

This is a preprint of:

Balzano, S.; Villanueva, L.; de Bar, M.; Sahonero Canavesi, D.X; Yildiz, C.; Engelmann, J.C.; Maréchal, E.; Lupette, J.; Sinninghe Damsté, J.S. & Schouten, S (2019). Biosynthesis of long chain alkyl diols and long chain alkenols in *Nannochloropsis* spp. (Eustigmatophyceae). *Plant and cell physiology*, 60, 1666-1682

Published version: <u>https://dx.doi.org/10.1093/pcp/pcz078</u>

NIOZ Repository: http://www.vliz.be/nl/imis?module=ref&refid=310966

[Article begins on next page]

The NIOZ Repository gives free access to the digital collection of the work of the Royal Netherlands Institute for Sea Research. This archive is managed according to the principles of the <u>Open Access Movement</u>, and the <u>Open Archive Initiative</u>. Each publication should be cited to its original source - please use the reference as presented.

When using parts of, or whole publications in your own work, permission from the author(s) or copyright holder(s) is always needed.

1	<i>Title:</i> Biosynthesis of Long Chain Alkyl Diols and Long Chain Alkenols in
2	Nannochloropsis spp. (Eustigmatophyceae)
3	
4	
5	Short title: Diol and Alkenol Biosynthesis in Nannochloropsis
6	
7	
8	*Corresponding author: Sergio Balzano, Department of Marine Microbiology and
9	Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, and Utrecht
10	University, P.O. Box 59, 1790 AB Den Burg, The Netherlands
11	
12	Present address: Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia
13	Ecologia e Biotecnologie Marine, Villa Comunale Napoli, 80121, Italy
14	
15	email: <u>sergio.balzano@szn.it</u>
16 17	
18	
19	Subject areas: (1) proteins, enzymes and metabolism and (2) regulation of gene
20	expression
21	
22	
23	Number of black and white figures: 3
24	Number of colour figures: 2
25	Number of tables: 2
26	Supploy out al Matorial
27	1) Tart: Supplemental Information
20 29	2) Number of supplemental tables: 13
30	3) Number of supplemental figures: 9
31	

32	Title: Biosynthesis of Long Chain Alkyl Diols and Long Chain Alkenols in
33	Nannochloropsis spp. (Eustigmatophyceae)
34	
35	
36	Short title: Diol and Alkenol Biosynthesis in Nannochloropsis
27	show une. Diet and Aikener Diesynthesis in Nathoentoropsis
57	
38	
39	<i>Authors:</i> Sergio Balzano ^{1,2*} , Laura Villanueva ^{1,3} , Marijke de Bar ¹ , Diana X Sahonero
40	Canavesi ¹ , Caglar Yildiz ¹ , Julia C. Engelmann ¹ , Eric Marechal ⁴ , Josselin Lupette ^{4,5} , Jaap S.
41	Sinninghe Damsté ^{1,3} , and Stefan Schouten ^{1,3}
42	
43	¹ Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal
44	Netherlands Institute for Sea Research, and Utrecht University, P.O. Box 59, 1790 AB Den
45	Burg, The Netherlands
46	
47	² Present address: Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia
48	Ecologia e Biotecnologie Marine, Villa Comunale Napoli, 80121, Italy
49 50	³ Utrecht University Faculty of Geosciences Department of Earth Sciences P.O. Boy
50	80 021 3508 TA Utrecht The Netherlands
52	
53	⁴ Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168
54	CNRS, CEA, INRA, Univ. Grenoble Alpes, CEA Grenoble, 17 avenue des Martyrs, 38000
55	Grenoble, France
56	
5/	Present address: MSU-DOE Plant Research Laboratory, Michigan State University,
58	East Lansing, MI 48824, USA
59	* 1' 1 - 1 - 1
60 61	*corresponding author: <u>sergio.balzano@szn.it</u>
62	
63	
64	

66 67	Abstract
68	We investigated potential biosynthetic pathways of long chain alkenols (LCAs), long
69	chain alkyl diols (LCDs), and long chain hydroxy fatty acids (LCHFAs) in Nannochloropsis
70	oceanica and Nannochloropsis gaditana, by combining culturing experiments with genomic
71	and transcriptomic analyses. Incubation of Nannochloropsis spp. in the dark for one week led
72	to significant increases in the cellular concentrations of LCAs and LCDs in both species.
73	Consistently, ¹³ C-labeled substrate experiments confirmed that both LCA and LCD were
74	actively produced in the dark from C_{14-18} fatty acids by either condensation or
75	elongation/hydroxylation, although no enzymatic evidence was found for the former pathway.
76	Nannochloropsis spp. did, however, contain (1) multiple polyketide synthases (PKSs)
77	including one type (PKS Clade II) that might catalyse incomplete fatty acid elongations
78	leading to the formation of 3-OH-fatty acids, (2) 3-hydroxyacyl dehydratases (HADs), which
79	can possibly form Δ^2/Δ^3 monounsaturated fatty acids, and (3) fatty acid elongases (FAEs) that
80	could elongate 3-OH-fatty acids and Δ^2/Δ^3 monounsaturated fatty acids to longer products.
81	The enzymes responsible for reduction of the long chain fatty acids to LCDs and LCAs are,
82	however, unclear. A putative wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol
83	acyltransferase (WS-DGAT) is likely to be involved in the esterification of LCAs and LCDs
84	in the cell wall. Our data thus provide useful insights in predicting the biosynthetic pathways
85	of LCAs and LCDs in phytoplankton suggesting a key role of FAE and PKS enzymes.
86	

Keywords: *Nannochloropsis*, diols, alkenols, hydroxylated fatty acids, polyketide
synthase, bioproduct

93 INTRODUCTION

95	Since phytoplankton do not require clean water for their growth and can encompass
96	high levels of biomass productivities per area compared to terrestrial plants (Chisti, 2007),
97	microalgal mass culturing could contribute to the sustainable production of chemical products
98	of interest for the biotechnological industry. Nannochloropsis species (Eustigmatophyceae)
99	are considered among the most suitable candidates for biofuel development because of their
100	high growth rate and lipid content with respect to other phytoplankters (Rodolfi et al. 2009).
101	Specifically, both free and ester-bound fatty acids from Nannochloropsis spp. are currently
102	considered as potential candidates for biodiesel production (Chen et al. 2012). The genomes
103	of several Nannochloropsis species have been sequenced allowing the identification of major
104	metabolic pathways for lipid biosynthesis (Radakovits et al. 2012, Vieler et al. 2012,
105	Corteggiani Carpinelli et al. 2014, Wang et al. 2014). Transcriptomic analyses of
106	Nannochloropsis cultures have contributed to the identification of the genes potentially
107	involved in different lipid pathways including the biosynthesis of polyunsaturated fatty acids
108	(PUFAs) (Vieler et al. 2012) and triacylglycerols (Radakovits et al. 2012, Li et al. 2014).
109	Besides regular fatty acids and PUFAs, Eustigmatophyceae also produce long chain
110	hydroxy fatty acids (LCHFAs), with an alkyl chain of 28–32 carbon and a hydroxyl group at a
111	mid-chain position (Volkman et al. 1992, Gelin et al. 1997a). Plant hydroxy fatty acids, such
112	as the 12-OH $C_{18:1}$ from <i>Ricinus communis</i> and 14-OH $C_{20:1}$ from <i>Physaria fendleri</i> were
113	previously shown to act as lubricants when added to reference diesel fuel (Goodrum and
114	Geller 2005). This suggests that the quality of Nannochloropsis oils for biodiesel
115	development might also be improved if tiny amounts of LCHFAs ($\leq 1\%$) are present in the
116	lipid extract to be used for methanol transesterification. LCHFAs possess a combustion
117	enthalpy slightly higher than that of C_{14-18} fatty acids (Table 1) and thus such addition would

not affect the energy yield. Furthermore, hydroxylated aliphatic compounds are also under 118 119 investigation for polymer development (Sharma and Kundu 2006, Mutlu and Meier 2010), hence their diversity and biosynthetic pathways have been partially elucidated (Buschhaus et 120 al. 2013, Busta and Jetter 2018, Li et al. 2018). 121 Nannochloropsis spp. produce two other classes of hydroxylated compounds related to 122 LCHFAs, in which the terminal carboxylic group is replaced with an alcohol group, i.e. long 123 124 chain alkyl diols (LCDs) and long chain alkenols (LCAs). LCAs differ from LCDs because of an intermediate double bond instead of the secondary alcohol group. Similar to bifunctional 125 aliphatic compounds from plants, LCDs might also be of interest to the chemical and polymer 126 industries. For example polyricinoleate diol, prepared from 12-OH-C₁₈ fatty acid (ricinoleic 127 acid) was tested for the synthesis of polyurethane, revealing faster degradation times than 128 petrochemical polyurethanes (Petrovic et al. 2010). Polyurethane synthesis requires highly 129 130 hydroxylated compounds as starters and there is a common interest in introducing new hydroxyl groups in naturally occurring fatty acids as well as in screening natural products 131 with a high number of hydroxyl groups. (Petrovic 2008). LCDs in Nannochloropsis might 132 thus be of interest for the polymer industry. However, it is crucial to identify the culturing 133 conditions affecting the cellular concentrations of LCHFAs, LCAs, and LCDs as well as their 134 135 biosynthetic pathways.

While the total lipid content of microalgae typically increases during the stationary phase of their growth (Dunstan et al. 1993), as well as under high salinity (Martinez-Roldan et al. 2014) or nitrogen deprivation (Pal et al. 2011), such culture manipulations do not increase the cellular concentration of LCAs, LCDs, and LCHFAs significantly (Balzano et al. 2017), suggesting that these compounds are unlikely to serve as storage lipids. Instead, their decrease under hydrogen peroxide-driven oxidative stress suggests a protective role for LCAs, LCDs, and LCHFAs in *Nannochloropsis* cells (Balzano et al. 2017). Finally, LCAs and LCDs are thought to occur in the outer layer of the Nannochloropsis cell wall (Gelin et al. 1997b,

Scholz et al. 2014, Zhang and Volkman 2017, Volkman 2018) as part of a polymer, termedalgaenan.

Since LCAs, LCDs, and LCHFAs are structurally related among each other in terms of 146 carbon number and position of the functional groups, common biosynthetic pathways have 147 been long hypothesised for Nannochloropsis species (Volkman et al. 1992, Versteegh et al. 148 1997, Gelin et al. 1997a). LCHFAs were suggested to originate from the elongation or 149 condensation of C₁₄₋₁₈ fatty acids (Gelin et al. 1997a, Scholz et al. 2014) and this was 150 confirmed by the positive correlation recently found between the cellular concentrations of 151 152 C_{14-16} fatty acids and two LCHFAs (13-hydroxy $C_{30:0}$ and 15-hydroxy $C_{32:0}$ fatty acids), respectively, in three Nannochloropsis spp. (Balzano et al. 2017). However, the biosynthetic 153 pathways of LCHFAs, LCAs, and LCDs are not fully understood and the enzymes potentially 154 involved in the process are unknown. 155 Here, (1) we analysed the genomes from different *Nannochloropsis* spp. to identify the 156 enzymes potentially involved in the biosynthesis of LCAs and LCDs, (2) searched for 157 culturing conditions promoting the accumulation of LCAs, LCDs, and LCHFAs in 158 Nannochloropsis oceanica and Nannochloropsis gaditana, and (3) performed transcriptomic 159 160 analyses to identify genes potentially involved in their biosynthesis.

162 RESULTS AND DISCUSSION	N
-----------------------------------	---

163

164

165 Dark incubation enhances LCA and LCD concentrations

166

To identify potential genes for LCA, LCD and LCHFA synthesis we first investigated 167 conditions which stimulated the production of these compounds. A previous study showed 168 that manipulations that typically promote the accumulation of storage lipids, such as nitrogen 169 deprivation (< 1 μ M nitrate), exposure to high light irradiance (300 μ E m⁻² s⁻¹) and culturing 170 at high (50 g kg⁻¹) salinity, did not increase the cellular concentrations of LCAs, LCDs, and 171 LCHFAs significantly (Balzano et al. 2017). Unfavourable environmental conditions in the 172 marine water column, such as prolonged exposure to dark conditions, are known to trigger the 173 formation of resting stages in phytoplankton (McQuoid and Hobson 1996) for cell protection 174 purposes. Resting forms of Nannochloropsis limnetica exhibit a thicker cell wall compared to 175 176 active cells (Fietz et al. 2005), and might thus contain higher amounts of LCAs and LCDs. 177 We therefore attempted to enhance the production of these lipids by incubating living cultures of *N. oceanica* and *N. gaditana* in the dark for one week. 178 Before the incubation in the dark, cells from both N. oceanica and N. gaditana exhibited 179

Before the incubation in the dark, cens from both *N. oceanica* and *N. gaanana* exhibited growth rates (Fig. 1A-1B) comparable to those reported previously (Balzano et al. 2017). Cell abundance decreased by ca. 50% in both species over one week under dark conditions. Cells were observed under transmission electron microscopy (TEM) and the outer cell wall, which contains LCAs and LCDs (Scholz et al. 2014), was extremely thin (approximately 10 nm) for the resolution of the instrument used and its thickness could not be measured reliably (Supplemental Fig. S1).

Both N. oceanica and N. gaditana exhibited increased cellular concentrations of LCAs 186 and LCDs after dark incubation. Cells were enumerated by flow cytometry before filtration 187 and we did not observe dead cells or large debris (i.e. particles with comparable forward 188 scatter but lower chlorophyll fluorescence compared to ordinary Nannochloropsis cells) in the 189 cytograms of cells harvested from the dark treatment. This suggests that most of the material 190 filtered contained viable cells, or at least dead cells with intact chloroplasts, while debris were 191 likely to be smaller in size (i.e. with a forward scatter comparable to the background noise of 192 the instrument) and were not retained by the filters. In spite of the significant decline in viable 193 cells, observed in our dark incubations, the LCAs and LCDs analysed here are thus likely 194 195 derived from intact cells. The cellular concentration of C_{32:1} alkenol increased by almost one order of magnitude $(3.5 \pm 0.5 \text{ to } 22 \pm 3 \text{ fg cell}^{-1})$, while C_{32:1} and C_{32:0} diols tripled in 196 concentration reaching 26 ± 4 , 37 ± 9 , and 35 ± 10 fg cell⁻¹, respectively (Fig. 1C), and the 197 198 $C_{30:0}$ diol nearly doubled in *N. oceanica* at the end of the dark incubation. Similarly, in *N*. gaditana, $C_{32:2}$ and $C_{32:1}$ alkenols increased from 2.9 ± 0.8 to 7.8 ± 1.7 fg cell⁻¹ and from 4.7 ± 199 1.0 to 14 ± 2.0 fg cell⁻¹, respectively, the C_{30:0} diols doubled (7.4 ± 1.4 to 16 ± 2.5 fg cell⁻¹) 200 and the C_{32:1} and C_{32:0} diols almost tripled $(3.3 \pm 1.3 \text{ to } 7.0 \pm 2.5 \text{ and } 9.3 \pm 2.9 \text{ to } 20 \pm 4,$ 201 202 respectively, Fig. 1D) in concentration. In contrast with LCAs and LCDs, the concentration of 203 LCHFAs dropped dramatically, with the 13-OH-C_{30:0} fatty acid decreasing from 7.8 ± 1.0 and 5.5 ± 0.4 fg cell⁻¹ for *N. oceanica* and *N. gaditana*, respectively, to values below the detection 204 limit. Similarly, the 15-OH-C_{32:0} fatty acid decreased from 2.5 ± 0.4 and 1.7 ± 0.4 fg cell⁻¹, for 205 206 *N. oceanica* and *N. gaditana*, respectively, to below the detection limit (Figs 1C-1D). Furthermore, the concentration of $C_{16:0}$ fatty acid decreased by nearly half for both species 207 (Figs. 1E-F). In contrast, the other C_{14-20} fatty acids followed different dynamics with the 208 concentration of C_{16:1} fatty acid decreasing under dark conditions and that of the C_{20:5} PUFA 209 increasing for *N. gaditana*, whereas no significant changes were observed in *N. oceanica* (Fig. 210

211	1C-D). The decrease in $C_{16:0}$ fatty acid under dark conditions is likely due to the consumption
212	of storage lipids necessary to sustain cell metabolism. Storage lipids such as triacylglycerols
213	are typically dominated by the $C_{16:0}$ fatty acid in <i>Nannochloropsis</i> spp. (Alboresi et al. 2016).
214	The incubation under dark conditions for one week thus promoted a substantial increase
215	of the cellular concentrations of LCAs and LCDs (Fig. 1C-D), which is the first culture
216	condition ever described shown to trigger an increase of the LCAs and LCDs content in
217	Nannochloropsis spp Seemingly, prolonged light deprivation affects the biosynthetic
218	pathways of LCHFAs, LCAs and LCDs resulting in the complete removal of LCHFAs and an
219	accumulation of both LCAs and LCDs. Since dark conditions are thought to promote the
220	formation of resting stages, which can result in thicker cell walls as shown for N. limnetica
221	(Fietz et al., 2005), the dramatic decline in LCHFAs under dark conditions strongly suggests
222	that these lipids are unlikely to be present in the cell wall, but rather form the precursors of
223	LCAs and LCDs. In turn, the LCHFAs might derive from C_{14-18} fatty acids (Volkman et al.
224	1992, Gelin et al. 1997b, Balzano et al. 2017).
225	Further clues were obtained by determination of the double bond positions of
226	unsaturated LCAs and LCDs in a replicate from the dark treatment of N. oceanica
227	CCMP1779 using dimethyl disulfide derivatisation. Consistent with previous findings (Gelin
228	et al. 1997b), the double bond in LCAs occurs at the same position as that of the mid-chain
229	alcohol group in the corresponding LCDs and LCHFAs (Supplemental Fig. S2). For example,
230	the $C_{32:1}$ alkenol mostly consists of two isomers with double bonds at Δ^{14} and Δ^{15} which
231	correspond to the position of the mid-chain alcohol group in the 15-OH $C_{32:0}$ fatty acid and
232	the $C_{32:0}$ 1,15 diol. Moreover, the $C_{32:2}$ alkenol has a second double bond at the same position
233	(Δ^{27}) as that of the C _{32:1} diol (Supplemental Fig. S2). The excellent correspondence between
234	the double bond position of monounsaturated alkenols and the position of the intermediate
235	hydroxyl group in diols and LCHFAs with the same carbon number, as well as the presence of

a double bond at Δ^{27} in both diunsaturated alkenols and monounsaturated diols, clearly

236

indicates common biosynthetic pathways for LCAs, LCDs, and LCHFAs (Supplemental Fig. 237 S2). 238 239 240 ¹³C-labelling indicates active biosynthesis of LCAs and LCDs in the dark 241 242 We incubated N. oceanica CCMP1779 with ¹³C-[2]-acetate under alternating 12/12 243 dark/light conditions to investigate the biosynthetic relationships among C_{14-18} fatty acids, 244 245 LCHFAs, LCAs, and LCDs (Figs 2A-2B). All these lipids were significantly labelled with ¹³C (Fig. 2C), with atomic ¹³C percentages ranging from 4.2% (cholesterol) to 15.2% ($C_{18:1}$ fatty 246 acid). In a second experiment, cells were initially cultured under alternating 12/12 dark/light 247 248 conditions, and during exponential growth, ¹³C-[2]-acetate was then added to the culture which was subsequently incubated under dark conditions for one week (Fig. 2B). As 249 expected, the enrichment levels of lipids observed under dark conditions were significantly 250 lower than those found under dark/light conditions due to the absence of growth. The C_{16:1} 251 fatty acid showed no incorporation of ${}^{13}C$ and the $C_{14:0}$, $C_{16:0}$ and the $C_{20:5}$ were only slightly 252 253 labelled (1.3%, 1.2%, and 1.2%, respectively). However, the $C_{18:1}$ fatty acid (3.2%), the $C_{32:0}$ diols (3.0%) and to a lesser extent the other LCDs and the LCAs (1.7–1.8%) showed 254 substantial incorporation of ¹³C label (Fig. 2D). Thus, our labelling experiments show that 255 during regular growth under alternating dark/light conditions, the ¹³C-[2]-acetate was taken 256 for *de novo* synthesis of C_{16:0} fatty acids, as well as for the formation of LCHFAs, LCAs, and 257 LCDs. In contrast, when labelled sodium acetate was supplied prior to incubation in the dark, 258 de novo fatty acid synthesis was likely to be insignificant as the cell growth in the dark was 259 nearly negligible (Fig. 2B); however, the lack of detection of $C_{18:0}$ fatty acid along with the 260

261	high atomic ¹³ C percentage measured for the $C_{18:1}$ fatty acid (Fig. 2D) suggests that an active
262	synthesis of $C_{18:1}$, probably via $C_{16:0}$ elongation to $C_{18:0}$ followed by desaturation to $C_{18:1}$, was
263	taking place. Importantly, both LCAs and LCDs were actively synthesised under dark
264	conditions. The greater ¹³ C content of LCAs and LCDs compared to C_{14-16} under dark
265	conditions suggests that if the biosynthesis of LCD and LCA took place by condensation of
266	two C_{14-16} fatty acids, such process would have rapidly taken up all ^{13}C labelled C_{14-16} fatty
267	acids. Alternatively, and perhaps more likely, unlabelled C ₁₄₋₁₆ fatty acids were elongated with
268	¹³ C labelled sodium acetate to LCHFAs and subsequent reduction may have resulted in the
269	formation of ¹³ C labelled LCAs and LCDs (Fig. 2D).
270	
271	
272	Transcriptomic analyses and hypothetical biosynthetic pathway
273	
274	To determine which genes were up-regulated in the dark incubation experiments, and
275	thus potentially involved in LCD and LCA biosynthesis, we extracted RNA and sequenced
276	
	the transcriptomes of <i>Nannochloropsis</i> cultures harvested at the end of the experiments. We
277	the transcriptomes of <i>Nannochloropsis</i> cultures harvested at the end of the experiments. We compared the gene expression level of <i>Nannochloropsis</i> spp. from the dark treatment (i.e.
277 278	the transcriptomes of <i>Nannochloropsis</i> cultures harvested at the end of the experiments. We compared the gene expression level of <i>Nannochloropsis</i> spp. from the dark treatment (i.e. treatment leading to high concentrations of LCAs and LCDs) with the dark/light control.
277 278 279	the transcriptomes of <i>Nannochloropsis</i> cultures harvested at the end of the experiments. We compared the gene expression level of <i>Nannochloropsis</i> spp. from the dark treatment (i.e. treatment leading to high concentrations of LCAs and LCDs) with the dark/light control. Overall we mapped 10,043 genes from <i>N. oceanica</i> CCMP1779 against the reference genome
277 278 279 280	the transcriptomes of <i>Nannochloropsis</i> cultures harvested at the end of the experiments. We compared the gene expression level of <i>Nannochloropsis</i> spp. from the dark treatment (i.e. treatment leading to high concentrations of LCAs and LCDs) with the dark/light control. Overall we mapped 10,043 genes from <i>N. oceanica</i> CCMP1779 against the reference genome from the same strain (Vieler et al. 2012) and 11,222 genes from <i>N. gaditana</i> CCMP526
277 278 279 280 281	the transcriptomes of <i>Nannochloropsis</i> cultures harvested at the end of the experiments. We compared the gene expression level of <i>Nannochloropsis</i> spp. from the dark treatment (i.e. treatment leading to high concentrations of LCAs and LCDs) with the dark/light control. Overall we mapped 10,043 genes from <i>N. oceanica</i> CCMP1779 against the reference genome from the same strain (Vieler et al. 2012) and 11,222 genes from <i>N. gaditana</i> CCMP526 (Table 2) against the reference genome from the strain <i>N. gaditana</i> B31 (Corteggiani
277 278 279 280 281 282	the transcriptomes of <i>Nannochloropsis</i> cultures harvested at the end of the experiments. We compared the gene expression level of <i>Nannochloropsis</i> spp. from the dark treatment (i.e. treatment leading to high concentrations of LCAs and LCDs) with the dark/light control. Overall we mapped 10,043 genes from <i>N. oceanica</i> CCMP1779 against the reference genome from the same strain (Vieler et al. 2012) and 11,222 genes from <i>N. gaditana</i> CCMP526 (Table 2) against the reference genome from the strain <i>N. gaditana</i> B31 (Corteggiani Carpinelli et al. 2014). In addition, we also carried out a functional analyses of all the proteins
277 278 279 280 281 282 283	the transcriptomes of <i>Nannochloropsis</i> cultures harvested at the end of the experiments. We compared the gene expression level of <i>Nannochloropsis</i> spp. from the dark treatment (i.e. treatment leading to high concentrations of LCAs and LCDs) with the dark/light control. Overall we mapped 10,043 genes from <i>N. oceanica</i> CCMP1779 against the reference genome from the same strain (Vieler et al. 2012) and 11,222 genes from <i>N. gaditana</i> CCMP526 (Table 2) against the reference genome from the strain <i>N. gaditana</i> B31 (Corteggiani Carpinelli et al. 2014). In addition, we also carried out a functional analyses of all the proteins predicted from the genomes of <i>N. oceanica</i> CCMP1779 and <i>N. gaditana</i> B31 using

hydroxylation of fatty acids, the dehydration of secondary alcohols, the reduction of theircarboxylic groups, and the formation of ethers and esters.

About 60% of the genes from N. oceanica and 74% of the genes from N. gaditana did 287 not change significantly in expression during the dark incubation (Table 2). Nannochloropsis 288 oceanica exhibited a comparable number of up-regulated and down-regulated genes (1,950 289 and 2,067, respectively) whereas 1,855 genes from N. gaditana were down-regulated and only 290 291 955 up-regulated (Table 2). The expression changes of all the genes from both Nannochloropsis species are shown in details in Supplemental Table 1. The results of our 292 dark incubation experiments with and without stable isotope labelling (Figs 1–2), as well as 293 294 previous findings (Volkman et al. 1992, Gelin et al. 1997a, Balzano et al. 2017, Volkman 2018), suggest that LCHFAs originate from C_{14-18} fatty acids either by condensation of two 295 fatty acids or elongation/in-chain hydroxylation. Subsequently LCHFAs are likely to be 296 297 reduced to form LCDs. Similarly, LCAs might derive from the dehydration of the secondary alcohol groups in LCDs or LCHFAs. 298

We thus focused on genes potentially coding enzymes that catalyse (1) the condensation 299 of two C₁₄₋₁₈ fatty acids, (2) the elongation and (3) the in-chain hydroxylation of fatty acids \geq 300 C_{16} , (4) the reduction of fatty acids to alcohols, the (5) dehydration of secondary alcohol 301 302 groups, and (6) the formation of esters. We searched for these genes in Nannochloropsis genomes and compared their expression levels in the dark treatment with those found for the 303 control treatment. We also searched publicly available genomes from other Nannochloropsis 304 spp. to identify genes homologous to those potentially involved in the biosynthetic processes 305 hypothesised here for *N. gaditana* and *N. oceanica*. 306

307

308

309 Condensation of two C₁₄₋₁₈ fatty acids

311	The condensation of two fatty acids to form longer products has been rarely reported in
312	literature. γ -Proteobacteria from the genera Xanthomonas and Photorabdus can perform head-
313	to-head condensation of fatty acids mediated by oleA and photopyrone synthase enzymes,
314	respectively (Kresovic et al. 2015, Christenson et al. 2017). Similarity analyses of oleA and
315	photopyrone synthase sequences against N. oceanica and N. gaditana proteins did not yield
316	significant results (Supplemental Table S2) suggesting Nannochloropsis spp. do not contain
317	oleA or photopyrone homologues. Moreover, a head-to-head condensation would produce a
318	mid-chain functionalised intermediate which would still require an additional ω -
319	functionalisation to yield a primary/secondary aliphatic compound such as LCDs, LCAs, or
320	LCHFAs.
321	Acidobacteria are known to produce a C_{30} 13,16-dimethyl dicarboxylic acid from a tail-
322	to-tail condensation of two C15 iso fatty acids (Sinninghe Damsté et al. 2011) but the
323	enzymes involved in such process are unknown and a tail-to-tail condensation would yield an
324	intermediate functionalised (i.e. carboxylic acids) on both ends and one of these ends would
325	therefore require to be fully reduced to a methyl group. Both head-to-head and tail-to-tail
326	condensations would thus form intermediates which need a further functionalisation or
327	reduction step to yield the LHCFAs observed in Nannochloropsis spp Long chain aliphatic
328	compounds resulting from head-to-head (i.e. mid-chain functionalised) or tail-to-tail
329	(functionalised on both ends) condensation have never been detected in Nannochloropsis.
330	The condensation of the carboxylic end of a fatty acid with the aliphatic end of another
331	fatty acid (head-to-tail condensation) would instead require fewer reaction steps and the
332	resulting biosynthetic pathway appears thus to be less energy demanding compared to both
333	head-to-head and tail-to-tail condensations. For example, the reaction between the carboxylic
334	end of a C_{14} fatty acid with the methyl end of a C_{18} fatty acid would yield a C_{32} product

335	functionalised on the first and the 15^{th} carbon such as the 15-OH-C ₃₂ fatty acid, the C ₃₂ 1,15
336	diol, the 15-ene- $C_{32:1}$ alkenol and the 15-27-ene- $C_{32:2}$ alkenol. Similarly, the condensation
337	between a C_{12} and a C_{18} fatty acids would lead to C_{30} compounds with a secondary
338	functionalisation on the 13th carbon as well as a terminal carboxylic group. Although this
339	pathway cannot be fully discarded we did not find any evidence reported in literature for such
340	a biosynthetic process.
341	
342	
343	Enzymes responsible for chain elongation in <i>Nannochloropsis</i>
344	
345	Fatty acid elongation is based on stepwise additions of 2 carbon units to the growing
346	acyl-coenzyme A (CoA) chain (Leonard et al. 2004), with each addition consisting of the (1)
347	condensation of the acyl CoA with a malonyl group to form a 3-ketoacyl-CoA, (2) reduction
348	of 3-ketoacyl-CoA to 3-hydroxyacyl-CoA, (3) dehydration to enoyl-CoA and (4) reduction to
349	an elongated acyl chain (Leonard et al. 2004). While 3-ketoacyl-CoA synthases (KCS) are
350	typically substrate specific (Leonard et al. 2004, Haslam and Kunst 2013), the other 3
351	enzymes required for the elongation are known to have a broad substrate preference being
352	able to accept 3-ketoacyl, 3-hydroxyacyl, or 3-enoyl units of different lengths. Enzymes
353	belonging to two different families, the elongation proteins (ELO) and the fatty acid elongases
354	(FAE) possess the KCS domain (Leonard et al. 2004, Haslam and Kunst 2013). In addition,
355	the polyketide synthases family (PKSs) consists in proteins known to contain ketoacyl acyl
356	carrier protein (ACP) synthase (KAS) and can also accept C_{16-18} fatty acids as substrates for
357	elongation (Staunton and Weissman 2001).
358	
359	$\Delta 0$ -ELOs as elongators of fatty acids

360	Seven ELOs that accept monounsaturated or saturated fatty acids as substrates ($\Delta 0$ -
361	ELO) have been previously identified in N. gaditana CCMP526 (Dolch et al. 2017), and we
362	found eight Δ 0-ELOs in <i>N. oceanica</i> by similarity searches. Four Δ 0-ELOs from <i>N. gaditana</i>
363	and two Δ 0-ELOs from <i>N. oceanica</i> can potentially accept fatty acids containing up to 28
364	carbons as substrates (Supplemental Information) as predicted by comparing their secondary
365	structure (Supplemental Fig. S3) with that of known Δ 0-ELOs from yeasts (Denic and
366	Weissman 2007). Only two Δ 0-ELOs, both from <i>N. gaditana</i> (<i>Naga_100083g23</i> and
367	Naga_100017g49) were up-regulated under dark conditions (Fig. 3). One of these enzymes
368	(Naga_100083g23) has been proven experimentally, by heterologous expression in yeasts, to
369	catalyse the formation of saturated fatty acids containing up to 28 carbons (Dolch et al. 2017).
370	However, analysis of a mutant of <i>N. gaditana</i> in which the gene coding for the Δ 0-ELO
371	Naga_100083g23 has been knocked-out (Dolch et al. 2017) exhibited a distribution of LCAs,
372	LCDs, and LCHFAs very similar to that of the wild type (CCMP526, Supplemental Fig. S4),
373	indicating that $Naga_100083g23$ is not involved in the biosynthesis of these compounds in N.
374	gaditana. This, along with the lack of up-regulated $\Delta 0$ -ELOs in <i>N. oceanica</i> under dark
375	conditions (Fig. 3), suggests that Δ 0-ELOs are not involved in the biosynthesis of LCHFAs in
376	Nannochloropsis spp The intermediates required for the biosynthesis of LCAs, LCDs, and
377	LCHFAS might thus be formed by other enzymes.

378

379 *FAE enzymes as elongators of fatty acids*

FAE enzymes are known to be involved in the biosynthesis of saturated and
monounsaturated C₂₀₋₂₈ fatty acids in plants (Joubes et al. 2008, Haslam and Kunst 2013).

382 *Nannochloropsis gaditana* contains one gene coding for FAE (*Naga_100174g4*) and we

found in *N. oceanica* two amino acid (AA) sequences (*CCMP1779*|2397 and

384 *CCMP1779*|4026) that align with two different regions of the gene product of

385 Naga 100174g4 (Supplemental Fig. S5). The alignment of CCMP1779 2397 and

- 386 *CCMP1779*|4026 with *Naga* 100174g4 as well as the similar expression level exhibited by
- 387 *CCMP1779*|2397 and *CCMP1779*|4026 (increase by 18 to 22 fold in the dark treatment, Fig.
- 388 3), strongly suggest that these two AA sequences are two contiguous parts of the same
- 389 protein. Phylogenetic analyses indicate that FAEs from *Nannochloropsis* spp. cluster with
- 390 proteins from diatoms and Pelagophyceae forming a well-supported clade (Supplemental Fig.

S6), which groups with known FAEs from higher plants (Joubes et al. 2008).

392 Nannochloropsis FAEs possess two trans membrane helices (TMHs), two domains for KCSs

and a domain for chalcone/stilbene synthase (Supplemental Fig. S6).

Interestingly, the genes coding for FAEs in both *N. oceanica* and *N. gaditana* are up-regulated

by >10 fold in the dark treatment (Fig. 3) suggesting an enhanced enzymatic activity of FAEs

- 396 under dark conditions. FAE enzymes are reported to elongate functionalized fatty acids at an
- intermediate position and also can accept substrates of variable length including C_{24-28} fatty
- acids (Haslam & Kunst, 2013). For example a FAE from the higher plant *Physaria fendlerii* is
- known to catalyse the elongation of 12-OH-C_{18:1} to 14-OH-C_{20:1} fatty acid (Moon et al. 2001)
- 400 and the moss *Funaria hygrometrica* contains $C_{32:0}$ 1,7 diols, which have been suggested to
- 401 originate from the elongation of 3-hydroxyacyl intermediates, catalyzed by FAE enzymes
- 402 (Busta et al. 2016). Furthermore, the 7-18-(OH)₂-C_{24:1} fatty acid from *Orychophragmus*

403 violaceus (Brassicaceae) has also been shown to derive from FAE-catalysed elongation of a 3-

- 404 OH-intermediate of the 12-OH- $C_{18:1}$ fatty acid (Li et al. 2018). Thus, the high expression level
- 405 of genes coding FAEs in both *N. oceanica* and *N. gaditana*, along with the potential
- 406 enzymatic capability of these proteins to elongate in-chain functionalised fatty acids, suggest
- 407 that FAE enzymes might play a role in the formation of LCHFAs from C_{14-20} fatty acids.
- 408

410	Since FAE enzymes can elongate not only fatty acids but also hydroxy fatty acids, the
411	hydroxylation process required for the formation of mid-chain hydroxy groups might occur
412	before chain elongation takes place. The formation of both 13-OH- $C_{30:0}$ and 15-OH- $C_{32:0}$ fatty
413	acids by FAE-based elongation would then require a 3-OH- $C_{20:0}$ fatty acid as a starter (Fig. 4).
414	Since 3-OH- $C_{20:0}$ fatty acid has not been detected in <i>Nannochloropsis</i> spp. as well as other
415	Eustigmatophyceae, it might be an intermediate in the chain elongation. The mid chain
416	functionalisation of fatty acids can be catalysed by PKS enzymes since they possess acyl
417	transferase (AT) and KAS domains but might lack any or all of the other catalytic sites
418	required to complete a fatty acid elongation cycle (Staunton and Weissman 2001, Jenke-
419	Kodama et al. 2005). Type I PKSs consist of single multifunctional enzymes possessing
420	several catalytic domains and their distribution is scattered among different lineages since
421	genes coding PKSs have not been found in ciliates and Rhizaria (Shelest et al. 2015, Kohli et
422	al. 2016). Three genes from <i>N. oceanica</i> have been previously suggested to code for PKSs
423	(Vieler et al. 2012, Poliner et al. 2015, Alboresi et al. 2016) and two genetically distinct PKS
424	clades were previously detected in <i>N. oceanica</i> and <i>N. gaditana</i> (Shelest et al. 2015).
425	We identified 22 genes coding for PKSs in the different Nannochloropsis spp.
426	(Supplemental Table S3) and built a phylogenetic tree of the KAS domain (KAS-PKS). KAS-
427	PKS phylogeny indicates that five gene products (PKS-Clade I) correspond to the iterative
428	type I PKSs previously identified by Shelest et al. (2015) and are closely related to two other
429	PKSs from <i>N. gaditana</i> (<i>Naga_100093g21</i>) and <i>N. oceanica</i> (<i>CCMP1779</i> 289), respectively
430	(Fig. 5A). Sequences from PKS-Clade I cluster with type I FAS/PKS from fungi and
431	Metazoa, whereas 15 other gene products show only weak similarities with KAS-PKS from
432	other species and form three distinct clades: PKS-Clade II, PKS-Clade III and PKS-Clade IV
433	(Fig. 5A). Transcriptomic data from the dark incubation experiments of <i>N. oceanica</i> and <i>N.</i>
434	gaditana indicate that the genes coding for PKS-Clade I and PKS-Clade III enzymes were

down-regulated or did not exhibit significant changes under dark conditions, while those 435 coding for PKS-Clade II were up-regulated (Fig. 3), and we did not detect genes coding for 436 PKS-Clade IV in our transcriptomes. PKS-Clade II enzymes CCMP1779|6720 and 437 Naga 100086g4 increased their expression in the dark treatment by 3.2 and 2.5 fold, 438 respectively (Fig. 3) suggesting they can be potentially involved in the hydroxylation of fatty 439 acids. 440 Interestingly PKS-Clade II enzymes possess domains for PKS-KAS (IPR020841), AT 441 (IPR020801), as well as an adenosine monophosphate (AMP) binding domain (IPR000873), a 442 phosphopantetheine-binding ACP domain (PPT, IPR009081), and a ketoacyl-ACP-reductase 443 444 (KAR, IPR013968) domain (Fig. 5B). The presence of catalytic domains for both KAS and KAR in PKS-Clade II enzymes and the lack of hydroxyacyl dehydratase (HAD) and enoyl 445 reductase (ER) domains suggest that PKS-Clade II enzymes might catalyse an incomplete 446 447 fatty acid elongation leading to the formation of 3-OH-fatty acids. C₁₄₋₁₈ fatty acids might thus be elongated to form 3-OH-C₁₆₋₂₀ fatty acid intermediates by PKS-Clade II enzymes. The 448 incomplete elongation of the $C_{18:0}$ fatty acid might lead to the formation of a 3-OH- $C_{20:0}$ 449 intermediate which, after 5 or 6 full elongation cycles, potentially catalyzed by the FAE 450 enzymes, would form the 13-OH-C_{30.0} and 15-OH-C_{32.0} fatty acids, respectively, the two 451 452 LCHFAs present in Nannochloropsis spp. (Gelin et al. 1997a, Balzano et al. 2017).

453

454

455 Reduction of LCHFAs to LCDs

456

LCDs and LCAs are likely formed from LCHFAs as evidenced by the depletion of
LCHFAs and increase in LCAs and LCDs in the dark incubation experiments (Fig. 1).
Furthermore, the presence of C₁₄₋₂₄ alkanols (Volkman et al. 1999) as well as C₁₅₋₁₇ alkanes

460	and the C_{15-31} alkenes (Gelin et al. 1997b, Sorigue et al. 2016, Zhou et al. 2016), also suggest
461	the occurrence of fatty acid reduction activities in Nannochloropsis spp Odd-numbered
462	alkanes and alkenes are typically formed from the reduction of even-numbered fatty acids to
463	aldehydes followed by a decarbonylation step, as described in Arabidopsis thaliana (Bernard
464	et al. 2012) and Chlamydomonas reinhardii (Sorigue et al. 2016). Similarly, fatty alcohols are
465	also formed from the reduction of fatty acids catalysed by alcohol-forming fatty acid
466	reductases (FAR) as shown in A. thaliana (Li-Beisson et al. 2010), Apis mellifera
467	(Teerawanichpan et al. 2010), Calanus finmarchicus (Teerawanichpan and Qiu 2012) and
468	Euglena gracilis (Teerawanichpan and Qiu 2010). However we could not find any protein
469	sequence containing the conserved motif [IVF]X[ILV]TGXTGF[MLV][GA] which
470	corresponds to the FAR catalytic site (Hofvander et al. 2011, Teerawanichpan and Qiu 2012),
471	and none of the Nannochloropsis protein belongs to any FAR family (IPR026055,
472	IPR008670, IPR016836, IPR003157). Furthermore, similarity searches (blastp) of known
473	FARs against the deduced amino acid sequences of Nannochloropsis genomes produced hits
474	with low (bit score < 50) similarity (data not shown). Indeed a recent study also failed to
475	detect genes coding for fatty acyl-CoA reductases (FARs) in Nannochloropsis genomes
476	(Sorigue et al. 2016). This indicates that the enzymes involved in fatty acid reduction in
477	Nannochloropsis are either unrelated or greatly divergent from known FARs.
478	We then searched within the genomes of N. oceanica and N. gaditana for genes coding
479	for domains involved in the reduction of carboxylic acids. We found 44 genes coding for the
480	short chain dehydrogenase/reductase (SDR) and eight genes that can code for the male
481	sterility 2 (MS2) domain (Supplemental Table S4). Proteins with the male sterility (MS2)
482	domain can catalyse the reduction of fatty acids in A. thaliana (Aarts et al. 1997), and 5 of
483	these proteins are annotated as PKS-Clade I (Supplemental Table S5, Fig. 5) since they also
484	possess the catalytic domains for fatty acid elongation. PKS-Clade I enzymes were previously

485	suggested to be involved in the reduction of fatty acids in <i>N. gaditana</i> (Scholz et al. 2014).
486	Since the genes coding for PKS-Clade I as well as the other genes coding for the MS domain
487	are not up-regulated under dark conditions (Fig. 3, Supplemental Table S4) their products are
488	unlikely to be involved in the reduction of LCHFAs to LCDs, although a role in other
489	reduction processes cannot be discarded. Genes coding for SDR were also mostly down-
490	regulated under dark condition (Supplemental Table S5); only six of them were up-regulated
491	but blastp analyses revealed similarities with proteins from other species with very different
492	functions (Supplemental Table S5).
493	Thus, although Nannochloropsis spp. contain a range of compounds (LCAs, LCDs,
494	alkanes, alkenes, and alkanols) that are very likely to originate from the reduction of fatty
495	acids, we could not find any enzyme potentially involved in these reductive processes.
496	
497	
498	Δ^2 - and Δ^3 -C _{20:1} fatty acids as potential LCA precursors
499	
500	LCAs contain a double bond at the same position where LCDs have the hydroxy group
501	(Supplemental Fig. S2, Gelin et al. 1997b) suggesting that LCAs might be formed from the
502	dehydration of the mid-chain alcohol group of LCDs. Thus, we searched for dehydratase
503	domains and found 14 genes coding for different lipid dehydratase domains (Supplemental
504	Table S7), and one of them (<i>Naga_100113g71</i>) was up-regulated under dark conditions
505	(Supplemental Table S8). Naga_100113g71, and its N. oceanica homologue
506	(CCMP1779 4800) code for proteins possessing a HAD domain and cluster with HADs from
507	other species in our phylogenetic analyses (Supplemental Fig. S7).
507 508	other species in our phylogenetic analyses (Supplemental Fig. S7). Alternatively, the dehydration of the secondary alcohol group may occur at an earlier

510	missing, followed by several further elongation processes (Fig. 4). The higher expression
511	levels of Naga_100113g71 under dark conditions (Fig. 3), in spite of a decrease in C_{14-16} fatty
512	acids (Fig. 1F), suggest that these enzymes might have been catalysing the dehydration of
513	other compounds such as longer fatty acids. Since HAD enzymes are thought to have a broad
514	substrate specificity (Heath and Rock 1996, Leonard et al. 2004), potentially catalysing the
515	dehydration of 3-hydroxyacyl chains of different lengths, they might also accept 3-OH- $C_{20:0}$
516	fatty acids as substrates to form the Δ^2 - and Δ^3 -C _{20:1} fatty acid, which, if further elongated and
517	reduced, might lead to the formation of the C_{30-32} alkenols typically found in <i>Nannochloropsis</i>
518	spp. (Fig. 4).
519	
520	
521	Incorporation of LCAs and LCDs in <i>Nannochloropsis</i> cell wall biopolymer
522	
523	The presence of ether- and ester-bound LCAs and LCDs within the cell wall of
523 524	The presence of ether- and ester-bound LCAs and LCDs within the cell wall of <i>Nannochloropsis</i> spp. has been long hypothesised (Volkman et al. 1992, Gelin et al. 1996,
523 524 525	The presence of ether- and ester-bound LCAs and LCDs within the cell wall of <i>Nannochloropsis</i> spp. has been long hypothesised (Volkman et al. 1992, Gelin et al. 1996, Gelin et al. 1997b, Volkman 2018). Fourier transform infrared spectroscopy (FTIR) on the
523 524 525 526	The presence of ether- and ester-bound LCAs and LCDs within the cell wall of <i>Nannochloropsis</i> spp. has been long hypothesised (Volkman et al. 1992, Gelin et al. 1996, Gelin et al. 1997b, Volkman 2018). Fourier transform infrared spectroscopy (FTIR) on the cell wall of <i>N. gaditana</i> demonstrated the presence of ether bonds and also found some C=O
523 524 525 526 527	The presence of ether- and ester-bound LCAs and LCDs within the cell wall of <i>Nannochloropsis</i> spp. has been long hypothesised (Volkman et al. 1992, Gelin et al. 1996, Gelin et al. 1997b, Volkman 2018). Fourier transform infrared spectroscopy (FTIR) on the cell wall of <i>N. gaditana</i> demonstrated the presence of ether bonds and also found some C=O stretches, but whether the latter are related to carboxylic, aldehyde, ketone, or ester functional
523 524 525 526 527 528	The presence of ether- and ester-bound LCAs and LCDs within the cell wall of <i>Nannochloropsis</i> spp. has been long hypothesised (Volkman et al. 1992, Gelin et al. 1996, Gelin et al. 1997b, Volkman 2018). Fourier transform infrared spectroscopy (FTIR) on the cell wall of <i>N. gaditana</i> demonstrated the presence of ether bonds and also found some C=O stretches, but whether the latter are related to carboxylic, aldehyde, ketone, or ester functional groups is not clear (Scholz et al. 2014). Although the core of the cell wall polymer may be
523 524 525 526 527 528 529	The presence of ether- and ester-bound LCAs and LCDs within the cell wall of <i>Nannochloropsis</i> spp. has been long hypothesised (Volkman et al. 1992, Gelin et al. 1996, Gelin et al. 1997b, Volkman 2018). Fourier transform infrared spectroscopy (FTIR) on the cell wall of <i>N. gaditana</i> demonstrated the presence of ether bonds and also found some C=O stretches, but whether the latter are related to carboxylic, aldehyde, ketone, or ester functional groups is not clear (Scholz et al. 2014). Although the core of the cell wall polymer may be ether-bound, as they are resistant against base and acid hydrolysis (Gelin et al. 1997b), some
523 524 525 526 527 528 529 530	The presence of ether- and ester-bound LCAs and LCDs within the cell wall of <i>Nannochloropsis</i> spp. has been long hypothesised (Volkman et al. 1992, Gelin et al. 1996, Gelin et al. 1997b, Volkman 2018). Fourier transform infrared spectroscopy (FTIR) on the cell wall of <i>N. gaditana</i> demonstrated the presence of ether bonds and also found some C=O stretches, but whether the latter are related to carboxylic, aldehyde, ketone, or ester functional groups is not clear (Scholz et al. 2014). Although the core of the cell wall polymer may be ether-bound, as they are resistant against base and acid hydrolysis (Gelin et al. 1997b), some of the LCAs and LCDs present in <i>Nannochloropsis</i> spp. likely occur as ester-bound moieties
523 524 525 526 527 528 529 530 531	The presence of ether- and ester-bound LCAs and LCDs within the cell wall of <i>Nannochloropsis</i> spp. has been long hypothesised (Volkman et al. 1992, Gelin et al. 1996, Gelin et al. 1997b, Volkman 2018). Fourier transform infrared spectroscopy (FTIR) on the cell wall of <i>N. gaditana</i> demonstrated the presence of ether bonds and also found some C=O stretches, but whether the latter are related to carboxylic, aldehyde, ketone, or ester functional groups is not clear (Scholz et al. 2014). Although the core of the cell wall polymer may be ether-bound, as they are resistant against base and acid hydrolysis (Gelin et al. 1997b), some of the LCAs and LCDs present in <i>Nannochloropsis</i> spp. likely occur as ester-bound moieties to polymeric carboxyl groups (Volkman 2018). The formation of esters from alcohols and
523 524 525 526 527 528 529 530 531 532	The presence of ether- and ester-bound LCAs and LCDs within the cell wall of <i>Nannochloropsis</i> spp. has been long hypothesised (Volkman et al. 1992, Gelin et al. 1996, Gelin et al. 1997b, Volkman 2018). Fourier transform infrared spectroscopy (FTIR) on the cell wall of <i>N. gaditana</i> demonstrated the presence of ether bonds and also found some C=O stretches, but whether the latter are related to carboxylic, aldehyde, ketone, or ester functional groups is not clear (Scholz et al. 2014). Although the core of the cell wall polymer may be ether-bound, as they are resistant against base and acid hydrolysis (Gelin et al. 1997b), some of the LCAs and LCDs present in <i>Nannochloropsis</i> spp. likely occur as ester-bound moieties to polymeric carboxyl groups (Volkman 2018). The formation of esters from alcohols and fatty acids is typically catalysed by bifunctional wax ester synthase/acyl coenzyme A (acyl-
523 524 525 526 527 528 529 530 531 531 532	The presence of ether- and ester-bound LCAs and LCDs within the cell wall of <i>Nannochloropsis</i> spp. has been long hypothesised (Volkman et al. 1992, Gelin et al. 1996, Gelin et al. 1997b, Volkman 2018). Fourier transform infrared spectroscopy (FTIR) on the cell wall of <i>N. gaditana</i> demonstrated the presence of ether bonds and also found some C=O stretches, but whether the latter are related to carboxylic, aldehyde, ketone, or ester functional groups is not clear (Scholz et al. 2014). Although the core of the cell wall polymer may be ether-bound, as they are resistant against base and acid hydrolysis (Gelin et al. 1997b), some of the LCAs and LCDs present in <i>Nannochloropsis</i> spp. likely occur as ester-bound moieties to polymeric carboxyl groups (Volkman 2018). The formation of esters from alcohols and fatty acids is typically catalysed by bifunctional wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS-DGAT) (Kalscheuer and Steinbuchel 2003). A gene

2018), and our phylogenetic analyses (Supplemental Fig. S8) indicate that the proteins 535 536 encoded by Naga 100114g61 and its N. oceanica homologue (CCMP1779|236) are closely related to a WS-DGAT from Phaeodactylum tricornutum (PtWS-DGAT). PtWS-DGAT has 537 been recently shown to catalyse the formation of esters from alcohols and fatty acids (Cui et 538 al. 2018) and has a domain structure (Fig. 1 in Cui et al. 2018) similar to that found here for 539 Nannochloropsis WS-DGATs (Naga 100114g61 and CCMP1779|236, Supplemental Fig. 540 S8). Interestingly, putative WS-DGAT from N. gaditana and N. oceanica increased in 541 expression by 6 and 1.5 fold, respectively (Fig. 3), under dark conditions, suggesting that an 542 active production of esters was likely to take place during dark incubation. Thus, WS-DGATs 543 544 in *Nannochloropsis* spp. might be involved in esterification of LCAs/LCDs to carboxyl groups to form the ester-bound structures which have been previously detected in the cell wall 545 (Scholz et al. 2014). 546 547 In contrast, we could not find any gene potentially catalysing the formation of etherbonds within the cell wall biopolymers. Similarity (blastp) analyses of known ether synthases 548 such as the 9-divinyl ether synthase from *Solanum lycopersicum* (tomato plant), the corvol 549 ether synthase from *Kisatasospora setae* (bacteria), against the predicted proteins of N. 550 oceanica CCMP1779 and N. gaditana B31 did not yield significant hits (Supplemental Table 551 552 S9). The polymerisation of LCAs and LCDs to form ether-bound structures in algaenans remains thus unclear. 553 554 555

Potential biosynthetic pathways for LCA, LCD, and LCHFAs in *Nannochloropsis* spp.

558	As previously suggested (Gelin et al. 1997a, Scholz et al. 2014, Balzano et al. 2017,
559	Volkman 2018), our results from stable isotope experiments confirm that LCAs and LCDs
560	derive from C_{14-18} fatty acids by either condensation or elongation.
561	If biosynthesis occurs via condensation the dominant pathway involves the interaction
562	between the aliphatic end of a C_{14} fatty acid with the carboxylic end of a C_{18} fatty acid to
563	produce a C_{32} compound functionalised on the 15 th carbon which would be a precursor of 15-
564	OH-C ₃₂ fatty acids, C ₃₂ 1,15 diol and C ₃₂ alkenols. Although we could not find evidence for
565	such a pathway in literature nor could find genes potentially coding such biosynthetic
566	processes within Nannochloropsis genomes, this pathway cannot be fully discarded.
567	In contrast the elongation pathway is more likely to occur. The lack of elongation
568	intermediates such as aliphatic compounds with a number of carbons comprised between 20
569	and 26 in Nannochloropsis spp. might be due to a rapid uptake of such compounds for the
570	following steps of the pathway. Nevertheless, results from our genomic and transcriptomic
571	analyses, combined with comparisons with biosynthetic pathways in plants, more likely
572	suggest that LCHFAs are formed from C_{14-18} fatty acids via elongation. Specifically we found
573	two key enzymes, PKS-Clade II and FAE, potentially involved in the elongation process.
574	PKS-Clade II are likely to elongate and hydroxylate the $C_{18:0}$ fatty acid and, to a lesser extent,
575	the $C_{16:0}$ fatty acid, to form the 3-OH- $C_{20:0}$ and 3-OH- $C_{18:0}$ fatty acids, respectively (Fig. 4).
576	Subsequently, FAE enzymes can potentially catalyse the multiple elongation of the 3-OH-
577	$C_{20:0}$ fatty acid to 13-OH- $C_{30:0}$ and 15-OH- $C_{32:0}$ fatty acids after 5 or 6 complete elongation
578	cycles, respectively (Fig. 4). Six complete elongation cycles of 3-OH- $C_{18:0}$ fatty acid and
579	subsequent reduction might form the $C_{30:0}$ 1,15 diol which is also present in <i>Nannochloropsis</i>
580	spp. as well as other eustigmatophycean representatives (Rampen et al. 2014).
581	Since saturated LCDs are functionalised at the same mid-chain position as their
582	corresponding monounsaturated LCAs (Supplemental Fig. S2), both lipid classes are very

likely to share a similar biosynthetic pathway and to originate from the same precursors, the 583 3-OH- $C_{20:0}$ fatty acid and, to a lesser extent the 3-OH- $C_{18:0}$ fatty acid. The pathway leading to 584 the formation of LCAs would start from the dehydration of 3-OH-C_{20:0} fatty acids to both Δ^2 585 and $\Delta^3 C_{20:1}$ fatty acid catalysed by an HADs (Fig. 4). The Δ^2 and $\Delta^3 C_{20:1}$ fatty acids would 586 then undergo 5 complete FAE-catalysed elongations and a reduction to form the Δ^{12} and Δ^{13} 587 $C_{30:1}$ alkenols or 6 elongations and a reduction to form Δ^{14} and $\Delta^{15}C_{32:1}$ alkenols (Fig. 4). The 588 Δ^{12} and Δ^{13} C_{30:1} alkenols as well as Δ^{14} and Δ^{15} C_{32:1} alkenols have been detected here in both 589 N. gaditana and N. oceanica (Supplemental Fig. S2) and were also found previously in 590 Nannochloropsis salina and an unidentified Nannochloropsis strain (Gelin et al. 1997b). The 591 Δ^{14} and Δ^{15} C_{30:1} alkenols would instead derive from the dehydration of 3-OH-C_{18:0} fatty acid 592 to Δ^2 and $\Delta^3 C_{18:1}$ fatty acids followed by 6 complete elongation cycles and the reduction of 593 the carboxylic group to alcohol. 594

595 The formation of a double bond in LCDs and a second double bond in LCAs would originate at an early stage of the pathway, before the 3-OH C_{20:0} fatty acid is either elongated 596 to form LCHFAs, or dehydrated to form LCA precursors (Fig. 4). A double bond on a Δ^{27} 597 position, for both the C_{32:2} alkenol and the C_{32:1} diol, might originate from a desaturation of 598 the 13^{th} carbon in $C_{18:0}$ fatty acid or a desaturation of the 15^{th} carbon in 3-OH- $C_{20:1}$ fatty acid. 599 The formation of Δ^{13} C_{18:1} or a Δ^{15} 3-OH-C_{20:1} would potentially involve the activity of a 600 stereospecific desaturase such as a Δ^{13} stearoyl desaturase. Nannochloropsis spp. contains 29 601 proteins with domains for fatty acid desaturation and some of them are up-regulated under 602 dark conditions (Supplemental Table S9), it is unclear whether any of these enzymes exhibits 603 Δ^{13} stearoyl desaturase activity. 604

605

606

607 LCD production in other species

608

609	LCDs can also be produced by other phytoplankters (Sinninghe Damsté et al., 2003;
610	Rampen et al., 2011) as well as some plants (Buschhaus et al. 2013). To evaluate the presence
611	of FAEs and PKSs in LCD-producers other than Eustigmatophyceae we analysed the proteins
612	predicted from genomes or transcriptomes available to date. The diatom Proboscia alata can
613	code for three putative PKSs as well as a FAE (Supplemental Fig. S9). Similarly to PKS-
614	Clade II enzymes from Nannochloropsis spp. (Fig. 5B), PKSs from P. alata possess both
615	KAS and KAR domains (Supplemental Fig. S9) being thus potentially able to catalyse the
616	formation of hydroxylated products. Indeed, <i>Proboscia</i> species contain C_{28-30} 1,14 diols and
617	12-OH C_{27-29} methyl alkanoates which were previously suggested to be formed from 12-OH-
618	C_{26-28} fatty acids (Sinninghe Damsté et al. 2003). The 12-OH- C_{26-28} fatty acids might originate
619	after 5 full elongation cycles of 2-OH- C_{16-18} fatty acids, which would in turn derive from an
620	incomplete elongation (and thus hydroxylation) of C_{14-16} fatty acids, with FAEs catalysing the
621	former reaction and PKSs the latter. The hydroxylation of C_{14-16} fatty acids should thus occur,
622	in this case, on the 2 nd , rather than on the 3 rd carbon to eventually produce the LCD detected
623	in <i>Proboscia</i> spp

 C_{26-32} aliphatic diols with a primary and a secondary alcohol group can also be present 624 in the epicuticular waxes of aquatic ferns (Speelman et al. 2009, Mao et al. 2017), terrestrial 625 ferns (Jetter and Riederer 1999) as well as other land plants such as mosses (Busta et al. 626 2016), conifers (Wen and Jetter 2007), and flowering plants (Wen et al. 2006, Racovita and 627 Jetter 2016). Similarly to the biosynthetic pathways proposed here for *Nannochloropsis* spp., 628 LCDs from plants could start with the formation of 3-hydroxyacyl compounds mediated by 629 P450 hydroxylases or PKS enzymes, followed by FAE-catalysed elongation of 3-hydroxyacyl 630 631 intermediates as suggested for plants (Wen and Jetter 2007, Busta et al. 2016).

632 CONCLUSIONS

634	LCAs and LCDs are likely to originate from C_{14-18} fatty acids after either condensation
635	of C ₁₄₋₁₈ fatty acids or an incomplete fatty acid elongation, forming 3-OH-fatty acids,
636	followed by a further elongation to LCHFAs and a final reduction of the terminal carboxylic
637	group. Enzymes potentially involved in such a condensation of two fatty acids are not known
638	to date. We identified instead two enzymes (PKS-Clade II and FAE) likely to be involved in
639	the elongation of C_{14-18} fatty acids to larger products. HAD enzymes might play a role in the
640	dehydration of secondary alcohols forming the double bonds present in LCAs whereas WS-
641	DGAT enzymes are potentially involved in the formation of the ester-bound structures present
642	in the Nannochloropsis cell wall. Although the biosynthetic pathways for LCAs and LCDs
643	have not been fully elucidated and the formation of ether bonds within cell wall polymers is
644	still unclear, our work identifies a potential mechanism, similar to biosynthetic processes
645	described in higher plants, for the formation of mid-chain functionalised aliphatic compounds
646	in phytoplankton. Future challenges include the biochemical and functional characterization
647	of the candidate enzymes predicted here. Eventually, if long chain aliphatic compounds are
648	formed from the elongation of C_{14-18} fatty acids, genetic manipulations of PKS-Clade II and
649	FAE enzymes might contribute to increase the productivity of both LCHFAs and LCDs in
650	Nannochloropsis species.

654 MATERIALS AND METHODS

655

656

- 657 Culturing and dark incubations
- 658

Nannochloropsis oceanica CCMP1779 and N. gaditana CCMP526 were cultured in 659 660 batch using f/2 medium (Guillard 1975) under 12:12 dark/light conditions at 20 °C and algal growth was regularly monitored using flow cytometry (Marie et al. 2001). For the 661 662 experiments each strain was grown in 6 replicate 1.5 L Erlenmeyer flasks (Supplemental information) and cells were harvested from 3 flasks to assess the initial concentration of lipids 663 and the background gene expression (Control 1). From each of the remaining 6 flasks (3 per 664 species) an aliquot (20 mL equals approximately 7 x 10⁷ cells) was transferred into new 665 Erlenmeyer flasks pre-filled with medium, incubated under dark/light conditions and used as 666 positive control (Control 2), whereas the initial flasks with the remaining volume (780 mL) 667 were instead transferred under dark conditions. Both Control 2 and dark treatment were 668 incubated for 1 week at 20 °C. Cells were harvested from their culturing flasks by filtration 669 through 0.7 µm GF/F filters (Whatman, Maidstone, UK). Cells were enumerated by flow 670 cytometry before filtration and we did not observe dead cells or debris (i.e. particles with 671 comparable forward scatter and lower chlorophyll fluorescence than ordinary 672 Nannochloropsis cells) in our cytograms in any of the samples filtered. This suggests that 673 most of the material filtered contained viable cells, or at worst dead cells with intact 674 chloroplasts. Filters for lipid analyses were immediately rinsed in demineralised water and 675 676 stored at -80 °C, whereas filters for RNA extraction and further transcriptomic analyses were flash frozen in liquid nitrogen immediately and then stored at -80 °C until analyses. 677

678	In addition we analysed the composition of LCAs, LCDs, and LCHFAs in mutant
679	strains of <i>N. gaditana</i> CCMP526 in which the gene <i>Naga_100083g23</i> coding for a Δ 0-ELOs
680	has been silenced (Dolch et al. 2017). Three mutants (Clone 5, Clone 13, and Clone 15) were
681	obtained from the Cell and Plant Physiology Laboratory (Grenoble, France), cultured under
682	the same conditions as above (f/2 medium, 12/12 dark light cycle) along with the wild type
683	(N. gaditana CCMP526) and harvested during the exponential phase of their growth.
684	
685	
686	Stable isotope labelling
687	
688	To assess whether LCDs are formed from C_{14-16} fatty acids, we incubated <i>N. oceanica</i>
689	CCMP1779 with sodium ¹³ C-[2]-acetate (Sigma-Aldrich, 279315-1G, Zwijndrecht,
690	Netherlands) under both dark/light and dark conditions. We used an axenic culture of N.
691	oceanica CCMP1779 to avoid any consumption of ¹³ C-labelled acetate by heterotrophic
692	bacteria typically present in phytoplankton cultures. The strain was cultured at 20 °C under
693	12:12 dark/light conditions in a 5 L glass carboy and continuous air bubbling was provided by
694	an aquarium pump connected through 0.2 µm pore size filters (Sartorius, Göttingen Germany)
695	to dilute any formed ¹³ C labelled CO ₂ A volume of 10 mL of 0.5 M sodium ¹³ C-[2]-acetate
696	was added to the cultures when they reached cellular densities of approx. 1.5 x 10^7 cell mL ⁻¹ .
697	The dark/light treatment was then incubated at the same conditions for 2 days, whereas the
698	dark treatment was incubated for 1 week in the dark. At the end of the experiments cells were
699	harvested as described above.
700	
701	

702 Lipid extraction, GC-MS and IR-MS

7	n	2	
1	U	5	

704	For the non-isotopically labelled dark incubation experiment we extracted 18 filters in
705	total, i.e. three replicates per treatment for two strains (N. oceanica CCMP1779 and N.
706	gaditana CCMP526). The filters were freeze-dried using a Lyoquest (Telstart, Life Sciences)
707	freeze-drier and then they were saponified and acid hydrolysed as described previously
708	(Rodrigo-Gámiz et al. 2015, Balzano et al. 2017). The total lipid extract (TLE) was then
709	dissolved in dichloromethane (DCM) and dried through anhydrous sodium acetate, and
710	subsequently under nitrogen. After extraction, we added 20.4 μ g C _{22:0} 7,16-diol as internal
711	standard to the TLE, for quantification purposes. Subsequently, the extracts were methylated
712	with diazomethane and cleaned over a small silica gel column using ethyl acetate as eluent.
713	Prior to analysis, the TLEs were silvlated by the addition of N,O-bis-(trimethylsilyl)-
714	trifluoroacetamide (BSTFA) and pyridine, and heating at 60 °C for 20 min.
715	An aliquot of one lipid extract from <i>N. oceanica</i> CCMP1779 (dark treatment) was used
716	to determine the position of the double bond in alkenols and unsaturated LCDs, lipids were
717	derivitised by adding 50 μ L dimethyl disulfide and 5 μ L iodine solution (60 mg iodine in 1mL
718	diethyl ether), eluted then in DCM and iodine was removed using 50-100 mL 5% sodium
719	thiosulfate solutions.
720	Compounds were quantified using gas chromatography flame ionization detection using
721	an Agilent 7890B Gas Chromatograph (GC) with a 25 m fused silica column diameter 0.32
722	mm, coated with CP Sil-5 (thickness $0.12 \ \mu$ m). Identification of the lipids was achieved using
723	GC-mass spectrometry (GC-MS) with an Agilent 7890B GC coupled to an Agilent 5977 mass
724	spectrometer. Identification of the LCDs, LCAs and LCHFAs was based on the fragmentation
725	mass spectra obtained in full scan (m/z 50-800) as described by Versteegh et al. (1997). To

discriminate between C30:0 diols and the C32:2 alkenols, which co-elute on the GC, we

determined the relative contributions of each compound to the total peak area in the GC-MS

chromatogram (MassHunter software, Agilent Technologies) in which the two compounds arepartially separated.

For the stable isotope experiment, we analysed two filters corresponding to the two 730 treatments of N. oceanica. The extraction set-up consisted in saponification followed by acid 731 hydrolysis as described above. Subsequently, we added 19.2 μ g C_{22:0} 7,16-diol as internal 732 standard to the extracts and we methylated the TLEs using boron trifluoride in methanol. The 733 734 extracts were separated by column chromatography, using aluminium oxide as stationary phase, which was activated for 2 h at 150 °C. Lipids were then extracted in three different 735 solutions: hexane:DCM (9:1, vol./vol.), hexane:DCM (1:1, vol./vol.) and methanol:DCM 736 737 (1:1, vol./vol.). Fatty acids were mostly dissolved in the second hexane:DCM solution whereas LCAs, LCDs and LCHFAs were dissolved in the methanol:DCM solutions. For the 738 silvlation and the methylation we used BSTFA and BF₃/methanol, respectively, with known 739 740 δ^{13} C values of -32.2‰ and -25.7‰, respectively. Compounds were quantified by GC-FID chromatograms as described above, whereas identification was achieved using an Agilent 741 7890A GC coupled to an Agilent 5975C MS. All GC-MS parameters were also identical, but 742 the total run time was 60 min. The isotopic composition of the different compounds was 743 analysed using gas chromatography-isotope ratio mass spectrometry, using an Agilent 6890 744 745 GC coupled to a Thermo Delta Plus isotope ratio mass spectrometer (IR-MS, ThermoFisher). Separation was achieved on a ZB-5MS column with a length of 60 m, a column diameter of 746 0.32 mm and a film thickness of 0.25 µm. Oven program was identical as that described for 747 the GC-FID and GC-MS, but the end temperature of 320 °C was held for 30 min (total run 748 time of 80 min). The injection volume was 1 µL and the four fractions were all analyzed in 749 triplicate, and the reported data represent averaged values. The isotopic compositions are 750 reported in units of atom percent (At%). Values were corrected considering the δ^{13} C values of 751 both BSTFA and methanol. 752

753	
754	
755	Genomic analyses
756	
757	To identify genes potentially involved in the biosynthesis of LCAs, LCDs, and LCHFAs
758	in Eustigmatophyceae we constructed a local blast database (Altschul et al. 1990, Camacho et
759	al. 2009) using the predicted proteins from the genomes of 8 Nannochloropsis strains
760	(Nannochloropsis sp. CCMP531, N. gaditana B-31, N. gaditana CCMP526, Nannochloropsis
761	granulata CCMP529, N. oceanica CCMP1779, N. oceanica IMET1, Nannochloropsis
762	oculata CCMP525, and N. salina CCMP537, Supplemental Information). Conserved protein
763	domains were searched using Interproscan (Jones et al. 2014) or by manually enquiring for
764	specific AA motifs. Specifically we searched for proteins containing the motifs HWYHH,
765	GMGCSAG, and [D/E]TACSSS or H[G/A]TGT, which correspond to highly conserved
766	regions of Δ 0-ELOs (Hashimoto et al. 2008), FAEs (Millar et al. 1999), and PKSs (Shelest et
767	al. 2015) enzymes, respectively. Moreover we searched for genes potentially coding for the
768	conserved motif [I/V/F]X[I/L/V]TGXTGF[M/L/V][G/A] which corresponds to the catalytic
769	site of FARs (Hofvander et al. 2011, Teerawanichpan and Qiu 2012). The presence and
770	position of trans membrane helices (TMHs), in Δ 0-ELOs, FAEs, and PKSs proteins was
771	assessed using TMHMM (Krogh et al. 2001).
772	We carried out similarity searches of known proteins from other species against the

773 locally built *Nannochloropsis* database, as well as similarity searches of *Nannochloropsis*

proteins potentially involved in the biosynthetic processes against the non-redundant (NR)

775 (Pruitt et al. 2005) and the Swissprot (The UniProt Consortium, 2017) databases, using blastp

776 (Camacho et al. 2009).

To compare putative Nannochloropsis enzymes involved in the biosynthetic processes 777 778 with known and unknown proteins from other species we performed phylogenetic analyses on four protein families: FAEs, PKSs, the HADs, and the WS-DGATs. We aligned putative 779 Nannochloropsis FAEs with known FAE proteins from Arabidopsis thaliana, Brassica napus 780 (Joubes et al. 2008), as well as a FAE known to elongate hydroxy fatty acids from *Physaria* 781 fendlerii (Moon et al. 2001). Sequences were aligned using MAFFT-linsy (Katoh and 782 783 Standley 2013) and poorly aligned regions (regions containing > 50% gaps) were trimmed from the alignment which finally consisted of 50 sequences and 195 unambiguously aligned 784 positions. We analysed the KAS domain of PKSs (KAS-PKS) using Nannochloropsis 785 786 proteins previously identified as PKSs (Shelest et al. 2015, Alboresi et al. 2016) as well as other proteins containing the KAS-PKS domain (IPR020841) and/or containing the conserved 787 motifs [D/E]TACSSS and H[G/A]TGT. Sequences were then aligned to a pre-existing 788 789 alignment of 92 KAS-PKS sequences (Kohli et al. 2016) and trimmed as described above. The final alignment consisted of 138 sequences and 173 AA positions. For HADs we 790 791 extracted two AA sequences containing a domain for HAD (IPR010084) from N. oceanica and N. gaditana, respectively. We then searched for homologues in the Nannochloropsis and 792 Swissprot databases, aligned and trimmed the sequences as described above and the final 793 794 alignment included 50 AA sequences and 147 positions. For the WS-DGAT phylogeny we downloaded known AA sequences from the Swissprot database, searched for homologues in 795 Nannochloropsis, aligned the sequences and trimmed the alignment as described above. The 796 alignment included 43 AA sequences and 245 positions. Phylogenetic trees were constructed 797 using both Maximum Likelihood (ML) and Neighbour Joining (NJ) algorithms based on 798 1,000 bootstraps. ML phylogeny was inferred using RAxML with 1000 bootstraps 799 (Stamatakis 2014) and was used to build the phylogenetic trees, whereas NJ bootstrap support 800 values were calculated using MEGA (Tamura et al. 2007). 801

802	To evaluate the occurrence of similar biosynthetic processes in other LCD-producers
803	(Balzano et al. 2018), we downloaded a number of predicted proteins, obtained from
804	transcriptomes of phytoplankton cultures (Keeling et al. 2014) from iMicrobe
805	(https://www.imicrobe.us/). The species used were Florenciella parvula (MMETSP1323),
806	Florenciella sp. (MMETSP1324), Heterosigma akashiwo(MMETSP0292, MMETSP0294,
807	MMETSP0295, MMETSP0296, MMETSP0409, MMETSP0410, MMETSP0411,
808	MMETSP0414, MMETSP0415, MMETSP0416, MMETSP0894, MMETSP0895,
809	MMETSP0896, MMETSP0897), Phaeomonas parva (MMETSP1163), Florenciella parvula
810	(MMETSP1323), Florenciella sp. (MMETSP1324), Proboscia alata (MMETSP0174,
811	MMETSP0176), Proboscia inermis (MMETSP0816), and Sarcinochrysi sp. (MMETSP1170).
812	In addition, we downloaded the genomes of the plants Azolla filliculoides
813	(www.fernbase.org) and Triticum aestivum (Kersey et al. 2018) which are also known to
814	produce LCDs (Speelman et al. 2009, Racovita and Jetter 2016). We then analysed the
815	domain structure of these proteins using Interproscan (Jones et al. 2014) and searched for
816	PKSs coding KAS and KAR domains.
817	
818	
819	RNA extraction
820	
821	To prevent RNA degradation, the extractions were carried out under sterile and cold

(approx. 10 °C) conditions in a clean laboratory; samples, tubing, and all other equipment
used were kept in ice unless otherwise stated. RNA was extracted from each of 3 replicates of
each of the three treatments (initial biomass, positive control, and dark-incubated biomass)
from both *N. oceanica* CCMP1779 and *N. gaditana* CCMP526 for a total of 18 samples. Cells
were disrupted using a combination of thermal, chemical, and mechanical lyses: from each

sample about ¹/₂ of a GF/F filter was cut in many small pieces using sterile tweezers and 827 828 scissors, drilled using disposable pellet pestles, and then transferred into 12 mL falcon tubes prefilled with 0.1 and 0.5 µm glass beads (Biospec, Bartlesville, Canada). Tubes were then 829 rapidly submerged several times into liquid nitrogen to promote thermal cell lysis. One mL of 830 RLT buffer (Qiagen, Venlo, Netherlands), 10 µL mercaptoethanol (Sigma-Aldrich,), and 50 831 uL plant RNA isolation aid (Thermo Fisher Scientific, Waltham, US) were then added to the 832 tubes which were vortexed for 5 minutes, incubated for 5 min in ice, vortexed again for 5 min 833 and finally centrifuged at 4,500 g. The supernatant was transferred into 2 mL tubes which 834 were centrifuged again at 16,000 g and the supernatant removed. 35 µL lysozyme (Qiagen), 835 836 20 µL proteinase-K (Qiagen), and 100 µL sodium-dodecyl-sulfate (Ambion, Bleiswijk, Netherlands) were then added to the samples which were incubated at 37 °C for 10 min. 837 Tubes were then centrifuged for 15 min and the supernatant transferred into DNA spin 838 839 column (DNAeasy blood and tissue kit, Qiagen) and centrifuged to remove most of the DNA. The lysate was transferred into RNAeasy spin columns (RNAeasy mini-kit, Qiagen) and the 840 RNA was then isolated following the instructions provided by the supplier. Traces of DNA 841 were removed from the RNA extract using Turbo DNAse (Thermo Fisher Scientific). RNA 842 concentration and integrity were assessed using Qubit Fluorometric Quantitation (Thermo 843 844 Fisher Scientific) and a Bioanalyser (Agilent, Santa Cruz, US) whereas a PCR using universal eukaryote primers (Stoeck et al. 2010) was carried out to confirm the absence of DNA 845 contamination within the RNA extracts. 846 RNA extracts were sent to Utrecht Sequencing Facility (www.useq.nl), where cDNA 847

was generated, sequencing libraries prepared, and sequencing carried out with two runs on a
NextSeq500 with reads of 75 bp.

850

852 Gene expression analyses

853

854	A total of 614,537,691 raw fastq reads were obtained and processed locally on a
855	bioinformatic cluster. Low quality reads were trimmed or removed using Trimmomatic
856	(Bolger et al. 2014) with the maxinfo method (MAXINFO:40:0.6) and a minimal length of
857	acceptable reads of 36 bp. Adapters were also removed using Trimmomatic with the
858	Illuminaclip option. The quality of the trimmed reads was controlled with fastqc
859	(www.bioinformatics.babraham.ac.uk/projects/fastqc/) and reads were sorted and counted
860	using the R library Rsamtools (Morgan et al. 2017). Reads were mapped against the
861	previously sequenced genomes of <i>N. oceanica</i> CCMP1779 (Vieler et al. 2012) available at
862	Joint Genome Institute (https://genome.jgi.doe.gov/pages/search-for-
863	genes.jsf?organism=Nanoce1779) and <i>N. gaditana</i> B-31 (Corteggiani Carpinelli et al. 2014)
864	downloaded from <u>www.nannochloropsis.org</u> . Mapping was performed using the R library
865	GenomicFeatures (Lawrence et al. 2013), data were normalised using Deseq2 (Love et al.
866	2014) and a gene expression table as well as log2 fold changes with corresponding p-values
867	corrected with the false discovery rate (Benjamini and Hochberg 1995) was obtained.

Expression changes were considered significant for p-values < 0.01.

869 FUNDING INFORMATION

871	This research was funded by the European Research Council (ERC) under the European
872	Union's Seventh Framework Program (FP7/2007-2013) ERC grant agreement [339206].
873	Financial support from the Netherlands Earth System Science Centre (NESSC) is provided to
874	S. Schouten and J. S. Sinninghe Damsté. The French National Research Agency supports J.
875	Lupette and E. Marechal.
876	
877	
878	ACKNOWLEDGEMENTS
879	
880	We thank M. Verweij for help in lipid analyses, M. Grego for support in algal culturing,
881	S. Vreugdenhil for help in RNA extraction, A. Abdala for assistance in bioinformatic analyses
882	and Rob Langelaan from Naturalis for help in electron microscopy. We thank Utrecht
883	Sequencing Facility (USEQ) for providing sequencing service and data. USEQ is subsidized
884	by the University Medical Center Utrecht, Hubrecht Institute and Utrecht University.
885	
886	DISCLOSURE
887	The authors have no conflict of interest to declare.
888	

889	REFERENCES
890	
891	
892	Aarts, M. G. M., R. Hodge, K. Kalantidis, D. Florack, Z. A. Wilson, B. J. Mulligan, W. J. Stiekema, R.
893	Scott and A. Pereira (1997). "The Arabidopsis MALE STERILITY 2 protein shares similarity with
894	reductases in elongation/condensation complexes." Plant Journal 12 (3): 615-623.
895	Alboresi, A., G. Perin, N. Vitulo, G. Diretto, M. Block, J. Jouhet, A. Meneghesso, G. Valle, G. Giuliano,
896	E. Marechal and T. Morosinotto (2016). "Light Remodels Lipid Biosynthesis in
897	Nannochloropsis gaditana by Modulating Carbon Partitioning between Organelles." Plant
898	Physiology 171 (4): 2468-2482.
899	Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman (1990). "Basic local alignment search
900	tool." Journal of Molecular Biology 215 (3): 403-410.
901	Balzano, S., J. Lattaud, L. Villanueva, S. W. Rampen, C. P. D. Brussaard, J. van Bleijswijk, N. Bale, J. S.
902	Sinninghe Damste and S. Schouten (2018). "A quest for the biological sources of long chain
903	alkyl diols in the western tropical North Atlantic Ocean." Biogeosciences 15 (19): 5951-5968.
904	Balzano, S., L. Villanueva, M. de Bar, J. S. Sinninghe Damsté and S. Schouten (2017). "Impact of
905	culturing conditions on the abundance and composition of long chain alkyl diols in species of
906	the genus Nannochloropsis." Organic Geochemistry 108 : 9-17.
907	Benjamini, Y. and Y. Hochberg (1995). "Controlling the false discovery rate. A pratical and powerful
908	approach to multiple testing." Journal of the Royal Statistical Society Series B-Methodological
909	57 (1): 289-300.
910	Bernard, A., F. Domergue, S. Pascal, R. Jetter, C. Renne, J. D. Faure, R. P. Haslam, J. A. Napier, R.
911	Lessire and J. Joubes (2012). "Reconstitution of Plant Alkane Biosynthesis in Yeast
912	Demonstrates That Arabidopsis ECERIFERUM1 and ECERIFERUM3 Are Core Components of a
913	Very-Long-Chain Alkane Synthesis Complex." Plant Cell 24 (7): 3106-3118.
914	Bolger, A. M., M. Lohse and B. Usadel (2014). "Trimmomatic: a flexible trimmer for Illumina sequence
915	data." Bioinformatics 30 (15): 2114-2120.
916	Buschhaus, C., C. Peng and R. Jetter (2013). "Very-long-chain 1,2-and 1,3-bifunctional compounds
91/	from the cuticular wax of <i>Cosmos bipinnatus</i> petals." Phytochemistry 91 : 249-256.
918	Busta, L., J. M. Budke and R. Jetter (2016). "Identification of beta-hydroxy fatty acid esters and
919	primary, secondary-alkanediol esters in cuticular waxes of the moss <i>Fundria hygrometrica</i> ."
920	Phytochemistry 121 : 38-49.
921	Busta, L. and R. Jetter (2018). "Moving beyond the ubiquitous: the diversity and biosynthesis of
922	specialty compounds in plant cuticular waxes." Phytochemistry Reviews 17(6): 1275-1304.
923	Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer and T. L. Madden (2009).
924	BLAST plus : architecture and applications." Bmc Bioinformatics 10 : 9.
925	Chen, L., T. Z. Liu, W. Zhang, X. L. Chen and J. F. Wang (2012). Biodiesel production from algae of
926	nign in free fatty acids by two-step catalytic conversion." Bioresource Technology 111: 208-
927	214. Christenson J. K. M. D. Jansen D. D. Cahlingh F. Mahamad W. Zhang C. M. Wilmet and J. D.
928	Christenson, J. K., M. R. Jensen, B. R. Gobiirsch, F. Monamed, W. Zhang, C. M. Wilmot and L. P.
929	Wackett (2017). Active Multienzyme Assemblies for Long-Chain Olemnic Hydrocarbon Biosynthesis " Journal of Bacteriology 100 (0)
950	Biosynthesis. Journal of Bactenology 133(9). Cortoggiani Carninalli, E. A. Talatin, N. Vitula, C. Forcata, M. D'Angala, P. Schiavan, A. Vazzi, C. M.
951	Conteggiant Carpinenti, E., A. Telatin, N. Vitulo, C. Forcato, M. D'Angelo, R. Schlavon, A. Vezzi, G. M.
952	Glacofficting of Nannachlorancis and tang in pitrogon doplotion." Molocular Plant
021	7 (2), 222-225
934 025	(2). JCJ-JJJ. Cui V L L L Theo V C Wang S Oin and V D Lu (2018) "Characterization and ongineering of a
936	dual-function diacylolycerol acyltransferase in the olegoinous marine diatom <i>Phaeodactylum</i>
937	tricornutum " Biotechnology for Biofuels 11
557	incontation. Diotechnology for Diotacio 11.

- Denic, V. and J. S. Weissman (2007). "A molecular caliper mechanism for determining very long-chain
 fatty acid length." Cell **130**(4): 663-677.
- 940 Dolch, L. J., C. Rak, G. Perin, G. Tourcier, R. Broughton, M. Leterrier, T. Morosinotto, F. Tellier, J. D.
 941 Faure, D. Falconet, J. Jouhet, O. Sayanova, F. Beaudoin and E. Marechal (2017). "A palmitic
 942 acid elongase affects eicosapentaenoic acid and plastidial monogalactosyldiacylglycerol
 943 levels in *Nannochloropsis*." Plant Physiology **173**(1): 742-759.
- 944 Dunstan, G. A., J. K. Volkman, S. M. Barrett and C. D. Garland (1993). "Changes in the lipid
 945 composition and maximization of the polyunsaturated fatty acid content of 3 microalgae
 946 grown in mass culture." Journal of Applied Phycology 5(1): 71-83.
- Fietz, S., W. Bleiss, D. Hepperle, H. Koppitz, L. Krienitz and A. Nicklisch (2005). "First record of
 Nannochloropsis limnetica (Eustigmatophyceae) in the autotrophic picoplankton from Lake
 Baikal." Journal of Phycology **41**(4): 780-790.
- Gelin, F., I. Boogers, A. A. M. Noordeloos, J. S. Sinninghe Damsté, P. G. Hatcher and J. W. de Leeuw
 (1996). "Novel, resistant microalgal polyethers: An important sink of organic carbon in the
 marine environment?" Geochimica Et Cosmochimica Acta 60(7): 1275-1280.
- Gelin, F., I. Boogers, A. A. M. Noordeloos, J. S. Sinninghe Damsté, R. Riegman and J. W. De Leeuw
 (1997b). "Resistant biomacromolecules in marine microalgae of the classes
 Eustigmatophyceae and Chlorophyceae: geochemical implications." Organic Geochemistry
- 956 **26**(11-12): 659-675.
- Gelin, F., J. K. Volkman, J. W. de Leeuw and J. S. Sinninghe Damsté (1997a). "Mid-chain hydroxy longchain fatty acids in microalgae from the genus *Nannochloropsis*." Phytochemistry **45**(4): 641646.
- Goodrum, J. W. and D. P. Geller (2005). "Influence of fatty acid mehyl esters from hydroxylated
 vegetable oils in diesel fuel lubricity." Bioresource Technology **96**(7): 851-855.
- Guillard, R. R. L. (1975). Culture of phytoplankton for feeding marine invertebrates. <u>Culture of marine</u>
 <u>invertebrate animals</u>. W. L. Smith and M. H. Chanley. New York, Plenum Book Publication
 Corporation: 29-60.
- Hashimoto, K., A. C. Yoshizawa, S. Okuda, K. Kuma, S. Goto and M. Kanehisa (2008). "The repertoire
 of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes." Journal
 of Lipid Research 49(1): 183-191.
- Haslam, T. M. and L. Kunst (2013). "Extending the story of very-long-chain fatty acid elongation."
 Plant Science 210: 93-107.
- Heath, R. J. and C. O. Rock (1996). "Roles of the FabA and FabZ beta-hydroxyacyl-acyl carrier protein
 dehydratases in *Escherichia coli* fatty acid biosynthesis." Journal of Biological Chemistry
 271(44): 27795-27801.
- Hofvander, P., T. T. P. Doan and M. Hamberg (2011). "A prokaryotic acyl-CoA reductase performing
 reduction of fatty acyl-CoA to fatty alcohol." Febs Letters 585(22): 3538-3543.
- Jenke-Kodama, H., A. Sandmann, R. Muller and E. Dittmann (2005). "Evolutionary implications of
 bacterial polyketide synthases." Molecular Biology and Evolution 22(10): 2027-2039.
- Jetter, R. and M. Riederer (1999). "Long-chain alkanediols, ketoaldehydes, ketoalcohols and ketoalkyl
 esters in the cuticular waxes of *Osmunda regalis* fronds." Phytochemistry **52**(5): 907-915.
- Jones, P., D. Binns, H. Y. Chang, M. Fraser, W. Z. Li, C. McAnulla, H. McWilliam, J. Maslen, A. Mitchell,
 G. Nuka, S. Pesseat, A. F. Quinn, A. Sangrador-Vegas, M. Scheremetjew, S. Y. Yong, R. Lopez
 and S. Hunter (2014). "InterProScan 5: genome-scale protein function classification."
 Bioinformatics **30**(9): 1236-1240.
- Joubes, J., S. Raffaele, B. Bourdenx, C. Garcia, J. Laroche-Traineau, P. Moreau, F. Domergue and R.
 Lessire (2008). "The VLCFA elongase gene family in *Arabidopsis thaliana*: phylogenetic
 analysis, 3D modelling and expression profiling." Plant Molecular Biology 67(5): 547-566.
 Kalscheuer, R. and A. Steinbuchel (2003). "A novel bifunctional wax ester synthase/acyl-CoA :
- 987 diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in
 988 Acinetobacter calcoaceticus ADP1." Journal of Biological Chemistry 278(10): 8075-8082.

989	Katoh, K. and D. M. Standley (2013). "MAFFT Multiple Sequence Alignment Software Version 7:		
990	Improvements in Performance and Usability." Molecular Biology and Evolution 30 (4): 772-		
991	780.		
992	Keeling, P. J., F. Burki, H. M. Wilcox, B. Allam, E. E. Allen, L. A. Amaral-Zettler, E. V. Armbrust, J. M.		
993	Archibald, A. K. Bharti, C. J. Bell, B. Beszteri, K. D. Bidle, C. T. Cameron, L. Campbell, D. A.		
994	Caron, R. A. Cattolico, J. L. Collier, K. Covne, S. K. Davy, P. Deschamps, S. T. Dyhrman, B.		
995	Edvardsen, R. D. Gates, C. J. Gobler, S. J. Greenwood, S. M. Guida, J. L. Jacobi, K. S. Jakobsen,		
996	E R James B Jenkins U John M D Johnson A R Juhl A Kamp J A Katz R Kiene A		
997	Kudrvavtsev, B. S. Leander, S. Lin, C. Loveiov, D. Lvnn, A. Marchetti, G. McManus, A. M.		
998	Nedelcu, S. Menden-Deuer, C. Miceli, T. Mock, M. Montresor, M. A. Moran, S. Murray, G.		
999	Nadathur, S. Nagai, P. B. Ngam, B. Palenik, J. Pawlowski, G. Petroni, G. Piganeau, M. C.		
1000	Posewitz, K. Rengefors, G. Romano, M. F. Rumpho, T. Rynearson, K. B. Schilling, D. C.		
1001	Schroeder, A. G. B. Simpson, C. H. Slamovits, D. R. Smith, G. J. Smith, S. R. Smith, H. M. Sosik		
1002	P. Stief F. Theriot, S. Twary, P. F. Umale, D. Vaulot, B. Wawrik, G. J. Wheeler, W. H. Wilson,		
1003	Y Xu A Zingone and A Z Worden (2014) "The Marine Microbial Eukaryote Transcriptome		
1004	Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the		
1005	Oceans through Transcriptome Sequencing "Plos Biology 12 (6)		
1005	Kersey P L L F Allen A Allot M Barba S Boddu B L Bolt D Carvalho-Silva M Christensen P		
1000	Davis C Grahmueller N Kumar 7 Liu T Maurel B Moore M D McDowall II Maheswari		
1007	G Naamati V Newman C K Ong M Paulini H Pedro E Perry M Russell H Sparrow E		
1008	Tananari, K. Taylor, A. Vullo, G. Williams, A. Zadissia, A. Olson, J. Stein, S. Wei, M. Tello-Ruiz		
1005	D Ware A Luciani S Potter R D Finn M Urban K E Hammond-Kosack D M Bolser N		
1010	De Silva K L Howe N Langridge G Maslen D M Staines and A Vates (2018) "Ensembl		
1011	Genomes 2018: an integrated omics infrastructure for non-vertebrate species " Nucleic Acids		
1012	Research 46 (D1): D802-D808		
1013	Kohli G S II John E M Van Dolah and S A Murray (2016) "Evolutionary distinctiveness of fatty		
1014	com, C. S., C. John, T. W. Van Dolan and S. A. Murray (2010). Evolutionary distinctiveness of fatty		
1015	Krosovic D. E. Schompp. 7. Cheikh Ali and H. P. Podo (2015). "A povol and widespread class of		
1010	ketocypthase is responsible for the head to head condensation of two acul moioties in		
1017	hactorial pyropa biosynthesis " Poilstein Journal of Organis Chemistry 11: 1412 1417		
1010	Krogh A. P. Larsson, G. von Hojing and E. L. L. Sonnhammer (2001) "Predicting transmombrane		
1019	protein topology with a hidden Markov model: Application to complete genomes " Journal of		
1020	Molecular Biology 205(2): 567 590		
1021	Lawrence M. W. Huber, H. Pages, P. Aboyoun, M. Carlson, P. Gentleman, M. T. Morgan and V. L		
1022	Caroy (2012) "Software for Computing and Appotating Conomic Pangos" Dios		
1025	Computational Piology 0 (9)		
1024	Loopard A. E. S. L. Doroira, H. Sprochar and V. S. Huang (2004) "Elongation of long chain fatty acids."		
1025	Drogross in Linid Possarch 42 (1): 26 54		
1020	Li Poisson V. P. Shorrosh F. Poisson M. V. Andersson V. Arondol P. D. Potos, S. Poud D. Pird A.		
1027	Li-Deissoil, T., B. Shoriosil, F. Beissoil, M. A. Anderssoil, V. Alondel, F. D. Bates, S. Badu, D. Bild, A.		
1020	Markham M. Miguel I. Molina, I. Nichida, O. Bowland, I. Samuela, K. M. Schmid, H. Wada, P.		
1029	Walti C. Yu. B. Zallot and L. Ohlroggo (2010). "Acul linid motabolism." The Arabidonsis Book		
1021	9 : 00122 00122		
1031	8. EUISS-EUISS.		
1032	Li, J., D. Hall, D. Wallg, K. Nillg, J. Jia, L. Wei, A. Jillg, S. Hualig, J. Chell, Y. Li, Q. Hualiu J. Xu (2014).		
1033	choreography of transcriptomes and indicomes of <i>Numochioropsis</i> reveals the mechanisms		
1034	UI UI Synthesis III Inici Udigde. Plant Cell 20 (4). 1045-1005.		
1035	LI, A. J., A. IVI. TEILGEIT, A. SHITAHI, J. LING, L. BUSLA, K. E. CAHOOH, W. Zhang, Z. Y. LI, K. D. Chapman, D.		
1027	Definition, C. T. Zhang, R. E. Willico and all with improved function." Nature Plants 4(0): 711-720		
1020	Elongation yields nydroxylated seed on with improved function. Nature Plants 4(9): /11-/20.		
1020	PNA-see data with DESee2 " Genome Piology 1E (12)		
1022	MA-SEY UALA WILL DESEY2. DELIVITE DIVIOES 13(12).		

1040	Mao, S. Y., X. W. Zhu, N. Y. Wu, G. D. Jia, Y. G. Sun, H. X. Guan and D. D. Wu (2017). "Alcohol
1041	compounds in Azolla imbricata and potential source implication for marine sediments."
1042	Science China-Earth Sciences 60 (2): 348-359.
1043	Marie, D., F. Partensky, D. Vaulot and C. Brussaard (2001). Enumeration of phytoplankton, bacteria,
1044	and viruses in marine samples. <u>Current protocols in cytometry New York</u> , John Wiley & Sons.
1045	Supplement 10.
1046	Martinez-Roldan, A. J., H. V. Perales-Vela, R. O. Canizares-Villanueva and G. Torzillo (2014).
1047	"Physiological response of <i>Nannochloropsis</i> sp. to saline stress in laboratory batch cultures."
1048	Journal of Applied Phycology 26 (1): 115-121.
1049	McQuoid, M. R. and L. A. Hobson (1996). "Diatom resting stages." Journal of Phycology 32 (6): 889-
1050	902.
1051	Millar, A. A., S. Clemens, S. Zachgo, E. M. Giblin, D. C. Taylor and L. Kunst (1999). "CUT1, an
1052	Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-
1053	long-chain fatty acid condensing enzyme." Plant Cell 11 (5): 825-838.
1054	Moon, H., M. A. Smith and L. Kunst (2001). "A condensing enzyme from the seeds of Lesquerella
1055	fendleri that specifically elongates hydroxy fatty acids." Plant Physiology 127 (4): 1635-1643.
1056	Morgan, M., H. Pagès, V. Obenchain and N. Hayden (2017). "Rsamtools: Binary alignment (BAM),
1057	FASTA, variant call (BCF), and tabix file import. R package version 1.30.0.
1058	http://bioconductor.org/packages/release/bioc/html/Rsamtools.html"
1059	Mutlu, H. and M. A. R. Meier (2010). "Castor oil as a renewable resource for the chemical industry."
1060	European Journal of Lipid Science and Technology 112 (1): 10-30.
1061	Pal, D., I. Khozin-Goldberg, Z. Cohen and S. Boussiba (2011). "The effect of light, salinity, and nitrogen
1062	availability on lipid production by Nannochloropsis sp." Applied Microbiology and
1063	Biotechnology 90 (4): 1429-1441.
1064	Petrovic, Z. S. (2008). "Polyurethanes from vegetable oils." Polymer Reviews 48 (1): 109-155.
1065	Petrovic, Z. S., Y. J. Xu, J. Milic, G. Glenn and A. Klamczynski (2010). "Biodegradation of Thermoplastic
1066	Polyurethanes from Vegetable Oils." Journal of Polymers and the Environment 18 (2): 94-97.
1067	Poliner, E., N. Panchy, L. Newton, G. X. Wu, A. Lapinsky, B. Bullard, A. Zienkiewicz, C. Benning, S. H.
1068	Shiu and E. M. Farre (2015). "Transcriptional coordination of physiological responses in
1069	Nannochloropsis oceanica CCMP1779 under light/dark cycles." Plant Journal 83(6): 1097-
1070	1113.
1071	Pruitt, K. D., T. Tatusova and D. R. Maglott (2005). "NCBI Reference Sequence (RefSeq): a curated
1072	non-redundant sequence database of genomes, transcripts and proteins." Nucleic Acids
1073	Research 33 (Database Issue): D501-D504.
1074	Racovita, R. C. and R. Jetter (2016). "Identification of in-chain-functionalized compounds and methyl-
1075	branched alkanes in cuticular waxes of <i>Triticum aestivum</i> cv. Bethlehem." Plos One 11 (11):
1076	25.
1077	Radakovits, R., R. E. Jinkerson, S. I. Fuerstenberg, H. Tae, R. E. Settlage, J. L. Boore and M. C. Posewitz
1078	(2012). "Draft genome sequence and genetic transformation of the oleaginous alga
1079	Nannochloropsis gaditana." Nature Communications 3.
1080	Rampen, S. W., V. Willmott, JH. Kim, M. Rodrigo-Gamiz, E. Uliana, G. Mollenhauer, E. Schefuss, J. S.
1081	Sinninghe Damsté and S. Schouten (2014). "Evaluation of long chain 1,14-alkyl diols in marine
1082	sediments as indicators for upwelling and temperature." Organic Geochemistry 76 : 39-47.
1083	Rodolfi, L., G. C. Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini and M. R. Tredici (2009).
1084	"Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass
1085	Cultivation in a Low-Cost Photobioreactor." Biotechnology and Bioengineering 102 (1): 100-
1086	112.
1087	Rodrigo-Gámiz, M., S. W. Rampen, H. de Haas, M. Baas, S. Schouten and J. S. Sinninghe Damsté
1088	(2015). "Constraints on the applicability of the organic temperature proxies UK037, TEX86
1089	and LDI in the subpolar region around Iceland." Biogeosciences 12 : 6573-6590.

1090

Scholz, M. J., T. L. Weiss, R. E. Jinkerson, J. Jing, R. Roth, U. Goodenough, M. C. Posewitz and H. G.

Gerken (2014). "Ultrastructure and composition of the Nannochloropsis gaditana cell wall." 1091 1092 Eukaryotic Cell 13(11): 1450-1464. Sharma, V. and P. P. Kundu (2006). "Addition polymers from natural oils - A review." Progress in 1093 1094 Polymer Science 31(11): 983-1008. 1095 Shelest, E., N. Heimerl, M. Fichtner and S. Sasso (2015). "Multimodular type I polyketide synthases in 1096 algae evolve by module duplications and displacement of AT domains in trans." Bmc 1097 Genomics 16. Sinninghe Damsté, J. S., S. Rampen, W. Irene, C. Rupstra, B. Abbas, G. Muyzer and S. Schouten (2003). 1098 1099 "A diatomaceous origin for long-chain diols and mid-chain hydroxy methyl alkanoates widely 1100 occurring in Quaternary marine sediments: Indicators for high-nutrient conditions." 1101 Geochimica Et Cosmochimica Acta 67(7): 1339-1348. 1102 Sinninghe Damsté, J. S., W. I. C. Rijpstra, E. C. Hopmans, J. W. H. Weijers, B. U. Foesel, J. Overmann and S. N. Dedysh (2011). "13,16-Dimethyl Octacosanedioic Acid (iso-Diabolic Acid), a 1103 1104 Common Membrane-Spanning Lipid of Acidobacteria Subdivisions 1 and 3." Applied and 1105 Environmental Microbiology 77(12): 4147-4154. 1106 Sorigue, D., B. Legeret, S. Cuine, P. Morales, B. Mirabella, G. Guedeney, Y. Li-Beisson, R. Jetter, G. 1107 Peltier and F. Beisson (2016). "Microalgae Synthesize Hydrocarbons from Long-Chain Fatty 1108 Acids via a Light-Dependent Pathway." Plant Physiology **171**(4): 2393-2405. Speelman, E. N., G. J. Reichart, J. W. de Leeuw, W. I. C. Rijpstra and J. S. Sinninghe Damsté (2009). 1109 1110 "Biomarker lipids of the freshwater fern Azolla and its fossil counterpart from the Eocene Arctic Ocean." Organic Geochemistry 40(5): 628-637. 1111 1112 Stamatakis, A. (2014). "RAxML version 8: a tool for phylogenetic analysis and post-analysis of large 1113 phylogenies." Bioinformatics 30(9): 1312-1313. Staunton, J. and K. J. Weissman (2001). "Polyketide biosynthesis: a millennium review." Natural 1114 1115 Product Reports 18(4): 380-416. 1116 Stoeck, T., D. Bass, M. Nebel, R. Christen, M. D. M. Jones, H. W. Breiner and T. A. Richards (2010). "Multiple marker parallel tag environmental DNA sequencing reveals a highly complex 1117 1118 eukaryotic community in marine anoxic water." Molecular Ecology **19**: 21-31. Tamura, K., J. Dudley, M. Nei and S. Kumar (2007). "MEGA4: Molecular evolutionary genetics analysis 1119 (MEGA) software version 4.0." Molecular Biology and Evolution 24(8): 1596-1599. 1120 1121 Teerawanichpan, P. and X. Qiu (2010). "Fatty Acyl-CoA Reductase and Wax Synthase from Euglena 1122 gracilis in the Biosynthesis of Medium-Chain Wax Esters." Lipids 45(3): 263-273. Teerawanichpan, P. and X. Qiu (2012). "Molecular and Functional Analysis of Three Fatty Acyl-CoA 1123 1124 Reductases with Distinct Substrate Specificities in Copepod Calanus finmarchicus." Marine 1125 Biotechnology 14(2): 227-236. 1126 Teerawanichpan, P., A. J. Robertson and X. A. Qiu (2010). "A fatty acyl-CoA reductase highly 1127 expressed in the head of honey bee (Apis mellifera) involves biosynthesis of a wide range of 1128 aliphatic fatty alcohols." Insect Biochemistry and Molecular Biology 40(9): 641-649. 1129 Versteegh, G. J. M., H. J. Bosch and J. W. De Leeuw (1997). "Potential palaeoenvironmental 1130 information of C-24 to C-36 mid-chain diols, keto-ols and mid-chain hydroxy fatty acids; a 1131 critical review." Organic Geochemistry 27(1-2): 1-13. Vieler, A., G. Wu, C.-H. Tsai, B. Bullard, A. J. Cornish, C. Harvey, I.-B. Reca, C. Thornburg, R. 1132 1133 Achawanantakun, C. J. Buehl, M. S. Campbell, D. Cavalier, K. L. Childs, T. J. Clark, R. 1134 Deshpande, E. Erickson, A. A. Ferguson, W. Handee, Q. Kong, X. Li, B. Liu, S. Lundback, C. 1135 Peng, R. L. Roston, Sanjaya, J. P. Simpson, A. TerBush, J. Warakanont, S. Zaeuner, E. M. Farre, 1136 E. L. Hegg, N. Jiang, M.-H. Kuo, Y. Lu, K. K. Niyogi, J. Ohlrogge, K. W. Osteryoung, Y. Shachar-Hill, B. B. Sears, Y. Sun, H. Takahashi, M. Yandell, S.-H. Shiu and C. Benning (2012). "Genome, 1137 1138 functional gene annotation, and nuclear transformation of the heterokont oleaginous alga 1139 Nannochloropsis oceanica CCMP1779." Plos Genetics 8(11).

- 1140 Volkman, J. K. (2018). Lipids of Geochemical Interest in Microalgae. <u>Hydrocarbons, Oils and Lipids:</u>
 1141 <u>Diversity, Origin, Chemistry and Fate</u>. H. Wilkes. Cham, Springer International Publishing: 1 1142 34.
- 1143 Volkman, J. K., S. M. Barrett and S. I. Blackburn (1999). "Eustigmatophyte microalgae are potential
 1144 sources of C-29 sterols, C-22-C-28 *n*-alcohols and C-28-C-32 *n*-alkyl diols in freshwater
 1145 environments." Organic Geochemistry **30**(5): 307-318.
- 1146 Volkman, J. K., S. M. Barrett, G. A. Dunstan and S. W. Jeffrey (1992). "C-30-C-32 Alkyl diols and
 1147 unsaturated alcohols in microalgae of the class Eustigmatophyceae." Organic Geochemistry
 1148 18(1): 131-138.
- Wang, D., K. Ning, J. Li, J. Hu, D. Han, H. Wang, X. Zeng, X. Jing, Q. Zhou, X. Su, X. Chang, A. Wang, W.
 Wang, J. Jia, L. Wei, Y. Xin, Y. Qiao, R. Huang, J. Chen, B. Han, K. Yoon, R. T. Hill, Y. Zohar, F.
 Chen, Q. Hu and J. Xu (2014). "*Nannochloropsis* Genomes Reveal Evolution of Microalgal
 Oleaginous Traits." Plos Genetics **10**(1).
- 1153 Wen, M., J. Au, F. Gniwotta and R. Jetter (2006). "Very-long-chain secondary alcohols and alkanediols 1154 in cuticular waxes of *Pisum sativum* leaves." Phytochemistry **67**(22): 2494-2502.
- Wen, M. and R. Jetter (2007). "Very-long-chain hydroxyaldehydes from the cuticular wax of *Taxus baccata* needles." Phytochemistry **68**(20): 2563-2569.
- Zhang, Z. and J. K. Volkman (2017). "Algaenan structure in the microalga *Nannochloropsis oculata* characterized from stepwise pyrolysis." Organic Geochemistry **104**: 1-7.
- Zhou, L., J. Chen, J. L. Xu, Y. Li, C. X. Zhou and X. J. Yan (2016). "Change of volatile components in six
 microalgae with different growth phases." Journal of the Science of Food and Agriculture
 97(3): 761-769.

eer perie

1163 TABLES

1164

Table 1. Combustion enthalpies of the main fatty acids present in *Nannochloropsis* species^a 1166

Compound	Reaction	Combustion e	nthalpy
		KJ.mol ⁻¹	KJ.g ⁻¹
C _{14:0} FA	$\mathrm{C}_{14:0} \ \mathrm{FA} + 20 \ \mathrm{O_2} \rightarrow 14 \ \mathrm{H_2O} + 14 \ \mathrm{CO_2}$	8 300	36.0
C _{16:1} FA	$\mathrm{C_{16:1}\ FA+22.5\ O_2} \rightarrow 15\ \mathrm{H_2O+16\ CO_2}$	9 400	37.0
C _{16:0}	$C_{16:0} \text{ FA} + 23 \text{ O}_2 \rightarrow 16 \text{ H}_2\text{O} + 16 \text{ CO}_2$	9 500	37.0
C _{18:1}	$\mathrm{C_{18:1}\ FA} + 25.5\ \mathrm{O_2} \rightarrow 17\ \mathrm{H_2O} + 18\ \mathrm{CO_2}$	11 160	39.5
C _{18:0}	$\mathrm{C_{18:0}\ FA+26\ O_2} \rightarrow 18\ \mathrm{H_2O+18\ CO_2}$	10 800	38.0
C _{20:5} FA	$C_{20:5} FA + 26.5 O_2 \rightarrow 15 H_2O + 20 CO_2$	11 400	38.0
C _{30:0} OH-FA	$\mathrm{C}_{30:0}\mathrm{OH}\text{-}\mathrm{FA}\text{+}43.5~\mathrm{O_2} \rightarrow 30~\mathrm{H_2O}\text{+}30~\mathrm{CO_2}$	18 000	39.0
C _{32:0} OH-FA	$C_{32:2} \text{ OH-FA} + 46.5 \text{ O}_2 \rightarrow 32 \text{ H}_2\text{O} + 32 \text{ CO}_2$	19 200	39.0

1167

1168

1169 ^a Source:

http://chemwiki.ucdavis.edu/Theoretical_Chemistry/Chemical_Bonding/General_Principles_of_Chemical_Bond
 ing/Bond_Energies

Review

	N. gaditana CCMP526	N. oceanica CCMP1779
Mapped genes	10,043	11,222
Up-regulated ^b	1,950	955
Highly up-regulated ^c	440	292
Down-regulated ^b	2,067	1,855
Highly down-regulated ^c	612	1.133

6,026

Table 2. Overview of the transcriptomic analyses of the strains analysed in the present study^a

1174

Not significant

¹¹⁷⁵ ^aGene expression of the dark treatment was compared with that of the dark/light controls.

^bA gene is considered up or down-regulated if its expression level changes by at least 2-fold

- in the dark treatment compared to the dark/light control and the change is associated with an
 FDR corrected p-value < 0.01.
- ¹¹⁷⁹ ^cNumber of down- and up-regulated genes exhibiting an expression change of at least 8 fold.
- 1180

8,412

1181 1182	Figure legend
1183	Figure 1. Growth curves depicting the cell abundance of <i>N. oceanica</i> CCMP1779 (A)
1184	and N. gaditana CCMP526 (B) during the experiments. The shaded areas correspond to the
1185	time interval during which the cultures were incubated under dark conditions. Cellular levels
1186	of LCAs, LCDs and LCHFAs (C-D) and major fatty acids (E-F) for <i>N. oceanica</i> CCMP1779
1187	(C, E) and <i>N. Gaditana</i> CCMP526 (D, F).
1188	
1189	Figure 2. Incorporation of ¹³ C-labelled sodium acetate in the biomass of <i>N. oceanica</i>
1190	CCMP1779 under dark/light (A, C), and dark (B, D) conditions. Growth curves (A, B)
1191	depicting the cell abundance of the culture during the experiment. The grey area denotes the
1192	time interval of dark incubation whereas arrows indicate the supply of ¹³ C-labelled sodium
1193	acetate. Atomic ¹³ C percentage (of measured ¹³ C+ ¹² C) (C, D) measured by GC-IR-MS for
1194	selected lipids at the end of the experiment. Error bars represent the standard deviation
1195	calculated from three replicate measurements on the lipid extract (note that some error bars
1196	are too small to be visible in the graph). The straight line indicates the natural atomic ^{13}C
1197	percentage.
1198	

Figure 3. Expression level of the genes potentially coding the enzymes catalysing the 1199 1200 different reactions involved in the biosynthesis of saturated C₁₄₋₁₈ fatty acids, LCHFAs, LCAs and LCDs as well as the formation of ester-bonds within the cell wall biopolymer. The 1201 horizontal axis indicates the log₂ fold change in gene expression, between the dark treatment 1202 and the light/dark control. Significant differences (p-value < 0.01) are indicated with an 1203 asterisk. The prefixes Naga and CCMP1779 denote transcripts from N. gaditana CCMP526 1204 1205 and N. oceanica CCMP1779, respectively. FAS, fatty acid synthase; Δ 0-ELO, Elongation enzymes; PKS, polyketide synthase; HAD, hydroxyacyl-acyl carrier protein-dehydratase; 1206

FAE, fatty acid elongation enzyme; WS-DGAT, bifunctional wax estersynthase/diacylglycerol acyltransferase.

1209

Figure 4. Putative pathways for the biosynthesis of LCDs and LCAs. For the biosynthetic steps in which the enzymes potentially involved have been predicted, the enzyme name is indicated next to the arrow, underlined. The lipids detected in *Nannochloropsis* spp. in this study or reported in previous studies are written in bold, whereas those that have not been observed are written in red.

1215

1216 Figure 5. Phylogenetic and functional analyses of *Nannochloropsis* genes potentially coding for polyketide synthases (PKS) and potentially involved in the formation of 3-OH-1217 intermediates. Phylogeny (A) of the deduced amino acid sequences from the ketoacyl ACP 1218 1219 synthase (KAS) domain of the PKSs. Sequences from different Nannochloropsis spp. were compared with a pre-existing alignment from Kohli et al. (2016) and the phylogenetic tree 1220 was constructed using the Maximum Likelihood (ML) algorithm by RAxML. Sequences from 1221 1222 N. oceanica CCMP1779 and N. gaditana B31 are coloured according to their expression levels in the transcriptome and numbers in brackets after the sequences denote the expression 1223 1224 levels of these genes in the transcriptome, expressed as log 2 fold changes. Node labels indicate the bootstrap support based on ML and neighbour joining (NJ) algorithms, 1225 respectively, support values < 50% are omitted. (B) Structural analyses of two putative PKS 1226 from N. oceanica and N. gaditana affiliated to Clade II. The domain structure of all putative 1227 PKSs from Nannochloropsis is shown in details in Supplemental Table S1. The domains 1228 likely to correspond to the catalytic sites for ketoacyl-acyl carrier protein (ACP)-synthase 1229 (KAS) and ketoacyl-ACP-reductase (KAR) are in red, and green, respectively. Trans-1230 membrane helices (TMH) are in grey, other domains in black. AT, acyl transferase; HAD, 1231

- 1232 hydroxyacyl dehydratase; NAD, Nicotinamide adenine dinucleotide-binding domain; ER,
- 1233 enoyl reductase; PPT, phosphopantetheine-binding domain; AMP, adenosine monophosphate-
- 1234 dependent synthetase/ligase.

for per period

1235 SUPPLEMENTAL MATERIAL

1236 1) Supplemental Information: Supplemental methods and further discussions on

1237 genes/enzymes unlikely to be involved in the biosynthetic processes

- 1238 2) 13 supplemental tables with legends
- 1239 3) 9 supplemental figures with legends
- 1240
- 1241
- 1242
- 1243
- 1244 1245
- __ ...
- 1246
- 1247

to per period

С

Α

Figure 3

Figure 3. Expression level of the genes potentially coding the enzymes catalysing the different reactions involved in the biosynthesis of saturated C14–18 fatty acids, LCHFAs, LCAs and LCDs as well as the formation of ester-bonds within the cell wall biopolymer. The horizontal axis indicates the log2 fold change in gene expression, between the dark treatment and the light/dark control. Significant differences (p-value < 0.01) are indicated with an asterisk. The prefixes Naga and CCMP1779 denote transcripts from N. gaditana CCMP526 and N. oceanica CCMP1779, respectively. FAS, fatty acid synthase; Δ0-ELO, Elongation enzymes; PKS, polyketide synthase; HAD, hydroxyacyl-acyl carrier protein-dehydratase; FAE, fatty acid elongation enzyme; WS-DGAT, bifunctional wax ester synthase/diacylglycerol acyltransferase.

209x297mm (300 x 300 DPI)

Figure 4

Figure 5. Phylogenetic and functional analyses of Nannochloropsis genes potentially coding for polyketide synthases (PKS) and potentially involved in the formation of 3-OH- intermediates. Phylogeny (A) of the deduced amino acid sequences from the ketoacyl ACP synthase (KAS) domain of the PKSs. Sequences from different Nannochloropsis spp. were compared with a pre-existing alignment from Kohli et al. (2016) and the phylogenetic tree was constructed using the Maximum Likelihood (ML) algorithm by RAxML. Sequences from N. oceanica CCMP1779 and N. gaditana B31 are coloured according to their expression levels in the transcriptome and numbers in brackets after the sequences denote the expression levels of these genes in the transcriptome, expressed as log 2 fold changes. Node labels indicate the bootstrap support based on ML and neighbour joining (NJ) algorithms, respectively, support values < 50% are omitted. (B) Structural analyses of two putative PKS from N. oceanica and N. gaditana affiliated to Clade II. The domain structure of all putative PKSs from Nannochloropsis is shown in details in Supplemental Table S1. The domains likely to correspond to the catalytic sites for ketoacyl-acyl carrier protein (ACP)-synthase (KAS) and ketoacyl-ACP-reductase (KAR) are in red, and green, respectively. Trans-membrane helices (TMH) are in grey, other domains in black. AT, acyl transferase; HAD, hydroxyacyl dehydratase; NAD, Nicotinamide adenine

dinucleotide-binding domain; ER, enoyl reductase; PPT, phosphopantetheine-binding domain; AMP, adenosine monophosphate-dependent synthetase/ligase.

238x289mm (300 x 300 DPI)