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Abstract

Four different expressions for wave energy dissipation by bottom friction are intercompared. For this purpose, the SWAN
wave model and the wave data set of Lake Gedrge Ausktralia are used. Three formulations are already present in SWAI
(ver. 40.0) : the JONSWAP expression, the drag law friction model of Collins and the eddy-viscosity model of Madsen.
The eddy-viscosity model of Weber was incorporated into the SWAN code. Using Collins’ and Weber's expressions, the
depth- and fetch-limited wave growth laws obtained in the nearly idealized situation of Lake George can be reproduced. The
wave model has shown the best performance using the formulation of Weber. This formula has some advantages over tt
other formulations. The expression is based on theoretical and physical principles. The wave height and the peak frequenc
obtained from the SWAN runs using Weber’s bottom friction expression are more consistent with the measurements. The
formula of Weber should therefore be preferred when modelling waves in very shallow @&@01 Elsevier Science B.V.

All rights reserved.
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1. Introduction Lake George, Australi@ Young and Verhagen, 1996.
Hereafter YV is as unique as the JONSWAP experi-
ment ( Hasselmann et al., 1973 . The data obtained
from the lake in water of limited depth provide a

One of the main problems to advance our knowl-
edge about how to model wind waves in very shal-

low water is lack of data from measurements. Con- neay idealized situation to test and analyze several
trary to the situation in deep water, the dynamics of 4 the most widely used bottom friction formula-
waves in shallow water areas are dominated by their o

interaction with the bottom. The growth by wind, There are different mechanisms for wave energy
propagation, non-linear interactions, energy decay gjgsipation at the bottom, such as energy dissipation
and possibly the enhancement of whitecapping, are y,5,,gh percolation, friction, motion of a soft muddy

all linked to how the waves interact with the botiom. - ,t16m and bottom scattering. The relative strength
To this respect, the wave measurements campaign ing¢ those mechanisms depends on the bottom condi-
tions; type of sediment and the presence or absence

" Corresponding author. Fax:32-16-321-989. qf sand ripples, and on the dlmgnglor}s of such

E-mail address; roberto.padilla@bwk.kuleuven.ac.be ripples. It appears that the bottom friction is the most
(R. Padilla-Herhandez . important mechanism for energy decay in sandy
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coastal regiong§ Shemdin et al., 1978 . The energy propagation velocities in spectral space frequency
decay by bottom friction has been a subject of and directional spage . The first term of EQ.) 1
investigation and a large number of dissipation mod- represents the local rate of change of action density
els for bottom friction have been proposed since the in time. The second and third terms stand for propa-
pioneering paper of Putman and Johngon 2949 . All gation of action in geographical space. The fourth
those models reflect the divergence of opinions on term expresses the shifting of action density in fre-
how to model physical mechanisms present in the quency space due to variations in depth and currents.
wave—bottom interaction process. One of the recent And the fifth term reproduces depth-induced and
formulations proposed to simulate the wave energy current-induced refraction. The source terfi=
dissipation by bottom friction is the eddy—viscosity S o ,0)) at the right-hand side of the action balance
model of Weber( 1989 . Investigating the effect of equation accounts for the effects of generation, dissi-
the bottom friction dissipation on the energy balance pation and nonlinear wave—wave interactions. More
using several formulations, Luo and Monbdliu 1994 explicitly, the source terms in SWAN include wave
concluded that there was no evidence to determine energy growth by wind inpu§,,; wave energy trans-
which friction formulation performs best. The work fer due to wave—wave non-linear interactiois
presented here reflects the search for evidence. (both guadruplets and triads ; decay of wave energy
To reach the objective, the numerical wave model due to whitecappingS,; bottom friction S, and
SWAN was run with the bottom friction source term depth-induced wave breaking,,.
as ‘unknown’ in order to reproduce the Lake George A detailed description of the SWAN Cycle) 2
measurement§ Y) in the best possible way. Be- model, the incorporated source terms and the numer-
sides the three formulations already presentin SWAN ical solution method can be found in Ris 1997 ,
(Booij et al., 1999; Section 3)2 , also the formulation Holthuijsen et al( 1990 and Booij et . 1999 .
for bottom friction formulation by Webefr 1989 was
used. To this end, it was introduced in the SWAN
model code. Although all of the individual source 3 The models of bottom friction dissipation
term formulations are open to discussion, it is as-
sumed that the SWAN model computes the.energy 3.1. Dissipation of wave energy as a function of
balance as a whole correctly. By only analyzing the bottom stress
term of dissipation by bottom friction, an attempt is
made to select a formulation to be used in depth-

limited situations. Komen et al. ( 1994 start with the linearized

momentum equation for the bottom boundary layer
flow which in the case of pure wave motign without

2 The SWAN wave model ambient currends reads
au 1 107
The SWAN ( Simulation of WAves in Nearshore i Vp=— P (2)
areag3 model is based on the action balance equation. top p oz
The equation solved by the SWAN model reads wheret is time, z is the vertical coordinatey is the
oN d 0 0 density of the watery and p the Reynolds-average
T —(cN) + —(cyN) + —(c,N) horizontal velocity and pressure, respectively, and
t  ox ay oo .
the turbulent stress in the wave boundary layer. They
+ i(c N) = % (1) obtain an expression for the wave energy dissipation
3 o due to bottom friction:
where N(o,0) is the wave action density= 1 /7
F(o,0)/0); F is the wave energy density;is the Si(k) = — 9 <; Uk> (3

time; o is the relative frequencyp is the wave
direction; c,, c,, are the propagation velocities in where the bottom friction depends on the known free
geographicalx-, y-space; andc, and c, are the orbital velocity(U,) of the waves at the bottom and
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on the unknown turbulent bottom stre¢s); the
subscriptk denotes a given wave number.

An exact solution forr in Eq. (2 (and hence for
S¢(k) in Eq. (3) does not exist, not even for a
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bottom friction dissipation differ mainly in the ex-
pression given to the dissipation coefficieDt.

Below, the expressions that are currently imple-
mented in the SWAN modél version 40.01, Holthui-

simple flow. To overcome the problem, several ap- jsen et al. 1999 as well as Weber's formulation for

proaches have been proposed. Most of the ap-
proaches result in a turbulent shear stress expresse

as a function of a friction coefficient and of a
free-stream orbital velocityf orbital velocity at the
top of the boundary layer . There are two distinct
formulations forr; the first is to retain a spectral

bottom friction dissipation are explained briefly.

d3.2. Expressions for the dissipation coefficient C;

3.2.1. The JONSWAP model
This is the simplest expression for bottom dissipa-
tion. It was proposed by Hasselmann et(@l. 1973 .

description. The second is to represent the range of C,, is assumed to be constant and is given by

frequencies by a single frequency, for example, the
peak frequency, resulting in an integral form.

Usually, 7 is expressed in a drag law as=
1/2pC, IUU or, alternatively, ast=1/2pCy-
(U),,U, where C is a drag coefficientU is the
wave orbital velocity at the bottom and,,. is the
root mean square of the orbital velocity. Taking
C,=1/2C, U] or in the alternative expressiog;
=1/2Cy(U),, results in

T=pCU (4)

Substitution of Eq( % in the dissipation EQ.) 3
yields for every wave component with wavenumber
k:

rms

l 2
Syi(k) = —acf<<uk> ) (5)

The mean square of the bottom velociéyiJ, )?),

can be associated with the wave component having

the wavenumbek. Rewriting the expressiof )5 in
terms of the wave spectrum, one obtains:

k
Su(k) = —2Cfm':(k) (6)

or equivalently( as expressed in SWAN model

G 2

‘g sintPkh

,0)

Si(0.0)=— F(o

(7)
whereC; is a dissipation coefficient with the dimen-
sion in m s!, andF(k) and F(o,0) are the en-
ergy—density spectrum in wavenumber-space or in
frequency-direction space, respectively. The vector
k = (k;, k,)=(kcosd, ksing) is the wavenumber
vector with modulusk and directiond, and o is the
relative frequency. The different formulations for the

Cy=— 8
Chls (8)
where g is the acceleration due to gravity. From the
results of the JONSWAP experiment, they found a
value for I' of 0.038 nf s™3. As long as a suitable
value for I' is chosen, this expression performs well
in many different conditions. The value fdf can be
different for swell and for wind sea. Bouws and
Komen( 1983 found that the JONSWAP expression
with a value of 0.038 rhs™2 for I" yielded too low
dissipation rates for depth-limited wind sea condi-
tions in the North Sea. They selected a value of
0.067 nt s 2 in order to obtain a correct equilibrium
solution for a steady state. The JONSWAP formula-
tion is also implemented as the default friction for-
mulation in the WAM model Komen et al., 1994 .

3.2.2. The Madsen model
Madsen et al( 1988 derived a bottom friction
formulation based on the eddy—viscosity concept,

(U2 9

w

CfM \/E

where
ng 1/2
n\1/2 _
(u?) [[fsinhz(hF(a,e)dade] (10)
and f, is a non-dimensional friction factor. In the
SWAN model, the following formulation, based on
the work of Jonssof 1966 , fdi, is used:

ap
fw =0.3 fOfK— <1.57
N
- ! [ Ll e
—— +10g;9| —— | = m; +log 0| — or— > 1.
afi, 10| . f 1l K, Ky

(11
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wherem; = —0.08, a, is a representative near-bot-
tom excursion amplitude:
1

%= [2-[-[ sintPkh

and K, is the bottom roughness length. Graber and
Madsen( 1988 implemented the expression of Mad-
sen in a parametric wind sea model for finite water
depths.

1
F(o,0)dodo|?

(12)

3.2.3. The Coallins model

Hasselmann and Collins 1968 derived a formu-
lation for the bottom friction dissipation. They re-
lated the turbulent bottom stress to the external flow
by means of a quadratic friction law. The dissipation
coefficient they derived reads:

uy
Cf=20{5ij<U> + <T>}

where §;; is the Kroneker delta functior(;) ~denotes
the ensemble averag¥, is equal to(U? + U2)Y?,
U, and U, are the near bottom orbital velocity
components, ana is a drag coefficient determined
experimentally as a function of the bottom rough-
ness. Hasselmann and Collins proposed a value for
equal to 0.015.

Collins (1972 simplified the expressidn 13 for
the dissipation coefficient by leaving out the depen-

(13)
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Solving the Navier—Stokes equations in the turbu-
lent boundary layer and using perturbation theory,
Weber derived the following dissipation coefficient.

Cow = U™ {Ti( &) + T (&)}

C,y depends on the wave spectruatk), the water
depth h, and the bottom roughneds,, through the
friction velocity u*, and on the radian frequency
(w=2mo) through &,,.
1
)5

(e

The variable &, reflects the ratio between the
roughness length and the boundary layer thickness,
which scales withu* /w; « is the von Karman
constant set equal to 0.4y, + h) is the theoretical
bottom level andT, is defined as

_ I Ker'(£&,) +iKei'( o)
20 Ker (&) +iKei( &)

(15

4K
30ku”

4y, +how

ku®

e

(16)

T(é) = (17)

T, is a dimensionless complex function and depends
on the radian frequency and thus on the wavenumber
through the argument,. Ker +iKei is the zero
order Kelvin function ( Abramowitz and Stegun,
1965 . The prime denotes the derivative with respect

dence on the direction of the wave component and t0 the argument,. Details of the derivation of the

by using the total wave induced bottom velocity:

1
Ce = 2¢(U2)? (14)
where (U?) can be computed from Eq. 10 . Ex-
pression( 1% is the one implemented in the SWAN
model. The value of the drag coefficieatwas set to
0.015. Cavaleri and Malanotte-Rizz¢li 1981 imple-

mented this friction model in a parametric wave
model.

3.2.4. The Weber eddy—viscosity model
Weber's model for the spectral energy dissipation

dissipation coefficient in the eddy—viscosity model
are given in Webef 1989, 1991 . It is of interest to
look at the differences and similarities between the
different formulations. The expression by Weber will
be used here as the reference since it models explic-
itly the bottom friction dissipation mechanism.

The JONSWAP friction model does not interpret
bottom dissipation in terms of a physical mechanism
such as percolation, friction or bottom motion.

Weber's and Madsen’s formulations differ in the
fact that Madsen’s model approximates the random
wave field by an‘equivalent monochromatic wave.
This approximation is applied at an early stage of

due to friction in the turbulent wave boundary layer their calculations. Therefore, Madsen’s expression is
is based on the eddy—viscosity concept. In this model, only valid for a narrow, singled-peaked spectrum. In
the turbulent shear stress is parameterized in analogyfact, Collins’ drag-law dissipation expression is red-
with the viscous stress, with the coefficient of molec- erived. However, in the Madsen formulation the
ular viscosity replaced by a turbulent eddy—viscosity friction coefficient f,, depends explicitly on the wave
coefficient. field and on the roughness length.
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The formula of Weber is able to compute the
dissipation rate directly from the bottom roughness
length through the stress parameterization. That of-
fers the possibility to adapt the dissipation rate ac-
cording to the changing roughness under different
wave—current regimes. This could be important in

some coastal areas. Moreover, the expression of
Weber maintains the spectral description and can bere=1 —

applied to complex situations, where the wave field

cannot be easily represented by one wave component

(Weber, 199] .

4. Numerical experiments
4.1. Introduction

In the following numerical experiments, the goal
is to analyze the performance of the bottom friction
formulations of Hasselmann et &l. 1973, the eddy—
viscosity model of Madsen et al. 1988, the drag
law turbulent friction model of Colling 1972 and
the eddy—viscosity model of Webér 1989 .

A comparison is made of SWAN model output
with the data from the Lake George experiment
(YV). The input files and the data for the SWAN
runs are taken from case F41LAKGR of th8uite
40.01.a of the bench mark tests for the shallow water
wave model SWAN Cycle 2, version 40.01
(SBMSWAN)” (WL Delft Hydraulics, 1999 .

4.2. Satigtical analysis

In order to analyze the results from the SWAN
model using the different bottom friction models by
comparing them with measurements, a set of statisti-
cal parameters following Dingemafs 1997 is used:

The bias. The difference between the mean of the
observationg x;) and the mean of the model results
(y)

Bias=X—Y (18)
where Mean= X =(Z,x,/N), N is the number of
data.

The rmse. The root mean square error

1

rmse=[%_2<yi —xi)z]E (19)
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The si. The scatter index
_rmse
SIl= — (20)
XY

The re. The relative error or index of agreement

N X rmsé&
pe
Z'yi_xi|2
i
—_ — 2
Z(|yi_x|+|xi_x|)

=1- (21)

The relative error reflects the degree to which the
observations are approached by the model results.
Willmott (1981 introduced re as an index of agree-
ment.( re= 1, for perfect agreement, normally<Ore
<1). The parameter pe is known as the potential
variance.

In the computations of the different statistical
parameters, the imposed values of the wave parame-
ters at the grid model boundary are not included in
the analysis.

4.3. Lake George

4.3.1. Stuation

The Lake George experiment represents nearly
idealized wave growth in depth- and fetch-limited
conditions. The lake is fairly shallow with a relative
uniform bathymetry( depth about 2)m . It is approxi-
mately 20 km long and 10 km wide. A series of eight
wave gauges were situated along the North—South
axis of the lakd Fig. I . The bottom is rather smooth
(bottom ripples were practically absgént and the bot-
tom material consists of fine clay Ris, 1997 . The
wave measurements were carried out during the pe-
riod from April 1992 until October 1993. Only data
for which the wind speed and direction were rela-
tively constant during the 30-min sampling period
have been retained. The criteria used for this selec-
tion were that the wind speed should not vary by
more than 10% nor should the wind direction turn by
more than 10to each side of the alignment of the
instrument array( northsouth during the 30-min
sampling period.( For a complete description see
YV.)
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Lake George

s

Depth [m]

1-05

Fig. 1. Bathymetry of Lake George and the locations of the eight
wave gauges. Depth contour interval is 0.5 m starting from 0.

For the computations, three northerly wind cases
were selected from the bench mark data set for
SWAN (SBMSWAN, case F41LAKGR . These cases
are three typical examples, i.e., a low wind speed
(U, =6.5m s '), medium wind spedd,,= 10.8
m s 1) and a high wind spedd),;, =152 m s') .

The computations were carried out with SWAN
version 40.01 using the WAM Cycle 3 formulations
(Booij et al., 1999 . The wave—wave triad interac-

R. Padilla-Hernandez, J. Monbaliu / Coastal Engineering 43 (2001) 131-148

4.3.2. Calibration

In order to tune the friction coefficients of every
friction model, the third casé high wind speed was
chosen. The combined scatter index)sic ffrand
T, was taken as the cost function value to be mini-
mized. The definition for the sic reads

sic= [si( Hy) + si(Tp)] /2 (22

The results using the default value for the friction
coefficient in every friction model is taken as a
reference( see Table) 1 . An identical definition for
the combined relative errdr rec is used, replacing re
for siin Eq.(22.

The si forH; and T, and the sic are shown in Fig.
2. As can be observed in the figure, the behavior of
the si is different for the different models. This
figure shows how sensitive the wave parametéts
andT,) are to variations in the friction coefficient in
the case of the JONSWAP and the Collins expres-
sions, and to variations in the roughness length, in
the case of the Madsen and the Weber expressions.

For the JONSWAP formulation and starting from
the default value, it is clear that lowering the value
of the friction coefficient decreases the sicldf and
T,- The si of T, reaches a minimum at a value of
0.030 nt s 3 for I'. For an interval ofl-values, the
si of T, is constant, but the results far start

tions and depth-induced wave breaking were turned 1. 1

on with default parameter values. For the bottom
friction, one of the above formulations is used. As in

Ris (1997 , Station 1 is taken as the up-wave bound-

ary in the simulation. This avoids uncertainty in the

location of the northern shore because of seasonalRunNo. JONSWAP Madsen

variation in water depth. Since no directional wave
spectrum is available at Station 1, the directional
distribution of the waves is approximated with a
cog(9) directional distribution. For the computa-
tions, a directional resolution of 20and a logarith-
mic frequency resolutiofA f = 0.1f) between 0.166
and 2.0 Hz for the low wind case and between 0.125
and 1.0 Hz for the medium and high wind case are
chosen. The spatial resolution is 250 m both Xn
and y direction. To account for seasonal variations
in water level, the water level was increased over the
entire lake with+0.1, +0.3 and +0.27 m for the
low, medium and high wind case, respectively.

Friction coefficient values for the different friction models and the
resulting sic

The values in bold are the default and the underlined are the
optimal values for the Lake George case.

Weber

Ky
[mm

0.10 0.091 0.0005 0.120
0.25 0.090 0.0025 0.106
0.50 0.086 0.005 0.093 0.25 0.071
1.0 0.080 0.010 0.089 0.50 0.070

3.0 0076015 0081 0.75 0.070
50 0.082 0.020 0.078 1.0 0.074
10.0 0.093 0025 0074 25 0.111

0.045 0.078 20.0 0.172 0.030 0.071 50 0.165

0.055 0.082 30.0 0.211 0.035 0.077 10.0 0.203

0.067 0.092 50.0 0.214 0.040 0.081 20.0 0.236

11 0.075 0.096 70.0 0.214 0.045 0.0800 0.241

12 0.085 0.120 80.0 0.214 0.060 0.085 60.0 0.242

Collins

r sic Ky sic ¢ sic sic

[mm]

0.005
0.010
0.020
0.025
0.030
0.034
0.038

0.105
0.090
0.079
0.074
0.070
0.082
0.080

0.01 0.079
0.10 0.074

=
O W oO~NOO U WNPE
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si

si

JONSWAP

0.005 .020 .038
r
COLLINS

.0005 .005 .015

.06

MADSEN

0001 .0005 .005 05
KN
WEBER
2
‘% -1
'-~-_®n
.0001 .00025 .01 .04
KN

Fig. 2. The si forH, and T, and sic in the function of the friction coefficient value in the Lake George case. The friction coefficient default
value is indicated by a vertical line and the optimal value the chosen value to run the three cases of Lake George is indicated by a circle

deteriorating. Nevertheless, lowering the valuelof

improves the sic about 23% compared with the

results using the default value fdr (see Table 1 .

The value retained fof” is 0.030. It should be noted

rmse

JONSWAP

5[ — Hs
...... Tp

\O

/]

0.005 .020 .038
r
COLLINS

.067

that the reference value fai was taken as 0.067,
which is the appropriate value for depth-limited
wind-sea case in the Southern North $ea Bouws and
Komen, 1983 , and not as 0.038 which corresponds

MADSEN

rmse

rmse

.0001 .00025 .01 .04

Fig. 3. Idem Fig. 2 but for rmse.
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to swell conditions. The most suitable value for this For the friction model of Weber, lowering the sic
case is even smaller than the value for swell condi- leads to improvement for bottH; and T, The
tions. The lowest value of the sic here corresponds changes of the si are rather smooth making the
with the lowest value of si fof,,. choice of the best value foK, easy. The optimal
Using the formulation of Madsen improvement of value for K, in Weber’'s formulation was chosen
sic leads to improvement for botH; and T,,. That is equal to 7.5 10~* m. The improvement for the sic

because both parametetd; and T, are underesti-  using the optimum value compared to the sic with
mated using the reference value. The optimal value the default value is about 71%.
for K, was chosen as 8 1073 m. The improve- Comparing the si, rmse and the(e Figs. 2, 3 and

ment for the sic compared to the sic with the default 4, respectively , the results using the formulation of
value is about 64%. The lowest value of the sic does Weber are more consistent in a statistical sense. The
not correspond neither with the lowest value of the si optimal value for K, according to the sic cost
for Hy nor with the lowest value of the si foF,. function, gives also the best value for the si, the rmse
The sic varies little using the formulation of and the re forHs. For T, the magnitude of those
Collins for a region ofc-values around the reference statistical parameters is quite close to the best values.
value. For higher than the reference valuecpthe si That is not the case for the other formulations,
for Hy improves but the si foll, increases. Goingto  especially not for the Collins’ and Madsen’s formu-
lower values ofc, the si of both wave parameters lations. The lowest value for the dic highest value of
increases. The value retained forwas taken equal  red does not correspond neither to the lowest si and
to 0.030. According to Table 1 and Fig. 2, the sic has rmse ( highest re foH, nor to the lowest si and
the best value but is only 14% different from the sic rmse( highest e fof,. As can be seen in Figs. 2, 3
with the defaultc-value. The value retained far, and 4, the choice of the best value for the friction
however, does neither produce the lowest value of coefficient or the roughness length is prescribed
the si for Hg nor for T,. Looking at the rmsé Fig.)3 mainly by the si of T,. T, is the parameter that
and the red Fig. ¥, it is not so clear that the wave improves most during the tuning process. Note that
model gives the best results for @avalue equal to  Ris et al.( 1999 remarked that using the WAM cycle
0.030. 3 formulations, SWAN systematically overestimates

;. JONSWAP MADSEN

.0005 .005 .015 .06 .0001 .00025 .01 .04
c K

Fig. 4. Idem Fig. 2 but for the re and rec.
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the significant wave height and underestimates the Comparing it with the value of 0.070, which is
mean wave period. approximately the value of the sic using the optimal
It should be mentioned that a wave model run was coefficients in the four bottom dissipation expres-
made using a roughness length corresponding to thesions( see Table)l , the difference is about 70%.
grain size at the bottom of the lake which is fine clay
(Ris, 1997 of about X 10°® m in diameter. The  4.3.3. Validation
model was run using the expressions of Weber and  Once the appropriate values for the friction coeffi-
Madsen. Comparing the results, using the expressioncients and roughness length were choéen see Table
of Weber, between the retained value g (7.5X% 1, values underlined , the other two selected cases
10~* m) and the roughness length corresponding to for Lake George were run using these values. It is
the grain size( x 10°® m) the sic increases by assumed that the bottom condition did not change.
about 30%. The si foH, increases by 54% and the As can be see in Fig. 5, the significant wave
si for T, decreases by 12%. Using the Madsen height and the peak period are relatively well mod-
expressmn withK , equal to 1x 10~® m, the differ- eled by SWAN using either of the four friction
ence in the sic between the retained value Kqy models, except at the last three stations in case one.
(3x 102 m and the roughness length correspond- At these station§ from 6 t0)8 , the wave parameters
ing to the grain sizé¢ X 10°° m) is about 38%. The  do not show a monotonic behavior. That can possi-
si gets worse by 13% fof, and by 55% forH,. As bly be ascribed to unresolved variation in the wind
can be seen from these results, even at very smallfield. Such variation has been observed by YV.
values forK,, the dissipation by bottom friction still  Those three stations were therefore eliminated from
plays a role. the statistical calculations for case one only. A small
A wave model run without bottom friction for the  underestimation of, can be observed in the medium
case of high wind speed was made to see how and low wind cases.
important the bottom friction is. The value of the sic Fig. 6 shows the statistical parameters for the
not considering the bottom friction is about 0.119. three wind cases for each of the four bottom friction

H, [m] T, Is]
= &
0.3 Y10 = 6:4 ["‘/51@ g3 22 0§ o
@ % * 2 56w
*
" @ ’ * :2 o $v
0.1 14l
0 2 4 6 8 0 2 4 6 8
3
U,,=10.8 [m/
oa 0T Th 0 T Y obe
2.5
0.3 @ * é é
. \ .
9
0.2 L §
0 2 4 6 8 0 2 4 6 8
0.6fy —152[m/s%$$@ 3 o gé
9
0.4 é 25 ® %
* . 9 Vv
0.2 P 2 o
- =
0 2 4 6 8 0 2 4 6 8
Stations Stations

Fig. 5. SWAN model results for the different bottom friction formulations with the optimal value for the friction coefficients and
observations of the significant wave height left pahels and peak period right panels in nearly ideal generation conditions in Lake George.
Observationg*) , JONSWAP+), Madsen(v), Collins (O) and Webe(<) formulations.
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Table 2
Formulas for non-dimensional ener@y) and non-dimensional frequen€y) against non-dimensional depth, obtained from the results of
SWAN using the different bottom friction models

Model JONSWAP Madsen Collins Weber
e= 4.1x10°8% 176 2.9x 1073 5166 1.4x 10783 §14? 1.4x 10783 5146
y= 0.145*0.472 0.158*0.430 0.206~ 0.375 0.206~ 0.375

Cic gives the worst approximation for, but the formulations. The peak period in the low wind case
best approximation foff,. (for this wind field the bottom friction plays hardly
Using the four bottom friction dissipation expres- any role is very well reproduced using the formula-
sions, the largest error fok, is in the high wind tion of Weber. This is not the case using the other
case compared with the other two cases. This can beformulations, as can be seen in Figs. 5 and 6.
partially ascribed to a ‘deviation’ of the measure-
ments from the monotonic behavior in the locations
2 and 7 as can be seen in Fig. 5. Looking at the
mean values of rmse, si and re for the three cases
(Fig. ), the best performance fét, corresponds to
the use of the Collins formulation and the best
performance foiT, corresponds to the Weber formu-
lation. Fig. 7 shows the performance of the SWAN
using the different bottom friction formulations in
the function of the combined statistiés sic andyrec €= 1.06x 107 8% (23)
of H, andT,. As can be seen, SWAN has the best »=0.205"°°" (29
performance using Weber's formulation followed by The non-dimensional parameters are defined as
Collins, and then by the JONSWAP and the Madsen g?E/U)} for the non-dimensional energye),

4.3.4. Depth-limited wave growth

In order to refine the expressions of Bretschneider
(1958 for both non-dimensional enerdy) and
non-dimensional peak frequen€y), YV used their
full data set of about 65,000 data points. They found
that the asymptotic depth-limited growth can be con-
sidered dependent on the non-dimensional dépth
only. They found the following limits:

+ JONSWAP

- MADSEN
COLLINS
* WEBER

10 10°

= 2
§ = gd/U 10

Fig. 8. Comparison of the SWAN results using the different bottom friction formulations and the formula from Young and Vérhagen 1996
for non-dimensional energy (top panel and non-dimensional peak frequendypottom panel against non-dimensional depth.
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Table 3

Statistics comparing the values obtained from SWAN using the
different friction formulations with the values according to the
formulae from YV in the case of depth-limited growth

Model JONSWAP Madsen Collins  Weber
& bias —0.002 —0.001 0.000 0.000
rmse 0.003 0.002 0.000 0.000
si 1.969 1.404 0.368 0.380
re 0.800 0.816 0.955 0.953
v  bias 0.055 0.055  0.000 0.000
rmse 0.055 0.055 0.000 0.000
si 0.243 0.241  0.000 0.000
re 0.950 0.941 1.000 1.000

f,Uio/g for the non-dimensional peak frequency
(v), gd/U3 for the non-dimensional depttd), g
is the gravitational acceleratiok, is the total energy
of the spectruml,, is the wind speed measured at a
reference height of 10 m, and is the water depth.
To calculate the depth-limited growth, SWAN
was run in one-dimensional mode for each of the
friction models. Several runs were performed using
different depths ranging from 2.5 to 20 m. The wind
speed was set equal to 20 m's(  to work in the
same non-dimensional depth interval as )YV . The

R. Padilla-Hernandez, J. Monbaliu / Coastal Engineering 43 (2001) 131-148

results were stored for different fetches ranging from
15 to 15,000 km. The friction coefficients and rough-
ness length used have the optimal values retained
from the tuning runs. The expressions given in Table
2 were computed taking the maximum levels of
non-dimensional energy and the minimum non-di-
mensional peak frequency at every non-dimensional
fetch of the different runs.

Fig. 8 shows the different retained results for
and v together with the expressiofs 23 and) 24 of
YV. Table 3 shows the statistics comparing them
with the formulas obtained by YV. Although all of
them give a good approximation to the measure-
ments, it is clear that the formulae of Weber and
Collins give the best results. The fit to thecurve of
YV is perfect. Because of the good approximation of
all formulations to the formula from YV, Table 3
confirms that selecting sic as the parameter to be
minimized was a good selection.

Even though YV considered that the asymptotic
depth-limited energy growth depends on non-dimen-
sional depth only, the numerical results show that the
depth-limited growth is a function of the roughness
length as well. If the bottom friction and bed mate-
rial were not important in fetch- and depth-limited

= 2
& =gd/U%,,

Fig. 9. Comparison of the SWAN results using the formulation of Weber with different roughness (&gttand the formula from Young
and Verhagerf 1996 for non-dimensional enesgftop panel and non-dimensional peak frequendjpottom panel against non-dimen-
sional depth.
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conditions( as assumed by YV, then the value as- and y is the non-dimensional fetcl.y = gx,/U;3),
signed to K, should not matter and the results x is the distance and
would be expected to be the same. This is not the

— —0.375
case when the wave model is run using a different A, =1.505"" & /m (31)
rpughness Iengt.h in t.he friction dissipation formula- B, = 16.391/m y~0-2/m (32)
tion. To exemplify this, the SWAN model was run
for depth-limited wave growth with Weber’'s formu- The coefficientsn and m control the rate of

lation for bottom friction. Fig. 9 shows the results for transition from“deep’ to “depth limited conditions.
different values foriK . Going from larger to smaller YV performed a non-linear least squares analysis on
values of K, the ¢ increases and the decreases. their selected data set to determineand m. Their
Hence, one should expect that the curves for  analysis yieldedn equal to 1.74 andm equal to
growth against non-dimensional fetch change as well. —0.37. Expressions 27 ar(d 28 give a family of
This implies that the expressiofis )23 dnd) 24 should curves, one for each value &f

take into account the bottom roughness. The asymp- The results from SWAN are compared with the

totes fore and v can be expressed as: equations given by YV. Figs. 10 and 11 show the
results from SWAN using the different bottom fric-

e=As" (25) tion formulations for 8§ equal to 0.10 and 0.50,
respectively. The deep water asymptotic forms of

v=_Cs° (26) Egs.(27 and 2B and the same equations but for

shallow water(n equal to 1.74 andm equal to
One can see from Fig. 9 that the roughness length _ 37) are also shown. As can be seen from those
has more influence om and C than onB and D. figures, SWAN overestimates the total energy for
ChangingKy, from 0.10 to 5X 10" m, Achanges  yery short y. In particular, energy growth in the
around 250%B changes 8%C and D change 30%  high frequency rangé very short fetches is usually
and 9%, respectivelyK has more impact on the  gyerestimated by SWAN. This overestimation is ob-
energy than on the frequency. This suggests that  geryed systematically. According to Ris et@l. 1999 ,
and C are functions ofK. the overestimation of energy at short fetches can be
ascribed to the linear wave growth term of Cavaleri
o and Malanotte-Rizzol{ 1991 . But in this work, the
4.3.5. Fetch-limited wave growth linear growth term was not taken into account. Re-
Using their data from Lake George, YV proposed gjts from the wave model using the linear wave
a generalized form to the shallow water limits for the - 46\th shows no relevant differences with the results
growth of non-dimensional energy) and non-di-  \ithout the linear growth term. The observed overes-
mensional peak frequendy) with non-dimensional  timation of energy should be ascribed to another
fetch (x) reason. The search for such reason is beyond the
n scope of this work.
B: } (27 The SWAN runs with the formulations of Collins

tanhA,

and Weber for bottom friction dissipation catch the
asymptotic levels ofe and v given by the expres-
B, m sion of YV quite well, better than when using the
V= 0.133{ tanhﬁ\ztanr{ ” (29 expressions of JONSWAP and Madsen. But as can
tanhA, be seen in Fig. 11, the wave model reproduces better
the levels of non-dimensional energy when using the

£=3.64x10° { tanhAltanf{

where expression of Weber than when using the expression
of Collins.
— /n 1.3/n
A =0.292/" 5 (29 To quantify the differences between the model
1/n results and the expression of YV for fetch-limited

B, = (4.396x107°)" x V" (30) growth, the wave model was run for a range of
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= 2 _
8= g2, = 0.10

pr1 Olg

v=

10° 10
X= gx/U210
Fig. 10.(2 Non-dimensional energyand(b non-dimensional peak frequencyagainst non-dimensional fetch for a non-dimensional

depth § of 0.10. The deep water asymptotic form of Efs.) 20 @nd 23 is shown in dashed line. The same equations but for shallow water
as found by YV(n=1.74 andm= —0.379 s in solid line. SWAN was run using JONSWAR ), Madsen( v ), Collins (O) and Weber

(<) formulation.

Fig. 12 shows the statistical parameters compar-

values of 8. The four statistical parameters given in
ing ¢ from the wave model results against tlae

Section 4.2 are computed.

8 = gd/U? = 0.50
0o
h o
5
& 10t
(=]
L}
w
10°-
10
o P
(=
=
)
-
1
>
10-1 2 ( 3 l 4
10 10 10

x= gx/U210
Fig. 11. Idem Fig. 10 but for a non-dimensional deptiof 0.50. SWAN was run using JONSWARP-), Madsen(O), Collins(dotted and
Webers(<) formulations.
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Fig. 12. The bias, rmse, si and re against non-dimensional d&pithe comparison is done for wave growth in fetch-limited conditions
between the non-dimensional energyrom SWAN with the different bottom friction dissipation formulations and the formula from Young
and Verhagerf 1996 .

computed from the YV expressidn E€. )27 for a points até-values of 0.10 and 0.50, respectively. To
range of values ob. Fig. 13 shows the same as Fig. calculate the fetch-limited growth, SWAN was run in
12 but for ». In this way, Figs. 10 and 11 are one-dimensional mode for each of the friction mod-
represented statistically in Figs. 12 and 13 as two els. Several runs were performed using a depth equal
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Fig. 13. Idem Fig. 12 but for non-dimensional frequency.
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to 20 m and wind speed ranging from 10 to 31.3 m is more consistent in shallow water regions. The
s ! (to work in the non-dimensional depth range SWAN model was run with the three formulations

from 0.1 to 1.0 . The total fetch for every run was originally included plus the eddy—viscosity formula-

15,000 km with a resolution of 5 km. The fetch to tion of Weber. The data of Lake George were used
compute the statistical parameters was different for to tune the friction coefficients of every formulation

every 6, depending on when the energy computed such that the combined scatter index was minimal.
from Eq.(29 becomes constafit no changes in the This exercise revealed different levels of difficulty in

seventh significant digit . The fetch range is from tuning the different friction coefficients.

440 km for § equal to 0.1 to 997 km whem is
equal to 1.0. At smalls-values, SWAN gives results

Weber's model showed the best performance in
the cases of depth- and fetch-limited wave growth. In

which have almost the same bias and rmse usingthe case of depth-limited wave growth, the fit of the

either of the four bottom friction dissipation expres-

calculated curve for the non-dimensional peak fre-

sions. From Fig. 12a and b, it is evident that results quency to the one obtained by YV is as good as
start diverging going to deeper waters. At higher perfect. For the non-dimensional energy, the statisti-
6-values, the use of the expressions of JONSWAP cal values, rmse, si and re, show that the results
and Madsen gives the largest bias and rmse. Apply- using Weber’s formulation are superior in approach-
ing the formulations of Collins and Weber, one ing the equations obtained from YV. In the case of
obtains smaller bias and rmse, with a preference for fetch-limited wave growth, the formulation of Weber
Weber’'s expression. Looking at the four statistical showed the best performance in approaching the
parameter§ Fig. 12 , the results of SWAN using the equations of YV derived from the measurements.
formula of Weber approach better the non-dimen- Running the SWAN model using Weber's formula
sional energy computed by Eq( 27 and its behav- with different roughness length suggests that in the
ior is more uniform along the non-dimensional depth equations for depth- and fetch-limited wave growth
axis, as can be seen in Fig. 12d. the effect of bottom roughness should be included.
Fig. 13 shows the statistics for the non-dimen- Formulations for dissipation by bottom friction,
sional frequencyy of the SWAN results using the such as the model by Madsen or Weber, which take
different bottom friction dissipation formulations. In  explicitly physical parameters for bottom roughness
contrast with e, the bias and the rmse of do not into account, should be preferred in wave modeling
have the same value for smadl. Contrary to the in shallow water areas. They offer the possibility to
results fore, the bias and the rmse decrease with adapt the dissipation rate according to the changing
increasings. roughness under different wave or wave—current
The statistical measures faer indicate that using  conditions.
the expressions of Weber the wave model results Besides showing the best performance, the for-
approach quite well the values computed from Eq. mula of Weber has some other advantages. It was, at
(27), better than using the other three bottom friction least for the Lake George case, easier to tune than
formulations. With respect te, the wave results are  the other formulations. The tuning parameter, namely,
of similar quality when the expressions of Collins the bottom roughness length has a physical meaning.
and Weber are used and better than when using onelt gives information about the bottom boundary layer,
of the other two expressions. through the friction velocity. It retains a spectral
One can therefore conclude that in fetch- and description making this formulation more reliable for
depth-limited conditions, the computed wave param- a multi-modal wave spectra. It can be extended to
eters are more consistent when the bottom friction the combined wave—current situation, important in
dissipation expression of Weber is used. situations where the tidal currents play a significant
role in the dynamics of the coastal zone.

The above conclusions are based on two major
assumptions. The first assumption states that the
The main objective was to investigate and clarify bottom friction dissipation is the only ‘unknown’
which bottom friction formulation performs best or source term and the other source terms are repre-

5. Summary and conclusions
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sented correctly. The second assumption states thatsic

the conclusions would be the same if the bottom
characteristics of the Lake George would, for exam-
ple, change from fine clay to a sandy bottom. It
would therefore be interesting to redo the above
exercise when better formulations for the other source
terms angfor when similar measurements but in a
situation with a different bottom material become
available.

Notation

a, Near bottom excursion-amplitude Jm

c Coefficient in the Collins expression for the
dissipation coefficienf }

f, Non-dimensional friction factof }-

C Dissipation coefficienf ms']

Cy JONSWAP dissipation coefficiefit n $]

Cim Madsen dissipation coefficiefit ni§]

Cic Collins dissipation coefficient ms]

Ciw Weber dissipation coefficierit m $]

C., ¢, Wave propagation velocities in geographi-
cal x-, y-space m s']

c,, ¢, Wave propagation velocities in spectrad,
6-spacd s? , rads']

d Water deptH rh

E Total energy of the wave spectrum?m

f Frequency HEk

F Energy density spectrufin ‘m s rat]

g Acceleration due to gravity m <]

h Total water depth

H, Significant wave height in

k Wavenumber vectdr ft]

k Wavenumbef m?']

Ky Roughness length In

N Wave action density m % rad]

p Reynolds-average pressure N fj

re Relative errof +

rec Combined relative erroe= (re(H,) + re-
(T)/21-]

rmse Root mean square errpr] —

S Dissipation of wave energy by bottom fric-
tion [m? s rad ]

S Dissipation due to depth-induced wave
breakingl M s rad!]

Sis Dissipation by wave frictiod s rad]

S, Non-linear wave-wave interactions *m s
rad ]

Si Scatter index 1
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Combined scatter index (si(H,) + si-
(T)/2[-]

Time[d

Wave peak periofl ]s

Reynolds-average velocify n¥]

Friction velocity at the bottorh ms]

Orbital velocity at the bottom for a given
wave numbef m st]

Wind speed at 10 meters above the water
level[m s?]

(U%Y"? Root mean square of the orbital motion at
the bottom[ m 5]

Horizontal coordinatef i

Vertical coordinatd rh

Coefficient in C,; [m? s3]

Non-dimensional depth -

Kronecker deltd 1

Non-dimensional energly -

Wave directior| rapl

von Karman constarjt |-

Non-dimensional peak frequengy] —
Density of the watef kg m®]

Relative frequency rdd

Turbulent stress in the wave boundary layer
[N m~?]

Non-dimensional fetch }

Radian frequency rad$]
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