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Abstract 

Annual routines of migratory birds inferred from archival solar geolocation devices have 

never before been confirmed using GPS technologies. A female black-tailed godwit Limosa 

limosa limosa captured on the breeding grounds in The Netherlands in 2013 and recaptured in 

2014 was outfitted with both an Intigeo geolocator and an UvA-BiTS GPS-tracker. The GPS 

positions show that, after its breeding season in 2013, the godwit flew 2035 km nonstop from 

The Netherlands to southern Spain. It then spent the entire nonbreeding season in the southern 

part of the Iberian Peninsula before returning to The Netherlands the following spring, 

stopping for 7 days in the delta of the Ebro River in Spain, and again for a day in central 

Belgium. To compare the geolocation and GPS data, we analysed the geolocation data with 

two open-source software packages: one using a threshold method (GeoLight) and the other a 

template-fit approach (FLightR). Estimates using GeoLight, on average, deviated from the 

individual’s true position by 495.5 ± 1031.2 km (great circle distance with equinoxes 

excluded), while FLightR estimates deviated by 43.3 ± 51.5 km (great circle distance with 

equinoxes included). Arrival and departure schedules estimated by FLightR were within 12 

hours of those determined by the GPS tracker, whereas GeoLight’s estimates were less 

precise. For the analysed track, FLightR represents an improvement over GeoLight; if true for 

other species and conditions, FLightR will hopefully help establish more precise and accurate 

uses of geolocation data in tracking studies. To aid future improvements in the analysis of 

solar geolocation data, we also provide the GPS and geolocation data files together with our R 

scripts as supplementary material.  
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Introduction 

Technological advances in bird tracking during the last decade have generated many new 

insights into the migration patterns and geographical distribution of long-distance migratory 

birds (Gill et al. 2009, Stutchbury et al. 2009, Conklin et al. 2010, Tottrup et al. 2012). 

Archival solar geolocation devices (hereafter, “geolocators”) are currently the lightest and 

cheapest of these tracking methods. The lightness of geolocators (currently ~0.32 g) allows 

for the study of annual routines in species for which other tracking devices are too heavy, 

while their relatively low price enables multi-individual multi-year studies (Senner et al. 

2014, McKinnon et al. 2014). These devices do not estimate and log positions, however, but 

only periodically measure and store light irradiance levels, which leaves the calculation of 

positions to researchers. 

Despite the widespread use of geolocators, the methods developed for the estimation 

of positions using geolocation-generated data have rarely been ground-truthed; to the best of 

our knowledge, this has never been done for a migratory bird. The majority of the existing 

efforts to assess the precision of geolocators placed on birds have come from studies of 

penguins and albatrosses (Phillips et al. 2004, Shaffer et al. 2005), which found that the 

average bias of calculated locations was 186 ± 114 km. Despite validating the utility of 

geolocators for tracking birds, these studies had a number of significant drawbacks: position 

estimation was done using proprietary software, they included a number of undocumented 

steps, and the original data are not readily available for reanalysis with currently available 

software. More recent studies have attempted to improve upon these early efforts by 

standardizing the analysis process. For instance, Fudickar et al. (2012) placed geolocators on 

non-migratory European blackbirds, Turdus merula in central Europe and estimated the 

average latitudinal and longitudinal bias of positions during the wintering period at 132 ± 75 

km and 50 ± 34 km, respectively. Lisovski et al. (2012a) additionally compared biases among 
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different species during the breeding season, but reported errors in time, not space. While 

these two studies are transparent, they still rely on proprietary software and do not make the 

original data available. 

Recently a number of research groups have worked toward the development of open-

source software for the analysis of geolocation data in the R computing environment (R Core 

Team 2015). The first packages to become available — trackit (Nielsen and Sibert 2007) and 

tripEstimation (Sumner et al. 2009) — were both developed to study marine animals, and the 

latter has been used to trackbirds as well (Seavy et al. 2012, Contina et al. 2013). More 

recently, Lisovski et al. (2012b) developed the GeoLight package, which is functionally 

similar to the BirdTracker/Locator program within the BASTrak suite, which was a 

proprietary software developed by the British Antarctic Survey. GeoLight is a general 

program useful for geolocators deployed across avian taxa, and currently the most popular 

open-source software in the field. Released in 2015 the latest in the line of open-source 

software is another bird-oriented package — FLightR (Rakhimberdiev et al. 2015). There are 

therefore at least three packages currently available for the analysis of solar geolocation data. 

As tripEstimation is in the process of being replaced (S. Lisovski, pers. comm.), we focus 

here on GeoLight and FLightR. 

Despite the newness of the field and the seeming simplicity of geolocation data, both 

GeoLight and FlightR are complex programs. They also differ considerably from each other 

in a number of important respects (see Rakhimberdiev et al. 2015 for a more complete 

review): for example, GeoLight uses a more traditional, ‘threshold method’ (Hill and Braun 

2001), while FLightR uses a ‘template fit’ (Ekstrom 2004, 2007). The threshold method 

estimates positions from a single point per twilight period at which the sun irradiance reaches 

a specified threshold, whereas our implementation of the template fit method uses the slope of 

the linear regression of the log of ‘measured’ versus the log of ‘expected’ light irradiance 
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during each twilight period. The template fit is therefore less sensitive to variable shading 

during twilight; i.e., if an individual animal randomly obscures its geolocator during a twilight 

period, even if just for a brief time, the threshold method might falsely recognize this as either 

a sunrise or sunset and inaccurately estimate its geographic position. The template fit method 

does not suffer from such limitations, as it focuses on the pattern of changes in light levels 

over time and not on their absolute minute-by-minute values. 

A second important distinction between the two packages is that FLightR optimizes a 

hidden Markov model over the entire period during which an individual was tracked. This 

means two things: First, that FLightR weighs all of the data generated by an individual 

together to determine the most probable location for an individual on a given day and, second, 

that it is possible to determine whether or not an individual changed locations between 

consecutive twilight periods. In contrast, GeoLight calculates each position from two 

neighbouring twilights, which is only accurate if an individual is assumed to have remained 

stationary during the intervening period. As a result, both packages are able to provide daily 

estimates of an individual’s position, but only FLightR is able to accompany those positions 

with credible intervals, which denote the amount of uncertainty surrounding each location 

even during migration. 

 Although each new methodology developed has seemingly represented an 

improvement over previous methodologies, no formal tests have been undertaken to measure 

these improvements. In an effort to generate a dataset that will allow for the direct testing of 

both current and future methodologies, we outfitted an individual female black-tailed godwit, 

Limosa limosa limosa (hereafter, “godwit”) breeding in The Netherlands with two tracking 

devices — a high-precision GPS tracker and a geolocator. These two tags enable us to 

compare the individual’s geolocation-generated positions with its “true” positions throughout 

its annual cycle. Our use of a migratory bird is particularly important, as migration, especially 
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when it overlaps with an equinox, has represented the weakest component of previous 

analytical methodologies (Lisovski et al. 2012b). Black-tailed godwits make long-distance 

migrations during both the spring and fall equinoxes (Hooijmeijer et al. 2013), making them 

appropriate for the evaluation of any method analysing geolocation data. 

Here we present a comparison between the positions recorded by a GPS tracker and an 

analysis of light level data undertaken with FLightR and GeoLight. We examine whether it is 

possible to make a spatial and temporal inference of the positions of a migratory animal with 

current open-source software and compare the relative precision of the two packages. We 

hope that our analyses and simultaneous publication of the underlying tracking data will 

provide a baseline for the improvement of future studies making use of geolocation data. 

 

Methods 

Study Species 

The continental subspecies of the black-tailed godwit breeds predominantly in The 

Netherlands (Thorup 2004) and spends the nonbreeding season either in West Africa — 

especially Guinea Bissau and Senegal — or on the Iberian Peninsula, along the southern 

coasts of Spain and Portugal (Hooijmeijer et al. 2013). Southward migration occurs from late 

May to late September, while northward migration takes place from early December to early 

May. Godwits spending the nonbreeding season in West Africa typically migrate northward in 

two steps, first flying from West Africa to the Iberian Peninsula, where they join the rest of 

the population and stage for as long as 90 d (Lourenço et al. 2010, Masero et al. 2011), before 

moving on to The Netherlands as early as the beginning of March (Senner et al. 2015). 

Between the Iberian Peninsula and The Netherlands, some individuals may make as many as 

four stops, lasting from 1 – 7 d. Arrival in The Netherlands ranges from early March through 

the beginning of May (Senner et al. 2015). 
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Field Efforts 

As a part of a larger, ongoing effort to monitor godwit migration, we placed Intigeo C65 1.0 g 

geolocators (produced by Migrate Technology Ltd, UK) on 182 adult godwits from 2009 – 

2015 and high-precision 7.2 g UvA-BiTS GPS trackers (The University of Amsterdam; 

Bouten et al. 2013) on 21 individuals in 2013. Five females were outfitted with both a 

geolocator and tracker; one of these returned and was recaptured (B3RLLL). On all 

individuals, geolocators were attached to a flag placed on the tibia along with two other rings, 

while the GPS tracker was attached using a leg-loop harness made of 2 mm nylon rope (see 

Senner et al. 2015 for more details). Combined, the rings, geolocator, harness, and GPS 

tracker weighed ~12 g, representing ~3.6% of an individual’s mass at the time of initial 

capture. B3RLLL was first captured on 27 May 2013 while incubating eggs in the Haanmeer 

Polder (52.9226º N, 5.4336º E) and recaptured the following year on 11 Jun 2014 while 

incubating eggs in the neighbouring Gellehuister Polder (52.9297º N, 5.4278º E). In both 

years, B3RLLL successfully hatched her eggs, but the chicks did not survive until fledging 

(N.R. Senner unpubl. data). 

GPS Data 

UvA-BiTS GPS trackers provide a flexible, accurate, and relatively precise system with 

which to track the movements of migratory animals (Bouten et al. 2013). Locations are 

typically accurate to within ± 5 m of an individual’s true position. Once deployed, the device 

can transmit previously collected data or receive new settings when they are within ~1 km of 

a base station or related receiving device. However, once a device is out of range of a base 

station, it is impossible to either download data or upload new settings, and the individual’s 

locations are stored until the tracker is again within range of a receiving device. We therefore 

employed different data collection settings for different portions of the godwit annual cycle. 

During the 2013 breeding season, when individuals were within range of our base station, 
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trackers recorded an individual’s position once every 5-10 min depending on its battery 

charge; during the rest of the year, trackers collected position data once every 15-30 min 

depending on charge. Because they are charged by solar panels, UvA-BiTS trackers can 

occasionally experience gaps in the data resulting from poor weather or feather-shading. The 

data of B3RLLL, however, exhibited no such gaps. Complete GPS data are available as 

Supplementary Materials A1 (also available at 

https://raw.githubusercontent.com/eldarrak/FLightR/master/examples/Black-

Tailed_Godwit_JAB_example/A1_GPS_positions.csv) and the raw geolocator “.lux” file as 

A2 (also available at 

https://raw.githubusercontent.com/eldarrak/FLightR/master/examples/Black-

Tailed_Godwit_JAB_example/A2_raw_data.lux ). 

Analysis 

The first step in our analysis of the geolocation data was to detect and truth the twilights. This 

step was done in the BAStag R package (Wotherspoon et al. 2013). We chose a light 

threshold value of 1.5 and used this value to automatically demarcate all sunrises and sunsets. 

This step was followed by a visual inspection of each individual sunrise and sunset identified 

by BAStag. Twilight periods exhibiting non-random changes in shading were excluded. For 

instance, when the geolocator was strongly shaded during the beginning of a twilight period 

and then quickly transitioned to  full light at the end of the period or vice versa. [The rule of 

thumb is to exclude twilights that have a strongly biased slope of light over time.] Following 

the completion of the visual assessment of each twilight period, the annotated light data were 

input into both GeoLight (ver. 2.01) and FLightR (ver. 0.3.6). The BAStag output is available 

as Supplementary Materials file A3 (also available at 

https://raw.githubusercontent.com/eldarrak/FLightR/master/examples/Black-

Tailed_Godwit_JAB_example/A3_TAGS_format.csv) and the R script explaining the 
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workflow in the BAStag package as Supplementary Materials file A4 (also available at 

https://github.com/eldarrak/FLightR/blob/master/examples/Black-

Tailed_Godwit_JAB_example/A4_BAStag_routine.Rmd). 

 For analyses with both GeoLight and FLightR, we used the period from tag attachment 

on 16 June to 5 July 2013 as a calibration period, as B3RLLL was known to be near her 

breeding territory in southwest Friesland throughout this time (< 20 km from 52.93ºN, 

5.43ºE). An additional calibration period from 5 to 15 of May 2014 was used for FLightR, 

when B3RLLL was again on the breeding grounds. Using this calibration period, GeoLight 

calculated a threshold sun angle of -6.115; this value was then used in all subsequent analyses 

with the program. Within FLightR, all analyses were run without land or behavioural masks, 

but positions were spatially constrained to the areas between 14ºW – 13ºE and 30 – 57ºN 

because of their biological plausibility (Hooijmeijer et al. 2013, Senner et al. 2015). We also 

limited the maximum flight distance between twilights to 1500 km. Finally, we optimised the 

FLightR model with 1 million particles and without an automated outlier exclusion. The 

detailed script for the GeoLight analysis can be found in Supplementary Materials file A5 

(also available at https://github.com/eldarrak/FLightR/blob/master/examples/Black-

Tailed_Godwit_JAB_example/A5_GeoLight_analysis.Rmd) and for FLightR in A6 

(https://github.com/eldarrak/FLightR/blob/master/examples/Black-

Tailed_Godwit_JAB_example/A6_FLightR_analysis.Rmd). 

 To compare the GPS track with GeoLight- and FLightR-based reconstructions we 

linearly interpolated GPS positions to the time of midday (midnight) for GeoLight and 

twilight time for FLightR. We then separately calculated the deviation and bias of estimated 

positions. We calculated the deviation by taking the mean great circle distance between each 

pair of estimated geolocation positions and GPS locations (Phillips et al. 2004). Monthly 

biases of estimates were calculated separately for latitude and longitude as the mean and 
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standard deviation of the shift (in degrees) of the estimated positions from the corresponding 

GPS locations and then converted to kilometres (based on Fudickar et al. 2012). As solar 

geolocation is often used to determine an individual’s wintering grounds we also estimated 

the mean and median positions for the entire wintering period. 

In addition to estimating an individual’s position, we also estimated migratory arrival 

and departure dates throughout B3RLLL’s annual cycle. In FLightR, tests of such temporal 

and spatial hypotheses are simple, as FLightR generates each position’s posterior probability 

as a distribution of 1×106 particles over a spatial grid. We estimated median arrival and 

departure dates for each site by determining the date by which half of the particles (5×105) 

crossed an arbitrary specified spatial boundary (for The Netherlands, we chose the boundary 

of 2° East and for Spain, 5° West). In GeoLight we used the changeLight and then 

mergeSites functions to estimate B3RLLL’s migratory schedule. changeLight works 

independently from those GeoLight functions estimating an individual’s position by searching 

for dates on which there were likely changes in the timing of either dawn or dusk (see 

Lisovski et al. 2012b for details and Supplementary Materials file A5 for the parameters used 

in the current analysis); mergeSites is a new GeoLight function that combines an 

individual’s estimated positions with schedule. 

 

Results 

Migratory Movements 

B3RLLL was captured on 27 May 2013 and her nest hatched on 3 June. She subsequently 

stayed within 1 km of her nest (likely indicating that her chicks were alive) until 12 June. 

From 12 June until 9 July, B3RLLL remained within 20 km of her nest; from 9 July until 25 

August, she moved around the province of Friesland, never flying more than 30 km at any one 

time. On 25 August at 16:30 h local time, B3RLLL flew non-stop for 30.75 h and 2035 km to 
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her nonbreeding grounds in Spain. Having arrived in southern Spain, B3RLLL then spent the 

entire nonbreeding season (26 August – 21 April) along the southern coast of Portugal and 

Spain. During that time, she ranged between Sanlúcar de Barrameda, Spain, in the east 

(36.98ºN, 6.26ºW), and Faro, Portugal in the west (37.06ºN, 7.75ºW), with the majority of the 

period spent near Ayamonte, Spain (37.22ºN, 7.43ºW). On 21 April 2014 at around 20:45 h 

local time, she began migrating northward. After an initial flight of 815 km, on 22 Apr at 

around 10:00 h in the morning, she stopped for 7 d in the Ebro River Delta of northeast Spain. 

From there on 29 Apr 19:30 h local time she moved 1144 km northwards to central Belgium 

(50.95ºN, 2.83ºE), where she stopped over for 1 d before arriving at her breeding grounds in 

The Netherlands on 5 May. She was recaptured on 11 Jun while incubating a nest in the 

Gellehuister Polder (52.93N, 5.43E). 

Comparison of Software Packages 

Both packages successfully reconstructed the general shape of the annual routine of B3RLLL 

(Figs. 1, 2). Positions estimated by GeoLight had an average deviation of 495.5 ± 1031.2 km 

(SD, great circle distance, excluding equinoxes) from those measured by the GPS tracker, 

while positions estimated by FLightR had an average deviation of 43.3 ± 51.5 km (including 

equinoxes; Table 1). Both packages estimated longitude better than latitude, with maximum 

error occurring around the equinoxes and during active migration. GeoLight’s longitudinal 

and latitudinal precision was -8.69 ± 28.13 km and -237.59 ± 1116.37 km respectively, while 

for FLightR it was -8.01 ± 168.3 and -18.84 ± 57.34 km. The location of B3RLLL’s wintering 

site was estimated well, with both GeoLight and FLightR (Table 2). GeoLight’s 

mergeSites function finds stationary periods and estimates the best possible location 

during these periods. This function greatly improved GeoLight’s estimates of wintering site 

location (Table 2). Additionally, because FLightR provides spatially explicit credible 

intervals, we were able to estimate the match between actual GPS positions and the 
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corresponding credible intervals. For longitude, 76.9% of the GPS points were within the 95% 

modelled credible intervals and 67.6% within 50%. For latitude, 92.3% of the GPS points 

were within 95% CI and 78% within 50% CI. 

Comparison of B3RLLL’s real migration schedule with its estimated schedule from 

geolocation data also validated the utility of both packages for this type of analysis. Both 

GeoLight (with the mergeSites function) and FLightR correctly distinguished among 

breeding, wintering, and stopover sites. GeoLight then estimated the departure from the 

Netherlands 4 d earlier, arrival to Spain 1 d earlier, departure from Spain 2 d earlier and 

arrival to the Netherlands 1 d later than the real events. The schedules estimated with 

FLightR, on the other hand, were precise to within a few hours (Fig. 3). 

 

Discussion 

We provide here the first direct verification of two open-source software packages recently 

developed for the analysis of geolocation data using data detailing the annual routine of an 

individual black-tailed godwit carrying both a geolocator and a high-precision GPS tracker. 

Both software packages accurately estimated the majority of the individual’s migratory 

schedule. Our results using GeoLight (Table 1) have similar biases to those of Fudickar et al. 

(2012) for geolocators placed on non-migratory birds. However, the FLightR package 

outperformed GeoLight and provided more accurate results. FLightR thus represents a step 

forward in analyses of geolocation data on migratory animals. We also make both the GPS 

and geolocator data publically available, providing a baseline against which future 

developments in the analysis of geolocation data can be measured. 

Geolocator Precision 
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Although both GeoLight and FlightR represent a significant improvement over previous 

programs used to analyse geolocation data, they nonetheless remain relatively imprecise 

estimators of a migratory organism’s true position. This is especially true with respect to 

latitudinal position estimates: on average GeoLight estimates differed by almost 500 km from 

GPS positions, while FLightR estimates were off by 43 km. In the periods surrounding the 

equinoxes, these inaccuracies were further exacerbated. As such, GeoLight does not even 

calculate latitudinal positions for approximately 10 days before and after each equinox (the 

length of these periods depends upon the calibration angle used), while FLightR positions had 

their highest levels of uncertainty during this period. Longitudinal position estimates are more 

accurate in both GeoLight and FLightR, but especially FLightR. Nonetheless, some short-

distance movements are, at this point, simply indistinguishable using geolocation data. For 

instance, B3RLLL flew 150 km south of The Netherlands for one day during the breeding 

season and neither GeoLight nor FLightR identified this movement. Although these 

movements were mainly along an east-west axis, which should be more readily identifiable 

using geolocation data, the distances travelled were within the uncertainty range for both 

packages. Estimation of B3RLLL’s wintering site, however, worked well (Table 2). This was 

likely a result of the fact that B3RLLL remained at a single location for several months. If 

B3RLLL were to have moved more frequently during this period, we would expect the 

precision of the location estimates to have been lower. 

 GeoLight and FLightR are repeatable and transparent, but they are still somewhat 

subjective. For example, we argue that a manual check of every twilight period, followed by 

the exclusion of those periods with a strong change in shading during the twilight period, is 

highly recommended for every dataset. This step is inherently subjective. Nonetheless, all of 

our exclusions are recorded in the output, and therefore remain available for reassessment. We 

hope that it will be possible to automate this step in the future. 
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 One of the strengths of geolocation data, however, is its ability to identify the timing 

of movements within an individual’s annual cycle. While such inferences have been drawn 

before (e.g., Senner et al. 2014), FLightR refines and improves the transparency and accuracy 

of these efforts. FLightR now provides the ability to assign departure probabilities to each day 

of the year as well as an estimate of the direction flown at take-off and the actual distance 

covered between twilight periods. In the case of B3RLLL, FLightR accurately identified the 

probable timing of arrivals and departures as having taken place within a few hours of the 

actual events (Fig. 3). GeoLight can generally also infer the migration schedules. For the 

current track GeoLight identified schedules with a precision of ± a few days (Fig. 3).  

 

The Future of Geolocation Analysis 

The key to a successful research program is a study design that maximizes the strengths and 

minimizes the weaknesses of its data. In the case of geolocation data, this means it is 

necessary to decide beforehand on the importance of latitudinal information to the questions 

being asked. For instance, determining the locations used by a species that migrates in a 

straight line along a north-south axis, and especially along a north-south coastline, may be 

difficult (e.g., western sandpipers, Calidris mauri; Warnock and Bishop 1998). On the other 

hand, for species such as godwits — for which each site used throughout the annual cycle 

differs not only in latitude, but also longitude — determining an individual’s position on a 

given day can be done with a relatively high degree of confidence. More generally, studies 

focused on the timing of movements, and not the geographic location of individuals, will have 

the strongest power of inference using geolocation data. 

The field of geolocation is still in active development, and this means that currently 

existing methods are likely to be improved upon and new, more precise, methods will appear 
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in the near future. Therefore we strongly recommend making the underlying geolocation data 

associated with any publication available online. After subsequent reanalysis, the conclusions 

made in the original articles are not likely to change, but more biological details may be 

inferred from the same data using the new analytical techniques. Geolocation data may 

currently be stored for free at Movebank (www.movebank.org, Kranstauber et al. 2011), but 

other less specialized archiving repositories are also available. 

 

Conclusions 

Despite the popularity of geolocators for the study of animal movement, their precision has 

rarely been calibrated on live animals, and never before for a migratory bird (Fudickar et al. 

2012, Lisovski et al. 2012b). As a result, there remain significant concerns about the precision 

and accuracy of geolocation data, potentially calling into question the validity of recent 

studies. Our findings here show that, with the aid of the recently developed open-source 

software packages GeoLight and FLightR, it is possible to precisely monitor the timing of 

migratory movements and, with an increasing level of certainty, geographic locations of 

migratory animals throughout their annual cycles. While we realize that approaches to the 

analysis of geolocation data other than those illustrated here do exist (e.g., trackit and 

TripEstimation), we believe that our analysis is at the forefront of the field and represents 

what is currently possible. Nonetheless, we welcome reanalysis of our data and hope that our 

dataset will help to develop and validate new approaches for analysing geolocation data that 

will shift geolocation studies towards more quantitative and transparent frontiers. 

 

 

http://www.movebank.org/


16 
 

Acknowledgements 

We thank all the participants of NCEAS Project 12663 ‘Establishing an open-source animal-

tracking analysis platform for archival geolocators,’ but especially, Eli Bridge, Nathaniel 

Seavy and Michael Sumner. Simeon Lisovski contributed to package development with 

constructive critiques and kindly helped to implement the GeoLight 2.01 workflow. The 

manuscript benefitted from constructive comments by Felix Liechti and two anonymous 

reviewers. ER and TP were supported by a grant to TP from Waddenfonds (‘Metawad’, 

WF209925); NRS and MAV were supported by a grant to TP from The Netherlands 

Organisation for Scientific Research (ALW-TOP grant, ‘Shorebirds in space,’ 854.11.004); 

and ER and DWW were supported by NSF grants to DW (DBI-0963969 and IDR-1014891). 

UvA-BiTS tracking studies are facilitated by infrastructures for e-Science, developed with 

support from the NLeSC (http://www.esciencecenter.com/), and carried out on the Dutch 

national e-infrastructure with support of the SURF Foundation. 

 

References 

Bouten, W., Baaij, E. W., Shamoun-Baranes, J. and Camphuysen, K. C. J. 2013. A flexible 

GPS tracking system for studying bird behaviour at multiple scales. - J. Ornithol. 154: 

571–580. 

Conklin, J. R., Battley, P. F., Potter, M. A. and Fox, J. W. 2010. Breeding latitude drives 

individual schedules in a trans-hemispheric migrant bird. - Nat. Commun. 1: 1–6. 

Contina, A., Bridge, E. S., Seavy, N. E., Duckles, J. M. and Kelly, J. F. 2013. Using 

geologgers to investigate bimodal isotope patterns in painted buntings (Passerina 

ciris). - Auk 130: 265–272. 

Ekstrom, P. A. 2004. An advance in geolocation by light. - Mem. Natl. Insitute Polar Res. 

Spec. Issue 58: 210–226. 

Ekstrom, P. 2007. Error measures for template-fit geolocation based on light. - Deep Sea Res. 

Part II Top. Stud. Oceanogr. 54: 392–403. 

Fudickar, A. M., Wikelski, M. and Partecke, J. 2012. Tracking migratory songbirds: accuracy 

of light-level loggers (geolocators) in forest habitats. - Methods Ecol. Evol. 3: 47–52. 



17 
 

Gill, R. E., Tibbitts, T. L., Douglas, D. C., Handel, C. M., Mulcahy, D. M., Gottschalck, J. C., 

Warnock, N., McCaffery, B. J., Battley, P. F. and Piersma, T. 2009. Extreme 

endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather 

than barrier? - Proc. R. Soc. B 276: 447–457. 

Hill, C. and Braun, M. J. 2001. Geolocation by light level – the next step: latitude. - In: Sibert, 

J. R. and Nielsen, J. (eds), Electronic Tagging and Tracking in Marine Fisheries. 

Kluwer Academic Publishers, pp. 315–330. 

Hooijmeijer, J. C. E. W., Senner, N. R., Tibbitts, T. L., Gill, R. E., Douglas, D. C., Bruinzeel, 

L. W., Wymenga, E. and Piersma, T. 2013. Post-breeding migration of Dutch-

breeding black-tailed godwits: timing, routes, use of stopovers, and nonbreeding 

destinations. - Ardea 101: 141–152. 

Kranstauber, B., Cameron, A., Weinzerl, R., Fountain, T., Tilak, S., Wikelski, M. and Kays, 

R. 2011. The Movebank data model for animal tracking. - Environ. Model. Softw. 26: 

834–835. 

Lisovski, S., Hewson, C. M., Klaassen, R. H. G., Korner-Nievergelt, F., Kristensen, M. W. 

and Hahn, S. 2012a. Geolocation by light: accuracy and precision affected by 

environmental factors. - Methods Ecol. Evol. 3: 603–612. 

Lisovski, S., Hahn, S. and Hodgson, D. 2012b. GeoLight - processing and analysing light-

based geolocator data in R. - Methods Ecol. Evol. 3: 1055–1059. 

Lourenço, P. M., Kentie, R., Schroeder, J., Alves, J. A., Groen, N. M., Hooijmeijer, J. C. E. 

W. and Piersma, T. 2010. Phenology, stopover dynamics and population size of 

migrating black-tailed godwits Limosa limosa limosa in Portuguese rice plantations. - 

Ardea 98: 35–42. 

Masero, J. A., Santiago-Quesada, F., Sánchez-Guzmán, J. M., Villegas, A., Abad-Gómez, J. 

M., Lopes, R. J., Encarnação, V., Corbacho, C. and Morán, R. 2011. Long lengths of 

stay, large numbers, and trends of the black-tailed godwit Limosa limosa in rice fields 

during spring migration. - Bird Conserv. Int. 21: 12–24. 

McKinnon, E. A., Fraser, K. C., Stanley, C. Q. and Stutchbury, B. J. M. 2014. Tracking from 

the tropics reveals behaviour of juvenile songbirds on their first spring migration. - 

PLoS ONE 9: e105605. 

Nielsen, A. and Sibert, J. R. 2007. State-space model for light-based tracking of marine 

animals. - Can. J. Fish. Aquat. Sci. 64: 1055–1068. 

Phillips, R., Silk, J., Croxall, J., Afanasyev, V. and Briggs, D. 2004. Accuracy of geolocation 

estimates for flying seabirds. - Mar. Ecol. Prog. Ser. 266: 265–272. 

Rakhimberdiev, E., Winkler, D. W., Bridge, E., Seavy, N. E., Sheldon, D., Piersma, T. and 

Saveliev, A. 2015. A hidden Markov model for reconstructing animal paths from solar 

geolocation loggers using templates for light intensity. - Mov. Ecol. 3: 25 (15 pp). 

R Core Team 2015. R: A Language and Environment for Statistical Computing. - R 

Foundation for Statistical Computing. 



18 
 

Seavy, N. E., Humple, D. L., Cormier, R. L. and Gardali, T. 2012. Establishing the breeding 

provenance of a temperate-wintering North American passerine, the golden-crowned 

sparrow, using light-level geolocation. - PLoS ONE 7: e34886. 

Senner, N. R., Hochachka, W. M., Fox, J. W. and Afanasyev, V. 2014. An exception to the 

rule: carry-over effects do not accumulate in a long-distance migratory bird. - PLoS 

ONE 9: e86588. 

Senner, N. R., Verhoeven, M. A., Abad-Gómez, J. M., Gutiérrez, J. S., Hooijmeijer, J. C. E. 

W., Kentie, R., Masero, J. A., Tibbitts, T. L. and Piersma, T. 2015. When Siberia 

came to the Netherlands: the response of continental black-tailed godwits to a rare 

spring weather event. - J. Anim. Ecol. 84: 1164–1176. 

Shaffer, S. A., Tremblay, Y., Awkerman, J. A., Henry, R. W., Teo, S. L. H., Anderson, D. J., 

Croll, D. A., Block, B. A. and Costa, D. P. 2005. Comparison of light- and SST-based 

geolocation with satellite telemetry in free-ranging albatrosses. - Mar. Biol. 147: 833–

843. 

Stutchbury, B. J. M., Tarof, S. A., Done, T., Gow, E., Kramer, P. M., Tautin, J., Fox, J. W. 

and Afanasyev, V. 2009. Tracking long-distance songbird migration by using 

geolocators. - Science 323: 896–896. 

Sumner, M. D., Wotherspoon, S. J. and Hindell, M. A. 2009. Bayesian estimation of animal 

novement from archival and satellite tags. - PLoS ONE 4: e7324. 

Thorup, O. 2004. Breeding waders in Europe 2000. - Int. Wader Stud. 14. 

Tottrup, A. P., Klaassen, R. H. G., Strandberg, R., Thorup, K., Kristensen, M. W., Jorgensen, 

P. S., Fox, J., Afanasyev, V., Rahbek, C. and Alerstam, T. 2012. The annual cycle of a 

trans-equatorial Eurasian-African passerine migrant: different spatio-temporal 

strategies for autumn and spring migration. - Proc. R. Soc. B 279: 1008–1016. 

Warnock, N. and Bishop, M. A. 1998. Spring stopover ecology of migrant western 

sandpipers. - Condor 100: 456–467. 

Wotherspoon, S., Sumner, M. and Lisovski, S. 2013. BAStag: Basic data processing for light 

based geolocation archival tags. 

 

Supplementary material (Appendix JAV-00891 at <www.oikosoffice.lu.se/appendix>). 

Appendix 1–6.  



19 
 

Table 1. Average monthly biases and standard deviations (in km) estimated by GeoLight and 

FLightR for a black-tailed godwit carrying both an archival geolocation tracking device and 

high-precision GPS tracker. Calibration was done using twilights from the period 16 June – 5 

Jul 2013, and for the FLightR also from 5 to 15 May 2014. 

M
o

n
th

 

Longitude Latitude 

Notes 

Truth 

GeoLight FLightR 

Truth 

GeoLight FLightR 

Mean 

bias 

SD 

Mean 

bias 

SD 

Mean 

bias 

SD 

Mean 

bias 

SD 

1 -7.4 -15 78.8 -16.7 24 37.2 -23.8 295.5 -31.7 74.8  

2 -7.4 -19.4 99 7.5 2.1 37.2 95.8 538.4 -15.1 29.1  

3 -7.4 7.9 60.6 4.9 1.7 37.2 -1282.3 2318.7 12.5 3.7 Equinox 

4 -5.2 -20.1 90.3 13.5 30.6 38.2 -197.1 398 -10.8 56.6 Migration 

5 4.9 -17.7 69 7.6 53.6 52.5 -98.9 171.3 -42.7 84.6 Migration 

6 5.4 -5.7 70.3 -13.9 2.7 52.9 -59.2 95.4 18.7 2.5  

7 5.4 -0.5 97.2 -13.4 6.6 53 47.4 130.9 4.5 11.3  

8 3.9 -5.4 107.7 -17.3 37.1 50.6 -47.3 175.3 -32.5 70.3 Migration 

9 -7.4 -3.9 61.1 6.8 3.8 37.2 -844.3 2400.4 -9.6 10.3 Equinox 

10 -7.4 -20.9 54.2 5.8 2.4 37.2 -248.6 1162.9 -12.6 5.7  

11 -7.4 -10.4 58.6 -29.6 35.5 37.2 -128.9 214.2 -102 88.4  

12 -7.4 0.5 60.3 -42.9 0.8 37.2 -101.5 208.8 3.3 4.6  

1Note that GeoLight excludes unreliable values close to equinox. 
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Table 2. Bias in wintering location estimation, means and medians of estimated locations and 

GPS points for a black-tailed godwit carrying both an archival geolocation tracking device 

and high-precision GPS tracker over the period from 27 Aug 2013 to 20 Apr 2014. 

 GeoLight FLightR 

Mean of Latitude, km 332.49 27.37 

Median of Latitude, km 103.67 15.16 

Mean of Longitude, km 10.12 9.3 

Median of Longitude, km 6.53 4.27 

Mean of Latitude with 

mergeSites(), km 

49.75  

Mean of Longitude with 

mergeSites(), km 

6.77  
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Figure 1. The track of a black-tailed godwit as estimated from 5-min fixing interval solar 

geolocation data by GeoLight (left panel) and FlightR (right panel) in comparison with GPS 

positions (red line). Estimated midday and midnight positions for GeoLight and medians of 

twilight positions for FLightR with the corresponding GPS positions are coloured by month 

of a year. Note that no spatial or behavioural masks were used in FLightR, so positions were 

allowed to occur anywhere in Europe and Northern Africa. 
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Figure 2. Longitudes (upper panels) and latitudes (lower panels) estimated by GeoLight (left 

panels) and FLightR (right panels) in comparison with GPS positions (red lines) of a track of 

a black-tailed godwit as estimated from 5-min fixing interval solar geolocation data. For 

FLightR the medians of twilight positions are shown with accompanying quartile ranges and 

95% credible intervals. Note absence of the latitudinal positions from GeoLight during the 

equinoxes (shown by grey vertical lines). 
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Figure 3. Departure and arrival timing of a black-tailed godwit as estimated by GeoLight 

(blue crosses) and FLightR (medians, quartiles and 95% credible intervals are shown with 

lines, boxes and whiskers respectively) in comparison with GPS-measured departure and 

arrival timing (red lines). 
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