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Abstract 1 

 2 

Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are membrane lipids produced by soil 3 

bacteria and occur in near coastal marine sediments as a result of soil organic matter input. Their 4 

abundance relative to marine-derived crenarchaeol, quantified in the BIT index, generally 5 

decreases off-shore. However, in distal marine sediments, low relative amounts of brGDGTs can 6 

often still be observed. Sedimentary in-situ production as well as dust input has been suggested 7 

as potential, though as yet not well constrained, sources. In this study brGDGT distributions in 8 

dust are examined and compared with those in distal marine sediments. Dust was sampled along 9 

the equatorial West African coast and brGDGTs were detected in most of the samples, albeit in 10 

low abundance. Their degree of methylation and cyclisation, expressed in the MBT’ 11 

(methylation index of branched tetraethers) and DC (degree of cyclisation) indices, respectively, 12 

were comparable to those found for African soils, their presumed source. Comparison of DC 13 

indices of brGDGTS in global soils, Congo deep-sea river fan sediments and dust with those of 14 

distal marine sediments, however, clearly shows that distal marine sediments yield significantly 15 

higher DC indices. This distinctive distribution is suggestive of sedimentary in-situ production as 16 

source of brGDGTs in marine sediments, rather than dust input. The presence of in-situ produced 17 

brGDGTs in marine sediments means that caution should be exercised when applying the MBT’-18 

CBT palaeothermometer in sediments with low BIT indices, i.e. <0.1 based on our dataset.  19 

 20 

 21 

Keywords: Branched Tetraether; Dust; Marine Surface Sediment 22 
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1. Introduction 23 

 24 

Marine sediments provide a unique archive to study Earth’s past environment and climate. 25 

Depending on the proximity of the study location to land, a varying proportion of the organic 26 

matter (OM) input in marine sediments may be land derived. This terrigenous OM can be 27 

delivered to marine sediments by several modes of transport, i.e. eolian dust input, suspended in 28 

river water, or by means of gravity transport over the sea bed like through deep see canyons or in 29 

turbidites. Several proxies have been developed that try to distinguish between marine and 30 

terrigenous derived OM. These can be either based on bulk properties like the C:N ratio and the 31 

stable carbon isotopic (δ13C) composition of OM (Hedges et al., 1997 and references therein), or 32 

based on the molecular composition, e.g. the (relative) abundance of lignin phenols (e.g. Goñi et 33 

al., 1997) or other land specific biomarkers like long chain plant-wax derived n-alkanes 34 

(Eglinton et al., 1962) or taraxerol (Killops and Frewin, 1994; Versteegh et al., 2004).  35 

 36 

More recently, branched Glycerol Dialkyl Glycerol Tetraether (brGDGT) membrane lipids (Fig. 37 

1) have been used as terrigenous biomarkers in marine sediments as they derive from soil 38 

bacteria, likely belonging to the phylum of Acidobacteria (Sinninghe Damsté et al., 2000, 2011; 39 

Weijers et al., 2006b, 2009a), and since their abundance in marine sediments quickly decreases 40 

with increasing distance from the coast (Hopmans et al., 2004; Kim et al., 2006; Herfort et al., 41 

2006). Hopmans et al. (2004) proposed the Branched vs. Isoprenoid Tetraether (BIT) index to 42 

quantify the relative abundance of these brGDGTs in marine sediments by normalising them to 43 

crenarchaeol, an isoprenoid GDGT membrane lipid derived from ubiquitous pelagic 44 

Thaumarchaeota (Sinninghe Damsté et al., 2002). It was suggested that this BIT index can be 45 
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used as proxy to trace terrigenous OM input into marine sediments (Hopmans et al., 2004). 46 

However, subsequent studies demonstrated that the BIT index actually traces soil rather than 47 

terrigenous OM input relative to marine OM input in near coastal marine sediments as brGDGTs 48 

are present in soils and not in vegetation (Huguet et al., 2007; Walsh et al., 2008; Kim et al., 49 

2009; Weijers et al., 2009b; Smith et al., 2012).  50 

 51 

Besides information on soil OM input, brGDGT distributions also provide information on 52 

climate conditions on land. BrGDGTs vary in the number of methyl groups at the C5 and C5’ 53 

position (and recently it has been shown that methylation at the C6 and C6' position also occurs; 54 

De Jonge et al., 2013), and contain one or two cyclopentane moieties (Weijers et al., 2006a). In a 55 

set of soils obtained from across the globe, it was found that the degree of cyclisation, expressed 56 

in the Cyclisation ratio of Branched Tetraethers (CBT), shows a strong relation with soil pH, and 57 

the degree of branching, expressed in the Methylation index of Branched Tetraethers (MBT), 58 

shows a strong relation with both soil pH and annual Mean Air Temperature (MAT, Weijers et 59 

al., 2007b). Upon transport of brGDGTs to the marine environment and deposition in the marine 60 

sedimentary archive, their distribution could hence be used to reconstruct past soil pH and past 61 

annual MAT using these parameters in the so-called MBT-CBT proxy (e.g. Weijers et al., 62 

2007a). Recently the MBT index has been slightly modified (referred to as MBT’) by excluding 63 

two brGDGTs from analysis that usually occur in low abundance (i.e. <1 % of total brGDGTs) in 64 

soils (Peterse et al., 2012). That same study also provided a new calibration for the MBT’-CBT 65 

annual MAT proxy using this MBT’ and based on a larger number of soils. In addition to the 66 

CBT ratio, Sinninghe Damsté et al. (2009) introduced the degree of cyclisation (DC) index in 67 
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order to define the degree of cyclisation of brGDGTs in a similar way as the degree of 68 

methylation in the MBT index, enabling a more direct comparison between the two.  69 

 70 

Application of the BIT index and the MBT’-CBT proxy in marine sediments works under the 71 

assumption that crenarchaeol is produced in the marine realm and brGDGTs are derived from 72 

land. It has, however, been shown that Thaumarchaeota also thrive in soils, peat, lakes and river 73 

water and hence that crenarchaeol is produced in these environments as well (e.g. Weijers et al., 74 

2004, 2006b; Powers et al., 2004; Leininger et al., 2006; Bannert et al., 2011; Zell et al., 2013). 75 

The amount of crenarchaeol in soil and peat is, however, generally low relative to brGDGTs 76 

causing soils and peat to be, on average, still characterised by a high BIT index value though 77 

rarely reaching a value of 1 (0.90 on average; Schouten et al., 2013a and references cited 78 

therein). A similar situation is observed in marine settings: although the BIT index in distal 79 

marine settings is often low, it seldom reaches a value of 0 (average 0.04; Schouten et al., 2013a) 80 

as in most distal marine sediments small amounts of brGDGTs remain detectable. The sources of 81 

these brGDGTs are uncertain. Long distance dust transport over the oceans might be a plausible 82 

mechanism for delivery of brGDGTs to remote ocean settings and brGDGTs have indeed been 83 

reported in atmospheric dust sampled off northwest Africa (Fietz et al., 2013). Alternatively, 84 

brGDGTs could be produced in-situ in marine sediments as suggested for near shore marine 85 

sediments in a Svalbard fjord (Peterse et al., 2009) and in East China Sea sediments (Zhu et al., 86 

2011) based on differences in brGDGT distributions in marine sediments vs. soils on adjacent 87 

land. However, it remains unclear to what extent these findings represent local, near coastal in-88 

situ production, or that marine in-situ production of brGDGTs is a more general phenomenon.  89 

 90 
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To investigate whether dust or in-situ production is responsible for the presence of brGDGTs in 91 

distal marine sediments, we analysed the distribution of brGDGTs in atmospheric dust and 92 

marine surface waters from the coast of western Africa and in globally distributed open ocean 93 

sediments. These data are compared with previously published brGDGT distributions from the 94 

western African Congo deep sea river fan sediments and with global soils in order to constrain 95 

the potential source of brGDGTs in distal marine sediments and to identify potential implications 96 

for the use of GDGT-based proxies. 97 

 98 

2. Material and methods 99 

2.1. Samples 100 

Atmospheric dust was sampled along the west coast of equatorial Africa onboard the R/V Meteor 101 

cruise M41/1 in 1998. Details on sampling and extraction procedures are provided by Schefuß et 102 

al. (2003). For the present study, polar fractions of lipid extracts from 13 dust filters (Table 1; 103 

Fig. 2) were dried, redissolved in n-hexane:iso-propanol 99:1 (v/v), and filtered through a 0.45 104 

μm mesh PTFE filter prior to analysis of their GDGT content.  105 

Suspended particulate matter (SPM) in marine surface waters was sampled by filtration of ca. 106 

100 to 400 L water, provided by the ship’s seawater inlet (ca. 5 m water depth), through a 0.7 μm 107 

GFF filter onboard R/V Meteor during cruise M56 in December 2002 along the west coast of 108 

equatorial Africa (Spiess and Cruise Participants, 2008). The eight sampling locations comprise a 109 

transect along the equatorial African coast and include the lower salinity (down to 28.0 ‰) 110 

Congo River outflow plume (Table 2; Fig. 2). Filters were freeze dried, cut into small pieces and 111 

extracted using a dichloromethane (DCM):methanol (MeOH) 9:1 (v/v) mixture using accelerated 112 

solvent extraction (Dionex ASE 200, 100C, 1000 psi, 3 cycles of 5 min). The obtained total 113 



7 
 

lipid extract was saponified with 6% KOH (2 h at 85°C) and the extracted neutral fraction was 114 

dried and separated over pre-combusted silica gel columns into an apolar, a ketone, and a polar 115 

fraction using n-hexane, DCM, and DCM:MeOH 1:1 (v/v) solvent mixtures, respectively. 116 

Further preparation of the polar fractions was similar to that of the dust samples. 117 

A total of 34 distal marine surface sediments (Table 3) were analysed for their brGDGT content. 118 

These sediments were selected from the core-top calibration data set used for the TEX86 sea 119 

surface temperature proxy, based on their low BIT index, i.e. <0.03 (Schouten et al., 2002; Kim 120 

et al., 2008, 2010). The polar fractions of the selected samples were obtained as described 121 

previously (Schouten et al., 2002; Kim et al., 2008, 2010) and analysed for their brGDGT 122 

content. The small differences in extraction techniques and clean up procedures between the 123 

sample sets are not expected to influence the GDGT distributions. Previous studies have shown 124 

that the type of extraction method and extract processing have not a large effect on the GDGT 125 

distributions (Schouten et al., 2007; Escala et al., 2009; Lengger et al., 2012) and that differences 126 

remain within repeatability limits (Schouten et al., 2013b). 127 

 128 

2.2. GDGT analysis 129 

Samples were analysed for their GDGT content using High Performance Liquid 130 

Chromatography / Atmospheric Pressure Chemical Ionization – Mass Spectrometry 131 

(HPLC/APCI-MS) on an Agilent 1100 series instrument equipped with Chemstation software 132 

according to Schouten et al. (2007). Separation of compounds was achieved on an analytical 133 

Alltech Prevail Cyano column (150 mm x 2.1 mm; 3μm) held at a constant 30°C and using n-134 

hexane:iso-propanol 99:1 (v/v) as eluent, isocratically for the first 5 min, then increasing to 1.8% 135 

iso-propanol in 45 min. The column was rinsed in back flush mode with 10% iso-propanol in n-136 
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hexane and re-equilibrated to starting conditions after each run. GDGTs were analysed in 137 

Selective Ion Monitoring (SIM) mode as their [M+H]+ (protonated) derivatives. Relative 138 

quantification of the GDGTs was based on peak areas in the [M+H]+ mass chromatograms. The 139 

BIT index was used as defined by Hopmans et al. (2004): 140 

 141 

𝐵𝐼𝑇 =  
[𝐼𝑎 + 𝐼𝐼𝑎 + 𝐼𝐼𝐼𝑎]

[𝐼𝑎 + 𝐼𝐼𝑎 + 𝐼𝐼𝐼𝑎 + 𝐼𝑉]
                                                                                                          (1) 142 

 143 

The MBT’ index was used as defined by Peterse et al. (2012) and differs from the original 144 

definition (Weijers et al., 2007b) in the omission of GDGTs IIIb and IIIc: 145 

 146 

𝑀𝐵𝑇′ =  
[𝐼𝑎 + 𝐼𝑏 + 𝐼𝑐]

[𝐼𝑎 + 𝐼𝑏 + 𝐼𝑐 + 𝐼𝐼𝑎 + 𝐼𝐼𝑏 + 𝐼𝐼𝑐 + 𝐼𝐼𝐼𝑎]
                                                                            (2) 147 

 148 

The degree of cyclisation (DC) of brGDGTs was used as defined by Sinninghe Damsté et al. 149 

(2009): 150 

 151 

𝐷𝐶 =  
[𝐼𝑏 + 𝐼𝐼𝑏]

[𝐼𝑎 + 𝐼𝑏 + 𝐼𝐼𝑎 + 𝐼𝐼𝑏]
                                                                                                                  (3) 152 

 153 

The CBT ratio was used as defined by Weijers et al. (2007b): 154 

 155 

𝐶𝐵𝑇 =  −𝑙𝑜𝑔 (
[𝐼𝑏 + 𝐼𝐼𝑏]

[𝐼𝑎 + 𝐼𝐼𝑎]
)                                                                                                                     (4) 156 

 157 
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Roman numerals refer to the structures given in Fig. 1. 158 

 159 

2.3. Statistical analysis 160 

An analysis of variance (ANOVA) was conducted on the DC and MBT’ indices of different 161 

sample groups to determine whether or not these differ significantly from each other. The 162 

analysis was carried out by means of a pairwise multiple comparison test using Tamhane’s T2 163 

procedure, which assumes no equal variance between sample groups. Statistical analyses were 164 

conducted using the SPSS 21.0 software package (IBM corp.). 165 

 166 

3. Results and discussion 167 

3.1. Atmospheric dust as a potential source for brGDGTs in the marine environment 168 

HPLC-MS analysis of the dust sampled along the African coast (Fig. 2) showed the presence of 169 

brGDGTs in all but one sample. However, none of the dust samples contained the full suite of 170 

brGDGTs, i.e. GDGTs IIIb and IIIc were not detected in any of the dust samples. Only in 5 out 171 

of the 13 dust samples all brGDGTs necessary for calculating a DC index and CBT ratio were 172 

present above detection level (Table 1). In a previous study, the analysis of two dust samples 173 

obtained from the same area as the dust filters analysed here did not yield any brGDGT signal 174 

(Hopmans et al., 2004), making the authors to suggest that brGDGTs are barely, if at all, 175 

transported by dust. The mass spectrometer in that analysis, however, was set to scan ions over 176 

the range m/z 950 to 1450, i.e. in ‘full scan’ mode. The extracts of dust samples in the present 177 

study were run in the more sensitive Selective Ion Monitoring (SIM) mode, scanning only for the 178 

masses of interest, thereby increasing the sensitivity for GDGT detection by one to two orders of 179 

magnitude (cf. Schouten et al., 2007). This likely explains why at least some brGDGTs are now 180 
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detected in dust and this implies that dust could be a potential source of brGDGTs in distal 181 

marine sediments. This corroborates a recent publication by Fietz et al. (2013) that reports 182 

brGDGTs in dust sampled off northwest Africa. 183 

Backward trajectories for the dust samples used in our study have been computed previously 184 

(Schefuß et al., 2003) and indicate that air masses sampled on the filters mostly originate from 185 

the nearby African continent, especially from the Faya Largeau region in Chad. Therefore, it 186 

could be assumed that the brGDGTs in the dust are derived from nearby African soils and thus 187 

that their distributions, as expressed in the degrees of methylation and cyclisation (MBT’ and 188 

DC), should be similar to those of African soils. The average MBT’ and DC indices for 189 

brGDGTs in the dust samples are 0.80 (0.06; n=8) and 0.11 (0.04; n=5), respectively (Table 190 

1). This falls within the range of African soils (from the soil database in Peterse et al., 2012), i.e. 191 

0.76 (0.22; n=12) and 0.13 (0.18; n=16) for MBT’ and DC, respectively, although the 192 

variation in soils is larger (Fig. 3). Furthermore, the MBT’ and DC indices of the dust are similar 193 

to previously reported MBT’ and DC indices of brGDGTs present in the surface sediments from 194 

the Congo deep sea river fan (Weijers et al., 2007a), i.e. 0.72 (0.10; n=7) and 0.15 (0.08; n=7, 195 

Table 4, Fig. 3). This indeed suggests that brGDGTs found in the dust are ultimately derived 196 

from soils on the adjacent African continent. 197 

Notably, however, crenarchaeol was detected in all of the 13 dust samples and BIT indices 198 

determined for the dust are substantially lower (average 0.250.08, n=12; Table 1) compared to 199 

values generally found in soils, e.g. the average BIT index value in a compilation of global soil 200 

data by Schouten et al. (2013a) is 0.90 (0.14; n=224) with only a minority of soils having BIT 201 

index values <0.5. Indeed, BIT indices for dust are also clearly lower than BIT indices for 202 

African soils reported in Peterse et al. (2012), which are on average 0.81 (±0.21; n=16). The 203 
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latter dataset only contains two soils with BIT <0.50 and none reaching as low as 0.25. These 204 

differences could be caused by two processes, i.e. selective degradation of GDGTs during 205 

atmospheric transport or addition of crenarchaeol to dust. Selective degradation of brGDGTs 206 

relative to crenarchaeol during atmospheric dust transport seems unlikely. Huguet et al. (2008) 207 

have shown that in a turbidite deposit subject to prolonged oxygen exposure, crenarchaeol is 208 

preferentially oxidized compared to brGDGTs. This was attributed, however, to the fact that the 209 

terrigenous derived brGDGTs were likely protected via close association with clay minerals in 210 

contrast to the marine-derived crenarchaeol. If derived from soils, crenarchaeol will be similarly 211 

associated with dust particles as brGDGTs and therefore no selective degradation is expected. 212 

Hence, there may be an additional source for crenarchaeol to explain the low BIT indices for 213 

dust. One likely source for additional crenarchaeol on the dust filters is sea spray. Indeed, 214 

analysis of the surface waters collected along the western African coast showed the clear 215 

presence of crenarchaeol (Table 2) pointing to sea spray as a potential source of crenarchaeol. In 216 

some of the surface waters brGDGTs were also detected, suggesting that sea spray may also be a 217 

source for the brGDGTs on the dust filters. However, only the surface waters from the lower 218 

salinity waters of the Congo River plume contain brGDGTs, likely delivered by the Congo River 219 

(cf. Hopmans et al., 2004; Weijers et al., 2007a). In contrast, surface waters taken outside the 220 

Congo River plume area barely contain brGDGTs, if at all (Table 2). Hence, the brGDGTs 221 

detected in the dust, sampled outside areas of major river influence, are suggested to be 222 

predominantly sourced by particles derived from the African continent. Notably, the dust 223 

sampled off northwest Africa by Fietz et al. (2013) reflected BIT index values of 0.84 on 224 

average. Although BIT index analyses between laboratories could differ substantially (Schouten 225 

et al., 2013b), this still is a large difference. As yet it is difficult to explain this difference, but 226 
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maybe the location of the dust samplers on the research vessel, i.e. their proximity to the sea 227 

surface, and weather conditions, might play a role here. 228 

 229 

3.2. Sources of brGDGTs in distal marine sediments 230 

Transport of dust from the African continent to the equatorial Atlantic oceans is a well-known 231 

phenomenon (e.g. Darwin, 1846; Chester et al., 1972; Prospero and Carlson, 1972) and for plant 232 

wax derived long chain n-alkanes it has been shown that they can be delivered to the marine 233 

realm via dust transport over distances of several thousand kilometres (e.g. Simoneit, 1977; 234 

Gagosian et al., 1981; Schefuß et al., 2003; Bendle et al. 2007) and recently Fietz et al. (2013) 235 

showed the presence of brGDGTs in dust far off northwest Africa. In order to see if also an 236 

important contributor to the pool of brGDGTs in distal marine sediments, we compare 237 

distributions of brGDGTs in both African soils and near shore dust with those in low latitude 238 

Atlantic Ocean surface sediments (Table 3 and Fig. 2). Analysis shows that all Atlantic Ocean 239 

surface sediments contained brGDGTs, though one sediment did not contain all brGDGTs in 240 

sufficient amounts for calculating a DC index (Table 3). The MBT’ index of these Atlantic 241 

Ocean sediments is on average 0.28 (0.10; n=9, Table 5). This is significantly different 242 

(p<0.001) from MBT’ indices of African soils and dust, i.e. 0.76 (0.22, n=16) and 0.80 (0.06, 243 

n=8) on average, respectively (Tables 5 and 6). Although this could potentially indicate that 244 

brGDGTs in these sediments are not derived from the warm African continent but derived from 245 

higher and thus colder latitudes with lower MBT’ values, this seems unlikely as Africa is the 246 

major source of dust in the Atlantic Ocean (e.g. Schefuß et al., 2003 and references cited therein; 247 

Fietz et al., 2013). When DC indices of African soils and dust are compared with those of low 248 

latitude Atlantic surface sediments, a similar pattern emerges as for the MBT’: DC indices of 249 
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equatorial Atlantic sediments are on average 0.39 (0.16, n=8), which is significantly different 250 

(p<0.10) from that of African soils and dust, i.e. 0.13 (0.18, n=16) and 0.11 (0.04, n=5), 251 

respectively (Tables 5 and 6, Fig. 4). Collectively, these differences in distribution strongly 252 

suggest that brGDGTs in the low latitude Atlantic sediments are not primarily sourced by 253 

African dust. 254 

In addition to the low-latitude Atlantic Ocean sediments, a set of 25 distal marine sediments from 255 

other locations were analysed for their brGDGT distribution (Table 3). Four additional open 256 

marine sediments characterised by a low BIT index (i.e. <0.08), and for which brGDGT 257 

composition was previously reported by Peterse et al. (2009) and Zhu et al. (2011), were added 258 

to the dataset as well to make a total of 38 marine sediments, including the low latitude Atlantic 259 

Ocean sediments. Out of these 38 sediments, 35 contained sufficient amounts of brGDGTs 260 

required for calculating a DC index (Table 3). The average value of the DC indices for these 261 

distal marine sediments is 0.40 (0.16, n=35). This is similar to the average value as found for 262 

the low-latitude Atlantic sediments, but significantly different (p<0.10) from DC indices of 263 

global soils (Tables 5 and 6, Fig. 4). Thus, it can be concluded that also on a more global scale 264 

the distribution of brGDGTs in distal marine sediments is significantly different from the 265 

distribution of brGDGTs in terrigenous sources and, hence, that dust input is likely not a major 266 

source for them. The alternative explanation is that brGDGTs in open marine sediments are 267 

produced in-situ. For near coastal locations, in-situ production has been suggested previously by 268 

Peterse et al. (2009) and Zhu et al. (2011) and, interestingly, these studies reported distinctively 269 

high degrees of cyclisation (i.e. low CBT ratios) for marine sediments as well. Peterse et al. 270 

(2009) found that marine and fjord sediments around Svalbard were characterised by an average 271 

CBT ratio of -0.27 (0.09), which equals an average DC index of 0.65 (0.03), much higher than 272 
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the average DC index of Svalbard soils of 0.17 (0.11). Zhu et al. (2011) found increased 273 

brGDGT abundances normalised on TOC further away from the river mouth onto the shelf, 274 

which is accompanied by a trend to higher DC indices (Fig. 5, based on data reported in Zhu et 275 

al., 2011). In addition, brGDGTs have been reported in sediments at and near hydrothermal vents 276 

along the Eastern Lau Spreading Center in the South Pacific Ocean (Hu et al., 2012) and two 277 

types of brGDGTs have been reported in a carbonate chimney of Lost City Hydrothermal Field 278 

near the mid-Atlantic Ridge (Lincoln et al., 2013). Notably, based on the data provided in Hu et 279 

al. (2012), the brGDGTs in their sediment TVG8 are also characterised by a high degree of 280 

cyclisation. Our results, together with those of Peterse et al. (2009) and Zhu et al. (2011), as well 281 

as Hu et al. (2012) and Lincoln et al. (2013), form strong circumstantial evidence for the global 282 

occurrence of in-situ production of brGDGTs in marine sediments. For soils and peat it has been 283 

suggested that Acidobacteria might be the dominant producers of brGDGTs (Weijers et al., 284 

2009a; Sinninghe Damsté et al., 2011). Although a microbial community producing brGDGTs in 285 

the marine environment might be totally different from that in soils, Acidobacteria have indeed 286 

been reported to be present in marine surface sediments as well as in hydrothermal chimneys 287 

(Barns et al., 1999; Lopez-Garcia et al., 2003, Polymenakou et al., 2005; Li et al., 2009; 288 

Brazelton et al., 2010). 289 

 290 

3.3. Exploring factors controlling the distribution of marine brGDGTs 291 

As discussed in section 3.2, brGDGTs present in open marine sediments are characterised by 292 

relatively high DC and low CBT values. In soils the CBT ratio of brGDGTs is related to soil pH 293 

(Weijers et al., 2007b; Peterse et al., 2010) with a higher degree of cyclisation (equals low CBT 294 

ratios) corresponding to higher pH values. When the marine CBT values are translated to pH 295 
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using the global soil calibration (Weijers et al., 2007b), reconstructed pH varies between 6.1 and 296 

9.9. Although this includes the average ocean water pH of ca. 8, the variability is large in 297 

comparison with the relatively small variation in sea water pH. This large variation in DC indices 298 

may indicate that the brGDGTs found in marine sediments are mainly produced within these 299 

sediments, where pH values can rapidly change depending on redox conditions, rather than in the 300 

marine water column. Unfortunately, no long term pH data are available for the core top 301 

sediments used in this study to investigate the relation between the degree of cyclisation and 302 

sediment pH in more detail. 303 

 304 

3.4. Implications for GDGT based proxies 305 

The production of brGDGTs in marine sediments may have consequences for some of the 306 

GDGT-based proxies currently used. For example, the BIT index is used as indicator for the 307 

relative amount of soil OM in marine sediments (Hopmans et al., 2004). Due to the relatively 308 

small amounts of brGDGTs found in distal marine sediments the marine end-member of the BIT 309 

index will be slightly higher than 0. Indeed, based on a data compilation, Schouten et al. (2013a) 310 

found an average BIT index for open marine sediments of 0.04 (0.03, n=278). However, as the 311 

end-member distributions for soils (0.90 0.14, n=224; Schouten et al. 2013a) and marine 312 

sediments are still substantially different, marine in-situ produced brGDGTs will not 313 

substantially influence the use of the BIT index in marine sediments as indicator of soil derived 314 

OM. 315 

The MBT’-CBT proxy is used to estimate past continental air temperatures based on the 316 

distribution of soil-derived brGDGTs (Weijers et al., 2007b; Peterse et al., 2012). It is applied in 317 

marine sediments that receive substantial soil OM input, and thus characterised by a high BIT 318 
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index, preferably near river outflows in order to obtain river-basin integrated signals (Weijers et 319 

al., 2007a). This study shows that at low BIT indices, the MBT’ index and CBT ratio become 320 

skewed by the ostensibly marine in-situ produced brGDGTs and, therefore, render the MBT’-321 

CBT proxy unsuitable. Sites characterised by low BIT indices not only include distal marine 322 

settings but also coastal settings removed from any fluvial OM input. In our dataset of Congo 323 

deep sea river fan sediments, one location with a low BIT index of 0.05 (T89-14) yields a DC 324 

index clearly higher (and consequently a CBT ratio clearly lower) than the other Congo deep sea 325 

fan sediments that are characterised by a higher BIT index (Table 4). In the East China Sea 326 

dataset of Zhu et al. (2011) the sediments with elevated DC indices, i.e. >0.35 (Fig. 5) have an 327 

average BIT index of 0.09 (0.02, n=12). Based on these data, therefore, a BIT index threshold 328 

of >0.1 seems appropriate for MBT’-CBT applications. It needs to be emphasized, however, that 329 

at other locations this threshold might be somewhat higher, for example due to lower 330 

crenarchaeol production. Although a previous interlaboratory study highlighted concerns 331 

regarding the reproducibility of the BIT index between laboratories and instruments (Schouten et 332 

al., 2009), a recent and more extensive interlaboratory comparison showed that low BIT indices 333 

(i.e. <0.1) can be reproduced relatively precisely between laboratories (Schouten et al., 2013b). 334 

Since variations in terrigenous soil OM input also occur over time, down core MBT’-CBT 335 

applications should always be accompanied with a BIT index record. 336 

  337 

4. Conclusions 338 

Our study shows that brGDGTs are present in dust, albeit in low abundance. Distributions of 339 

dust-derived brGDGTs are similar to those of soils but clearly different from those of distal 340 

marine sediments. Thus, although dust input to open ocean settings might occur, it does not seem 341 
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to be an important source of brGDGTs in distal marine settings. Branched GDGT distributions in 342 

distal marine sediments are characterised by a distinctive high DC index. This strongly suggests 343 

in-situ production of brGDGTs in distal marine sediments on a global scale, and supports earlier 344 

reports of potential in-situ production in near coastal marine sediments (Peterse et al., 2009; Zhu 345 

et al., 2011). Based on the large variability of DC indices in marine sediments, it is suggested 346 

that marine derived brGDGTs are mainly produced in-situ in the sediments rather than the 347 

overlying water column. The magnitude of in-situ production of brGDGTs is low compared to 348 

pelagic marine crenarchaeol production and, therefore, not notably influencing the use of the BIT 349 

index as proxy for relative soil OM input in marine sediments. However, the MBT’-CBT proxy 350 

for continental temperatures will be biased by in-situ produced brGDGTs when the overall 351 

abundance of brGDGTs is low, i.e. at low BIT indices (based on data in this study <0.1). It 352 

should therefore only be applied to settings known to receive substantial soil OM input. 353 
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Tables 
 
 

Table 1: Fractional abundances and indices of brGDGTs and crenarchaeol present in dust sampled along the west coast of equatorial 

Africa. Roman numerals refer to the GDGT structures in Fig. 1, where IV is crenarchaeol; ‘b.d.’ = below detection limit; ‘-‘ indicates 

that the respective indices are not calculated due to absence of GDGTs. 

 

Dust sample Latitude Longitude 
GDGT fractional abundance 

BIT MBT' DC CBT 
f(Ia) f(Ib) f(Ic) f(IIa) f(IIb) f(IIc) f(IIIa) f(IV) 

DO13 1.30 N 6.94 W 0.186 0.014 0.018 0.037 b.d. b.d. 0.012 0.733 0.24 0.82 - - 
DO14 1.32 N 2.86 W 0.152 b.d. b.d. b.d. b.d. b.d. b.d. 0.848 0.15 - - - 
DO15 1.52 N 0.60 W 0.195 0.017 b.d. 0.036 0.015 b.d. 0.015 0.722 0.25 0.76 0.12 0.86 
DO16 1.76 N 1.64 E 0.207 b.d. b.d. b.d. b.d. b.d. b.d. 0.793 0.21 - - - 
DO17 2.61 N 6.54 E 0.249 0.039 b.d. 0.067 0.020 b.d. b.d. 0.625 0.34 0.77 0.16 0.73 
DO18 1.68 N 7.97 E 0.153 b.d. b.d. 0.063 b.d. b.d. b.d. 0.784 0.22 0.71 - - 
DO19 1.74 N 9.14 E 0.309 0.025 b.d. 0.062 0.017 b.d. b.d. 0.587 0.39 0.81 0.10 0.95 
DO20 1.65 N 9.11 E 0.229 b.d. b.d. b.d. b.d. b.d. b.d. 0.771 0.23 - - - 
DO21 1.38 S 8.54 E 0.173 0.010 0.004 0.018 0.008 0.002 0.009 0.777 0.20 0.84 0.08 1.04 
DO22 2.91 S 9.21 E 0.219 b.d. b.d. b.d. b.d. b.d. b.d. 0.781 0.22 - - - 
DO23 6.18 S 10.05 E 0.368 0.018 0.006 0.027 0.009 b.d. 0.007 0.565 0.42 0.90 0.06 1.16 
DO24 8.00 S 11.86 E b.d. b.d. b.d. b.d. b.d. b.d. b.d. 1.000 - - - - 
DO25 10.69 S 12.50 E 0.138 0.029 b.d. 0.039 b.d. b.d. b.d. 0.794 0.18 0.81 - - 
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Table 2: Fractional abundances and indices of brGDGTs and crenarchaeol present in SPM of surface waters of the Atlantic Ocean 

along the west coast of equatorial Africa. Volume indicates the amount of water filtered for analysis; roman numerals refer to the 

GDGT structures in Fig. 1; ‘b.d.’ = below detection limit; ‘-‘ indicates that the respective indices are not calculated due to absence of 

GDGTs. 

 

SPM 
sample 

Lati-
tude 

Longi-
tude 

Volume 
(L) 

Tempe- 
rature   
( °C) 

Salinity 
(‰) 

GDGT fractional abundance 
BIT MBT' DC CBT f(Ia) f(Ib) f(Ic) f(IIa) f(IIb) f(IIc) f(IIIa) f(IV) 

M56B 2 3.77 S 9.12 E 304 27.3 32.0 0.302 0.021 0.010 0.037 0.003 b.d. 0.004 0.623 0.38 0.88 0.07 1.14 
M56B 23 4.81 S 9.91 E 244 28.1 33.5 0.233 0.025 0.014 0.027 0.003 b.d. b.d. 0.698 0.30 0.90 0.10 0.97 
M56B 34 6.28 S 10.47 E 403 27.6 28.0 0.551 0.012 0.005 0.069 0.003 b.d. 0.006 0.353 0.65 0.88 0.02 1.60 
M56B 37 9.90 S 10.87 E 304 27.0 36.0 0.389 b.d. b.d. 0.044 b.d. b.d. 0.018 0.549 0.45 - - - 
M56B 43 15.40 S 11.30 E 244 21.6 36.0 0.027 b.d. b.d. b.d. b.d. b.d. b.d. 0.973 0.03 - - - 
M56B 47 18.23 S 11.58 E 111 16.0 35.3 0.002 0.000 b.d. 0.002 b.d. b.d. 0.001 0.995 0.00 - - - 
M56B 53 22.99 S 13.17 E 198 18.5 35.3 0.005 b.d. b.d. b.d. b.d. b.d. b.d. 0.995 0.01 - - - 
M56B 57 26.10 S 14.12 E 113 16.2 35.3 0.001 b.d. b.d. b.d. b.d. b.d. b.d. 0.999 0.00 - - - 
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Table 3: Fractional abundances and indices of brGDGTs present in distal marine surface sediments. Roman numerals refer to the 

GDGT structures in Fig. 1; ‘b.d.’ = below detection limit; ‘-‘ indicates that the respective indices are not calculated due to absence of 

GDGTs. Asterisks indicate sediments included in the ‘equatorial Atlantic’ subgroup of marine sediments (cf. Figs. 3 and 4). 

 

Sediment 
sample 

Ocean/Region Latitude Longitude 
Water 
depth 

(m) 

GDGT fractional abundance 
BIT MBT' DC CBT f(Ia) f(Ib) f(Ic) f(IIa) f(IIb) f(IIc) f(IIIa) 

GeoB2212-1 Atlantic Ocean* 4.03 N 25.62 W 5521 0.227 b.d. b.d. 0.144 b.d. b.d. 0.629 0.06 0.23 - - 
GeoB2213-1 Atlantic Ocean* 1.27 N 24.15 W 4323 0.150 0.017 b.d. 0.135 0.040 b.d. 0.658 0.01 0.17 0.17 0.70 
GeoB2707-4  Atlantic Ocean 41.95 S 56.32 W 3167 0.377 0.077 0.035 0.158 0.228 0.071 0.054 0.01 0.49 0.36 0.25 
GeoB2722-2  Atlantic Ocean 47.33 S 58.62 W 2351 0.091 0.103 0.037 0.123 0.454 0.143 0.049 0.00 0.23 0.72 -0.41 
GeoB2723-2  Atlantic Ocean 48.91 S 57.88 W 569 0.246 0.104 0.049 0.129 0.322 0.077 0.073 0.02 0.40 0.53 -0.06 
GeoB2806-6  Atlantic Ocean 37.83 S 53.14 W 3542 0.159 0.160 0.073 0.149 0.292 0.079 0.089 0.01 0.39 0.59 -0.17 
GeoB2809-2  Atlantic Ocean 36.33 S 51.52 W 3539 0.194 0.160 0.072 0.161 0.260 0.068 0.084 0.02 0.43 0.54 -0.07 
GeoB2824-1  Atlantic Ocean 33.50 S 42.50 W 4512 0.172 0.065 0.030 0.161 0.115 0.029 0.428 0.01 0.27 0.35 0.27 
GeoB6407-2  Atlantic Ocean 42.04 S 19.50 W 3384 0.147 0.026 0.010 0.143 0.135 0.035 0.505 0.01 0.18 0.36 0.26 
GeoB6410-1  Atlantic Ocean 44.52 S 20.90 W 4038 0.132 0.028 0.012 0.108 0.103 0.029 0.588 0.01 0.17 0.35 0.26 
GeoB8303-5  Atlantic Ocean* 34.26 S 16.78 E 3447 0.134 0.131 0.068 0.145 0.327 0.094 0.101 0.01 0.33 0.62 -0.21 
GeoB8336-5  Atlantic Ocean* 29.21 S 12.34 E 3626 0.149 0.069 0.033 0.160 0.157 0.043 0.390 0.01 0.25 0.42 0.14 
GeoB8342-5  Atlantic Ocean* 31.50 S 13.00 E 3521 0.143 0.053 b.d. 0.157 0.158 0.049 0.440 0.01 0.20 0.41 0.15 
GeoB9526-4  Atlantic Ocean* 12.43 N 18.06 W 3223 0.175 0.107 0.044 0.131 0.351 0.120 0.072 0.02 0.33 0.60 -0.18 
GeoB9529-1  Atlantic Ocean* 8.35 N 17.37 W 1234 0.326 0.080 0.047 0.198 0.220 0.064 0.065 0.02 0.45 0.36 0.24 
IS-S2 Atlantic Ocean 48.18 N 9.71 W 1035 0.385 0.115 0.069 0.166 0.127 0.045 0.093 0.02 0.57 0.31 0.36 
ENAM9407 Atlantic Ocean 62.96 N 4.03 W 2060 0.408 0.082 0.027 0.146 0.233 0.065 0.039 0.02 0.52 0.36 0.24 
AII-GGC-22  Atlantic Ocean 54.79 S 3.33 W 2768 0.377 b.d. b.d. b.d. b.d. b.d. 0.623 0.03 - - - 
T89-32 Atlantic Ocean* 14.97 S 10.67 E 3342 0.356 0.040 b.d. 0.190 0.130 b.d. 0.284 0.07 0.40 0.24 0.51 
T89-40 Atlantic Ocean* 21.62 S 6.78 E 3060 0.173 0.034 b.d. 0.184 0.117 b.d. 0.491 0.01 0.21 0.30 0.37 
NP-07-13-09 a Svalbard 79.07 N 10.67 E 326 0.120 0.149 0.057 0.126 0.274 0.051 0.223 0.02 0.33 0.63 -0.24 
NP-07-13-49 a Svalbard 79.01 N 11.38 E 380 0.123 0.170 0.066 0.113 0.292 0.047 0.189 0.01 0.36 0.66 -0.29 
HS 253 Southern Ocean 75 S 26 W unknown 0.099 0.051 0.018 0.129 0.168 0.044 0.492 0.02 0.17 0.49 0.02 
GeoB10016-2  Indian Ocean 1.60 N 96.66 E 1900 0.518 0.088 0.053 0.174 0.092 0.028 0.047 0.02 0.66 0.21 0.58 
GeoB10040-3  Indian Ocean 6.48 S 102.86 E 2605 0.346 0.083 0.044 0.127 0.209 0.065 0.126 0.01 0.47 0.38 0.21 
NIOP 902 Indian Ocean 10.78 N 51.58 E 459 0.241 0.118 0.077 0.273 0.091 0.031 0.170 0.03 0.44 0.29 0.39 
NIOP 903 Indian Ocean 10.78 N 51.66 E 789 0.210 0.110 0.072 0.218 0.144 0.035 0.211 0.02 0.39 0.37 0.23 
NIOP 904 Indian Ocean 10.79 N 51.77 E 1194 0.198 0.116 0.068 0.187 0.139 0.043 0.249 0.02 0.38 0.40 0.18 
NIOP 907 Indian Ocean 10.80 N 52.25 E 2807 0.559 b.d. b.d. 0.441 b.d. b.d. b.d. 0.01 - - - 
NIOP 908 Indian Ocean 10.78 N 52.92 E 3572 0.193 0.070 0.045 0.151 0.224 0.069 0.247 0.02 0.31 0.46 0.07 
Box 476 Arabian Sea 24.10 N 65.47E 1226 0.140 0.063 0.045 0.178 0.105 0.040 0.430 0.03 0.25 0.35 0.28 
PM1 Peru Margin 11.98 S 77.32 W 100 0.261 0.047 0.026 0.314 0.042 0.005 0.305 0.02 0.33 0.13 0.81 
PM7 Peru Margin 11.05 S 78.07 W 250 0.247 0.037 0.024 0.219 0.050 0.008 0.415 0.03 0.31 0.16 0.73 
F1-3 b East China Sea 30.00 N 123.99 W 63 0.169 0.135 0.111 0.255 0.123 0.050 0.156 0.07 0.42 0.38 0.22 
F4-7 b East China Sea 27.38 N 123.33 W 106 0.144 0.179 0.128 0.139 0.175 0.062 0.172 0.07 0.45 0.56 -0.10 
Cariaco Basin Caricaco Basin 10.67 N 65.60 W 1460 0.339 0.041 0.023 0.381 0.031 0.008 0.176 0.01 0.40 0.09 1.00 
MC-1 Pacific Ocean 41.30 N 141.55 E 1002 0.177 0.143 0.062 0.182 0.194 0.049 0.194 0.02 0.38 0.48 0.03 
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BS 07E Black Sea 43.0 N 34.0 E 1288 0.216 0.117 0.071 0.186 0.177 0.028 0.204 0.02 0.40 0.42 0.13 

a data from Peterse et al. (2009);  b data from Zhu et al. (2011)
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Table 4: Fractional abundances and indices of brGDGTs and crenarchaeol present in surface sediments of the Congo deep sea river 

fan (from Weijers et al., 2007a). The two anker samples represent grab samples taken from the Congo River estuary (cf. Schefuß et al., 

2004). Roman numerals refer to the GDGT structures in Fig. 1; ‘b.d.’ = below detection limit; ‘-‘ indicates that the respective indices 

are not calculated due to absence of GDGTs. 

 

Sample 
ID 

Latitude Longitude 
Water 
depth 

(m) 

GDGT fractional abundance 
BIT MBT' DC CBT f(Ia) f(Ib) f(Ic) f(IIa) f(IIb) f(IIc) f(IIIa) f(IV) 

Anker 24 6.03 S 12.57 E 5 0.712 0.054 0.016 0.140 0.019 0.003 0.015 0.041 0.95 0.82 0.08 1.06 
Anker 26 6.05 S 12.48 E 6 0.584 0.062 0.038 0.192 0.026 0.008 0.033 0.056 0.94 0.72 0.11 0.94 
T89-12 5.20 S 7.97 E 4068 0.193 0.034 0.009 0.080 0.028 0.003 0.050 0.604 0.35 0.59 0.20 0.64 
T89-14 3.51 S 9.69 E 868 0.029 0.004 0.002 0.007 0.007 0.002 0.009 0.939 0.05 0.58 0.29 0.50 
T89-15 4.21 S 10.02 E 1930 0.128 0.010 b.d. 0.019 0.018 b.d. 0.015 0.809 0.17 0.73 0.18 0.72 
T89-16 5.71 S 11.23 E 826 0.280 0.014 0.005 0.037 0.009 b.d. 0.016 0.638 0.34 0.83 0.07 1.15 
T89-19 6.04 S 9.96 E 3140 0.413 b.d. b.d. 0.047 b.d. b.d. b.d. 0.540 0.46 - - - 
T89-20 7.31 S 11.54 E 1080 0.102 0.005 0.002 0.013 0.007 0.002 0.008 0.861 0.12 0.79 0.10 0.96 
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Table 5: Average BIT, MBT’ and DC indices and CBT ratios of the different sample groups 

discussed in the text. Numbers in parentheses are standard deviations; ‘n.a.’ = not applicable 

since samples were selected based on their BIT index values. 

 
Sample group BIT MBT' DC CBT 

Global soilsa 0.90  (0.15) 0.49  (0.23) 0.16  (0.15) 0.96  (0.59) 
African soilsa 0.85  (0.20) 0.76  (0.22) 0.13  (0.18) 1.28  (0.79) 
Dust filters 0.25  (0.08) 0.80  (0.06) 0.11  (0.04) 0.95  (0.17) 

Surface water 0.23  (0.25) 0.89  (0.01) 0.06  (0.04) 1.24  (0.33) 
Congo fan 0.42  (0.35) 0.72  (0.10) 0.15  (0.08) 0.85  (0.24) 

African Atlantic n.a. 0.28  (0.10) 0.39  (0.16) 0.21  (0.31) 
Global marine n.a. 0.35  (0.12) 0.40  (0.16) 0.20  (0.32) 

a soils from database in Peterse et al. (2012) 

 

Table 6: Results of the ANOVA pairwise multiple comparison test. Values in bold indicate that 

the mean difference between the respective sample groups is significant at the 90 % confidence 

level. Group numbers correspond to the following sample groups (cf. Fig. 4): 1 = global soils, 2 

= African soils, 3 = dust, 4 = surface water SPM, 5 = Congo deep sea fan sediments, 6 = low 

latitude Atlantic Ocean sediments with BIT values <0.08, 7 = global marine sediments with BIT 

<0.08. 

 

Group 1 2 3 4 5 6 

2 1.000 - - - - - 
3 0.465 1.000 - - - - 
4 0.525 0.957 0.996 - - - 
5 1.000 1.000 0.997 0.740 - - 
6 0.086 0.062 0.024 0.011 0.065 - 
7 0.000 0.000 0.000 0.000 0.000 1.000 
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Figure captions 

 

Figure 1: Structures of glycerol dialkyl glycerol tetraethers (GDGTs) referred to in the text 

 

Figure 2: Sample location map: A) sample locations of marine surface sediments; B) sample 

locations of dust, surface waters and Congo deep sea fan sediments along the equatorial 

African coast. 

 

Figure 3: Cross plot of the degree of cyclisation (DC) and the methylation index (MBT’) of 

brGDGTs of the different sample groups discussed in the text. 

 

Figure 4: Box plots of DC indices for the different sample groups discussed in the text. 

Horizontal solid line within the boxes represents the median, gray boxes comprise 50 % of 

samples and dots beyond the whiskers represent upper- and lowermost 10 % of samples. No 

whiskers plotted if n<10. The soil data used are those from Peterse et al. (2012). African soils 

and low latitude Atlantic sediments are subsets of global soils and global marine sediments, 

respectively. Groups that are statistically significantly different from each other (at 90 % 

confidence level) are assigned different letters. 

 

Figure 5: Degree of cyclisation (DC index) of brGDGTs in coastal and shelf sediments from 

the East China Sea (ECS) shelf plotted against water depth, which in the ECS is in general 

equivalent to distance from the coast. Red triangles indicate sediments shallower than 10 m; 
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these shallow sediments are generally characterised by high BIT indices (average = 0.86). 

Data from Zhu et al. (2011). 
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