 y1xDissipation by wave friction m s rad
Snl w 2Non-linear wave-wave interactions m s

y1 xrad
si w xScatter index –

sic Ž Ž .Combined scatter indexs si H q si-s
Ž .. w xT r2 –p

t w xTime s
Tp w xWave peak period s
u w y1 xReynolds-average velocity m s
u) w y1 xFriction velocity at the bottom m s
Uk Orbital velocity at the bottom for a given

w y1 xwave number m s
U10 Wind speed at 10 meters above the water

w y1 xlevel m s
² 2:1r2U Root mean square of the orbital motion at

w y1 xthe bottom m s
x, y w xHorizontal coordinates m
z w xVertical coordinate m
G w 2 y3xCoefficient in C m sfJ

d w xNon-dimensional depth –
di j w xKronecker delta –
´ w xNon-dimensional energy –
u w xWave direction rad
k w xvon Karman constant –
n w xNon-dimensional peak frequency –
r w y3 xDensity of the water kg m
s w xRelative frequency rad
t Turbulent stress in the wave boundary layer

w y2 xN m
x w xNon-dimensional fetch –
v w y1 xRadian frequency rad s
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