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66 Abstract
67

68 We investigated potential biosynthetic pathways of long chain alkenols (LCAs), long 

69 chain alkyl diols (LCDs), and long chain hydroxy fatty acids (LCHFAs) in Nannochloropsis 

70 oceanica and Nannochloropsis gaditana, by combining culturing experiments with genomic 

71 and transcriptomic analyses. Incubation of Nannochloropsis spp. in the dark for one week led 

72 to significant increases in the cellular concentrations of LCAs and LCDs in both species. 

73 Consistently, 13C-labeled substrate experiments confirmed that both LCA and LCD were 

74 actively produced in the dark from C14–18 fatty acids by either condensation or 

75 elongation/hydroxylation, although no enzymatic evidence was found for the former pathway. 

76 Nannochloropsis spp. did, however, contain (1) multiple polyketide synthases (PKSs) 

77 including one type (PKS Clade II) that might catalyse incomplete fatty acid elongations 

78 leading to the formation of 3-OH-fatty acids, (2) 3-hydroxyacyl dehydratases (HADs), which 

79 can possibly form Δ2/Δ3 monounsaturated fatty acids, and (3) fatty acid elongases (FAEs) that 

80 could elongate 3-OH-fatty acids and Δ2/Δ3 monounsaturated fatty acids to longer products. 

81 The enzymes responsible for reduction of the long chain fatty acids to LCDs and LCAs are, 

82 however, unclear. A putative wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol 

83 acyltransferase (WS-DGAT) is likely to be involved in the esterification of LCAs and LCDs 

84 in the cell wall. Our data thus provide useful insights in predicting the biosynthetic pathways 

85 of LCAs and LCDs in phytoplankton suggesting a key role of FAE and PKS enzymes. 

86

87

88 Keywords: Nannochloropsis, diols, alkenols, hydroxylated fatty acids, polyketide 

89 synthase, bioproduct

90
91
92
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93 INTRODUCTION

94  

95 Since phytoplankton do not require clean water for their growth and can encompass 

96 high levels of biomass productivities per area compared to terrestrial plants (Chisti, 2007), 

97 microalgal mass culturing could contribute to the sustainable production of chemical products 

98 of interest for the biotechnological industry. Nannochloropsis species (Eustigmatophyceae) 

99 are considered among the most suitable candidates for biofuel development because of their 

100 high growth rate and lipid content with respect to other phytoplankters (Rodolfi et al. 2009). 

101 Specifically, both free and ester-bound fatty acids from Nannochloropsis spp. are currently 

102 considered as potential candidates for biodiesel production (Chen et al. 2012). The genomes 

103 of several Nannochloropsis species have been sequenced allowing the identification of major 

104 metabolic pathways for lipid biosynthesis (Radakovits et al. 2012, Vieler et al. 2012, 

105 Corteggiani Carpinelli et al. 2014, Wang et al. 2014). Transcriptomic analyses of 

106 Nannochloropsis cultures have contributed to the identification of the genes potentially 

107 involved in different lipid pathways including the biosynthesis of polyunsaturated fatty acids 

108 (PUFAs) (Vieler et al. 2012) and triacylglycerols (Radakovits et al. 2012, Li et al. 2014). 

109 Besides regular fatty acids and PUFAs, Eustigmatophyceae also produce long chain 

110 hydroxy fatty acids (LCHFAs), with an alkyl chain of 28–32 carbon and a hydroxyl group at a 

111 mid-chain position (Volkman et al. 1992, Gelin et al. 1997a). Plant hydroxy fatty acids, such 

112 as the 12-OH C18:1 from Ricinus communis and 14-OH C20:1 from Physaria fendleri were 

113 previously shown to act as lubricants when added to reference diesel fuel (Goodrum and 

114 Geller 2005). This suggests that the quality of Nannochloropsis oils for biodiesel 

115 development might also be improved if tiny amounts of LCHFAs (≤ 1%) are present in the 

116 lipid extract to be used for methanol transesterification. LCHFAs possess a combustion 

117 enthalpy slightly higher than that of C14-18 fatty acids (Table 1) and thus such addition would 
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118 not affect the energy yield. Furthermore, hydroxylated aliphatic compounds are also under 

119 investigation for polymer development (Sharma and Kundu 2006, Mutlu and Meier 2010), 

120 hence their diversity and biosynthetic pathways have been partially elucidated (Buschhaus et 

121 al. 2013, Busta and Jetter 2018, Li et al. 2018). 

122  Nannochloropsis spp. produce two other classes of hydroxylated compounds related to 

123 LCHFAs, in which the terminal carboxylic group is replaced with an alcohol group, i.e. long 

124 chain alkyl diols (LCDs) and long chain alkenols (LCAs). LCAs differ from LCDs because of 

125 an intermediate double bond instead of the secondary alcohol group. Similar to bifunctional 

126 aliphatic compounds from plants, LCDs might also be of interest to the chemical and polymer 

127 industries.  For example polyricinoleate diol, prepared from 12-OH-C18 fatty acid (ricinoleic 

128 acid) was tested for the synthesis of polyurethane, revealing faster degradation times than 

129 petrochemical polyurethanes (Petrovic et al. 2010). Polyurethane synthesis requires highly 

130 hydroxylated compounds as starters and there is a common interest in introducing new 

131 hydroxyl groups in naturally occurring fatty acids as well as in screening natural products 

132 with a high number of hydroxyl groups. (Petrovic 2008). LCDs in Nannochloropsis might 

133 thus be of interest for the polymer industry. However, it is crucial to identify the culturing 

134 conditions affecting the cellular concentrations of LCHFAs, LCAs, and LCDs as well as their 

135 biosynthetic pathways.

136 While the total lipid content of microalgae typically increases during the stationary 

137 phase of their growth (Dunstan et al. 1993), as well as under high salinity (Martinez-Roldan et 

138 al. 2014) or nitrogen deprivation (Pal et al. 2011), such culture manipulations do not increase 

139 the cellular concentration of LCAs, LCDs, and LCHFAs significantly (Balzano et al. 2017), 

140 suggesting that these compounds are unlikely to serve as storage lipids. Instead, their decrease 

141 under hydrogen peroxide-driven oxidative stress suggests a protective role for LCAs, LCDs, 

142 and LCHFAs in Nannochloropsis cells (Balzano et al. 2017). Finally, LCAs and LCDs are 
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143 thought to occur in the outer layer of the Nannochloropsis cell wall (Gelin et al. 1997b, 

144 Scholz et al. 2014, Zhang and Volkman 2017, Volkman 2018) as part of a polymer, termed 

145 algaenan. 

146 Since LCAs, LCDs, and LCHFAs are structurally related among each other in terms of 

147 carbon number and position of the functional groups, common biosynthetic pathways have 

148 been long hypothesised for Nannochloropsis species (Volkman et al. 1992, Versteegh et al. 

149 1997, Gelin et al. 1997a). LCHFAs were suggested to originate from the elongation or 

150 condensation of C14–18 fatty acids (Gelin et al. 1997a, Scholz et al. 2014) and this was 

151 confirmed by the positive correlation recently found between the cellular concentrations of 

152 C14–16 fatty acids and two LCHFAs (13-hydroxy C30:0 and 15-hydroxy C32:0 fatty acids), 

153 respectively, in three Nannochloropsis spp. (Balzano et al. 2017). However, the biosynthetic 

154 pathways of LCHFAs, LCAs, and LCDs are not fully understood and the enzymes potentially 

155 involved in the process are unknown. 

156 Here, (1) we analysed the genomes from different Nannochloropsis spp. to identify the 

157 enzymes potentially involved in the biosynthesis of LCAs and LCDs, (2) searched for 

158 culturing conditions promoting the accumulation of LCAs, LCDs, and LCHFAs in 

159 Nannochloropsis oceanica and Nannochloropsis gaditana, and (3) performed transcriptomic 

160 analyses to identify genes potentially involved in their biosynthesis. 

161
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162 RESULTS AND DISCUSSION

163

164

165 Dark incubation enhances LCA and LCD concentrations

166

167 To identify potential genes for LCA, LCD and LCHFA synthesis we first investigated 

168 conditions which stimulated the production of these compounds. A previous study showed 

169 that manipulations that typically promote the accumulation of storage lipids, such as nitrogen 

170 deprivation (< 1 μM nitrate), exposure to high light irradiance (300 μE m-2 s-1) and culturing 

171 at high (50 g kg-1) salinity, did not increase the cellular concentrations of LCAs, LCDs, and 

172 LCHFAs significantly (Balzano et al. 2017). Unfavourable environmental conditions in the 

173 marine water column, such as prolonged exposure to dark conditions, are known to trigger the 

174 formation of resting stages in phytoplankton (McQuoid and Hobson 1996) for cell protection 

175 purposes. Resting forms of Nannochloropsis limnetica exhibit a thicker cell wall compared to 

176 active cells (Fietz et al. 2005), and might thus contain higher amounts of LCAs and LCDs. 

177 We therefore attempted to enhance the production of these lipids by incubating living cultures 

178 of N. oceanica and N. gaditana in the dark for one week. 

179 Before the incubation in the dark, cells from both N. oceanica and N. gaditana exhibited 

180 growth rates (Fig. 1A-1B) comparable to those reported previously (Balzano et al. 2017). Cell 

181 abundance decreased by ca. 50% in both species over one week under dark conditions. Cells 

182 were observed under transmission electron microscopy (TEM) and the outer cell wall, which 

183 contains LCAs and LCDs (Scholz et al. 2014), was extremely thin (approximately 10 nm) for 

184 the resolution of the instrument used and its thickness could not be measured reliably 

185 (Supplemental Fig. S1). 
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186 Both N. oceanica and N. gaditana exhibited increased cellular concentrations of LCAs 

187 and LCDs after dark incubation. Cells were enumerated by flow cytometry before filtration 

188 and we did not observe dead cells or large debris (i.e. particles with comparable forward 

189 scatter but lower chlorophyll fluorescence compared to ordinary Nannochloropsis cells) in the 

190 cytograms of cells harvested from the dark treatment. This suggests that most of the material 

191 filtered contained viable cells, or at least dead cells with intact chloroplasts, while debris were 

192 likely to be smaller in size (i.e. with a forward scatter comparable to the background noise of 

193 the instrument) and were not retained by the filters. In spite of the significant decline in viable 

194 cells, observed in our dark incubations, the LCAs and LCDs analysed here are thus likely 

195 derived from intact cells. The cellular concentration of C32:1 alkenol increased by almost one 

196 order of magnitude (3.5 ± 0.5 to 22 ± 3 fg cell-1), while C32:1 and C32:0 diols tripled in 

197 concentration reaching 26 ± 4, 37 ± 9, and 35 ± 10 fg cell-1, respectively (Fig. 1C), and the 

198 C30:0 diol nearly doubled in N. oceanica at the end of the dark incubation. Similarly, in N. 

199 gaditana, C32:2 and C32:1 alkenols increased from 2.9 ± 0.8 to 7.8 ± 1.7 fg cell-1 and from 4.7 ± 

200 1.0 to 14 ± 2.0 fg cell-1, respectively, the C30:0 diols doubled (7.4 ± 1.4 to 16 ± 2.5 fg cell-1) 

201 and the C32:1 and C32:0 diols almost tripled (3.3 ± 1.3 to 7.0 ± 2.5 and 9.3 ± 2.9 to 20 ± 4, 

202 respectively, Fig. 1D) in concentration. In contrast with LCAs and LCDs, the concentration of 

203 LCHFAs dropped dramatically, with the 13-OH-C30:0 fatty acid decreasing from 7.8 ± 1.0 and 

204 5.5 ± 0.4 fg cell-1 for N. oceanica and N. gaditana, respectively, to values below the detection 

205 limit. Similarly, the 15-OH-C32:0 fatty acid decreased from 2.5 ± 0.4 and 1.7 ± 0.4 fg cell-1, for 

206 N. oceanica and N. gaditana, respectively, to below the detection limit (Figs 1C-1D). 

207 Furthermore, the concentration of C16:0 fatty acid decreased by nearly half for both species 

208 (Figs. 1E-F). In contrast, the other C14–20 fatty acids followed different dynamics with the 

209 concentration of C16:1 fatty acid decreasing under dark conditions and that of the C20:5 PUFA 

210 increasing for N. gaditana, whereas no significant changes were observed in N. oceanica (Fig. 
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211 1C-D). The decrease in C16:0 fatty acid under dark conditions is likely due to the consumption 

212 of storage lipids necessary to sustain cell metabolism. Storage lipids such as triacylglycerols 

213 are typically dominated by the C16:0 fatty acid in Nannochloropsis spp. (Alboresi et al. 2016). 

214 The incubation under dark conditions for one week thus promoted a substantial increase 

215 of the cellular concentrations of LCAs and LCDs (Fig. 1C-D), which is the first culture 

216 condition ever described shown to trigger an increase of the LCAs and LCDs content in 

217 Nannochloropsis spp.. Seemingly, prolonged light deprivation affects the biosynthetic 

218 pathways of LCHFAs, LCAs and LCDs resulting in the complete removal of LCHFAs and an 

219 accumulation of both LCAs and LCDs. Since dark conditions are thought to promote the 

220 formation of resting stages, which can result in thicker cell walls as shown for N. limnetica 

221 (Fietz et al., 2005), the dramatic decline in LCHFAs under dark conditions strongly suggests 

222 that these lipids are unlikely to be present in the cell wall, but rather form the precursors of 

223 LCAs and LCDs. In turn, the LCHFAs might derive from C14–18 fatty acids (Volkman et al. 

224 1992, Gelin et al. 1997b, Balzano et al. 2017). 

225 Further clues were obtained by determination of the double bond positions of 

226 unsaturated LCAs and LCDs in a replicate from the dark treatment of N. oceanica 

227 CCMP1779 using dimethyl disulfide derivatisation. Consistent with previous findings (Gelin 

228 et al. 1997b), the double bond in LCAs occurs at the same position as that of the mid-chain 

229 alcohol group in the corresponding LCDs and LCHFAs (Supplemental Fig. S2). For example, 

230 the C32:1 alkenol mostly consists of two isomers with double bonds at Δ14 and Δ15 which 

231 correspond to the position of the mid-chain alcohol group in the 15-OH C32:0 fatty acid and 

232 the C32:0 1,15 diol. Moreover, the C32:2 alkenol has a second double bond at the same position 

233 (Δ27) as that of the C32:1 diol (Supplemental Fig. S2). The excellent correspondence between 

234 the double bond position of monounsaturated alkenols and the position of the intermediate 

235 hydroxyl group in diols and LCHFAs with the same carbon number, as well as the presence of 
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236 a double bond at Δ27 in both diunsaturated alkenols and monounsaturated diols, clearly 

237 indicates common biosynthetic pathways for LCAs, LCDs, and LCHFAs (Supplemental Fig. 

238 S2). 

239

240

241 13C-labelling indicates active biosynthesis of LCAs and LCDs in the dark

242

243 We incubated N. oceanica CCMP1779 with 13C-[2]-acetate under alternating 12/12 

244 dark/light conditions to investigate the biosynthetic relationships among C14-18 fatty acids, 

245 LCHFAs, LCAs, and LCDs (Figs 2A-2B). All these lipids were significantly labelled with 13C 

246 (Fig. 2C), with atomic 13C percentages ranging from 4.2% (cholesterol) to 15.2% (C18:1 fatty 

247 acid). In a second experiment, cells were initially cultured under alternating 12/12 dark/light 

248 conditions, and during exponential growth, 13C-[2]-acetate was then added to the culture 

249 which was subsequently incubated under dark conditions for one week (Fig. 2B). As 

250 expected, the enrichment levels of lipids observed under dark conditions were significantly 

251 lower than those found under dark/light conditions due to the absence of growth. The C16:1 

252 fatty acid showed no incorporation of 13C and the C14:0, C16:0 and the C20:5 were only slightly 

253 labelled (1.3%, 1.2%, and 1.2%, respectively). However, the C18:1 fatty acid (3.2%), the C32:0 

254 diols (3.0%) and to a lesser extent the other LCDs and the LCAs (1.7–1.8%) showed 

255 substantial incorporation of 13C label (Fig. 2D). Thus, our labelling experiments show that 

256 during regular growth under alternating dark/light conditions, the 13C-[2]-acetate was taken 

257 for de novo synthesis of C16:0 fatty acids, as well as for the formation of LCHFAs, LCAs, and 

258 LCDs. In contrast, when labelled sodium acetate was supplied prior to incubation in the dark, 

259 de novo fatty acid synthesis was likely to be insignificant as the cell growth in the dark was 

260 nearly negligible (Fig. 2B); however, the lack of detection of C18:0 fatty acid along with the 
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261 high atomic 13C percentage measured for the C18:1 fatty acid (Fig. 2D) suggests that an active 

262 synthesis of C18:1, probably via C16:0 elongation to C18:0 followed by desaturation to C18:1, was 

263 taking place. Importantly, both LCAs and LCDs were actively synthesised under dark 

264 conditions. The greater 13C content of LCAs and LCDs compared to C14-16 under dark 

265 conditions suggests that if the biosynthesis of LCD and LCA took place by condensation of 

266 two C14-16 fatty acids, such process would have rapidly taken up all 13C labelled C14-16 fatty 

267 acids. Alternatively, and perhaps more likely, unlabelled C14-16 fatty acids were elongated with 

268 13C labelled sodium acetate to LCHFAs and subsequent reduction may have resulted in the 

269 formation of 13C labelled LCAs and LCDs (Fig. 2D).

270

271

272 Transcriptomic analyses and hypothetical biosynthetic pathway

273

274 To determine which genes were up-regulated in the dark incubation experiments, and 

275 thus potentially involved in LCD and LCA biosynthesis, we extracted RNA and sequenced 

276 the transcriptomes of Nannochloropsis cultures harvested at the end of the experiments. We 

277 compared the gene expression level of Nannochloropsis spp. from the dark treatment (i.e. 

278 treatment leading to high concentrations of LCAs and LCDs) with the dark/light control. 

279 Overall we mapped 10,043 genes from N. oceanica CCMP1779 against the reference genome 

280 from the same strain (Vieler et al. 2012) and 11,222 genes from N. gaditana CCMP526 

281 (Table 2) against the reference genome from the strain N. gaditana B31 (Corteggiani 

282 Carpinelli et al. 2014). In addition, we also carried out a functional analyses of all the proteins 

283 predicted from the genomes of N. oceanica CCMP1779 and N. gaditana B31 using 

284 Interproscan (Jones et al. 2014) to identify putative catalytic domains for the elongation and 
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285 hydroxylation of fatty acids, the dehydration of secondary alcohols, the reduction of their 

286 carboxylic groups, and the formation of ethers and esters.

287 About 60% of the genes from N. oceanica and 74% of the genes from N. gaditana did 

288 not change significantly in expression during the dark incubation (Table 2). Nannochloropsis 

289 oceanica exhibited a comparable number of up-regulated and down-regulated genes (1,950 

290 and 2,067, respectively) whereas 1,855 genes from N. gaditana were down-regulated and only 

291 955 up-regulated (Table 2). The expression changes of all the genes from both 

292 Nannochloropsis species are shown in details in Supplemental Table 1. The results of our 

293 dark incubation experiments with and without stable isotope labelling  (Figs 1–2), as well as 

294 previous findings (Volkman et al. 1992, Gelin et al. 1997a, Balzano et al. 2017, Volkman 

295 2018), suggest that LCHFAs originate from C14–18 fatty acids either by condensation of two 

296 fatty acids or elongation/in-chain hydroxylation. Subsequently LCHFAs are likely to be 

297 reduced to form LCDs. Similarly, LCAs might derive from the dehydration of the secondary 

298 alcohol groups in LCDs or LCHFAs. 

299 We thus focused on genes potentially coding enzymes that catalyse (1) the condensation 

300 of two C14-18 fatty acids, (2) the elongation and (3) the in-chain hydroxylation of fatty acids ≥ 

301 C16, (4) the reduction of fatty acids to alcohols, the (5) dehydration of secondary alcohol 

302 groups, and (6) the formation of esters. We searched for these genes in Nannochloropsis 

303 genomes and compared their expression levels in the dark treatment with those found for the 

304 control treatment. We also searched publicly available genomes from other Nannochloropsis 

305 spp. to identify genes homologous to those potentially involved in the biosynthetic processes 

306 hypothesised here for N. gaditana and N. oceanica.

307

308

309 Condensation of two C14-18 fatty acids
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310

311 The condensation of two fatty acids to form longer products has been rarely reported in 

312 literature. γ-Proteobacteria from the genera Xanthomonas and Photorabdus can perform head-

313 to-head condensation of fatty acids mediated by oleA and photopyrone synthase enzymes, 

314 respectively (Kresovic et al. 2015, Christenson et al. 2017). Similarity analyses of oleA and 

315 photopyrone synthase sequences against N. oceanica and N. gaditana proteins did not yield 

316 significant results (Supplemental Table S2) suggesting Nannochloropsis spp. do not contain 

317 oleA or photopyrone homologues. Moreover, a head-to-head condensation would produce a 

318 mid-chain functionalised intermediate which would still require an additional ω-

319 functionalisation to yield a primary/secondary aliphatic compound such as LCDs, LCAs, or 

320 LCHFAs. 

321 Acidobacteria are known to produce a C30 13,16-dimethyl dicarboxylic acid from a tail-

322 to-tail condensation of two C15 iso fatty acids (Sinninghe Damsté et al. 2011) but the 

323 enzymes involved in such process are unknown and a tail-to-tail condensation would yield an 

324 intermediate functionalised (i.e. carboxylic acids) on both ends and one of these ends would 

325 therefore require to be fully reduced to a methyl group. Both head-to-head and tail-to-tail 

326 condensations would thus form intermediates which need a further functionalisation or 

327 reduction step to yield the LHCFAs observed in Nannochloropsis spp.. Long chain aliphatic 

328 compounds resulting from head-to-head (i.e. mid-chain functionalised) or tail-to-tail 

329 (functionalised on both ends) condensation have never been detected in Nannochloropsis. 

330 The condensation of the carboxylic end of a fatty acid with the aliphatic end of another 

331 fatty acid (head-to-tail condensation) would instead require fewer reaction steps and the 

332 resulting biosynthetic pathway appears thus to be less energy demanding compared to both 

333 head-to-head and tail-to-tail condensations. For example, the reaction between the carboxylic 

334 end of a C14 fatty acid with the methyl end of a C18 fatty acid would yield a C32 product 
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335 functionalised on the first and the 15th carbon such as the 15-OH-C32 fatty acid, the C32 1,15 

336 diol, the 15-ene-C32:1 alkenol and the 15-27-ene-C32:2 alkenol. Similarly, the condensation 

337 between a C12 and a C18 fatty acids would lead to C30 compounds with a secondary 

338 functionalisation on the 13th carbon as well as a terminal carboxylic group. Although this 

339 pathway cannot be fully discarded we did not find any evidence reported in literature for such 

340 a biosynthetic process. 

341

342

343 Enzymes responsible for chain elongation in Nannochloropsis

344

345 Fatty acid elongation is based on stepwise additions of 2 carbon units to the growing 

346 acyl-coenzyme A (CoA) chain (Leonard et al. 2004), with each addition consisting of the (1) 

347 condensation of the acyl CoA with a malonyl group to form a 3-ketoacyl-CoA, (2) reduction 

348 of 3-ketoacyl-CoA to 3-hydroxyacyl-CoA, (3) dehydration to enoyl-CoA and (4) reduction to 

349 an elongated acyl chain (Leonard et al. 2004). While 3-ketoacyl-CoA synthases (KCS) are 

350 typically substrate specific (Leonard et al. 2004, Haslam and Kunst 2013), the other 3 

351 enzymes required for the elongation are known to have a broad substrate preference being 

352 able to accept 3-ketoacyl, 3-hydroxyacyl, or 3-enoyl units of different lengths. Enzymes 

353 belonging to two different families, the elongation proteins (ELO) and the fatty acid elongases 

354 (FAE) possess the KCS domain (Leonard et al. 2004, Haslam and Kunst 2013). In addition, 

355 the polyketide synthases family (PKSs) consists in proteins known to contain ketoacyl acyl 

356 carrier protein (ACP) synthase (KAS) and can also accept C16–18 fatty acids as substrates for 

357 elongation (Staunton and Weissman 2001). 

358

359 Δ0-ELOs as elongators of fatty acids

Page 14 of 53Plant & Cell Physiology



For Peer Review

15

360 Seven ELOs that accept monounsaturated or saturated fatty acids as substrates (Δ0-

361 ELO) have been previously identified in N. gaditana CCMP526 (Dolch et al. 2017), and we 

362 found eight Δ0-ELOs in N. oceanica by similarity searches. Four Δ0-ELOs from N. gaditana 

363 and two Δ0-ELOs from N. oceanica can potentially accept fatty acids containing up to 28 

364 carbons as substrates (Supplemental Information) as predicted by comparing their secondary 

365 structure (Supplemental Fig. S3) with that of known Δ0-ELOs from yeasts (Denic and 

366 Weissman 2007). Only two Δ0-ELOs, both from N. gaditana (Naga_100083g23 and 

367 Naga_100017g49) were up-regulated under dark conditions (Fig. 3). One of these enzymes 

368 (Naga_100083g23) has been proven experimentally, by heterologous expression in yeasts, to 

369 catalyse the formation of saturated fatty acids containing up to 28 carbons (Dolch et al. 2017). 

370 However, analysis of a mutant of N. gaditana in which the gene coding for the Δ0-ELO 

371 Naga_100083g23 has been knocked-out (Dolch et al. 2017) exhibited a distribution of LCAs, 

372 LCDs, and LCHFAs very similar to that of the wild type (CCMP526, Supplemental Fig. S4), 

373 indicating that Naga_100083g23 is not involved in the biosynthesis of these compounds in N. 

374 gaditana. This, along with the lack of up-regulated Δ0-ELOs in N. oceanica under dark 

375 conditions (Fig. 3), suggests that Δ0-ELOs are not involved in the biosynthesis of LCHFAs in 

376 Nannochloropsis spp.. The intermediates required for the biosynthesis of LCAs, LCDs, and 

377 LCHFAS might thus be formed by other enzymes.

378

379 FAE enzymes as elongators of fatty acids

380 FAE enzymes are known to be involved in the biosynthesis of saturated and 

381 monounsaturated C20–28 fatty acids in plants (Joubes et al. 2008, Haslam and Kunst 2013). 

382 Nannochloropsis gaditana contains one gene coding for FAE (Naga_100174g4) and we 

383 found in N. oceanica two amino acid (AA) sequences (CCMP1779|2397 and 

384 CCMP1779|4026) that align with two different regions of the gene product of 
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385 Naga_100174g4 (Supplemental Fig. S5). The alignment of CCMP1779|2397 and 

386 CCMP1779|4026 with Naga_100174g4 as well as the similar expression level exhibited by 

387 CCMP1779|2397 and CCMP1779|4026 (increase by 18 to 22 fold in the dark treatment, Fig. 

388 3), strongly suggest that these two AA sequences are two contiguous parts of the same 

389 protein. Phylogenetic analyses indicate that FAEs from Nannochloropsis spp. cluster with 

390 proteins from diatoms and Pelagophyceae forming a well-supported clade (Supplemental Fig. 

391 S6), which groups with known FAEs from higher plants (Joubes et al. 2008). 

392 Nannochloropsis FAEs possess two trans membrane helices (TMHs), two domains for KCSs 

393 and a domain for chalcone/stilbene synthase (Supplemental Fig. S6).

394 Interestingly, the genes coding for FAEs in both N. oceanica and N. gaditana are up-regulated 

395 by >10 fold in the dark treatment (Fig. 3) suggesting an enhanced enzymatic activity of FAEs 

396 under dark conditions. FAE enzymes are reported to elongate functionalized fatty acids at an 

397 intermediate position and also can accept substrates of variable length including C24–28 fatty 

398 acids (Haslam & Kunst, 2013). For example a FAE from the higher plant Physaria fendlerii is 

399 known to catalyse the elongation of 12-OH-C18:1 to 14-OH-C20:1 fatty acid (Moon et al. 2001) 

400 and the moss Funaria hygrometrica contains C32:0 1,7 diols, which have been suggested to 

401 originate from the elongation of 3-hydroxyacyl intermediates, catalyzed by FAE enzymes 

402 (Busta et al. 2016). Furthermore, the 7-18-(OH)2-C24:1 fatty acid from Orychophragmus 

403 violaceus (Brassicaceae) has also been shown to derive from FAE-catalysed elongation of a 3-

404 OH-intermediate of the 12-OH-C18:1 fatty acid (Li et al. 2018). Thus, the high expression level 

405 of genes coding FAEs in both N. oceanica and N. gaditana, along with the potential 

406 enzymatic capability of these proteins to elongate in-chain functionalised fatty acids, suggest 

407 that FAE enzymes might play a role in the formation of LCHFAs from C14–20 fatty acids. 

408

409 Role of PKSs in fatty acid hydroxylation
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410 Since FAE enzymes can elongate not only fatty acids but also hydroxy fatty acids, the 

411 hydroxylation process required for the formation of mid-chain hydroxy groups might occur 

412 before chain elongation takes place. The formation of both 13-OH-C30:0 and 15-OH-C32:0 fatty 

413 acids by FAE-based elongation would then require a 3-OH-C20:0 fatty acid as a starter (Fig. 4). 

414 Since 3-OH-C20:0 fatty acid has not been detected in Nannochloropsis spp. as well as other 

415 Eustigmatophyceae, it might be an intermediate in the chain elongation. The mid chain 

416 functionalisation of fatty acids can be catalysed by PKS enzymes since they possess acyl 

417 transferase (AT) and KAS domains but might lack any or all of the other catalytic sites 

418 required to complete a fatty acid elongation cycle (Staunton and Weissman 2001, Jenke-

419 Kodama et al. 2005). Type I PKSs consist of single multifunctional enzymes possessing 

420 several catalytic domains and their distribution is scattered among different lineages since 

421 genes coding PKSs have not been found in ciliates and Rhizaria (Shelest et al. 2015, Kohli et 

422 al. 2016). Three genes from N. oceanica have been previously suggested to code for PKSs 

423 (Vieler et al. 2012, Poliner et al. 2015, Alboresi et al. 2016) and two genetically distinct PKS 

424 clades were previously detected in N. oceanica and N. gaditana (Shelest et al. 2015). 

425 We identified 22 genes coding for PKSs in the different Nannochloropsis spp. 

426 (Supplemental Table S3) and built a phylogenetic tree of the KAS domain (KAS-PKS). KAS-

427 PKS phylogeny indicates that five gene products (PKS-Clade I) correspond to the iterative 

428 type I PKSs previously identified by Shelest et al. (2015) and are closely related to two other 

429 PKSs from N. gaditana (Naga_100093g21) and N. oceanica (CCMP1779|289), respectively 

430 (Fig. 5A). Sequences from PKS-Clade I cluster with type I FAS/PKS from fungi and 

431 Metazoa, whereas 15 other gene products show only weak similarities with KAS-PKS from 

432 other species and form three distinct clades: PKS-Clade II, PKS-Clade III and PKS-Clade IV 

433 (Fig. 5A). Transcriptomic data from the dark incubation experiments of N. oceanica and N. 

434 gaditana indicate that the genes coding for PKS-Clade I and PKS-Clade III enzymes were 
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435 down-regulated or did not exhibit significant changes under dark conditions, while those 

436 coding for PKS-Clade II were up-regulated (Fig. 3), and we did not detect genes coding for 

437 PKS-Clade IV in our transcriptomes. PKS-Clade II enzymes CCMP1779|6720 and 

438 Naga_100086g4 increased their expression in the dark treatment by 3.2 and 2.5 fold, 

439 respectively (Fig. 3) suggesting they can be potentially involved in the hydroxylation of fatty 

440 acids. 

441 Interestingly PKS-Clade II enzymes possess domains for PKS-KAS (IPR020841), AT 

442 (IPR020801), as well as an adenosine monophosphate (AMP) binding domain (IPR000873), a 

443 phosphopantetheine-binding ACP domain (PPT, IPR009081), and a ketoacyl-ACP-reductase 

444 (KAR, IPR013968) domain (Fig. 5B). The presence of catalytic domains for both KAS and 

445 KAR in PKS-Clade II enzymes and the lack of hydroxyacyl dehydratase (HAD) and enoyl 

446 reductase (ER) domains suggest that PKS-Clade II enzymes might catalyse an incomplete 

447 fatty acid elongation leading to the formation of 3-OH-fatty acids. C14-18 fatty acids might thus 

448 be elongated to form 3-OH-C16–20 fatty acid intermediates by PKS-Clade II enzymes. The 

449 incomplete elongation of the C18:0 fatty acid might lead to the formation of a 3-OH-C20:0 

450 intermediate which, after 5 or 6 full elongation cycles, potentially catalyzed by the FAE 

451 enzymes, would form the 13-OH-C30:0 and 15-OH-C32:0 fatty acids, respectively,  the two 

452 LCHFAs present in Nannochloropsis spp. (Gelin et al. 1997a, Balzano et al. 2017).

453

454

455 Reduction of LCHFAs to LCDs

456

457 LCDs and LCAs are likely formed from LCHFAs as evidenced by the depletion of 

458 LCHFAs and increase in LCAs and LCDs in the dark incubation experiments (Fig. 1). 

459 Furthermore, the presence of C14–24 alkanols (Volkman et al. 1999) as well as C15–17 alkanes 
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460 and the C15–31 alkenes (Gelin et al. 1997b, Sorigue et al. 2016, Zhou et al. 2016), also suggest 

461 the occurrence of fatty acid reduction activities in Nannochloropsis spp.. Odd-numbered 

462 alkanes and alkenes are typically formed from the reduction of even-numbered fatty acids to 

463 aldehydes followed by a decarbonylation step, as described in Arabidopsis thaliana (Bernard 

464 et al. 2012) and Chlamydomonas reinhardii (Sorigue et al. 2016). Similarly, fatty alcohols are 

465 also formed from the reduction of fatty acids catalysed by alcohol-forming fatty acid 

466 reductases (FAR) as shown in A. thaliana (Li-Beisson et al. 2010), Apis mellifera 

467 (Teerawanichpan et al. 2010), Calanus finmarchicus (Teerawanichpan and Qiu 2012) and 

468 Euglena gracilis (Teerawanichpan and Qiu 2010). However  we could not find any protein 

469 sequence containing the conserved motif [IVF]X[ILV]TGXTGF[MLV][GA] which 

470 corresponds to the FAR catalytic site (Hofvander et al. 2011, Teerawanichpan and Qiu 2012), 

471 and none of the Nannochloropsis protein belongs to any FAR family (IPR026055, 

472 IPR008670, IPR016836, IPR003157). Furthermore, similarity searches (blastp) of known 

473 FARs against the deduced amino acid sequences of Nannochloropsis genomes produced hits 

474 with low (bit score < 50) similarity (data not shown). Indeed a recent study also failed to 

475 detect genes coding for fatty acyl-CoA reductases (FARs) in Nannochloropsis genomes 

476 (Sorigue et al. 2016). This indicates that the enzymes involved in fatty acid reduction in 

477 Nannochloropsis are either unrelated or greatly divergent from known FARs.

478 We then searched within the genomes of N. oceanica and N. gaditana for genes coding 

479 for domains involved in the reduction of carboxylic acids. We found 44 genes coding for the 

480 short chain dehydrogenase/reductase (SDR) and eight genes that can code for the male 

481 sterility 2 (MS2) domain (Supplemental Table S4). Proteins with the male sterility (MS2) 

482 domain can catalyse the reduction of fatty acids in A. thaliana (Aarts et al. 1997), and 5 of 

483 these proteins are annotated as PKS-Clade I (Supplemental Table S5, Fig. 5) since they also 

484 possess the catalytic domains for fatty acid elongation. PKS-Clade I enzymes were previously 

Page 19 of 53 Plant & Cell Physiology



For Peer Review

20

485 suggested to be involved in the reduction of fatty acids in N. gaditana (Scholz et al. 2014). 

486 Since the genes coding for PKS-Clade I as well as the other genes coding for the MS domain 

487 are not up-regulated under dark conditions (Fig. 3, Supplemental Table S4) their products are 

488 unlikely to be involved in the reduction of LCHFAs to LCDs, although a role in other 

489 reduction processes cannot be discarded. Genes coding for SDR were also mostly down-

490 regulated under dark condition (Supplemental Table S5); only six of them were up-regulated 

491 but blastp analyses revealed similarities with proteins from other species with very different 

492 functions (Supplemental Table S5). 

493 Thus, although Nannochloropsis spp. contain a range of compounds (LCAs, LCDs, 

494 alkanes, alkenes, and alkanols) that are very likely to originate from the reduction of fatty 

495 acids, we could not find any enzyme potentially involved in these reductive processes.

496

497

498 Δ2- and Δ3-C20:1 fatty acids as potential LCA precursors

499

500 LCAs contain a double bond at the same position where LCDs have the hydroxy group 

501 (Supplemental Fig. S2, Gelin et al. 1997b) suggesting that LCAs might be formed from the 

502 dehydration of the mid-chain alcohol group of LCDs. Thus, we searched for dehydratase 

503 domains and found 14 genes coding for different lipid dehydratase domains (Supplemental 

504 Table S7), and one of them (Naga_100113g71) was up-regulated under dark conditions 

505 (Supplemental Table S8). Naga_100113g71, and its N. oceanica homologue 

506 (CCMP1779|4800) code for proteins possessing a HAD domain and cluster with HADs from 

507 other species in our phylogenetic analyses (Supplemental Fig. S7). 

508 Alternatively, the dehydration of the secondary alcohol group may occur at an earlier 

509 stage, e.g. as a result from an incomplete fatty acid elongation process in which ER activity is 
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510 missing, followed by several further elongation processes (Fig. 4). The higher expression 

511 levels of Naga_100113g71 under dark conditions (Fig. 3), in spite of a decrease in C14–16 fatty 

512 acids (Fig. 1F), suggest that these enzymes might have been catalysing the dehydration of 

513 other compounds such as longer fatty acids. Since HAD enzymes are thought to have a broad 

514 substrate specificity (Heath and Rock 1996, Leonard et al. 2004), potentially catalysing the 

515 dehydration of 3-hydroxyacyl chains of different lengths, they might also accept 3-OH-C20:0 

516 fatty acids as substrates to form the Δ2- and Δ3-C20:1 fatty acid, which, if further elongated and 

517 reduced, might lead to the formation of the C30-32 alkenols typically found in Nannochloropsis 

518 spp. (Fig. 4). 

519

520

521 Incorporation of LCAs and LCDs in Nannochloropsis cell wall biopolymer

522

523 The presence of ether- and ester-bound LCAs and LCDs within the cell wall of 

524 Nannochloropsis spp. has been long hypothesised (Volkman et al. 1992, Gelin et al. 1996, 

525 Gelin et al. 1997b, Volkman 2018). Fourier transform infrared spectroscopy (FTIR) on the 

526 cell wall of N. gaditana demonstrated the presence of ether bonds and also found some C═O 

527 stretches, but whether the latter are related to carboxylic, aldehyde, ketone, or ester functional 

528 groups is not clear (Scholz et al. 2014). Although the core of the cell wall polymer may be 

529 ether-bound, as they are resistant against base and acid hydrolysis (Gelin et al. 1997b), some 

530 of the LCAs and LCDs present in Nannochloropsis spp. likely occur as ester-bound moieties 

531 to polymeric carboxyl groups (Volkman 2018). The formation of esters from alcohols and 

532 fatty acids is typically catalysed by bifunctional wax ester synthase/acyl coenzyme A (acyl-

533 CoA):diacylglycerol acyltransferase (WS-DGAT) (Kalscheuer and Steinbuchel 2003). A gene 

534 coding for WS-DGAT (Naga_100114g61) was previously predicted in N. gaditana (Cui et al. 
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535 2018), and our phylogenetic analyses (Supplemental Fig. S8) indicate that the proteins 

536 encoded by Naga_100114g61 and its N. oceanica homologue (CCMP1779|236) are closely 

537 related to a WS-DGAT from Phaeodactylum tricornutum (PtWS-DGAT). PtWS-DGAT has 

538 been recently shown to catalyse the formation of esters from alcohols and fatty acids (Cui et 

539 al. 2018) and has a domain structure (Fig. 1 in Cui et al. 2018) similar to that found here for 

540 Nannochloropsis WS-DGATs (Naga_100114g61 and CCMP1779|236, Supplemental Fig. 

541 S8). Interestingly, putative WS-DGAT from N. gaditana and N. oceanica increased in 

542 expression by 6 and 1.5 fold, respectively (Fig. 3), under dark conditions, suggesting that an 

543 active production of esters was likely to take place during dark incubation. Thus, WS-DGATs 

544 in Nannochloropsis spp. might be involved in esterification of LCAs/LCDs to carboxyl 

545 groups to form the ester-bound structures which have been previously detected in the cell wall 

546 (Scholz et al. 2014).

547 In contrast, we could not find any gene potentially catalysing the formation of ether-

548 bonds within the cell wall biopolymers. Similarity (blastp) analyses of known ether synthases 

549 such as the 9-divinyl ether synthase from Solanum lycopersicum (tomato plant), the corvol 

550 ether synthase from Kisatasospora setae (bacteria), against the predicted proteins of N. 

551 oceanica CCMP1779 and N. gaditana B31 did not yield significant hits (Supplemental Table 

552 S9). The polymerisation of LCAs and LCDs to form ether-bound structures in algaenans 

553 remains thus unclear.

554

555

556 Potential biosynthetic pathways for LCA, LCD, and LCHFAs in Nannochloropsis spp. 

557
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558 As previously suggested (Gelin et al. 1997a, Scholz et al. 2014, Balzano et al. 2017, 

559 Volkman 2018), our results from stable isotope experiments confirm that LCAs and LCDs 

560 derive from C14–18 fatty acids by either condensation or elongation. 

561  If biosynthesis occurs via condensation the dominant pathway involves the interaction 

562 between the aliphatic end of a C14 fatty acid with the carboxylic end of a C18 fatty acid to 

563 produce a C32 compound functionalised on the 15th carbon which would be a precursor of 15-

564 OH-C32 fatty acids, C32 1,15 diol and C32 alkenols. Although we could not find evidence for 

565 such a pathway in literature nor could find genes potentially coding such biosynthetic 

566 processes within Nannochloropsis genomes, this pathway cannot be fully discarded. 

567 In contrast the elongation pathway is more likely to occur. The lack of elongation 

568 intermediates such as aliphatic compounds with a number of carbons comprised between 20 

569 and 26 in Nannochloropsis spp. might be due to a rapid uptake of such compounds for the 

570 following steps of the pathway. Nevertheless, results from our genomic and transcriptomic 

571 analyses, combined with comparisons with biosynthetic pathways in plants, more likely 

572 suggest that LCHFAs are formed from C14–18 fatty acids via elongation. Specifically we found 

573 two key enzymes, PKS-Clade II and FAE, potentially involved in the elongation process. 

574 PKS-Clade II are likely to elongate and hydroxylate the C18:0 fatty acid and, to a lesser extent, 

575 the C16:0 fatty acid, to form the 3-OH-C20:0 and 3-OH-C18:0 fatty acids, respectively (Fig. 4). 

576 Subsequently, FAE enzymes can potentially catalyse the multiple elongation of the 3-OH-

577 C20:0 fatty acid to 13-OH-C30:0 and 15-OH-C32:0 fatty acids after 5 or 6 complete elongation 

578 cycles, respectively (Fig. 4). Six complete elongation cycles of 3-OH-C18:0 fatty acid and 

579 subsequent reduction might form the C30:0 1,15 diol which is also present in Nannochloropsis 

580 spp. as well as other eustigmatophycean representatives (Rampen et al. 2014). 

581 Since saturated LCDs are functionalised at the same mid-chain position as their 

582 corresponding monounsaturated LCAs (Supplemental Fig. S2), both lipid classes are very 
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583 likely to share a similar biosynthetic pathway and to originate from the same precursors, the 

584 3-OH-C20:0 fatty acid and, to a lesser extent the 3-OH-C18:0 fatty acid. The pathway leading to 

585 the formation of LCAs would start from the dehydration of 3-OH-C20:0 fatty acids to both Δ2 

586 and Δ3 C20:1 fatty acid catalysed by an HADs (Fig. 4). The Δ2 and Δ3C20:1 fatty acids would 

587 then undergo 5 complete FAE-catalysed elongations and a reduction to form the Δ12 and Δ13 

588 C30:1 alkenols or 6 elongations and a reduction to form Δ14 and Δ15 C32:1 alkenols (Fig. 4). The 

589 Δ12 and Δ13 C30:1 alkenols as well as Δ14 and Δ15 C32:1 alkenols have been detected here in both 

590 N. gaditana and N. oceanica (Supplemental Fig. S2) and were also found previously in 

591 Nannochloropsis salina and an unidentified Nannochloropsis strain (Gelin et al. 1997b). The 

592 Δ14 and Δ15 C30:1 alkenols would instead derive from the dehydration of 3-OH-C18:0 fatty acid 

593 to Δ2 and Δ3C18:1 fatty acids followed by 6 complete elongation cycles and the reduction of 

594 the carboxylic group to alcohol. 

595 The formation of a double bond in LCDs and a second double bond in LCAs would 

596 originate at an early stage of the pathway, before the 3-OH C20:0 fatty acid is either elongated 

597 to form LCHFAs, or dehydrated to form LCA precursors (Fig. 4). A double bond on a Δ27 

598 position, for both the C32:2 alkenol and the C32:1 diol, might originate from a desaturation of 

599 the 13th carbon in C18:0 fatty acid or a desaturation of the 15th carbon in 3-OH-C20:1 fatty acid. 

600 The formation of Δ13 C18:1 or a Δ15 3-OH-C20:1 would potentially involve the activity of a 

601 stereospecific desaturase such as a Δ13stearoyl desaturase. Nannochloropsis spp. contains 29 

602 proteins with domains for fatty acid desaturation and some of them are up-regulated under 

603 dark conditions (Supplemental Table S9), it is unclear whether any of these enzymes exhibits 

604 Δ13stearoyl desaturase activity. 

605

606

607 LCD production in other species
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608

609 LCDs can also be produced by other phytoplankters (Sinninghe Damsté et al., 2003; 

610 Rampen et al., 2011) as well as some plants (Buschhaus et al. 2013). To evaluate the presence 

611 of FAEs and PKSs in LCD-producers other than Eustigmatophyceae we analysed the proteins 

612 predicted from genomes or transcriptomes available to date. The diatom Proboscia alata can 

613 code for three putative PKSs as well as a FAE (Supplemental Fig. S9). Similarly to PKS-

614 Clade II enzymes from Nannochloropsis spp. (Fig. 5B), PKSs from P. alata possess both 

615 KAS and KAR domains (Supplemental Fig. S9) being thus potentially able to catalyse the 

616 formation of hydroxylated products. Indeed, Proboscia species contain C28–30 1,14 diols and 

617 12-OH C27–29 methyl alkanoates which were previously suggested to be formed from 12-OH-

618 C26-28 fatty acids (Sinninghe Damsté et al. 2003). The 12-OH-C26–28 fatty acids might originate 

619 after 5 full elongation cycles of 2-OH-C16–18 fatty acids, which would in turn derive from an 

620 incomplete elongation (and thus hydroxylation) of C14–16 fatty acids, with FAEs catalysing the 

621 former reaction and PKSs the latter. The hydroxylation of C14–16 fatty acids should thus occur, 

622 in this case, on the 2nd, rather than on the 3rd carbon to eventually produce the LCD detected 

623 in Proboscia spp.. 

624 C26–32 aliphatic diols with a primary and a secondary alcohol group can also be present 

625 in the epicuticular waxes of aquatic ferns (Speelman et al. 2009, Mao et al. 2017), terrestrial 

626 ferns (Jetter and Riederer 1999) as well as other land plants such as mosses (Busta et al. 

627 2016), conifers (Wen and Jetter 2007), and flowering plants (Wen et al. 2006, Racovita and 

628 Jetter 2016). Similarly to the biosynthetic pathways proposed here for Nannochloropsis spp., 

629 LCDs from plants could start with the formation of 3-hydroxyacyl compounds mediated by 

630 P450 hydroxylases or PKS enzymes, followed by FAE-catalysed elongation of 3-hydroxyacyl 

631 intermediates as suggested for plants (Wen and Jetter 2007, Busta et al. 2016). 
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632 CONCLUSIONS

633

634 LCAs and LCDs are likely to originate from C14-18 fatty acids after either condensation 

635 of C14-18 fatty acids or an incomplete fatty acid elongation, forming 3-OH-fatty acids, 

636 followed by a further elongation to LCHFAs and a final reduction of the terminal carboxylic 

637 group. Enzymes potentially involved in such a condensation of two fatty acids are not known 

638 to date. We identified instead two enzymes (PKS-Clade II and FAE) likely to be involved in 

639 the elongation of C14-18 fatty acids to larger products. HAD enzymes might play a role in the 

640 dehydration of secondary alcohols forming the double bonds present in LCAs whereas WS-

641 DGAT enzymes are potentially involved in the formation of the ester-bound structures present 

642 in the Nannochloropsis cell wall. Although the biosynthetic pathways for LCAs and LCDs 

643 have not been fully elucidated and the formation of ether bonds within cell wall polymers is 

644 still unclear, our work identifies a potential mechanism, similar to biosynthetic processes 

645 described in higher plants, for the formation of mid-chain functionalised aliphatic compounds 

646 in phytoplankton. Future challenges include the biochemical and functional characterization 

647 of the candidate enzymes predicted here. Eventually, if long chain aliphatic compounds are 

648 formed from the elongation of C14-18 fatty acids, genetic manipulations of PKS-Clade II and 

649 FAE enzymes might contribute to increase the productivity of both LCHFAs and LCDs in 

650 Nannochloropsis species.

651

652

653
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654 MATERIALS AND METHODS

655

656

657 Culturing and dark incubations

658

659 Nannochloropsis oceanica CCMP1779 and N. gaditana CCMP526 were cultured in 

660 batch using f/2 medium (Guillard 1975) under 12:12 dark/light conditions at 20 °C and algal 

661 growth was regularly monitored using flow cytometry (Marie et al. 2001). For the 

662 experiments each strain was grown in 6 replicate 1.5 L Erlenmeyer flasks (Supplemental 

663 information) and cells were harvested from 3 flasks to assess the initial concentration of lipids 

664 and the background gene expression (Control 1). From each of the remaining 6 flasks (3 per 

665 species) an aliquot (20 mL equals approximately 7 x 107 cells) was transferred into new 

666 Erlenmeyer flasks pre-filled with medium, incubated under dark/light conditions and used as 

667 positive control (Control 2), whereas the initial flasks with the remaining volume (780 mL) 

668 were instead transferred under dark conditions. Both Control 2 and dark treatment were 

669 incubated for 1 week at 20 °C. Cells were harvested from their culturing flasks by filtration 

670 through 0.7 μm GF/F filters (Whatman, Maidstone, UK). Cells were enumerated by flow 

671 cytometry before filtration and we did not observe dead cells or debris (i.e. particles with 

672 comparable forward scatter and lower chlorophyll fluorescence than ordinary 

673 Nannochloropsis cells) in our cytograms in any of the samples filtered. This suggests that 

674 most of the material filtered contained viable cells, or at worst dead cells with intact 

675 chloroplasts. Filters for lipid analyses were immediately rinsed in demineralised water and 

676 stored at -80 °C, whereas filters for RNA extraction and further transcriptomic analyses were 

677 flash frozen in liquid nitrogen immediately and then stored at -80 °C until analyses. 
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678 In addition we analysed the composition of LCAs, LCDs, and LCHFAs in mutant 

679 strains of N. gaditana CCMP526 in which the gene Naga_100083g23 coding for a Δ0-ELOs 

680 has been silenced (Dolch et al. 2017). Three mutants (Clone 5, Clone 13, and Clone 15) were 

681 obtained from the Cell and Plant Physiology Laboratory (Grenoble, France), cultured under 

682 the same conditions as above (f/2 medium, 12/12 dark light cycle) along with the wild type 

683 (N. gaditana CCMP526) and harvested during the exponential phase of their growth.   

684

685

686 Stable isotope labelling

687

688 To assess whether LCDs are formed from C14–16 fatty acids, we incubated N. oceanica 

689 CCMP1779 with sodium 13C-[2]-acetate (Sigma-Aldrich, 279315-1G, Zwijndrecht, 

690 Netherlands) under both dark/light and dark conditions. We used an axenic culture of N. 

691 oceanica CCMP1779 to avoid any consumption of 13C-labelled acetate by heterotrophic 

692 bacteria typically present in phytoplankton cultures. The strain was cultured at 20 °C under 

693 12:12 dark/light conditions in a 5 L glass carboy and continuous air bubbling was provided by 

694 an aquarium pump connected through0.2 µm pore size filters (Sartorius, Göttingen Germany) 

695 to dilute any formed 13C labelled CO2 A volume of 10 mL of 0.5 M sodium 13C-[2]-acetate 

696 was added to the cultures when they reached cellular densities of approx. 1.5 x 107 cell mL-1. 

697 The dark/light treatment was then incubated at the same conditions for 2 days, whereas the 

698 dark treatment was incubated for 1 week in the dark. At the end of the experiments cells were 

699 harvested as described above. 

700

701

702 Lipid extraction, GC-MS and IR-MS
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703

704 For the non-isotopically labelled dark incubation experiment we extracted 18 filters in 

705 total, i.e. three replicates per treatment for two strains (N. oceanica CCMP1779 and N. 

706 gaditana CCMP526). The filters were freeze-dried using a Lyoquest (Telstart, Life Sciences) 

707 freeze-drier and then they were saponified and acid hydrolysed as described previously 

708 (Rodrigo-Gámiz et al. 2015, Balzano et al. 2017). The total lipid extract (TLE) was then 

709 dissolved in dichloromethane (DCM) and dried through anhydrous sodium acetate, and 

710 subsequently under nitrogen. After extraction, we added 20.4 µg C22:0 7,16-diol as internal 

711 standard to the TLE, for quantification purposes. Subsequently, the extracts were methylated 

712 with diazomethane and cleaned over a small silica gel column using ethyl acetate as eluent. 

713 Prior to analysis, the TLEs were silylated by the addition of N,O-bis-(trimethylsilyl)-

714 trifluoroacetamide (BSTFA) and pyridine, and heating at 60 °C for 20 min.

715 An aliquot of one lipid extract from N. oceanica CCMP1779 (dark treatment) was used 

716 to determine the position of the double bond in alkenols and unsaturated LCDs, lipids were 

717 derivitised by adding 50 μL dimethyl disulfide and 5 μL iodine solution (60 mg iodine in 1mL 

718 diethyl ether), eluted then in DCM and iodine was removed using 50–100 mL 5% sodium 

719 thiosulfate solutions.

720 Compounds were quantified using gas chromatography flame ionization detection using 

721 an Agilent 7890B Gas Chromatograph (GC) with a 25 m fused silica column diameter 0.32 

722 mm, coated with CP Sil-5 (thickness 0.12 µm). Identification of the lipids was achieved using 

723 GC-mass spectrometry (GC-MS) with an Agilent 7890B GC coupled to an Agilent 5977 mass 

724 spectrometer. Identification of the LCDs, LCAs and LCHFAs was based on the fragmentation 

725 mass spectra obtained in full scan (m/z 50–800) as described by Versteegh et al. (1997). To 

726 discriminate between C30:0 diols and the C32:2 alkenols, which co-elute on the GC, we 

727 determined the relative contributions of each compound to the total peak area in the GC-MS 
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728 chromatogram (MassHunter software, Agilent Technologies) in which the two compounds are 

729 partially separated. 

730 For the stable isotope experiment, we analysed two filters corresponding to the two 

731 treatments of N. oceanica. The extraction set-up consisted in saponification followed by acid 

732 hydrolysis as described above. Subsequently, we added 19.2 µg C22:0 7,16-diol as internal 

733 standard to the extracts and we methylated the TLEs using boron trifluoride in methanol. The 

734 extracts were separated by column chromatography, using aluminium oxide as stationary 

735 phase, which was activated for 2 h at 150 °C. Lipids were then extracted in three different 

736 solutions: hexane:DCM (9:1, vol./vol.), hexane:DCM (1:1, vol./vol.) and methanol:DCM 

737 (1:1, vol./vol.). Fatty acids were mostly dissolved in the second hexane:DCM solution 

738 whereas LCAs, LCDs and LCHFAs were dissolved in the methanol:DCM solutions. For the 

739 silylation and the methylation we used BSTFA and BF3/methanol, respectively, with known 

740 δ13C values of -32.2‰ and -25.7‰, respectively. Compounds were quantified by GC-FID 

741 chromatograms as described above, whereas identification was achieved using an Agilent 

742 7890A GC coupled to an Agilent 5975C MS. All GC-MS parameters were also identical, but 

743 the total run time was 60 min. The isotopic composition of the different compounds was 

744 analysed using gas chromatography-isotope ratio mass spectrometry, using an Agilent 6890 

745 GC coupled to a Thermo Delta Plus isotope ratio mass spectrometer (IR-MS, ThermoFisher). 

746 Separation was achieved on a ZB-5MS column with a length of 60 m, a column diameter of 

747 0.32 mm and a film thickness of 0.25 µm. Oven program was identical as that described for 

748 the GC-FID and GC-MS, but the end temperature of 320 °C was held for 30 min (total run 

749 time of 80 min). The injection volume was 1 µL and the four fractions were all analyzed in 

750 triplicate, and the reported data represent averaged values. The isotopic compositions are 

751 reported in units of atom percent (At%). Values were corrected considering the δ13C values of 

752 both BSTFA and methanol.
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753

754

755 Genomic analyses

756

757 To identify genes potentially involved in the biosynthesis of LCAs, LCDs, and LCHFAs 

758 in Eustigmatophyceae we constructed a local blast database (Altschul et al. 1990, Camacho et 

759 al. 2009) using the predicted proteins from the genomes of 8 Nannochloropsis strains 

760 (Nannochloropsis sp. CCMP531, N. gaditana B-31, N. gaditana CCMP526, Nannochloropsis 

761 granulata CCMP529, N. oceanica CCMP1779, N. oceanica IMET1, Nannochloropsis 

762 oculata CCMP525, and N. salina CCMP537, Supplemental Information). Conserved protein 

763 domains were searched using Interproscan (Jones et al. 2014) or by manually enquiring for 

764 specific AA motifs. Specifically we searched for proteins containing the motifs HWYHH, 

765 GMGCSAG, and [D/E]TACSSS or H[G/A]TGT, which correspond to highly conserved 

766 regions of Δ0-ELOs (Hashimoto et al. 2008), FAEs (Millar et al. 1999), and PKSs (Shelest et 

767 al. 2015) enzymes, respectively. Moreover we searched for genes potentially coding for the 

768 conserved motif [I/V/F]X[I/L/V]TGXTGF[M/L/V][G/A] which corresponds to the catalytic 

769 site of FARs (Hofvander et al. 2011, Teerawanichpan and Qiu 2012). The presence and 

770 position of trans membrane helices (TMHs), in Δ0-ELOs, FAEs, and PKSs proteins was 

771 assessed using TMHMM (Krogh et al. 2001).

772 We carried out similarity searches of known proteins from other species against the 

773 locally built Nannochloropsis database, as well as similarity searches of Nannochloropsis 

774 proteins potentially involved in the biosynthetic processes against the non-redundant (NR) 

775 (Pruitt et al. 2005) and the Swissprot (The UniProt Consortium, 2017) databases, using blastp 

776 (Camacho et al. 2009).
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777 To compare putative Nannochloropsis enzymes involved in the biosynthetic processes 

778 with known and unknown proteins from other species we performed phylogenetic analyses on 

779 four protein families: FAEs, PKSs, the HADs, and the WS-DGATs. We aligned putative 

780 Nannochloropsis FAEs with known FAE proteins from Arabidopsis thaliana, Brassica napus 

781 (Joubes et al. 2008), as well as a FAE known to elongate hydroxy fatty acids from Physaria 

782 fendlerii (Moon et al. 2001). Sequences were aligned using MAFFT-linsy (Katoh and 

783 Standley 2013) and poorly aligned regions (regions containing > 50% gaps) were trimmed 

784 from the alignment which finally consisted of 50 sequences and 195 unambiguously aligned 

785 positions. We analysed the KAS domain of PKSs (KAS-PKS) using Nannochloropsis 

786 proteins previously identified as PKSs (Shelest et al. 2015, Alboresi et al. 2016) as well as 

787 other proteins containing the KAS-PKS domain (IPR020841) and/or containing the conserved 

788 motifs [D/E]TACSSS and H[G/A]TGT. Sequences were then aligned to a pre-existing 

789 alignment of 92 KAS-PKS sequences (Kohli et al. 2016) and trimmed as described above. 

790 The final alignment consisted of 138 sequences and 173 AA positions. For HADs we 

791 extracted two AA sequences containing a domain for HAD (IPR010084) from N. oceanica 

792 and N. gaditana, respectively. We then searched for homologues in the Nannochloropsis and 

793 Swissprot databases, aligned and trimmed the sequences as described above and the final 

794 alignment included 50 AA sequences and 147 positions. For the WS-DGAT phylogeny we 

795 downloaded known AA sequences from the Swissprot database, searched for homologues in 

796 Nannochloropsis, aligned the sequences and trimmed the alignment as described above. The 

797 alignment included 43 AA sequences and 245 positions. Phylogenetic trees were constructed 

798 using both Maximum Likelihood (ML) and Neighbour Joining (NJ) algorithms based on 

799 1,000 bootstraps. ML phylogeny was inferred using RAxML with 1000 bootstraps 

800 (Stamatakis 2014) and was used to build the phylogenetic trees, whereas NJ bootstrap support 

801 values were calculated using MEGA (Tamura et al. 2007).
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802 To evaluate the occurrence of similar biosynthetic processes in other LCD-producers 

803 (Balzano et al. 2018), we downloaded a number of predicted proteins, obtained from 

804 transcriptomes of phytoplankton cultures (Keeling et al. 2014) from iMicrobe 

805 (https://www.imicrobe.us/). The species used were Florenciella parvula (MMETSP1323), 

806 Florenciella sp. (MMETSP1324), Heterosigma akashiwo(MMETSP0292, MMETSP0294, 

807 MMETSP0295, MMETSP0296, MMETSP0409, MMETSP0410, MMETSP0411, 

808 MMETSP0414, MMETSP0415, MMETSP0416, MMETSP0894, MMETSP0895, 

809 MMETSP0896, MMETSP0897), Phaeomonas parva (MMETSP1163), Florenciella parvula 

810 (MMETSP1323), Florenciella sp. (MMETSP1324), Proboscia alata (MMETSP0174, 

811 MMETSP0176), Proboscia inermis (MMETSP0816), and Sarcinochrysi sp. (MMETSP1170). 

812 In addition, we downloaded the genomes of the plants Azolla filliculoides 

813 (www.fernbase.org)and Triticum aestivum (Kersey et al. 2018) which are also known to 

814 produce LCDs (Speelman et al. 2009, Racovita and Jetter 2016). We then analysed the 

815 domain structure of these proteins using Interproscan (Jones et al. 2014) and searched for 

816 PKSs coding KAS and KAR domains.

817

818

819 RNA extraction

820

821 To prevent RNA degradation, the extractions were carried out under sterile and cold 

822 (approx. 10 °C) conditions in a clean laboratory; samples, tubing, and all other equipment 

823 used were kept in ice unless otherwise stated. RNA was extracted from each of 3 replicates of 

824 each of the three treatments (initial biomass, positive control, and dark-incubated biomass) 

825 from both N. oceanica CCMP1779 and N. gaditana CCMP526 for a total of 18 samples. Cells 

826 were disrupted using a combination of thermal, chemical, and mechanical lyses: from each 
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827 sample about ½ of a GF/F filter was cut in many small pieces using sterile tweezers and 

828 scissors, drilled using disposable pellet pestles, and then transferred into 12 mL falcon tubes 

829 prefilled with 0.1 and 0.5 µm glass beads (Biospec, Bartlesville, Canada). Tubes were then 

830 rapidly submerged several times into liquid nitrogen to promote thermal cell lysis. One mL of 

831 RLT buffer (Qiagen, Venlo, Netherlands), 10 µL mercaptoethanol (Sigma-Aldrich,), and 50 

832 µL plant RNA isolation aid (Thermo Fisher Scientific, Waltham, US) were then added to the 

833 tubes which were vortexed for 5 minutes, incubated for 5 min in ice, vortexed again for 5 min 

834 and finally centrifuged at 4,500 g. The supernatant was transferred into 2 mL tubes which 

835 were centrifuged again at 16,000 g and the supernatant removed. 35 µL lysozyme (Qiagen), 

836 20 µL proteinase-K (Qiagen), and 100 µL sodium-dodecyl-sulfate (Ambion, Bleiswijk, 

837 Netherlands) were then added to the samples which were incubated at 37 °C for 10 min. 

838 Tubes were then centrifuged for 15 min and the supernatant transferred into DNA spin 

839 column (DNAeasy blood and tissue kit, Qiagen) and centrifuged to remove most of the DNA. 

840 The lysate was transferred into RNAeasy spin columns (RNAeasy mini-kit, Qiagen) and the 

841 RNA was then isolated following the instructions provided by the supplier. Traces of DNA 

842 were removed from the RNA extract using Turbo DNAse (Thermo Fisher Scientific). RNA 

843 concentration and integrity were assessed using Qubit Fluorometric Quantitation (Thermo 

844 Fisher Scientific) and a Bioanalyser (Agilent, Santa Cruz, US) whereas a PCR using universal 

845 eukaryote primers (Stoeck et al. 2010) was carried out to confirm the absence of DNA 

846 contamination within the RNA extracts. 

847 RNA extracts were sent to Utrecht Sequencing Facility (www.useq.nl), where cDNA 

848 was generated, sequencing libraries prepared, and sequencing carried out with two runs on a 

849 NextSeq500 with reads of 75 bp. 

850

851
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852 Gene expression analyses

853

854 A total of 614,537,691 raw fastq reads were obtained and processed locally on a 

855 bioinformatic cluster. Low quality reads were trimmed or removed using Trimmomatic 

856 (Bolger et al. 2014) with the maxinfo method (MAXINFO:40:0.6) and a minimal length of 

857 acceptable reads of 36 bp. Adapters were also removed using Trimmomatic with the 

858 Illuminaclip option. The quality of the trimmed reads was controlled with fastqc 

859 (www.bioinformatics.babraham.ac.uk/projects/fastqc/) and reads were sorted and counted 

860 using the R library Rsamtools (Morgan et al. 2017). Reads were mapped against the 

861 previously sequenced genomes of N. oceanica CCMP1779 (Vieler et al. 2012) available at 

862 Joint Genome Institute (https://genome.jgi.doe.gov/pages/search-for-

863 genes.jsf?organism=Nanoce1779 ) and N. gaditana B-31 (Corteggiani Carpinelli et al. 2014) 

864 downloaded from www.nannochloropsis.org. Mapping was performed using the R library 

865 GenomicFeatures (Lawrence et al. 2013), data were normalised using Deseq2 (Love et al. 

866 2014) and a gene expression table as well as log2 fold changes with corresponding p-values 

867 corrected with the false discovery rate (Benjamini and Hochberg 1995) was obtained. 

868 Expression changes were considered significant for p-values < 0.01. 
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1163 TABLES
1164
1165 Table 1. Combustion enthalpies of the main fatty acids present in Nannochloropsis speciesa

1166

1167

1168

1169 a Source: 
1170 http://chemwiki.ucdavis.edu/Theoretical_Chemistry/Chemical_Bonding/General_Principles_of_Chemical_Bond
1171 ing/Bond_Energies

1172

Compound Reaction Combustion enthalpy
KJ.mol-1 KJ.g-1

C14:0 FA C14:0 FA + 20 O2 → 14 H2O + 14 CO2 8 300 36.0
C16:1 FA C16:1 FA + 22.5 O2 → 15 H2O +16 CO2 9 400 37.0
C16:0 C16:0 FA + 23 O2→ 16 H2O + 16 CO2 9 500 37.0
C18:1 C18:1 FA + 25.5 O2 → 17 H2O + 18 CO2 11 160 39.5
C18:0 C18:0 FA + 26 O2 → 18 H2O + 18 CO2 10 800 38.0
C20:5 FA C20:5 FA + 26.5 O2→ 15 H2O + 20 CO2 11 400 38.0
C30:0 OH-FA C30:0 OH-FA+ 43.5 O2 → 30 H2O + 30 CO2 18 000 39.0
C32:0 OH-FA C32:2 OH-FA + 46.5 O2 → 32 H2O + 32 CO2 19 200 39.0
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1173 Table 2. Overview of the transcriptomic analyses of the strains analysed in the present studya

 N. gaditana CCMP526 N. oceanica CCMP1779
Mapped genes 10,043 11,222
Up-regulatedb 1,950 955
Highly up-regulatedc 440 292
Down-regulatedb 2,067 1,855
Highly down-regulatedc 612 1,133
Not significant 6,026 8,412

1174

1175 aGene expression of the dark treatment was compared with that of the dark/light controls.

1176 bA gene is considered up or down-regulated if its expression level changes by at least 2-fold 
1177 in the dark treatment compared to the dark/light control and the change is associated with an 
1178 FDR corrected p-value < 0.01.

1179 cNumber of down- and up-regulated genes exhibiting an expression change of at least 8 fold.

1180
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1181 Figure legend
1182
1183 Figure 1. Growth curves depicting the cell abundance of N. oceanica CCMP1779 (A) 

1184 and N. gaditana CCMP526 (B) during the experiments. The shaded areas correspond to the 

1185 time interval during which the cultures were incubated under dark conditions. Cellular levels 

1186 of LCAs, LCDs and LCHFAs (C-D) and major fatty acids (E-F) for N. oceanica CCMP1779 

1187 (C, E) and N. Gaditana CCMP526 (D, F).

1188

1189 Figure 2. Incorporation of 13C-labelled sodium acetate in the biomass of N. oceanica 

1190 CCMP1779 under dark/light (A, C), and dark (B, D) conditions. Growth curves (A, B) 

1191 depicting the cell abundance of the culture during the experiment. The grey area denotes the 

1192 time interval of dark incubation whereas arrows indicate the supply of 13C-labelled sodium 

1193 acetate. Atomic 13C percentage (of measured 13C+12C) (C, D) measured by GC-IR-MS for 

1194 selected lipids at the end of the experiment. Error bars represent the standard deviation 

1195 calculated from three replicate measurements on the lipid extract (note that some error bars 

1196 are too small to be visible in the graph). The straight line indicates the natural atomic 13C 

1197 percentage.

1198

1199 Figure 3. Expression level of the genes potentially coding the enzymes catalysing the 

1200 different reactions involved in the biosynthesis of saturated C14–18 fatty acids, LCHFAs, LCAs 

1201 and LCDs as well as the formation of ester-bonds within the cell wall biopolymer. The 

1202 horizontal axis indicates the log2 fold change in gene expression, between the dark treatment 

1203 and the light/dark control. Significant differences (p-value < 0.01) are indicated with an 

1204 asterisk. The prefixes Naga and CCMP1779 denote transcripts from N. gaditana CCMP526 

1205 and N. oceanica CCMP1779, respectively. FAS, fatty acid synthase; Δ0-ELO, Elongation 

1206 enzymes; PKS, polyketide synthase; HAD, hydroxyacyl-acyl carrier protein-dehydratase; 
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1207 FAE, fatty acid elongation enzyme; WS-DGAT, bifunctional wax ester 

1208 synthase/diacylglycerol acyltransferase. 

1209

1210 Figure 4. Putative pathways for the biosynthesis of LCDs and LCAs. For the 

1211 biosynthetic steps in which the enzymes potentially involved have been predicted, the enzyme 

1212 name is indicated next to the arrow, underlined. The lipids detected in Nannochloropsis spp. 

1213 in this study or reported in previous studies are written in bold, whereas those that have not 

1214 been observed are written in red.

1215

1216 Figure 5. Phylogenetic and functional analyses of Nannochloropsis genes potentially 

1217 coding for polyketide synthases (PKS) and potentially involved in the formation of 3-OH- 

1218 intermediates. Phylogeny (A) of the deduced amino acid sequences from the ketoacyl ACP 

1219 synthase (KAS) domain of the PKSs. Sequences from different Nannochloropsis spp. were 

1220 compared with a pre-existing alignment from Kohli et al. (2016) and the phylogenetic tree 

1221 was constructed using the Maximum Likelihood (ML) algorithm by RAxML. Sequences from 

1222 N. oceanica CCMP1779 and N. gaditana B31 are coloured according to their expression 

1223 levels in the transcriptome and numbers in brackets after the sequences denote the expression 

1224 levels of these genes in the transcriptome, expressed as log 2 fold changes. Node labels 

1225 indicate the bootstrap support based on ML and neighbour joining (NJ) algorithms, 

1226 respectively, support values < 50% are omitted. (B) Structural analyses of two putative PKS 

1227 from N. oceanica and N. gaditana affiliated to Clade II. The domain structure of all putative 

1228 PKSs from Nannochloropsis is shown in details in Supplemental Table S1. The domains 

1229 likely to correspond to the catalytic sites for ketoacyl-acyl carrier protein (ACP)-synthase 

1230 (KAS) and ketoacyl-ACP-reductase (KAR) are in red, and green, respectively. Trans-

1231 membrane helices (TMH) are in grey, other domains in black. AT, acyl transferase; HAD, 
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1232 hydroxyacyl dehydratase; NAD, Nicotinamide adenine dinucleotide-binding domain; ER, 

1233 enoyl reductase; PPT, phosphopantetheine-binding domain; AMP, adenosine monophosphate-

1234 dependent synthetase/ligase.
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1235 SUPPLEMENTAL MATERIAL

1236 1) Supplemental Information: Supplemental methods and further discussions on 

1237 genes/enzymes unlikely to be involved in the biosynthetic processes

1238 2) 13 supplemental tables with legends

1239 3) 9 supplemental figures with legends

1240

1241

1242

1243
1244
1245

1246

1247
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Figure 3. Expression level of the genes potentially coding the enzymes catalysing the different reactions 
involved in the biosynthesis of saturated C14–18 fatty acids, LCHFAs, LCAs and LCDs as well as the 

formation of ester-bonds within the cell wall biopolymer. The horizontal axis indicates the log2 fold change 
in gene expression, between the dark treatment and the light/dark control. Significant differences (p-value 

< 0.01) are indicated with an asterisk. The prefixes Naga and CCMP1779 denote transcripts from N. 
gaditana CCMP526 and N. oceanica CCMP1779, respectively. FAS, fatty acid synthase; Δ0-ELO, Elongation 
enzymes; PKS, polyketide synthase; HAD, hydroxyacyl-acyl carrier protein-dehydratase; FAE, fatty acid 

elongation enzyme; WS-DGAT, bifunctional wax ester synthase/diacylglycerol acyltransferase. 

209x297mm (300 x 300 DPI) 

Page 51 of 53 Plant & Cell Physiology



For Peer Review

OH

O

16

OH

O
H

318

OH

O

18

OH

OH

O

3

3

20

20

OH

OH

OH

OH O

15

15

30

30

OH

OH O

1532

OH

OH

OH

15

15

32

32

OH

OH O

1330

OH

OH

1330

 O

O
H

 O

C16:0 FA Δ0-ELO C18:0 FA

PKS Clade II

3-OH-C18:0 FA

C32:1 alkenol

3-OH-C20:0 FA

13-OH-C30:0 FA
C20:1 FA

15-OH-C30:0 FA

15-OH-C32:0 FA

C32:0 1,15 diolC30:0 1,15 diol

C30:0 1,13 diol

PKS Clade II

FAE6x

FAE5x

FAE

FAE6x

OH1532
O

C32:1 FA

HAD

Figure 4 Page 52 of 53Plant & Cell Physiology



For Peer Review

 

Figure 5. Phylogenetic and functional analyses of Nannochloropsis genes potentially coding for polyketide 
synthases (PKS) and potentially involved in the formation of 3-OH- intermediates. Phylogeny (A) of the 

deduced amino acid sequences from the ketoacyl ACP synthase (KAS) domain of the PKSs. Sequences from 
different Nannochloropsis spp. were compared with a pre-existing alignment from Kohli et al. (2016) and the 
phylogenetic tree was constructed using the Maximum Likelihood (ML) algorithm by RAxML. Sequences from 

N. oceanica CCMP1779 and N. gaditana B31 are coloured according to their expression levels in the 
transcriptome and numbers in brackets after the sequences denote the expression levels of these genes in 

the transcriptome, expressed as log 2 fold changes. Node labels indicate the bootstrap support based on ML 
and neighbour joining (NJ) algorithms, respectively, support values < 50% are omitted. (B) Structural 

analyses of two putative PKS from N. oceanica and N. gaditana affiliated to Clade II. The domain structure 
of all putative PKSs from Nannochloropsis is shown in details in Supplemental Table S1. The domains likely 

to correspond to the catalytic sites for ketoacyl-acyl carrier protein (ACP)-synthase (KAS) and ketoacyl-ACP-
reductase (KAR) are in red, and green, respectively. Trans-membrane helices (TMH) are in grey, other 

domains in black. AT, acyl transferase; HAD, hydroxyacyl dehydratase; NAD, Nicotinamide adenine 
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dinucleotide-binding domain; ER, enoyl reductase; PPT, phosphopantetheine-binding domain; AMP, 
adenosine monophosphate-dependent synthetase/ligase. 
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