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The state of the art of research on the environmental physiology of marine fishes is reviewed from the perspective of how
it can contribute to conservation of biodiversity and fishery resources. A major constraint to application of physiological
knowledge for conservation of marine fishes is the limited knowledge base; international collaboration is needed to study
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the environmental physiology of a wider range of species. Multifactorial field and laboratory studies on biomarkers hold
promise to relate ecophysiology directly to habitat quality and population status. The ‘Fry paradigm’ could have broad
applications for conservation physiology research if it provides a universal mechanism to link physiological function with
ecological performance and population dynamics of fishes, through effects of abiotic conditions on aerobic metabolic
scope. The available data indicate, however, that the paradigm is not universal, so further research is required on a wide
diversity of species. Fish physiologists should interact closely with researchers developing ecological models, in order to
investigate how integrating physiological information improves confidence in projecting effects of global change; for
example, with mechanistic models that define habitat suitability based upon potential for aerobic scope or outputs of a
dynamic energy budget. One major challenge to upscaling from physiology of individuals to the level of species and com-
munities is incorporating intraspecific variation, which could be a crucial component of species’ resilience to global change.
Understanding what fishes do in the wild is also a challenge, but techniques of biotelemetry and biologging are providing
novel information towards effective conservation. Overall, fish physiologists must strive to render research outputs more
applicable to management and decision-making. There are various potential avenues for information flow, in the shorter
term directly through biomarker studies and in the longer term by collaborating with modellers and fishery biologists.
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Introduction
Marine ecosystems provide essential resources and services,
with fishes being of prime socio-economic importance. There
are alarming global trends of excessive exploitation and
habitat degradation of marine fishes, with most commercial
stocks either overfished or nearing capacity (Pauly et al.,
2002; FAO, 2014; Pauly and Zeller, 2016). Global climate
change is also altering patterns of marine biodiversity, with
more pronounced effects expected in the future (Perry et al.,
2005; IPCC, 2014; McNeil and Sasse, 2016). The conse-
quences of over-exploitation, habitat degradation and global
climate change are unknown, but there is legitimate concern
about irreversible loss of fisheries resources and biodiversity,
leading to reduced food security and even direct threats to
ecosystem integrity (Perry et al., 2005; Cheung et al., 2009;
Sumaila et al., 2011; Duarte, 2014; Elliott et al., 2015; Pauly
and Zeller, 2016). There is a need, therefore, to improve the
scientific knowledge base underpinning advice on the sus-
tainable management of marine fish biodiversity and fisheries
resources.

There is a growing belief that physiological information,
understanding how animals function, can contribute signifi-
cantly to the resolution of management and conservation
problems for marine fishes and to the ability accurately to
project potential impacts of environmental pressures (Wang
and Overgaard, 2007; Pörtner and Farrell, 2008; Rijnsdorp
et al., 2009; Wilson et al., 2009; Pörtner and Peck, 2010;
Jørgensen et al., 2012; Seebacher and Franklin, 2012;

Wilson, 2014). Physiologists typically take a Darwinian view
(Fig. 1), whereby the abiotic factors within a given habitat
can define which animals survive and reproduce there, based
upon their physiology. Over the course of generations, there
is natural selection of physiological adaptations to prevailing
conditions (Prosser, 1950; Schmidt-Neilsen, 1982; Garland
and Carter, 1994), with the evolution of a functional niche
for each species (Hutchinson, 1957). In each new generation,
the physiology of the individuals contributes to their per-
formance, behaviour and fitness in a realized niche (Arnold,
1983; Garland and Carter, 1994; Feder et al., 2000; Huey
et al., 2012). This influences the abundance and distribution
of their population and species (Buckley et al., 2012; Huey
et al., 2012; Chave, 2013; Heffernan et al., 2014) and, by
logical extension, the composition of communities and
assemblages in the ecosystem (Buckley et al., 2012; Chave,
2013; Cooke et al., 2014; Heffernan et al., 2014).

The vast majority of marine fishes are water-breathing
ectotherms; therefore, physiological and behavioural responses
to increasing temperatures, growing zones of hypoxia, ocean
acidification, eutrophication and general habitat degradation
are to be expected. This has obvious implications for conser-
vation research because the prediction would be that, as envir-
onmental conditions change, so will the distribution of habitat
that any given species chooses to, or is able to, occupy
(Buckley et al., 2012; Huey et al., 2012; Le Quesne and
Pinnegar, 2012; Cooke et al., 2014; Martin et al., 2015).

This overall premise was the impetus to establish a net-
work of interested scientists, funded by the European
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Union’s Cooperation in Science and Technology (COST)
programme. The COST Action FA1004 ‘Conservation
Physiology of Marine Fishes’ (2011–2015) provided a forum
for dialogue on this topic, through a series of international
conferences and workshops (http://fish-conservation.nu).
This article reviews the main issues that were raised and dis-
cussed over COST FA1004’s lifetime, with general perspec-
tives on a broad series of topics. These topics fall into four
main themes: (i) the state of basic physiological knowledge
for marine fishes and how this might be applied directly
towards conservation goals; (ii) how physiological knowl-
edge can be integrated into ecological models; (iii) how biote-
lemetry and biologging studies can contribute to
conservation research; and (iv) how conservation physiology
research might be rendered relevant and available to
decision-makers. These perspectives set the stage for this
Theme Section, which comprises reviews, perspectives and
research articles that, together, provide an indication of the
state of the art of thinking and research in the field.

The physiological knowledge base
is limited
The restricted knowledge base is currently a major constraint
to the use of physiology for conservation of marine fishes.
Although there are >30 000 species of fishes, knowledge on
marine fishes is confined to tens of species, which occur in
countries with developed fish ecophysiology research com-
munities. Within these countries, there is a focus on species
that are economically or ecologically important and/or are
relatively easy to obtain and maintain in captivity. These
include temperate species, such as Atlantic cod (Gadus mor-
hua), Atlantic salmon (Salmo salar), Dover sole (Solea solea),
European sea bass (Dicentrarchus labrax), Pacific salmonids
of the genus Oncorhynchus or turbot (Scopthalmus max-
imus), plus various tropical species from the Great Barrier
Reef. Recent meta-analyses examining how the physiology of
ectotherms might shape responses to global change all note
the lack of physiological information on a vast majority of
fish species and geographical areas (Sunday et al., 2012;
Seebacher et al., 2015; Lefevre, 2016; Killen et al., 2016b).

It is essential that physiologists pursue cooperative
research projects progressively to fill knowledge gaps
(Cattano et al., 2016; Ferreira-Martins, 2016; di Santo et al.,
2016), to investigate the ecophysiology of many more spe-
cies, which may be harder to obtain and/or keep in captivity.
Focus could be on key elements in food chains and species
with specific or rare (Mouillot et al., 2013) ecological func-
tions. Studies are needed to evaluate ranges for tolerance of
major environmental factors, such as temperature, dissolved
gases (hypoxia and hypercarbia), acidification and salinity,
within which different marine fish species function effect-
ively, and the thresholds beyond which performance is
impaired and survival or reproduction is at risk.

Researchers must keep in mind the complexities inherent
to the physiology of marine fishes. For example, the environ-
mental physiology of populations can vary markedly across
a species’ geographical range (Conover et al., 2006;
Gardiner et al., 2010), and specific life stages can be critical
bottlenecks for population or species persistence in the pres-
ence of ongoing global change (Petitgas et al., 2013;
Ferreira-Martins, 2016). Physiological research on minute
marine fish embryos and larvae is technically very challen-
ging (Peck and Moyano, 2016), but these life stages may be
the most sensitive to environmental stressors (Killen et al.,
2007). This Theme Section has two research articles on the
ecophysiology of early life stages, with a study of tolerance
of little skate (Leucoraja erinacea) embryos to hypoxia (di
Santo et al., 2016) and a study of tolerance of larvae of the
ocellated wrasse (Symphodus ocellatus) to natural acidifica-
tion at Mediterranean volcanic seeps (Cattano et al., 2016).

A database is currently being prepared for the public
domain, as an output of Action FA1004. At present, it com-
prises effects of temperature on aerobic metabolic scope,

Figure 1: How the physiology of an individual marine fish can
influence species population dynamics and community biodiversity,
through hierarchical levels of biological organization (inspired by Le
Quesne and Pinnegar, 2012). Environmental conditions influence
whole-animal physiology (energetics and performance) by influencing
gene expression and the biochemistry and physiology (metabolism
and function) of cells and organs. Physiology has a complex interplay
with the behaviour (activities and personality) of the individual that,
together, influence its ecological performance and reproductive
output (fitness). This, then, influences the abundance and distribution
of the species in the environment. This, in turn, influences the
composition and functional diversity of communities and
assemblages in the ecosystem. This is the scale at which
management decisions are required and made. The dotted black lines
show feedbacks. The effects of environmental conditions on cells feed
back to influence gene expression, which then influences function by
phenotypic plasticity/flexibility. Behavioural habitat choice feeds back
to influence environmental conditions and, therefore, their effects on
lower levels of organization. Reproduction each generation feeds
back to influence genetic variation and drive the evolution of local
adaptation in the species.
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digestive energetics (specific dynamic action) and growth, as
well as an analysis of hypoxia tolerance, in marine and eury-
haline fish species. In this Theme Section, Rogers et al.
(2016) analyse the database of hypoxia tolerance, measured
by respirometry as the critical oxygen partial pressure for
regulation of aerobic metabolism (Pcrit). This revealed that
Pcrit was, as expected, highly variable among species but was
also influenced by temperature, CO2, acidification, toxic
metals and feeding, as well as by the method used to measure
it, especially if CO2 accumulated in the respirometry system.
The database will provide an open repository for a progres-
sive accumulation of physiological trait data, which can be
used towards conservation objectives; for example, directly
in terms of tolerance thresholds that can be ‘biomarkers’ of
environmental stress or to parameterize ecological models, as
described below.

Applications for physiological
biomarkers
Biomarkers of environmental pressures hold promise for con-
servation research in marine fishes (Cooke and O’Connor,
2010); for example, to evaluate ecological quality of habi-
tats within the context of the EU Water Framework
Directive or to establish the ‘health’ of populations in par-
ticular habitats of interest. A prime example of an endocrine
biomarker is plasma vitellogenin, which, in freshwater
fishes, has been established as a key indicator of exposure to
endocrine-disrupting chemicals (Sumpter and Jobling, 1995;
Tyler et al., 1996).

If endocrine, cellular and molecular biomarkers are to be
useful for conservation research, it is important to under-
stand their limitations, which can include a lack of mechanis-
tic basis for their interpretation, complicated response
patterns in wild animals and unclear links to Darwinian fit-
ness (Forbes et al., 2006; McKenzie et al., 2007; Dantzer
et al., 2014). The most promising approaches are multifac-
torial and use a combination of indicators at different levels
of biological organization. These allow relationships to be
established among measures of functional integrity, such as
condition factor or otolith growth rates, and the endocrine,
cellular and molecular biomarkers. This, in turn, can then be
related to differences in the biotic and abiotic quality of habi-
tats (Cooke and Suski, 2008; Adams and Ham, 2011; Jeffrey
et al., 2015; King et al., 2016; Madliger et al., 2016). In
developing such suites of biomarkers for conservation
research, the focus should be on reliable and user-friendly
measures that combine field and experimental approaches
and provide ecological relevance (Adams and Ham, 2011;
Jeffrey et al., 2015; Madliger et al., 2016).

Revealing generalized ‘stress’ in natural populations can
be very informative. The stress hormones, glucocorticoids,
measured in feathers, hair, moulted skin or scat, are widely
used in conservation physiology research in wild tetrapods

(Dantzer et al., 2014). There is evidence that scales can be
used in this manner in fishes (Aerts et al., 2015), which opens
up this practice for conservation research. Cortisol can be
measured in fish eggs as a biomarker of maternal stress
levels; in tropical reef fishes, increased egg cortisol was linked
to poor reproductive success and reduced offspring size
(Gagliano and McCormick, 2009). A blood sample can also
provide a wealth of biomarker information in fishes. A major
problem with wild marine fishes is accounting for the acute
stress of capture, but various biomarkers are presumably not
sensitive to this, such as some oxidative stress indicators,
stress proteins and the expression of stress-related genes in
nucleated teleost red blood cells (Beaulieu and Costantini,
2014; Chadwick et al., 2015; Jeffrey et al., 2015; Madliger
et al., 2016).

Simple measures of condition factor and energy reserves
are informative physiological biomarkers of population
health (Claireaux et al., 2004; Jeffrey et al., 2015) that, in
this Theme Section, are applied as biomarkers for effects of
parasitism in a small pelagic species, the European anchovy
(Engraulis encrasicolus), in the northwest Mediterranean
(Ferrer-Maza et al., 2016). Some studies have measured
physiological indicators of whole-animal performance, such
as swimming ability, or hypoxia and thermal tolerance,
including measurements on fishes in mesocosms or caged at
specific sites (Claireaux et al., 2004; McKenzie et al., 2007;
Roze et al., 2013). A multifactorial approach has a number
of obvious applications in evaluating impacts of major envir-
onmental stressors on marine fishes, and to predict the rela-
tive sensitivity of different species.

The critical thermal maximum is a physiological ‘bio-
marker’ of incipient lethal thermal tolerance (Lutterschmidt
and Hutchison, 1997), which has been related to ecological
phenomena caused by global change (Pörtner and Peck,
2010; Sunday et al., 2011, 2012). In natural populations,
habitat warming and extreme thermal events can generate
sublethal molecular biomarker responses, notably heat shock
proteins. Some freshwater Arctic charr (Salvelinus alpinus)
populations inhabit water bodies that, as a result of global
change, now exceed the fish’s seasonal thermal optimum.
These populations exhibit constitutive heat shock protein
and glucose stress responses (Chadwick et al., 2015). A his-
tory of exposure to extreme warming events can affect gluco-
corticoid responsiveness to acute stress in coral reef fishes
(Mills et al., 2015), and the thermal regime during develop-
ment and incubation may have marked influences on off-
spring (Zambonino-Infante et al., 2013; Moyano et al.,
2016). There is an opportunity, therefore, to develop data-
bases on lethal thresholds, evaluated as the critical thermal
maximum, but also to investigate how evidence of sublethal
thermal stress in populations of interest might relate to func-
tional indicators, such as indicators of bioenergetic or nutri-
tional status. Beyond direct management applications, this
sort of information would also inform projections of species
sensitivity to predicted patterns of global warming.
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Loss of equilibrium during progressive hypoxia has been
used as an indicator of incipient lethal hypoxic threshold
(Anttila et al., 2013; Roze et al., 2013; Claireaux and
Chabot, 2016), and the Pcrit (or O2crit) is a physiological
‘biomarker’ of sublethal hypoxia tolerance (Claireaux and
Chabot, 2016; Rogers et al., 2016). Above the O2crit, fishes
can show reduced aerobic scope, which can be linked to
impairments to physiological performance and reduced appe-
tite. Although these physiological effects of hypoxia may be
understood mechanistically, evaluating the impact of envir-
onmental hypoxia upon fish ecology and evolution remains
difficult in practice. Overcoming this challenge is becoming
increasingly important in the face of growing marine hypoxic
zones. The constitution of a database gathering key informa-
tion about species’ oxygen requirements and susceptibility to
reduced oxygen availability (Rogers et al., 2016) is an
important first step. Once again, a multifactorial approach
holds promise. Knowledge of hypoxia thresholds, based
upon laboratory experiments, could be compared with bio-
chemical, physiological, bioenergetic, nutritional and behav-
ioural indicators in populations of interest, in order to gain
insight into the ecological consequences of prevailing hyp-
oxic stress.

Noise pollution can be a major environmental stress for
marine fishes, which has been studied for its effects on their
behaviour (Slabbekoorn et al., 2010; Simpson et al., 2016)
and their physiology (Nichols et al., 2015; Sierra-Flores et al.,
2015; Celi et al., 2016; Simpson et al., 2016). In experimental
conditions, noise can cause physiological stress responses and
upregulation of stress proteins (Nichols et al., 2015; Celi
et al., 2016). Research in aquaculture has shown that
Atlantic cod exposed to daily, low-level noise pollution dur-
ing the spawning window accumulated cortisol in their eggs
and had lower egg production and fertilization rates (Sierra-
Flores et al., 2015). It seems evident, therefore, that further
research should be performed to investigate responses to
noise pollution in natural populations, applying a multifac-
torial approach (Adams and Ham, 2011; Jeffrey et al., 2015)
that could also include maternal effects, such as accumulation
of cortisol in eggs and the potential downstream effects on
larvae. Research should distinguish between the type and
intensity of noise, on a continuum from not detectable to
chronic but allowing habituation to acute and damaging.

In Europe, reforms to the Common Fisheries Policy have
made discard of unwanted bycatch an important policy
issue, and one where physiological biomarkers clearly have
useful applications. This is a very active area of research, so
this is restricted here to some generalizations about manage-
ment needs that are useful to highlight for anyone who is
starting out, as follows: (i) characterize the relative sensitivity
of different species relative to gear types, environmental con-
ditions and handling procedures; (ii) predict mortality (and
sublethal fitness impacts) of discarded fishes (Davis, 2010);
and (iii) identify strategies for reducing stress, injury and
mortality and improving welfare (Metcalfe, 2009). Bearing

in mind that all captured fishes will experience some level of
stress and injury, these effects are related and, therefore, may
be difficult to disentangle. It is difficult to generalize across
species and capture method, and impacts may vary season-
ally and ontogenetically. Even fishes that escape capture may
suffer impacts of some kind.

Is there a universal paradigm linking
physiological function to ecological
performance?
Understanding the physiological mechanisms that determine
how marine fishes perform, in relationship to environmental
conditions, should contribute to conservation activities by
providing insights into current and future species abundance
and distribution (Pörtner and Farrell, 2008; Pörtner, 2010;
Jørgensen et al., 2012; Teal et al., 2015; Marras et al.,
2015a). One major hypothesis to define how environmental
conditions affect performance, with implicit consequences
for population dynamics and habitat selection, focuses on
the ability of fishes to increase their rate of oxygen uptake to
meet the metabolic demands of essential activities. First for-
mulated by F. E. J. Fry, hence called the ‘Fry paradigm’ (Fry,
1971, 1947; Priede, 1985; Kerr, 1990), it is based upon
scope for aerobic activity (Fig. 2). Aerobic scope is the inte-
grated capacity of the cardiovascular and respiratory systems
to provide oxygen for essential activities beyond vital basal
metabolic processes, i.e. activities such as locomotion (e.g.
evading predators, foraging, social interactions, migration),
digestion and somatic and gonadal growth (Fry, 1971;
Priede, 1985; Claireaux and Lefrançois, 2007; Pörtner and
Farrell, 2008; Schulte, 2015; Baktoft et al., 2016). Thus, the
hypothesis provides a mechanistic link from the structural,
biochemical and physiological components of metabolism to
ecologically relevant performance measures. There is evi-
dence that large-scale failures in upriver spawning migrations
of adult Pacific salmon (Oncorhynchus species) may have
occurred because abnormally high summer temperatures
impaired swimming performance through reduced aerobic
scope, which is one of the most prominent examples of con-
servation physiology research for fishes (Eliason et al., 2011;
Patterson et al., 2016).

An important potential strength of the Fry paradigm is
that it can integrate effects of major environmental stressors
(Fig. 2), notably hypoxia, ocean acidification and pollutants,
because they can all constrain aerobic scope (Claireaux and
Lagardère, 1999; Lefrançois and Claireaux, 2003; Claireaux
and Lefrançois, 2007; Ishimatsu et al., 2008; Claireaux and
Chabot, 2016). This focus on aerobic metabolism of fishes
was the stimulus for a previous journal special issue by
COST FA1004, which provided definitions and methods for
measures of metabolic rate in fishes, and case studies illus-
trating the relevance of metabolic rate in management of
fishing and environmental changes (Chabot et al., 2016).
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The Fry paradigm was the basis for the more mechanistic
oxygen- and capacity- limited thermal tolerance (OCLTT)
hypothesis, which posits that the decline in aerobic scope
outside an optimal temperature range is caused by an
impaired capacity of mitochondria to use oxygen at low tem-
peratures or of the cardiorespiratory system to supply oxy-
gen at high temperatures (Pörtner and Knust, 2007; Pörtner
and Farrell, 2008; Pörtner, 2010; Schulte, 2015). An influen-
tial study by Pörtner and Knust (2007) indicated a correl-
ation across laboratory measurements of aerobic scope at
various temperatures with thermal tolerance, growth rate
and local abundance of a wild population of the eel pout
(Zoarces viviparous). The Fry and OCLTT paradigms have
attracted considerable research attention for fishes (Clark
et al., 2013; Gräns et al., 2014; Norin et al., 2014; Wang
et al., 2014; Brijs et al., 2015) and other ectotherms
(Overgaard et al., 2012; Ern et al., 2014; Fobian et al.,
2014; Verberk et al., 2016), especially to investigate the
mechanistic tenets of the OCLTT hypothesis. In this Theme
Section, Baktoft et al. (2016) found no phenotypic

covariance between aerobic scope of European perch (Perca
fluviatilis), as measured in the laboratory, and their spontan-
eous swimming activity in the wild, suggesting that other fac-
tors may override any links between scope and fish
performance in routine ‘benign’ conditions (Killen et al.,
2013). Careful laboratory studies on various fishes have
failed to find evidence that aerobic scope declines when they
are near their upper lethal temperature or that oxygen deliv-
ery is the factor defining tolerance of acute warming (Norin
et al., 2014; Wang et al., 2014; Brijs et al., 2015). A study
by Claësson et al. (2016) on European eel (Anguilla
anguilla), in this Theme Section, reports that aerobic scope
increases with acute warming, underpinned by increases in
cardiac output, until temperatures that are almost lethal.
Thus, the universality of the Fry and OCLTT paradigms has
been questioned, and this remains an active debate (Clark
et al., 2013; Schulte, 2015; Farrell, 2016).

Also in this Theme Section, Lefevre (2016) presents a
comprehensive review and analysis of the effects of
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Figure 2: (A) The Fry or oxygen- and capacity- limited thermal tolerance (OCLTT) paradigm, a conceptual model of how environmental factors
influence aerobic metabolic scope (AS) of fishes (Fry, 1971; Pörtner, 2010). Acclimatization temperature, on the abscissa, is a factor that controls
the rates of all metabolic processes in ectothermic marine fishes. The blue and red lines in (A) model how standard (minimal) metabolic rate
(SMR) and maximal metabolic rate (MMR) vary as a function of temperature. The difference between SMR and MMR is AS, the capacity of the
cardiorespiratory system to provide oxygen for all activities above maintenance, i.e. locomotion, digestion and tissue growth. The SMR, the cost
of vital basal processes, increases exponentially with temperature, owing to direct acceleratory effects of heat. At low temperatures, MMR is low
because of depressive effects of cold on biochemistry and physiology, including mitochondrial oxygen supply and ATP production. As a result,
AS is small. As temperature rises, AS increases as biochemical and physiological rate capacity increase. At a certain temperature, however, MMR
reaches an asymptote, attributable to intrinsic limitations to cardiorespiratory capacity. At temperatures above this, SMR rises inexorably until
basic maintenance requires the entire cardiorespiratory capacity, so AS falls to zero. (B) The resultant relationship of AS with acclimatization
temperature, with a clear bell-shaped performance curve and a temperature range where AS is maximal. The form of this curve is expected to
be species (or even population) specific and to reflect evolutionary history. The other lines in (A) show effects of loading factors, such as stress
(light blue), and limiting factors, such as hypoxia (orange), with the resultant reduction in AS shown in (B) in grey. Figure redrawn from
McKenzie (2011). (C) The relationship between SMR, MMR and temperature that is shown by many species, with (D) showing the resultant
relationship of AS with temperature (Lefevre et al., 2016). All fishes show a similar effect of temperature on SMR, but some show a parallel
increase in MMR, such that scope is the same across all temperatures (dashed MMR and AS lines in C and D, respectively). Other species show a
greater increase in MMR than in SMR, such that scope rises progressively with temperature (continuous MMR and AS lines in C and D,
respectively).
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temperature and mild hypercarbia (reflecting projected
increases in water CO2), alone and in combination, on aer-
obic scope in fishes and other marine ectotherms. This
revealed more variation in the response of aerobic scope to
elevated temperature and CO2 than would be predicted by
the Fry and OCLTT paradigms. Although some species
exhibited an aerobic performance curve that rose and then
declined as a function of increasing temperature, a consider-
able number of species did not. Some exhibited no change or
a decrease in aerobic scope, whereas many exhibited a con-
stant increase, without any mortality, as they were warmed
towards their lethal threshold (Fig. 2; Lefevre, 2016). The
effects of elevated CO2 also varied among species, often
being without effect or sometimes increasing aerobic scope.
In cases where hypercarbia suppressed aerobic scope, high
temperature sometimes had a synergistic effect, but a simple
additive effect was the most common (Lefevre, 2016).

Overall, although it is intuitive that physiological energet-
ics will be of ecological significance for aquatic ectotherms
(Fry, 1947, 1971; Ware, 1982; Priede, 1985; Kerr, 1990;
Jørgensen et al., 2012), it would also be unwise blindly to
assume that the Fry and OCLTT paradigms hold for all mar-
ine fish species (Lefevre, 2016). The effects of temperature on
aerobic scope may depend upon a species’ ecology and his-
tory of exposure to diurnal or seasonal temperature varia-
tions (Norin et al. 2014; Lefevre, 2016). A lasting impact of
the paradigms, whatever might be learned about their uni-
versality, is that they have focused attention on how thermal
performance curves can provide a mechanistic link between
physiology and ecology for fishes (Schulte, 2015). In particu-
lar, they can be integrated into ecological models to provide
insights for management and conservation.

Integrating physiology into
ecological models
Models are now important tools for projecting the impact of
global change on abundance and distribution of marine
fishes. The ability to transfer knowledge of historical obser-
vations and make robust projections of future distributions
is essential to provide sound advice for management deci-
sions (Jørgensen et al., 2012; Cooke et al., 2014; Peck et al.,
2016). This is an area where physiology is perceived to hold
great promise for conservation research, through integration
into mechanistically based models of habitat suitability,
which should provide increased confidence in projections
(Hollowed et al., 2011; Jørgensen et al., 2012, 2016; Teal
et al., 2012, 2015; Cooke et al., 2013, 2014; Deutsch et al.,
2015; Marras et al., 2015a; Peck et al., 2016).

Species distribution models are a common ecologically
based approach, which use associations between aspects of
habitat and known occurrences of species in order to define
sets of conditions in which species are likely to occur (Ben
Rais Lasram et al., 2010; Albouy et al., 2012, 2013). The

correlative approach has contributed significantly to projec-
tions of the potential effects of climate change on marine fish
distributions. Its practical advantages are simplicity and flexi-
bility in data requirements, and the range of biotic/abiotic
interactions that can be incorporated (Kearney and Porter,
2009). Such correlative approaches are not, however, under-
pinned by mechanistic causalities, which is a prerequisite for
confident projections of species range shifts (Jørgensen et al.,
2012; Teal et al., 2015).

Physiology-based models should be able to deal with these
issues of extrapolation because the organismal response is
measured in the laboratory in controlled environmental con-
ditions. Furthermore, physiology-based models overcome the
circularity of predicting species response to climate change
using range filling of potential distributional areas (Teal
et al., 2015; Peck et al., 2016). Models that incorporate
physiology typically focus on energetics because of the intui-
tive link to ecological performance (Jørgensen et al., 2012).
These models vary in the assumptions and structure of the
physiology that is included, from the empirically driven
Wisconsin school of bioenergetics modelling (Hewett and
Johnson, 1987; Hanson et al., 1997) to dynamic energy bud-
get (DEB) models that strive for a universal description of
organismal energetics derived from first principles
(Kooijman, 1993, 2010). That being said, the integration of
physiology into models is an area where further research and
input are vitally needed. There is a need for reliable knowl-
edge about how fishes function, in order to ensure that ‘uni-
versal’ traits of energetics are valid and are correctly
represented in model parameterizations. This is essential to
improve confidence in predictions about effects of climate
change (Brander, 2015; Peck et al., 2016). The debate sur-
rounding the Fry and OCLTT paradigms’ performance
curves has already been mentioned, and the physiological
principles underlying some other influential model projec-
tions (Pauly, 1981; Cheung et al., 2011, 2012) have also
been questioned (Brander, 2015).

Aerobic scope can be a useful physiological parameter for
models that link individual energetics to processes at higher
biological levels (Fig. 3), and which can incorporate interac-
tions among stressors (Jørgensen et al., 2012). One approach
has used aerobic scope to define habitat suitability, based on
laboratory measurements of it as a function of acclimatiza-
tion temperature in target species, coupled with oceano-
graphic modelling. The model outputs include ‘metabolic
maps’ (Del Raye and Weng, 2015; Deutsch et al., 2015;
Marras et al., 2015a,b; see also Martin et al., 2015) based
on the hypothesis that scope is an indicator of relative fitness
potential (Fig. 4). Models based on aerobic scope can be use-
ful in studies of invasive species, by projecting the relative
performance of a native species and its competitor counter-
part, thus estimating the ‘winners’ and ‘losers’ under climate-
driven change for various locations and at different times
(Marras et al., 2015a). Other applications could include
studies on key predators or prey species, in order to evaluate
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possible effects of global change on trophic relationships and
food webs.

There are also life-history models that incorporate aerobic
scope as a constraint in life-history evolution, in order to
explore its links to fitness (Holt and Jørgensen, 2014, 2015;
Jørgensen et al., 2016). They integrate the physiology of oxy-
gen uptake and use with foraging and digestion and with life-
history traits, such as growth, survival and reproduction
(Holt and Jørgensen, 2014, 2015). When these characteristics
of an individual were optimized together in a model for
Atlantic cod, simulations suggested that fitness would rapidly
decline at high temperatures as a result of energy-budgeting
conflicts (Holt and Jørgensen, 2014, 2015; Jørgensen et al.,
2016), driven in part by increased food requirements
(Johansen et al., 2015). These models are interesting because
their projections appear to be relatively robust to the shape of
the aerobic scope performance curve near the lethal limit,
because fitness peaked at cooler temperatures (Holt and
Jørgensen, 2014, 2015; Jørgensen et al., 2016). Thus, irre-
spective of any doubts about the universality of the Fry or
OCLTT paradigms, these life-history models suggest that oxy-
gen budgets may well define a main constraint for future pro-
jections of marine fishes under environmental change (Holt
and Jørgensen, 2014, 2015; Johansen et al., 2014, 2016).

Dynamic energy budget theory has also been used as a
mechanistic basis to model habitat suitability (Teal et al.,
2012, 2016; Raab et al., 2013). The theory is grounded in
the idea that metabolism is organized in the same way within
all organisms, including fishes (Fig. 5). It derives from a num-
ber of assumptions that can describe empirical patterns, such
as the van Bertlanffy growth curve or Kleiber’s rule (for a
list, see Sousa et al., 2008), which are consistent throughout
the animal kingdom. The advantage is that the standard

DEB model can be applied to all organisms and therefore all
fish species, with each described by a set of species-specific
parameters. Although parameterization requires empirical
data, if data are lacking the model can still provide useful
insights with data from related species for which more is
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Figure 3: A schematic diagram of how aerobic scope can be
integrated into mechanistically based models. It can be used to form
a performance curve with temperature, to describe habitat suitability
(metabolic maps, e.g. Marras et al., 2015a) and it can be a constraint
for oxygen allocation to competing activities in life-history models
(Holt and Jørgensen, 2014, 2015). See Jørgensen et al. (2012) for more
details.

Figure 4: An example of metabolic maps for two herbivorous fishes
in the Mediterranean, developed by combining an aerobic scope
performance curve with oceanographic data (for details, see Marras
et al., 2015a). Thermal habitat suitability (THS) was computed for the
whole Mediterranean Sea from the basin-scale model results. (A)
Thermal habitat suitability of a native species, salema (Salpa salpa),
based on present-day simulation results. (B) Thermal habitat
suitability of the salema projected for a future scenario. (C) Thermal
habitat suitability of an invasive lessepsien species, the marbled
spinefoot (Siganus rivulatus), based on present-day simulation. (D)
Thermal habitat suitability of the marbled spinefoot projected for the
future scenario. Black dots represent the sites where the fish species
have been observed.
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known. The potential applications of the DEB-based models
are similar to the aerobic scope models, but their particular
value is that they provide outputs of growth and fecundity in
relationship to environmental conditions, such as temperature
or food availability. Dynamic energy budget modelling, in
combination with ecosystem models that provide spatial and
temporal data on environmental conditions, has been used to
develop maps of optimal habitats for growth of marine flat-
fishes and to project these under climate-driven warming (Teal
et al., 2012). The DEB theory can also be used to investigate
effects on energetic pathways of other stressors, such as hyp-
oxia, acidification or pollutants, if data are available.

Physiological models based on aerobic scope or DEB need
to be integrated with physical ocean models and validated
against population- and community-level data, so that they
can achieve their promise. This would allow them to contrib-
ute to, for example, the Intergovenmental Panel on Climate
Change (IPCC) predictions for effects of warming on global
marine fisheries (Cheung et al., 2009, 2013; Sumaila et al.,
2011). The ability to investigate how other processes, such as
hypoxia, ocean acidification and trophic disruption, will
interact with warming is now recognized as a research prior-
ity (Gunderson et al., 2016) and is a major strength of the
models that incorporate aerobic scope or DEB. This has been
highlighted as an area of great uncertainty in other

physiology-based models (Brander, 2015). Once again, how-
ever, application of physiology in models requires more infor-
mation on many more marine fish species. Parameterizing
any mechanistically based model with valid physiological
data could be a major undertaking, requiring significant long-
term studies, use of facilities and personnel. International col-
laboration and funding are therefore required to coordinate
development of laboratory and field measurements of physi-
ology and physiologically based models.

Embedding physiological knowledge of species within
models representing the spatial dynamics of marine food webs
can provide concrete advice for fish conservation. This is espe-
cially true in light of the current emphasis on ecosystem-based
fisheries and ecosystem management in Europe and elsewhere.
Ecophysiologists and modellers can collaborate to create new
tools, beyond well-established models, such as the Ecopath
with Ecosim (Christensen and Walters, 2004) or species distri-
bution models based on bioclimate envelopes (Peck et al.,
2016), to enhance understanding of fishes and their responses
to global change and to provide knowledge and tools to sup-
port adaptive management (Williams, 2011; Elliott et al.,
2015; Queirós et al., 2016).

The significance of individual
variation
A major challenge for conservation of biodiversity is to
understand the capacity of species to acclimatize and, ultim-
ately, to adapt genetically to ongoing global change
(Seebacher and Franklin, 2012; Crozier and Hutchings,
2014; Seebacher et al., 2015). A core issue is to understand
the different facets of intraspecific diversity, i.e. the differ-
ences among individuals within a population or species that
are the substrate for evolution by natural selection. Of par-
ticular interest, from a conservation perspective, is the indi-
vidual variation in physiological sensitivity to environmental
conditions that exists within a given species, including how
this may vary among populations across their geographical
range, as a result of local adaptation. This variation needs to
be understood in itself, as an indication of the potential
resilience of a given population or species to environmental
change and habitat modification. Ultimately, the goal is to
understand how such variation links to life-history variation,
to adaptation and evolution of the population or species,
and so to underlying heritable genetic variation. Such asso-
ciations are far from being understood in marine fishes, even
for the most intensively studied species, such as Atlantic cod
or Atlantic salmon.

The causes and consequences of individual variation in
physiology are currently major areas of research, and there
are many fundamental and ‘mechanistic’ physiological ques-
tions with conservation implications, such as the significance
for an ecosystem approach to fisheries (Killen et al., 2015;
Ward et al., 2016). Intraspecific diversity can have a genetic
basis but it can also vary with life stages and sex and be
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Figure 5: Schematic representation of the standard dynamic energy
budget (DEB) model showing the paths of energy flow through a fish
(or any organism). Sources or sinks of energy are shown as green,
brown and orange ovals; the blue ovals are the three state variables
describing the organism. Processes affecting energy flows are
indicated by black arrows. A defining feature of DEB models is the
existence of reserves, from which allocation rules (proportion K1)
define the partition of energy among processes such as maintenance
(somatic or gonadal), somatic growth and reproduction. Dynamic
energy budget models can be parameterized to account for effects of
abiotic variables, and their universal principles allow for interspecific
comparisons of parameter estimates. See Teal et al. (2012) for details
of an application to evaluate and project marine fish habitat
suitability.
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affected by transgenerational maternal effects and early life
experience (Gore and Burggren, 2012; Ho and Burggren,
2012; Miller et al., 2012; Zambonino-Infante et al., 2013).
One area of individual physiological variation that is of
major interest is ‘metabolic phenotypes’, meaning animals
with different metabolic rates and aerobic scopes, and the
ecological and evolutionary significance of this (Metcalfe
et al., 2016b). An associated core issue, which transcends
physiology, is to understand how major physiological,
behavioural and life-history traits might co-vary, whether
they might associate into syndromes, and how these might
be maintained by ecological trade-offs (Réale et al., 2010;
Careau and Garland, 2012; Killen et al., 2013). These vari-
ous questions are far too broad and complex to be reviewed
adequately here, but they are very poorly understood in mar-
ine fishes as a whole. A perspectives paper in this Theme
Section considers these issues and, therefore, the reasons why
individual variation should be taken into account in the eco-
system approach to fisheries (Ward et al., 2016).

Although physiological traits are often attributed eco-
logical and evolutionary significance, there is a need to inves-
tigate trait repeatability in wild fish populations and whether
the temporal stability of traits may be affected by changing
environmental conditions. Temporal stability of physio-
logical traits, plus a genetic component to the observed intra-
specific variation, is a prerequisite for a trait to be a target
for natural selection. This would influence the ability of spe-
cies to evolve the trait in response to environmental condi-
tions. Changing environments may erode or enhance trait
repeatability, possibly changing which traits are under direct
and correlated selection. At present, investigation of poten-
tial effects of climate change in marine fishes have primarily
examined how warming or ocean acidification can influence
population means for variables such as locomotory capacity,
metabolism or behaviour (Seebacher et al., 2015; Lefevre,
2016; Nagelkerken and Munday, 2016). The current lack of
information about how such environmental disturbances
affect trait repeatability is a crucial gap that hinders the abil-
ity to predict how populations can cope through evolution-
ary responses. Ongoing advances in respirometry and
biotelemetry/biologging, in particular, should increase under-
standing of trait repeatability in marine fishes and its
response to changing environments. The repeatability of
traits, and the extent to which this is context dependent, is
the topic of a review by Killen et al. (2016a) in this Theme
Section, with consideration of the implications for manage-
ment and conservation of fish populations.

It is worthwhile to consider whether ecological models
can incorporate individual variation, how these might be
parameterized, and whether new models might be needed.
Unstructured population models, such as the Lotka–Volterra
competition or predator–prey model, assume that all indivi-
duals are equal. Age-structured models, such as the well-known
Leslie matrix model (Caswell, 2000), take ontogenetic stage
into account but ignore other potential sources of variation,

assuming a constant and similar environment for all indivi-
duals and that animals of the same age remain exactly the
same across time. Physiologically structured population
models consider the potential for a variable environment to
introduce variation, such that animals of a similar age may
differ significantly, allowing for richer ecological interac-
tions (de Roos, 1997; de Roos and Persson, 2013). The
basic physiology and behaviour of each individual in these
models is characterized by a parameter vector, which thus
represents the genotype, and the vector of state variables
represents the phenotype. The DEB model of the individual
can serve as a building block for these physiologically struc-
tured models, with an example provided by van der Meer
(2016) in this Theme Section. All individuals usually have
the same parameter vector and thus the same genetic consti-
tution in physiologically structured population models
(Kooi and van der Meer, 2010). Studies to investigate the
evolutionary stability of populations require genetic vari-
ability. Adaptive dynamics models (Dieckmann and Law,
1996), for example, aim to find a population where mutants
(with a slightly different vector to residents) can no longer
invade (Metz et al., 1992). The approach normally assumes
clonal reproduction, but sexual reproduction can be incor-
porated, such that diversity among sexes can be considered.
In other models (e.g. Giske et al., 2014), the genotype is
explicitly modelled, which allows for emergent genetic vari-
ation and coexistence of different genotypes and pheno-
types (e.g. behavioural strategies).

Many current population and community models ignore
all potential sources of individual variation. Given that there
is a huge difference between an Atlantic cod larva and full-
grown adult, and a huge difference in growth rate between a
well-fed or starved cod, ontogenetic stage and environmental
history should, at least, be incorporated into population
models. Beyond that, certain phenomena may not be under-
stood and may not be predicted well if such variation is not
considered (Ward et al., 2016). Furthermore, the variation
may itself be of interest and provide insights into the under-
lying biological processes that have produced and main-
tained it. Given that parameterizing models to account for
the various different potential facets of individual variation
is a major long-term undertaking, in terms of facilities and
personnel, pragmatic alternatives are worthy of careful inves-
tigation. One such alternative is pattern-oriented modelling
(Grimm et al., 2005), which focuses on empirically quantify-
ing processes and key trade-offs that cause or constrain vari-
ation, then using a model to predict individual variation and
compare it with observed variation.

Understanding what fishes do in
nature
It remains a central problem to relate the physiology of
fishes, measured in the laboratory, to the habitats and condi-
tions they experience (and will select) in their natural
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environment. There are immense technical difficulties in fol-
lowing fishes in the vast three-dimensional marine realm,
let alone in measuring physiological variables or estimating
their physiological state and whether they occupy habitats
that optimize some element of their physiology (Freitas et al.,
2016).

Active and passive acoustic tracking is already widely
used in marine fishes, in order to follow them and estimate
variables such as swimming speed and distance, plus two-
and three-dimensional positioning. The acoustic signal car-
ries over only relatively limited spatial scales, but the
ongoing development of networks of acoustic receivers along
coastlines, such as the Ocean Tracking Network (http://
oceantrackingnetwork.org/research/canadian-projects/), will
provide extremely valuable information about, for example,
habitat use or migration patterns of marine fishes, that has
major applications for conservation research and policy.
Rapidly evolving techniques of measurement of physiological
variables from free-living animals, including fishes, have
been suggested to provide ‘answers to questions that we did
not know we should ask’.

The first biotelemetric measurement was probably per-
formed by Marey (1896). Biotelemetry and biologging
(Fig. 6) are now starting to provide information on the physi-
ology of animals in the field. Together with tracking data,
they are providing a better picture of the life cycles of some
economically important species, plus information about the
structure of their populations (Metcalfe, 2006; Rutz and
Hays, 2009; Block et al., 2011; Metcalfe et al., 2012;
Whitlock et al., 2015). These tools can record an animal’s
physiology while simultaneously recording environmental
conditions around it, in order to investigate assumptions
based on laboratory experiments. For example, some acous-
tic telemetry tags can measure oxygen content in the water
surrounding a fish and transmit this in real time (Svendsen
et al., 2006). There are emerging techniques to collect
physiological information on free-swimming fishes, which
can then be used to estimate energetics as a function of

prevailing environmental conditions (Gräns et al., 2010;
Wright et al., 2014; Metcalfe et al., 2016a). Third-
generation biotelemetry systems are being developed for sim-
ultaneous measurement of multiple physiological variables;
for example, blood flow, blood pressure, electrocardiograms,
electromyograms, three-dimensional acceleration and tem-
perature. These can have a bidirectional radio frequency link
that allows the implant to send data and accept commands
to perform tasks. The signal from the implant can be viewed
online, with a transmission range of ~10m in air. This is,
however, reduced in water, especially sea water, where alter-
native strategies are required, such as acoustic signalling or
biologging.

Biologging, where the physiological data are stored in the
tag/implant and then recovered, can be used on fishes released
into open water (Fig. 6). Recovery of biologging tags remains
a constraint, in particular for species that are not fished com-
mercially or are under a fishing moratorium. A low recovery
rate can make this method very costly, not only for the initial
investment in tags but for the effort to implant them.
Biologgers can collect and store both physiological variables
(e.g. electrocardiogram, acceleration) and environmental
parameters (e.g. pressure, temperature) that can be used to
reconstruct migration pathways (Metcalfe and Arnold, 1997;
Hunter et al., 2004), link behaviour to environmental condi-
tions (Righton et al., 2001, 2010; Sims et al., 2003), charac-
terize population structure (Metcalfe, 2006) and estimate
energetic costs of different behaviours or interactions with
humans (reviewed by Cooke et al. 2016). Pop-up tags that
store data are also now widely used in studies on marine
fishes, with the major advantage that data can be recovered
via satellite. There are limitations to the size of fish that can
carry the tags, and the tags can be expensive. Thus, most
research has been on large and economically valuable pelagic
or demersal fishes where, however, pop-ups have provided
valuable knowledge for management and conservation (e.g.
Block et al., 2011; Whitlock et al., 2015). In most cases, these
tags are not ‘biologgers’; they store data only on environmen-
tal parameters, such as temperature and pressure.

An exciting development is the application of three-axis
accelerometer tags (both in telemetry and biotelemetry/logger
platforms) to monitor energy expenditure (Metcalfe et al.,
2016a), activity and state. Movement is one of the four main
bodily functions that incur energetic costs in animals. The
energy expenditure is governed by muscle contractions and
is typified by variable acceleration of the body (Gleiss et al.,
2010), so records of the tri-axial acceleration of fishes should
provide a useful proxy for activity-specific energy costs.
Recent studies have correlated dynamic tri-axial body accel-
eration with rates of oxygen uptake in various aquatic spe-
cies, including hammerhead sharks (Sphyrna lewini; Gleiss
et al. 2010) and European sea bass (Dicentrarchrus labrax;
Wright et al., 2014). Bi-axial and tri-axial acceleration, root
mean square acceleration and acoustically transmitted accel-
eration data have also provided some exciting insights into

Figure 6: An Atlantic cod (Gadus morhua) carrying a data storage tag
that records pressure, temperature and salinity. Photograph: Stefan
Neuenfeldt, DTU Aqua.
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fish behaviour and physiology (Clark et al., 2010; Wilson
et al., 2013; Marras et al., 2015b). High-frequency accelero-
metry can be used to distinguish among various behaviours,
such as feeding strikes and anti-predator escapes (Broell
et al., 2013).

There are potential applications for biotelemetry, espe-
cially biologging, that can be highlighted for marine fish con-
servation research (Metcalfe et al., 2012). Tracking can
improve our understanding of seasonal movements and
space use and would be invaluable for evaluating the design
and effectiveness of marine protected areas and to identify
potential spawning aggregations. The addition of measure-
ments of pressure, temperature and acceleration to the track-
ing devices can enable investigation of ontogenetic changes
in the behaviour of pelagic species and evaluation of options
for selective fishing strategies. Biotelemetric/logging data can
also be combined with other assays, in particular of blood
chemistry, to determine post-release survival of bycaptured
(or sport-fished) animals. Environmental data collected by
tracking or biotelemetric/logger tags can be used to define
behavioural thresholds for critical habitat parameters, such
as temperature (Neat and Righton, 2007; Righton et al.,
2010), oxygen concentration (Prince et al., 2010) and salin-
ity. This remains, therefore, a very exciting area of research
and technological development.

Making physiology relevant to
decision-making
The value of mechanistic physiological information is cur-
rently not widely appreciated by resource managers and pol-
icymakers, not least because physiologists have not made a
consistent effort to promote their science in this regard
(Cooke and O’Connor, 2010; Horodysky et al., 2015, 2016;
Patterson et al., 2016). There is a real opportunity to develop
fish environmental physiology as a discipline, by contributing
to conservation research (Cooke et al., 2013; Madliger et al.,
2016). Physiology can reveal mechanisms, which can be used
to explain ecological patterns, which may then support
evidence-based predictions and management decisions
(Cooke et al., 2013; Madliger et al., 2016). Physiological
tools and knowledge have already contributed to conserva-
tion goals for marine fishes; for example, to the management
of migrating Pacific salmon, to improving survival from
bycatch in specific fisheries, or to reducing the impact of
tourism on some natural fish populations (Madliger et al.,
2016; Patterson et al., 2016). Physiology should also be able
to inform policy decisions about the following: limiting mor-
talities from discards from many further fisheries; the design
of marine protected zones; adaptation to global change; pre-
dicting potential for invasive species; and many other things.

In this Theme Section, Horodysky et al. (2016) and
Patterson et al. (2016) provide thoughtful analyses of how
physiological research and the research process relate to the

needs of resource managers and their decision-making pro-
cess. Physiology must contribute to a broader toolbox or
conceptual framework within which policy operates.
Although mechanistic insight can be very useful for man-
agers and physiology can provide a component of this, it
cannot be the only source of information; it must be consid-
ered alongside genetics, behavioural ecology, trophic webs,
physical oceanography, and so on (Horodysky et al., 2015,
2016). Patterson et al. (2016) synthesize the reasons why
physiological research on sockeye salmon (Oncorhynchus
nerka) migration contributed successfully to management
decisions in British Columbia (Canada). A main driver was
an existing political motivation, based on observations of
reduced salmon runs that seemed linked to rising river tem-
peratures, which then funded targeted research; that is, there
was a direct connection between a management problem and
funding of physiologically based solutions. The collaboration
was then successful because of accountability, legal clarity,
effective institutional environments, good personal relation-
ships and peer acceptance. Interactions between researchers
and stake-holders were crucial, so that the people most
affected by decisions were familiar with the research and so
that personal relationships improved overall trust. Patterson
et al. (2016) urge researchers to be aware of the need to pro-
vide confident predictions regarding future outcomes, which
are tailored to specific management objectives; in particular,
to be able to quantify uncertainty to the level desired by
managers or other knowledge practitioners.

Fish physiologists generally lack contact with key policy-
makers and do not have direct information channels to
attune and balance their research with policy decisions.
Thus, a pervasive challenge is to integrate with other disci-
plines and scale up from physiology to decision-making.
Fishery biologists, by the nature of their work, do have direct
contacts and therefore represent an important link to policy
for physiologists. Figure 7 is a flow diagram of how physio-
logical research can inform management and policy
decisions, and the feedbacks to research that can be used
for adaptive management strategies (Williams, 2011).
Monitoring of biomarkers, at immediate time scales, can
provide advice for specific local conservation decisions; for
example, to assess ecological status of coastal zones or for
early warning of impacts of global change. This can feed
back to elicit more focused biomarker research and monitor-
ing at the local scale, but also feed forward to national and
international monitoring; for example, in the context of the
EU Water Framework Directive. As mentioned, however,
another route to influence policy is through increased inter-
actions with fishery biologists. Information about biomar-
kers of survival after discard can be provided to fishery
biologists, in support of advice they might provide at a
national level (Fig. 7). Information from field and laboratory
physiology studies can populate databases, in order to then
parameterize models to project ecological consequences at
the level of populations, species and assemblages. These can
influence wider-scale policy decisions, over longer time scales
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(Cooke et al., 2014). This flow of information may reveal
knowledge gaps and longer-term policy priorities that, in
turn, can feed back to drive more research; for example, in
large international collaborative projects.

It is worthwhile to consider how detailed knowledge of the
physiology, ecology and life history of marine fishes might be
distilled for easy application in wide-scale decision-making on
sensitivity of communities and assemblages to environmental
change. Biological traits analysis has often been applied to
assess the impact of environmental change on terrestrial and
freshwater communities but, so far, has relatively few applica-
tions to marine fishes (Elleouet et al., 2014). Biological traits
analysis holds promise because physiological, ecological and
life-history trait data exist for many marine fish species, and
an analysis of available information is the first step towards
constructing a trait-based index of climate change sensitivity,
in order to identify which aspects would be needed to develop
the index as a tool. This would then be assessed against exist-
ing community-level data from observational studies, at sites
that have been subject to recent and documented environmen-
tal change. Ideally, in the future, such functional sensitivity
indices could be used to construct simple models of species
extinctions and predict the likely impact of climate change on
biodiversity and community function.

Initial attempts at bridging gaps among marine fish phy-
siologists, ecologists, modellers and policymakers have been
made, which bear reporting here. Roundtable discussions at

a conference, funded by Action FA1004, were aimed at
understanding some of the barriers to knowledge exchange
between physiological and advisory processes, how to refine
policy-management issues so they can be reflected better in
conservation research, and whether fish physiologists have
sufficiently considered the impact of their research on stake-
holder and policy advice. A diversity of views was expressed,
and the discussions are best summarized as the following
general themes.

(i) The need for commonality of language. Dialogue is
needed to achieve common understanding among
physiologists, modellers and policy advisors. The
simplest of terms can have a different meaning among
scientists from different fields, and among stakeholders.
This needs to be overcome without diminishing the
autonomy of the various disciplines. A glossary of
common terms, linked to the database of physiological
information, would be useful.

(ii) Temporal scales are often different for research and
policy. Physiology may not be able to provide rapid
advice to support a pressing policy decision. Fishery
discards are a prime example, where policy changes
resulted from societal pressure and not scientific
understanding. Robust scientific underpinning would
have required detailed and complex studies, achieved
too slowly for policymakers. Such policy can, of course,
then fund post hoc research to investigate physiological

BIOMARKERS

DATABASE

EXPERIMENTS

FISHERY
BIOLOGISTS

MODELLERS

LOCAL
MANAGERS

INTERNATIONAL
POLICY

MAKERS

NATIONAL
MANAGERS

Laws, direc�ves, regula�onsMonitoring, impact
assessment

Arising concerns, improved
methods

PHYSIOLOGY:
Mechanisms

ECOLOGY:
Pa�erns

MANAGEMENT & POLICY:
Prac�ce and Decisions

Figure 7: Flow diagram of how physiological information can inform management and/or policy decisions (continuous lines) for marine fishes,
and how analysis of the information can be fed back to develop targeted research activities (dotted lines). Red dotted arrows show flow of
policy decisions (in the European Union). Biomarker information can be used directly for local management (in particular, early warning and
evaluation of ecological status). Physiological information can also influence national and international management/policy indirectly, by
interactions with ecologists; for example, biomarkers of bycatch survival to inform fishery biologists, or physiological databases for use in
modelling of population dynamics or effects of global change. The number of dotted lines feeding back to physiology reveal the many
contributions that physiological research could make to adaptive management programmes, including large-scale and long-term research in
response to, for example, EU or Intergovenmental Panel on Climate Change recommendations.
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impacts of discarding and the likelihood of surviving it
for the relevant species. A troubling example of
temporal asynchrony is the lack of immediate concrete
policy responses to evidence of profound effects on
marine ecosystems of gradual ongoing climate change
(Elliott et al., 2015).

(iii) Don’t give me the details, just the summary.
Physiologists are interested in mechanistic detail, the
responses of individuals and populations to changes in
environmental conditions, typically of one particular
model species. Such details often, however, run counter
to effective stakeholder engagement and/or the advice
needed for policy, which require synthesis of
information into tangible effects. For example, the
implications for fishing and fishermen, for future
scenarios on fishing areas and species (in the context of
climate change) or for the number and size of marine
protected areas. Physiologists must learn to present their
information in a holistic and understandable manner,
including presentation to others in the scientific
community, such as ecologists and modellers, who
could translate, interpret and summarize the
consequences for policy advice.

(iv) Physiologists need to champion their cause.
Physiologists must recognize that their research has
impact, particularly through interaction with other
related disciplines. It is not sufficient for physiologists to
provide the data to parameterize models, then to
dissociate themselves from the modelling outcomes.
They must contribute to interpretation of results, in
order to influence policy decisions. Physiologists need to
understand the realms of policy work and policy
decisions better, and the linkages from physiology to
ecology then policy, in order to influence outcomes
through co-production of knowledge and
transdisciplinary research.

Conclusions
There is much potential for physiological research to contrib-
ute to conservation of marine fish biodiversity and fisheries,
which strengthens fish environmental physiology as a discip-
line. There is a clear need to increase the overall knowledge
base about marine fish environmental physiology, especially
tolerance thresholds for major environmental stressors and
how such stressors affect performance within their tolerated
range. Physiologists should explore avenues for international
collaborative research, in order to avoid duplication of effort
and cover as broad a range of species as possible. A particular
application of such data would be to improve the reliability of
models in order to gain a better understanding of what defines
current fish distribution and abundance and, therefore, to
increase confidence in projections of the effects of ongoing glo-
bal change. Increased interaction with researchers using other
tools, notably fishery biologists, ecologists and modellers, will

provide a very fruitful avenue to increase the scope and impact
of marine fish conservation physiology research and to make
such research relevant to policy decisions.
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