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Summary 14 

 Models relating intake rate to food abundance and competitor densities (generalized functional 15 

response models) can predict forager distributions and movements between patches, but we lack 16 

understanding of how distributions and small-scale movements by the foragers themselves affect 17 

intake rates. 18 

 Using a state-of-the-art approach based on continuous-time Markov chain dynamics, we add 19 

realism to classic functional response models by acknowledging that the chances to encounter 20 

food and competitors are influenced by movement decisions, and, vice versa, that movement 21 

decisions are influenced by these encounters. 22 

 We used a multi-state modelling framework to construct a stochastic functional response model 23 

in which foragers alternate between three behavioural states: searching, handling and moving. 24 

 Using behavioural observations on a molluscivore migrant shorebird (red knot, Calidris canutus 25 

canutus), at its main wintering area (Banc d’Arguin, Mauritania), we estimated transition rates 26 

between foraging states as a function of conspecific densities and densities of the two main 27 

bivalve prey. 28 

 Intake rate decreased with conspecific density. This interference effect was not due to decreased 29 

searching efficiency, but resulted from time lost to avoidance movements. 30 

 Red knots showed a strong functional response to one prey (Dosinia isocardia), but a weak 31 

response to the other prey (Loripes lucinalis). This corroborates predictions from a recently 32 

developed optimal diet model that accounts for the mildly toxic effects due to consuming Loripes. 33 

 Using model-averaging across the most plausible multi-state models, the fully parameterized 34 

functional response model was then used to predict intake rate for an independent dataset on 35 

habitat choice by red knot. 36 
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 Comparison of the sites selected by red knots with random sampling sites showed that the birds 37 

fed at sites with higher than average Loripes and Dosinia densities, i.e. sites for which we 38 

predicted higher than average intake rates. 39 

 We discuss the limitations of Holling’s classical functional response model that ignores 40 

movement and the limitations of contemporary movement ecological theory ignoring consumer-41 

resource interactions. With the rapid advancement of technologies to track movements of 42 

individual foragers at fine spatial scales, the time seems ripe to integrate descriptive tracking 43 

studies with stochastic movement-based functional response models. 44 

 45 

Key-words: competition, continuous-time Markov chain, cryptic interference, diet, distribution, habitat 46 

choice, movement ecology, intake rate, predation, toxic prey47 
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Introduction 48 

Fine-scale spatial movements of foragers are steered by encounters with food items, the presence of 49 

competitors, and by the social benefits of living in a group. There is a growing body of literature on how 50 

the attractant forces of food interact with the opposing forces of conspecific attraction and repulsion (e.g. 51 

Folmer, Olff & Piersma 2010). Movement ecology is the emerging field in which these processes come 52 

together (Nathan et al. 2008). To make progress, we need a good understanding of what determines a 53 

forager’s encounter rate with both its group members and its prey (Gurarie & Ovaskainen 2013). 54 

Functional response models link foragers to their prey and other foragers (Jeschke, Kopp & Tollrian 55 

2002) and are a good starting point for modelling socially- and food-mediated movements (Avgar, 56 

Kuefler & Fryxell 2011). 57 

 In a substantial number of functional response models, the effects of prey density have been 58 

integrated with the effects of competitor density (i.e. the so-called ‘generalized functional responses’ 59 

reviewed by van der Meer & Ens 1997). As stressed by van der Meer & Ens (1997), most of these models 60 

are phenomenological because they lack a mechanistic underpinning of the processes of prey and 61 

competitor encounter, rendering it difficult to use them as firm building blocks in follow-up studies. 62 

Unfortunately, ratio-dependent predation models, which have been claimed to offer an altered perspective 63 

on trophic ecology (Arditi & Ginzburg 2012), are of phenomenological nature too (Abrams 2014). But 64 

note that even the few generalized functional response models that do mechanistically include 65 

competition have significant drawbacks. Most importantly, these models are built on the assumption that 66 

agonistic interactions are inevitable when two foragers meet. This rigid approach excludes the realistic 67 

possibility that foragers could avoid agonistic conflict situations by moving away from each other 68 

(Folmer, Olff & Piersma 2012). Recent empirical work has shown that socially foraging red knots 69 

(Calidris canutus) indeed avoid agonistic interactions (Bijleveld, Folmer & Piersma 2012). The time cost 70 

associated with this avoidance behaviour has been labelled ‘cryptic interference’ (Gyimesi, Stillman & 71 

Nolet 2010; Bijleveld, Folmer & Piersma 2012). Not unexpectedly, the few models that include 72 
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avoidance behaviour do a better job in explaining variations in intake rate than models that ignore 73 

avoidance (Stillman, Goss-Custard & Caldow 1997; Stillman et al. 2000). However, in such models 74 

foragers only move for reasons of competition, while there are other reasons to change location. 75 

 Among these reasons are the benefits of staying in the vicinity of group members, that may 76 

provide shelter (Wiersma & Piersma 1994), safety (Elgar 1989) and information (Couzin et al. 2005). 77 

Such benefits might indirectly affect food intake rates (Beauchamp 1998). For example, under 78 

experimental conditions in which the possibility for physical interference was eliminated, starlings 79 

(Sturnus vulgaris) feeding close together showed enhanced food intake and foraging efficiency compared 80 

with birds feeding further apart (Fernández-Juricic, Siller & Kacelnik 2004). Efforts to embed socially-81 

mediated behaviour into functional response models are still at their infancy (Folmer, Olff & Piersma 82 

2012). Not surprisingly, such models are yet to be developed and tested in the natural world. 83 

 The ways in which the presence (or absence) of food determines forager movements have been 84 

studied across wide range of organisms and spatial scales (e.g. Fryxell et al. 2008; Owen-Smith, Fryxell 85 

& Merrill 2010). Within contemporary movement ecology, there is much attention for how foragers 86 

should and do move through landscapes in search of food patches (Sims et al. 2008). Once in a patch and 87 

having encountered prey, it pays a forager to continue searching where it last found a prey (van Gils 88 

2010), a strategy called ‘area-restricted search’ (Tinbergen, Impekoven & Franck 1967). Recently, there 89 

have been theoretical efforts to enforce the link between prey taxis to consumption rates (Chakraborty et 90 

al. 2007; Avgar, Kuefler & Fryxell 2011), but these studies have not yet received empirical scrutiny. 91 

 In this paper we integrate food- and the socially-driven aspects of movement into an empirically-92 

derived functional response model by means of continuous-time Markov chain modelling. This modelling 93 

approach allows the construction of realistic functional response models by explicitly taking into account 94 

the fact that finding food and running into competitors are sequential and stochastic events. In such 95 

models, foragers can alternate between behavioural states at any moment in time (hence 'continuous time'; 96 
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van der Meer & Smallegange 2009), in which the instantaneous risk of switching to another state has 97 

‘Markov property’, i.e. transition rates depend only on the present behavioural state. Software to estimate 98 

statistical ‘multi-state models’ is available (e.g. Jackson 2011), which enables empirical analysis of 99 

transition rates between behavioural states as a function of food availability and the presence of group 100 

members (Smallegange & van der Meer 2010). 101 

We develop realistic functional response models for the well-studied red knot (Piersma & van 102 

Gils 2011; Piersma 2012) on the basis of observed foraging behaviour. These models are then used to 103 

predict spatial distributions on the basis of its food distributions. We start off by constructing a Markov 104 

chain functional response model in which foragers alternate between the behavioural states “searching for 105 

food”, “handling food”, and “moving without searching”. Next, we fit this model to focal sampling data 106 

collected on 1,242 individual free-ranging red knots at their main wintering area in Banc d’Arguin 107 

(Mauritania), in which transition rates between searching, handling and moving are related to prey and 108 

conspecific densities. The best models are then used to make spatially explicit predictions on 109 

(interference-free) intake rate with an independent dataset on food abundance, collected in another year. 110 

The predictive power of the models is investigated by relating the exact positions of 5,666 individual red 111 

knots to predicted (interference-free) intake rates. 112 

 113 

CONTINUOUS-TIME MULTI-STATE MARKOV CHAIN MODEL 114 

In the model, graphically depicted in Fig. 1, a forager can be in three mutually exclusive behavioural 115 

states (handling H, searching S and moving M), with five possible transitions between these states. From 116 

the searching state, a forager can either switch to the handling or the moving state. The rate at which a 117 

searching forager ‘switches’ to the handling state is better known as prey encounter rate and is 118 

symbolized in our model by β. The rate at which a searching forager decides to move on is given by δ. 119 

Thus, the total rate of a searching forager to stop searching, either due to a prey encounter or a decision to 120 
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move on, is given by β + δ. The inverse of this sum is the average length of a search bout. The rate at 121 

which a handling forager switches back to the searching state is given by α, while the rate of switching to 122 

the moving state is given by μ. Finally, a moving forager can only go back to the searching state and the 123 

rate at which this occurs is given by γ. A moving forager cannot find a prey and hence transitions from 124 

moving to handling do not exist. 125 

The following set of differential equations describes the dynamics in the number of handling (H), 126 

searching (S) and moving (M) foragers: 127 

ௗு

ௗ௧
ൌ ܵߚ	 െ ܪߙ െ  eqn 1 128      ܪߤ

ௗௌ

ௗ௧
ൌ ܪߙ	 െ ܵߚ ൅ ܯߛ െ  eqn 2 129     ܵߜ

ௗெ

ௗ௧
ൌ ܵߜ	 െ ܯߛ ൅  eqn 3 130      ܪߤ

At equilibrium, the number of individuals in each state is constant, which implies that each differential 131 

equation can be set to zero. This allows the equilibria H*, S* and M* to be calculated: 132 

∗ܪ ൌ
ఉௌ∗

ఈାఓ
       eqn 4 133 

ܵ∗ ൌ
ఈு∗ାఊெ∗

ఉାఋ
       eqn 5 134 

∗ܯ ൌ
ఋௌ∗ାఓு∗

ఊ
       eqn 6 135 

Since the total number F* of foragers can be expressed as F* = H* + S* + M*, the proportion of birds in 136 

the searching state at equilibrium can be written as (after substituting eqn 4 for H* in eqn 6): 137 

ௌ∗

ி∗
ൌ

ሺఈାఓሻఊ

ሺఈାఉାఓሻఊାሺఈାఓሻఋାఓఉ
     eqn 7 138 
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The multiplication of 
ௌ∗

ி∗
 with the transition rate β from searching to handling (i.e. the encounter rate with 139 

prey while searching), gives the per capita intake rate (van der Meer & Smallegange 2009). In the 140 

STATISTICS section below we explain how we linked covariates to transition rates. 141 

 142 

Materials and methods 143 

All data were collected in the Parc National du Banc d’Arguin, around the small fishery village of Iwik 144 

(Fig. 2A; Leyrer et al. 2012; van den Hout et al. 2014). To develop the multi-state functional response 145 

models and to test how well they predict foraging distributions, data on intake rate and on foraging 146 

distributions were collected during two separate expeditions. Behavioural data, which formed the basis 147 

for the Markov chain modelling, were collected in January-February 2008. Spatial distributions were 148 

collected between March and April 2007. Prey densities were sampled in both years.  149 

 150 

INTAKE RATE PROTOCOLS (2008) 151 

Observations on intake rates were carried out at three different sites in our study area (Fig. 2A). We 152 

returned to each site every third day to carry out observations. At two sites (site D and I) the observers sat 153 

on top of an aluminium scaffolding tower (LWH = 2×1×2 m), at the other site (site A) observations were 154 

carried out from a nearby dune. In total, 5 days were spent at site A (covering 7 low-tide periods), 5 days 155 

at site D (5 low-tide periods), and 6 days at site I (6 low-tide periods). In total, we carried out 156 

observations on 1,242 individual birds (411 at site A; 324 at site D; 507 at site I). 157 

Using 20-60×spotting scopes, we applied focal sampling by selecting focal individuals 158 

haphazardly. Each protocol comprised the period between two consecutive prey captures (mean ± SD 159 

duration = 39.0 ± 42.0 s). During this interval, behaviour was recorded using a voice-recorder (Philips 160 
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Digital Voice Tracer 7655) and was categorized into 9 different classes (searching, handling, walking, 161 

looking up, preening, chasing or being chased, flying, washing, drinking). Recorded observations were 162 

digitized using the freeware package EthoLog (Ottoni 2000). To avoid unwieldy models, we only 163 

considered transitions between the 3 most frequent behaviours (searching, handling and moving), and 164 

excluded transitions between the other 6 behaviours (which together made up only 6% of the total time 165 

budget). Using numbered wooden sticks, we divided an annulus (outer radius 200 m, inner radius 100 m) 166 

around the observation tower into 128 equally sized ‘bird sections’ (Fig. 2B). At site A the observational 167 

arena comprised half an annulus (outer radius 100 m, inner radius 50 m), which was divided into 20 168 

sections. The section in which the focal bird fed, together with the estimated distance from tower, enabled 169 

us to determine the position of the focal bird, which was used to assign a prey density estimate to each 170 

observation (see below). The total number of red knots, including the focal bird, present in the focal bird’s 171 

section was counted immediately after the protocol ended, which was used as our measure of knot 172 

density. Before the analysis, the number of red knots per plot at site A (589 m2/plot) was multiplied by 173 

1.25 to make them comparable to the densities at the other two sites (736 m2/plot). All observations were 174 

carried out by JAvG and HG. To prevent possible observer bias, both observers carried out simultaneous 175 

observations on the same birds during the two days preceding data collection. 176 

 177 

RED KNOT DISTRIBUTION (2007) 178 

In 2007 we mapped the positions of individual red knots on 7 different tidal flats in our study area (sites 179 

B-H; Fig. 2A), spending a single day at each site (usually covering a single low tide period, but 180 

sometimes two half low tide periods). Again we worked from a single scaffolding tower, which we 181 

relocated between observation days. As described above, an observation area comprised an annulus 182 

around the tower (outer radius 200 m, inner radius 100 m), with the annulus split up into 128 equally 183 

sized and shaped parts using poles placed at known coordinates (Fig. 2B). 184 
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Every half hour a photo was taken of each section, using a DSLR-camera (6.1 MP) with a 300-185 

mm lens and 1.4 teleconvertor attached to it. Using this setup, one bird section fitted exactly into one 186 

photograph, while allowing recognition of individual bird species. With 64 half hours across all 7 sites we 187 

obtained a total of 8,192 photos. The photographs were loaded into a GIS where the poles (indicating the 188 

section corners) and all individual birds were marked and given relative coordinates. The points 189 

describing the locations of the poles and birds were stored in a vector file. As the poles’ geographical and 190 

relative coordinates were known, we were able to calculate the birds’ geographical coordinates on the 191 

basis of principles of projective geometry for which we used Matlab R2011a. We first calculated the 192 

parameters of the projective transformation on the basis of the poles’ relative and geographical 193 

coordinates. Then the projection parameters were used to project the birds’ relative positions to 194 

geographical coordinates. In total, we calculated the positions of 5,666 individual red knots in this way. 195 

 196 

PREY DENSITY AND INTERPOLATION 197 

In both years, prey densities were estimated by taking sediment core samples at a number of stations 198 

inside the annulus around each tower. We divided the annulus around each tower into 16 equally sized 199 

‘benthos sections’ where benthos was sampled (the half annulus at site A used in 2008 was divided into 200 

three ‘benthos sections’). In each benthos section we randomly selected two locations (Fig. 2B). At each 201 

location two cores were taken. The distance between the cores at one location was 1 m in a random 202 

direction (to the benefit of estimating the autocorrelation function at short distances required for kriging, 203 

see below). In total we collected 448 benthos samples in 2007 (7 × 16 × 2 × 2) and 140 samples in 2008 204 

(2 × 16 × 2 × 2 + 1 × 3 × 2 × 2). 205 

Following procedures published elsewhere (van Gils et al. 2013), samples were taken with a 206 

sediment core with a diameter of 15 cm to a depth of 20 cm. To distinguish prey that were accessible to 207 

red knots from those that were not, we separated the top (0-4 cm) from the bottom layer (4-20 cm; red 208 
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knots have bills of 3.5-4.0 cm length) and sieved both layers over a 1-mm mesh. In the laboratory samples 209 

were sorted and each specimen was identified to species or genus level. Lengths were determined to the 210 

nearest 0.1 mm. As just two prey species at Banc d’Arguin dominate the food supply and diet of red knot 211 

(van Gils et al. 2012; Onrust et al. 2013; van Gils et al. 2013; van den Hout et al. 2014), we included only 212 

these two species in the analyses (Dosinia isocardia; Loripes lucinalis). Dosinia larger than 13.2 mm long 213 

were excluded from the analyses as red knots ingest their prey whole and are therefore gape-width limited 214 

in their diet choice (Zwarts & Blomert 1992).  215 

To estimate available Loripes and Dosinia densities at the individual bird positions (be it a focal 216 

bird in the intake rate protocols or a ‘photo bird’ in the 2007 distributional analysis), the sampled 217 

densities were interpolated by means of universal kriging. Because seagrass cover correlates with both 218 

Loripes and Dosinia density (Honkoop et al. 2008; van der Heide et al. 2012), and because NDVI 219 

(Normalized Difference Vegetation Index) is a good proxy for seagrass coverage in our study area 220 

(Folmer et al. 2012), we used NDVI and NDVI2 as auxiliary predictors of prey density. NDVI was 221 

derived from an image taken on 21 August 2007 at 11:25 AM GMT by the Landsat 5 TM satellite (the 222 

date most intermediate to both expeditions). The image was taken 1:25 h before local low tide (using the 223 

Dakar tidal chart and assuming a 5 hour delay in Iwik; Wolff & Smit 1990), with an average cloud cover 224 

of 10% (but being 0% for our study area). Following standard procedures (Kriegler et al. 1969), NDVI 225 

was calculated as 
NIR‐red

NIR൅red
, with the NIR reflection given by band 4 and the red reflection given by band 3 226 

(both at a 30 by 30 m resolution; Fig. 2). 227 

The best regression models for the deterministic parts of universal kriging were obtained as 228 

follows. Prey densities were loge-transformed to normalize the distributions. We added 1 to the arguments 229 

to avoid taking the logarithm of zero (which we subtracted after back-transforming the interpolated 230 

densities). We estimated the full model which included NDVI and NDVI2 as predictors and the nested 231 

sub-models (i.e. only NDVI or NDVI2 as a predictor). For the deterministic part in universal kriging we 232 
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used the model with the lowest AIC value (results are given in Table S1 in Supporting Information). For 233 

kriging we used the R package automap (Hiemstra et al. 2008), which builds on package gstat (Pebesma 234 

2004) and enables automatic interpolation. In this way, the regression- and geostatistical models may 235 

differ between tidal flats. 236 

 237 

STATISTICS 238 

Multi-state models were fitted with R (R Core Team 2013) using the msm package (Jackson 2011), which 239 

enables multi-state models to be fitted to longitudinal data (i.e. observations of state collected on the same 240 

subjects at multiple points in time). The msm package is able to estimate transition rates without knowing 241 

the exact moments of state changes; however, in our case we knew these exact moments, which obviously 242 

improves the accuracy of estimating transition rates. We explored how these rates covaried with available 243 

Dosinia density, available Loripes density, summed density of available Dosinia and Loripes together, 244 

and red knot density, testing for all possible combinations and interactions (but excluding combinations of 245 

summed prey density on the one hand and Dosinia or Loripes density on the other hand, since summed 246 

prey density is the sum of Dosinia and Loripes density). In the msm package these effects were tested 247 

using the proportional hazard model (Marshall & Jones 1995) as expressed below, taking transition rate β 248 

from searching to handling as an example: 249 

௜ߚ ൌ ଴,௜ߚ	 exp൫ܾଵ ଵܺ,௜ ൅ ܾଶܺଶ,௜ ൅ ⋯൅ ܾ௞ܺ௞,௜൯    eqn 8 250 

In this model, βi is the transition rate β of observation i on an individual’s searching state, β0,i is this 251 

observation’s baseline transition rate (i.e. βi = β0,i when covariates set to 0), X1,i…Xk,i are k covariates and 252 

b1…bk their statistical effects (note that the model has the same structure for transition rates α, γ, δ and μ). 253 

The model is proportional in the sense that effects of the covariates are multiplicative with respect to 254 

baseline rates (e.g. each unit increase in covariate X1 would result in a proportional scaling of transition 255 
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rate β). Further note that Markov models require individual bout lengths (i.e. the inverse of transition rate) 256 

to be exponentially distributed; a requirement for which we tested using the Cramér-von Mises test (using 257 

R package exptest; Pusev & Yakovlev 2011). Models were selected on the basis of Akaike’s Information 258 

Criterion (AIC; Burnham & Anderson 2002). Particularly, all models were ranked in order of increasing 259 

AIC values; with the model showing the lowest AIC value considered as the best model. Following 260 

Burnham & Anderson (2002), models with ΔAIC < 2 relative to the best model were also considered. All 261 

models were included for model-averaging (including those with ΔAIC ≥ 2), using each model’s AIC 262 

weight as a weighing factor. 263 

We used bagplots to explore the spatial distribution of red knots in relation to prey densities 264 

(using the aplpack package in R; Wolf & Universität Bielefeld 2012). Bagplots are the bivariate 265 

generalization of the well-known univariate boxplot, with the 50% most central data shown by a bag-266 

shaped surface (Rousseeuw, Ruts & Tukey 1999). 267 

 268 

Results 269 

FUNCTIONAL RESPONSE 270 

The frequency distribution of the durations of search bouts did not deviate from the exponential 271 

distribution (Fig. 3A; Cramér-von Mises test ߱௡ଶ = 1.93; n = 2,109; P = 1). This was also the case for the 272 

distribution of handling times (Fig. 3B; ߱௡ଶ = 13.38; n = 1,242; P = 1) and moving bouts (Fig. 3C; ߱௡ଶ = 273 

2.90; n = 929; P = 1). 274 

Two models explaining inter-state transition rates were about equally plausible. The best model 275 

(AIC weight = 0.52) included all three main effects (the densities of Dosinia, Loripes, and red knots) and 276 

one interaction (between Dosinia and Loripes densities; Table 1). The second best model (AIC weight = 277 

0.43), included Dosinia and red knot density only. All the other models were less supported (ΔAIC > 2) 278 

and therefore considered unlikely. 279 
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In both of the plausible models, Dosinia density had positive effects on α, β and γ (Tables 2-3). 280 

This means that at higher (available) Dosinia densities, red knots were: (1) more likely to resume 281 

searching after having found and handled a prey (α); (2) more likely to shift to handling state while 282 

searching, or stated more simply, found prey at a higher rate (β); and (3) returned to the searching state at 283 

higher rates after having moved (γ). Loripes density had an effect on β, which can be seen by considering 284 

the main effect and the interaction with Dosinia density (Table 2). Particularly, the main effect was 285 

positive but non-significant and the interaction was negative (and significant). The results imply that prey 286 

encounter rate β increased with Loripes density at low Dosinia density but showed no response to Loripes 287 

density at higher Dosinia densities (also refer to model-averaged model fits in Fig. 4). Red knot density 288 

affected transition rates α, μ, δ and γ. After handling prey in dense flocks, red knots were more likely to 289 

start moving (positive effect on μ) and less likely to return to the searching state (negative effect on α). 290 

Also when searching at high red knot densities they were more likely to give up searching and move on 291 

(δ). In addition, once moving through dense flocks, red knots were less likely to get back into their 292 

searching mode (γ). 293 

 294 

RED KNOT DISTRIBUTION 295 

The majority of the 5,666 individual red knots selected feeding sites that had higher available Dosinia and 296 

available Loripes densities (Fig. 4: small dark grey bag) than average densities (Fig. 4: large light grey 297 

bag based on kriged prey densities at benthos sites). Feeding sites contained higher densities of Dosinia (t 298 

= 3.59, df = 233.5, P < 5e-4) and Loripes (t = 4.39, df = 234.7, P < 5e-05) than our benthos sampling sites 299 

(again using kriged estimates, also at benthos sites). By feeding at relatively high prey densities, the red 300 

knots obtained relatively high intake rates (solid lines in Fig. 4, which are interference-free intake rates as 301 

predicted by the model-averaged multi-state model in which loge (red knot density) = 0). 302 

 303 

  304 
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Discussion 305 

FUNCTIONAL RESPONSE 306 

The Markov-chain modelling approach that we used has yielded important insights in the dynamical 307 

processes affecting prey intake rates and movements by red knots. We start with a discussion on the 308 

effects of conspecific density on foraging behaviour. The local density of red knots affected multiple 309 

behavioural transitions which determine the functional response. Although interference is often assumed 310 

to reduce searching efficiency directly (e.g. see citation classic by Hassell & Varley 1969), it was not 311 

observed in our study (no effect of conspecific density on β). Instead, the effects of interference appeared 312 

more subtle via a reduction of the transition rates to searching from handling (α) and moving (γ). Stated 313 

otherwise, the more conspecifics surround a given red knot, the smaller the likelihood that this bird would 314 

commence searching. The density of conspecifics in the vicinity increased the transition rates from 315 

handling to moving and from searching to moving (µ and δ, respectively). These conspecific density 316 

effects can be interpreted as movement behaviour to avoid or reduce possible direct interference effects, a 317 

phenomenon coined ‘cryptic interference’ (Gyimesi, Stillman & Nolet 2010; Bijleveld, Folmer & Piersma 318 

2012). 319 

Enter the effects of prey density. Starting with Dosinia, higher densities of this prey stimulated 320 

the transitions to searching, both when handling (α) and when moving (γ). These effects can be 321 

interpreted as behaviour leading to area-restricted search (Barraquand & Benhamou 2008) and would not 322 

have been detected if we had tested data against the more static classical functional response models (see 323 

below). Dosinia also had a positive effect on β. This effect is expected, since β, the transition rate 324 

between searching and handling, is equivalent to prey encounter rate (van der Meer & Smallegange 325 

2009), which increases with prey density in any functional response model (Jeschke, Kopp & Tollrian 326 

2002). It came as a surprise that the coefficient was smaller than one. A coefficient of one is expected 327 

under Holling’s assumption of a searching efficiency that does not vary with prey density (refer to eqn. 8 328 

in which β would then be a linear function of prey density and β0 would be searching efficiency; also see 329 

discussion below). A coefficient smaller than one means reduced searching efficiencies at higher prey 330 
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densities, a phenomenon likely due to higher rates of ‘invisible’ prey rejection at higher prey densities 331 

(due to a digestive constraint red knots are expected to reject an increasing proportion of Dosinia at high 332 

densities; van Gils et al. 2013). As prey rejections may occur before prey are lifted to the sediment 333 

surface, we have likely missed prey rejections, thereby underestimating searching efficiency at higher 334 

prey densities. 335 

Only at low prey densities did more Loripes increase intake rate (model fits in Fig. 4 and Table 336 

2). In the light of our recent findings, this result did not surprise us. Although Loripes with its high flesh-337 

to-shell ratios may seem the ideal prey, it is not. This is because an endosymbiosis with chemoautotrophic 338 

sulphur-oxidizing bacteria (van der Geest et al. 2014) makes Loripes, once ingested by red knots, mildly 339 

toxic (Oudman et al. 2014). Red knots suffer from diarrhoea when only eating Loripes, leading to 340 

dehydration and reduced feeding rates; the birds face this toxin constraint at available Loripes of at least 341 

50 m-2 (dashed horizontal line Fig. 4 based on parameters in van Gils et al. 2013). Hence, below this 342 

critical Loripes density, intake rate should increase with both Loripes and Dosinia density, whereas above 343 

this critical Loripes density, red knots should reject an increasing proportion of Loripes and intake rates 344 

should level off with Loripes density and only increase with Dosinia (as stated above, also Dosinia will 345 

be rejected, but at a much lower rate). This is the key prediction of the recently published optimal diet 346 

model that takes account of Loripes’ toxicity (TDRM; van Gils et al. 2013). As illustrated by the lines of 347 

equal intake rate predicted by the model-averaged multi-state model (Fig. 4), it corresponds nicely with 348 

the intake rates found in this study. These lines shift from being diagonal (i.e. more or less equal intake 349 

rate on Dosinia and Loripes) to vertical (i.e. additional increase in intake due to Dosinia only) when going 350 

from low to high Loripes densities in the environmental bagplot. 351 

 352 

RED KNOT DISTRIBUTION 353 

Red knots selected sites with relatively high densities of both Dosinia and Loripes (Fig. 4). That they 354 

selected for high Loripes densities may be surprising in the light of Loripes’ toxicity effects. However, 355 

2007 was a relatively poor year in terms of Dosinia densities, and red knots would not have been able to 356 
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survive without the inclusion of Loripes in their diet (van Gils et al. 2013). Indeed, dropping analyses 357 

showed that in 2007 red knots included both Loripes and Dosinia in their diet, for about 60% and 40% 358 

respectively (Onrust et al. 2013; van Gils et al. 2013). Combining these diet compositions with the fitted 359 

numerical intake rates (~0.025 s-1) yields energy intake rates of 0.1 mg ash-free dry mass per second 360 

(taking species-specific energy values for 2007 from van Gils et al. 2013). 361 

 362 

GENERAL IMPLICATIONS 363 

Movement ecology is a rapidly expanding field in which landscape ecology, animal behaviour and 364 

statistical physics come together, empirically encouraged by the ongoing miniaturization of animal 365 

tracking devices at ever higher resolutions (Nathan et al. 2008; Giuggioli & Bartumeus 2010). Although 366 

optimal foraging theory may be considered as one of the theoretical backbones of this exciting scientific 367 

proliferation, we are yet at the infancy to link forager movement with processes affecting prey encounter 368 

rate. The functional response is the fundamental link between a forager’s intake rate and its prey. It 369 

therefore makes perfect sense to integrate movement decisions with the two basic behavioural 370 

components underlying any functional response, i.e. searching and handling events. By doing so, 371 

movement processes have naturally emerged from our modelling exercise, i.e. area-restricted search 372 

(transition rates to/from movement affected by food density) and cryptic interference (transition rates 373 

to/from movement affected by competitor density). Without the explicit consideration of movement 374 

behaviour, these subtle foraging behaviours would probably not have been unveiled.  375 

The flexible Markov chain modelling framework allowed us to explore what outcome we would 376 

have obtained if we had ignored the movement state in our models by setting covariate effects on 377 

transitions to (δ and μ) and from (γ and ε) movement to zero (i.e. still allowing for movement, but without 378 

allowing covariate effects on transitions to and from movement state). The results are striking (Tables S2-379 

S4 in Supporting Information). Although the two most plausible models are still the same (albeit the order 380 

is reversed; Table S2), the effects of prey density in the full model become non-significant (Table S4). 381 

The only significant effect remaining is the negative effect of red knot density on α, the transition from 382 
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handling to searching (Table S4). Hence, by ignoring spatial movements, we would have overlooked the 383 

subtle effects of Loripes density and its interaction with Dosinia density on red knot intake rate. 384 

 More subtlety is lost if we would, besides ignoring movement, stick to the rigid assumptions of 385 

Holling’s disc equation, namely that both searching efficiency and handling time are not affected by prey 386 

density (Holling 1959; Piersma et al. 1995). In that case, the only plausible model remaining is the model 387 

in which red knot density and the summed densities of Dosinia and Loripes feature (Tables S5-S6). 388 

Hence, under these restricted parameter settings we would have concluded that prey density affects intake 389 

rate, but we would not have detected the differential roles of Dosinia and Loripes. 390 

 Clearly, there are many benefits to include movement as a behavioural element. Similarly, adding 391 

realistic and detailed consumer behaviour to movement analyses is of equally great value. Until now, one 392 

of the pillars in movement ecology consisted of models featuring solitary, uninformed foragers (Sims et 393 

al. 2008). In the real world however, foragers tend not to feed alone (Giraldeau & Caraco 2000) and 394 

usually have basic information about food distributions in their environment (Olsson et al. 1999; van Gils 395 

et al. 2006; Bijleveld et al. 2014). Therefore, foragers will tweak their movements in response to 396 

encounters with conspecifics and food. Our work shows how real-world foragers do this. We hope that 397 

our effort to integrate movement behaviour and consumer-resource theory adds realism to the exciting 398 

fields of movement ecology and foraging theory. 399 
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Table 1. Akaike’s Information Criteria (AIC) of the fitted multi-state models explaining transition rates 551 

between S, H and M on the basis of all possible combinations of the explanatory variables, including their 552 

two-way interactions (D = loge(Dosinia available density); L = loge(Loripes available density); DL = 553 

loge(available densities Dosinia plus Loripes); K = loge(red knot density)). The best models with ΔAIC < 554 

2 are given in bold. The best model’s AIC given below the table; np denotes the number of model 555 

parameters. 556 

Model Np ΔAIC AIC weight 

constant + D + L + K + D:L 25 0.00 0.52 

constant + D + K 15 0.37 0.43 

constant + D + L + K 20 4.64 0.05 

constant + D + K + D:K 20 9.58 0.00 

constant + D + L + K + D:K 25 13.57 0.00 

constant + D + L + K + D:L + L:K 30 15.04 0.00 

constant + D + L + K + D:L + D:K 30 20.54 0.00 

constant + K 10 22.86 0.00 

constant + D + L + K + L:K 25 24.37 0.00 

constant + DL + K 15 28.17 0.00 

constant + D + L + K + D:K + L:K 30 28.45 0.00 

constant + L + K 15 35.22 0.00 

constant + DL + K + DL:K 20 36.81 0.00 

constant + L + K + L:K 20 37.36 0.00 

constant + D 10 45.04 0.00 

constant + D + L + K + D:L + D:K + L:K 35 46.24 0.00 

constant + D + L 15 55.67 0.00 

constant + D + L + D:L 20 58.28 0.00 

constant + D + L + K + D:L + D:K + L:K + D:L:K 40 58.99 0.00 

constant 5 67.76 0.00 

constant + L 10 71.08 0.00 

constant + DL 10 73.63 0.00 

AIC = 26,862.97  557 
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Table 2. Regression coefficients of the best multi-state model (i.e. upper model in Table 1), describing 558 

transition rates (s-1) between handling (H), searching (S) and moving (M; with 95% c.i. given in brackets). 559 

Note that rows in baseline matrix sum to zero, with diagonal entries giving the negative of a state’s mean 560 

transition rate (i.e. mean bout length = 1 / mean transition rate). Significant covariate effects are given in 561 

bold. 562 

Baseline transition rates (with covariates set to 0): 563 

From:    To: H S M
H -0.404 (-0.603, -0.271) 0.389 (0.258, 0.585) 0.015 (0.003, 0.091)
S 0.024 (0.016, 0.037) -0.046 (-0.064, -0.034) 0.022 (0.014, 0.036)
M 0 0.375 (0.240, 0.586) -0.375 (-0.586, -0.240)
 564 

Log-linear effects of loge(Dosinia density): 565 

From: To: H S M
H 0 0.365 (0.070, 0.659) -0.043 (-1.363, 1.276)
S 0.372 (0.074, 0.671) 0 -0.032 (-0.392, 0.327)
M 0 0.426 (0.082, 0.770) 0
 566 

Log-linear effects of loge(Loripes density): 567 

From: To: H S M
H 0 0.098 (-0.108, 0.303) 0.035 (-0.838, 0.907)
S 0.151 (-0.054, 0.355) 0 -0.020 (-0.258, 0.217)
M 0 0.054 (-0.166, 0.275) 0
 568 

Log-linear effects of loge(red knot density): 569 

From: To: H S M
H 0 -0.099 (-0.150, -0.048) 0.370 (0.181, 0.560)
S 0.004 (-0.047, 0.055) 0 0.132 (0.075, 0.190)
M 0 -0.128 (-0.183, -0.072) 0
 570 

Log-linear effects of loge(Dosinia density):loge(Loripes density) interaction: 571 

From: To: H S M
H 0 -0.061 (-0.225, 0.104) -0.075 (-0.805, 0.656)
S -0.182 (-0.348, -0.015) 0 -0.024 (-0.224, 0.176)
M 0 -0.108 (-0.300, 0.084) 0
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Table 3. Regression coefficients of the second best multi-state model (i.e. second model in Table 1), 572 

describing transition rates (s-1) between handling (H), searching (S) and moving (M; with 95% c.i. given 573 

in brackets). Significant covariate effects are given in bold. 574 

Baseline transition rates (with covariates set to 0): 575 

From:    To: H S M
H -0.491 (-0.571, -0.422) 0.467 (0.399, 0.545) 0.024 (0.012, 0.048)
S 0.030 (0.026, 0.035) -0.051 (-0.057, -0.045) 0.020 (0.017, 0.024)
M 0 0.395 (0.330, 0.474) -0.395 (-0.474, -0.330)
 576 

Log-linear effects of loge(Dosinia density): 577 

From: To: H S M
H 0 0.207 (0.077, 0.337) -0.306 (-0.878, 0.265)
S 0.129 (0.000, 0.258) 0 0.045 (-0.109, 0.199)
M 0 0.254 (0.094, 0.413) 0
 578 

Log-linear effects of loge(red knot density): 579 

From: To: H S M
H 0 -0.064 (-0.113, -0.015) 0.265 (0.082, 0.448)
S 0.012 (-0.037, 0.061) 0 0.108 (0.051, 0.164)
M 0 -0.102 (-0.156, -0.048) 0
  580 
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Fig. 1. Red knots show three behavioural states (searching S; handling H; moving M), between which 581 

they alternate while foraging (Greek symbols indicate transition rates). Note that the transition from 582 

moving to handling does not exist, i.e. handling is always preceded by searching. 583 

 584 

Fig. 2. (A) Map of our study area around the Iwik village (19º53’ N; 16º18’ W), showing observation 585 

towers A-I and the observation area around each of them. Colours represent the NDVI and are indicative 586 

of seagrass coverage (based on a Landsat 5 image taken at 21 August 2007). Light grey shading indicates 587 

the mainland, darker grey represents the sea. (B) Around each tower, exemplified here for tower D, an 588 

annulus was divided into 128 ‘bird sections’ (bordered by thin lines) and 16 ‘benthos sections’ for 589 

stratification (bordered by thick lines); each benthos section had two randomly located benthos stations 590 

(labelled dots), with two benthos samples taken at each station. 591 

 592 

Fig. 3. Frequency distributions of the durations (s) of the three behavioural states: searching, handling, 593 

and moving. Each frequency distribution complies with the exponential distribution, with lines giving 594 

maximum-likelihood fits (yielding mean ± SD rates of 0.059 ± 0.001 s-1 for searching; 0.552 ± 0.016 s-1 595 

for handling; 0.424 ± 0.014 s-1 for moving). 596 

 597 

Fig. 4. State space of the available Loripes densities against available Dosinia densities in 2007 in the 598 

environment (larger light grey ‘bag’) and at the sites selected by individual red knots (smaller dark grey 599 

‘bag’). These bagplots include the most central half of the data. Letters indicate the average prey densities 600 

at the knot-selected sites for each tower, with the size of the letter indicative for the number of 601 

individuals. Three curved lines are lines of equal intake rate (s-1) as predicted by the model-averaged 602 

multi-state model (these are interference-free intake rates by setting red knot density to 1). Dashed 603 
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horizontal line gives minimal Loripes density at which red knots face their toxin constraint (see 604 

Discussion). 605 
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[Supporting Information:] 1 

Table S1. ΔAIC derived from regressions used for universal kriging of prey densities. All combinations 2 

of NDVI and NDVI2 were used as auxiliary predictors and the regression model yielding the lowest AIC 3 

was selected for kriging (i.e. ΔAIC = 0). Prey densities were modelled separately for year (2007, 2008), 4 

species (Dosinia, Loripes) and tower (A-I; columns). 5 

Dosinia (2007) A B C D E F G H I

constant - 10.03 2.38 0.00 0.00 2.16 0.00 0.10 -

constant+NDVI - 2.48 4.31 1.57 1.85 1.32 0.38 0.00 -

constant+NDVI2 - 7.19 4.31 1.16 1.87 0.00 0.63 0.03 -

constant+NDVI+NDVI2 - 0.00 0.00 2.01 3.80 0.92 2.08 1.99 -

 6 

Loripes (2007) A B C D E F G H I

constant - 14.46 11.80 15.52 23.91 55.25 14.47 13.44 -

constant+NDVI - 1.78 1.88 10.15 0.15 21.80 0.00 2.73 -

constant+NDVI2 - 0.00 0.00 5.86 0.00 4.29 1.09 6.45 -

constant+NDVI+NDVI2 - 1.96 1.64 0.00 1.86 0.00 1.81 0.00 -

 7 

Dosinia (2008) A B C D E F G H I

constant 21.03 - - 0.74 - - - - 0.00

constant+NDVI 0.00 - - 0.01 - - - - 1.76

constant+NDVI2 1.41 - - 0.00 - - - - 1.30

constant+NDVI+NDVI2 1.39 - - 1.97 - - - - 2.40

 8 

Loripes (2008) A B C D E F G H I

constant 11.73 - - 32.58 - - - - 11.04

constant+NDVI 0.74 - - 0.00 - - - - 0.00

constant+NDVI2 5.11 - - 3.46 - - - - 2.79

constant+NDVI+NDVI2 0.00 - - 1.79 - - - - 1.65
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Table S2. Ranking of multi-state models in which covariate effects on transitions to and from the 9 

movement state are set to zero. Covariates defined as before. The most plausible models with ΔAIC < 2 10 

are given in bold, with the best model’s AIC given below the table; np denotes the number of parameters. 11 

Model Np ΔAIC AIC weight 

constant + D + K 9 0.00 0.38 

constant + D + L + K + D:L 13 0.87 0.25 

constant + D + L + K 11 2.37 0.12 

constant + D + K + D:K 11 3.10 0.08 

constant + D + L + K + D:L + D:K 15 3.56 0.06 

constant + D + L + K + D:L + D:K + L:K + D:L:K 19 5.11 0.03 

constant + D + L + K + D:K 13 5.90 0.02 

constant + D + L + D:L 11 6.05 0.02 

constant + D 7 6.39 0.02 

constant + D + L + K + L:K 13 8.29 0.01 

constant + D + L + K + D:K + L:K 15 9.26 0.00 

constant + D + L 9 9.43 0.00 

constant + D + L + K + D:L + L:K 15 9.91 0.00 

constant + DL + K 9 13.13 0.00 

constant + D + L + K + D:L + D:K + L:K  17 13.93 0.00 

constant + K 7 14.18 0.00 

constant + DL + K + DL:K 11 14.30 0.00 

constant + L + K 9 18.24 0.00 

constant 5 20.91 0.00 

constant + DL 7 21.31 0.00 

constant + L + K + L:K 11 21.98 0.00 

constant + L 7 22.91 0.00 

AIC = 26,909.82  12 
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Table S3. Regression coefficients of the most plausible multi-state model (i.e. upper model in Table S2), 13 

in which covariate effects on transitions to and from the movement state are set to zero (with 95% c.i. 14 

given in brackets). Significant covariate effects are given in bold. 15 

Baseline transition rates (with covariates set to 0): 16 

From:    To: H S M
H -0.496 (-0.575, -0.428) 0.469 (0.401, 0.547) 0.028 (0.021, 0.035)
S 0.029 (0.025, 0.034) -0.054 (-0.059, -0.049) 0.024 (0.023, 0.026)
M 0 0.424 (0.397, 0.452) -0.424 (-0.452, -0.397)
 17 

Log-linear effects of loge(Dosinia density): 18 

From: To: H S M
H 0 0.230 (0.101, 0.360) 0
S 0.157 (0.027, 0.286) 0 0
M 0 0 0
 19 

Log-linear effects of loge(red knot density): 20 

From: To: H S M
H 0 -0.080 (-0.129, -0.030) 0
S 0.008 (-0.042, 0.057) 0 0
M 0 0 0
  21 
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Table S4. Regression coefficients of the second most plausible multi-state model (i.e. second model in 22 

Table S2), in which covariate effects on transitions to and from the movement state are set to zero (with 23 

95% c.i. given in brackets). Significant covariate effects are given in bold. 24 

Baseline transition rates (with covariates set to 0): 25 

From:    To: H S M
H -0.466 (-0.683, -0.318) 0.441 (0.295, 0.661) 0.024 (0.019, 0.032)
S 0.026 (0.017, 0.039) -0.050 (-0.063, -0.041) 0.024 (0.023, 0.026)
M 0 0.426 (0.400, 0.455) -0.426 (-0.455, -0.400)
 26 

Log-linear effects of loge(Dosinia density): 27 

From: To: H S M
H 0 0.228 (-0.067, 0.522) 0
S 0.258 (-0.044, 0.561) 0 0
M 0 0 0
 28 

Log-linear effects of loge(Loripes density): 29 

From: To: H S M
H 0 0.044 (-0.159, 0.247) 0
S 0.116 (-0.088, 0.321) 0 0
M 0 0 0
 30 

Log-linear effects of loge(red knot density): 31 

From: To: H S M
H 0 -0.076 (-0.126, -0.026) 0
S -0.002 (-0.054, 0.050) 0 0
M 0 0 0
 32 

Log-linear effects of loge(Dosinia density):loge(Loripes density) interaction: 33 

From: To: H S M
H 0 -0.009 (-0.174, 0.155) 0
S -0.122 (-0.291, 0.046) 0 0
M 0 0 0
  34 
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Table S5. Ranking of multi-state models in which covariate effects on transitions to and from the 35 

movement state are set to zero and in which Holling’s assumptions about constancy of searching 36 

efficiency and handling time are fulfilled. Therefore, models that do not include prey density or that 37 

include prey density interactions are excluded. Covariates as defined as before (D = loge(Dosinia 38 

available density); L = loge(Loripes available density); DL = loge(available densities Dosinia plus 39 

Loripes); K = loge(red knot density)). The most plausible models with ΔAIC < 2 are given in bold, with 40 

the best model’s AIC given below the table; np denotes the number of parameters. 41 

Model np ΔAIC AIC weight 

constant + DL + K 7 0.00 0.88 

constant + D + K 7 4.07 0.11 

constant + D 5 10.80 0.00 

constant + DL 5 15.41 0.00 

constant + D + L + K 7 189.03 0.00 

constant + D + L 5 212.12 0.00 

constant + L + K 7 350.39 0.00 

constant + L 5 370.07 0.00 

AIC = 27,080.08  42 
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Table S6. Regression coefficients of the most plausible multi-state model (i.e. upper model in Table S5), 43 

in which covariate effects on transitions to and from the movement state are set to zero and in which 44 

Holling’s assumptions on a constant searching efficiency and a constant handling time are fulfilled (with 45 

95% c.i. given in brackets). Significant covariate effects are given in bold. 46 

Baseline transition rates (with covariates set to 0): 47 

From:    To: H S M
H -0.615 (-0.669, -0.566) 0.588 (0.539, 0.641) 0.027 (0.021, 0.035)
S 0.005 (0.004, 0.005) -0.029 (-0.031, -0.027) 0.024 (0.023, 0.026)
M 0 0.424 (0.397, 0.452) -0.424 (-0.452, -0.397)
 48 

Log-linear effects of loge(Dosinia+Loripes density): 49 

From: To: H S M
H 0 0 0
S 1 0 0
M 0 0 0
 50 

Log-linear effects of loge(red knot density): 51 

From: To: H S M
H 0 -0.081 (-0.130, -0.032) 0
S -0.074 (-0.122, -0.025) 0 0
M 0 0 0
 52 
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