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ABSTRACT

The purpose of this paper is to resolve a confusion that may arise from two quite distinct definitions of 
“Doppler shifts": both are used in the oceanographic literature but they are sometimes conflated. One refers 
to the difference in frequencies measured by two observers, one at a fixed position and one moving with the 
mean flow—here referred to as “quasi-Doppler shifts." The other definition is the one used in physics, where 
the frequency measured by an observer is compared to that of the source. In the latter sense, Doppler shifts 
occur only if the source and observer move with respect to each other; a steady mean flow alone cannot create 
a Doppler shift. This paper rehashes the classical theory to straighten out some misconceptions. It is also 
discussed how wave dispersion affects the classical relations and their application.

1. Introduction

A  m uch studied situation  in physical oceanography is 
linear w ave propagation  in the presence of a m ean flow. 
R ight at the outset, it is useful to  identify the th ree key 
players in this problem : the wave source, the observer, 
and the m ean  flow. The source and observer m ay m ove 
relative to each o ther as well as relative to  the m ean flow. 
In  the m idnineteen th  century, Christian D oppler iden
tified th e  c ircum stances u n d e r  w hich th e  frequency  
m easured by an observer will be d ifferent from  the 
frequency at which the source em its its waves. In  phys
ics, this difference is called the D oppler  shift.

In  the oceanographic literature , how ever, the te rm  is 
often  used in ano ther sense, for exam ple, in B retherton  
and G arre tt (1968), O lbers (1981), K unze (1985), and 
B ühler (2009). T heir starting  po in t lies in  the equations 
of m otion, w here a m ean flow U  gives a com bination of 
term s

F o r sinusoidal waves sin(wf — kx),  w ith frequency co and 
w avenum ber k, this becom es co — Uk. It is then  com m on 
to define co1 = co — Uk,  the so-called “ intrinsic fre 
quency.“ L ighthill (1978) com m ents on  the nom encla
tu re  of this expression:
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"In  the context of moving sources, equation [co' = co — 
Uk\ has long been called the Doppler relationship, and it 
is natural to call it by this name also for waves propa
gating through non-uniformly moving fluids” (p. 326, our 
italics).

Thus, it has becom e com m on to  speak of Uk  as a 
“ D opp ler shift,“ referring  to  the d ifference betw een  
the frequency co m easured by an observer a t rest and the 
frequency co’ m easured  by an observer m oving w ith the 
m ean flow. So, here the term  is used to  indicate the dif
ference in frequency betw een two observers, in contrast 
to  norm al parlance in physics, w here it refers to  the dif
ference in frequency betw een source and observer.

F o r the sake of clarity, we shall refer to  the D oppler 
shift in the form er, “ B re th erto n /G arre tt“ sense as quasi- 
D oppler  shift, reserving the te rm  D oppler  shift for its 
norm al m eaning in physics. The distinction is im portant, 
for an observer m ay experience a quasi-D oppler shift, 
while having no D opp ler shift— and vice versa. A  m ean 
flow can be said to  imply a quasi-D oppler shift, but a 
m ean  flow cannot create a D opp ler shift.

Is this m erely a m a tte r of sem antics? In  the afo re
m entioned  references, sources w ere left out o f the 
equation; the waves are simply assum ed to  be there. The 
fixed observer m easures frequency co, while the observer 
moving w ith the flow m easures co1, and these frequencies 
can be com pared  (quasi-D oppler shift), bu t no com 
parison w ith the forcing frequency can be m ade because 
none is involved. So far, no confusion is possible. But, as 
soon as one applies these theories to  a specific oceano
graphic situation, sources inevitably com e into play— for
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exam ple, the forcing of near-inertial waves by the wind 
o r of in te rnal tides by tidal flow over topography. In 
deed, in observations it is m ore com m on to look into the 
rela tion  betw een the m easured frequency and the forc
ing frequency than  it is to  com pare a frequency from  
a m oored  instrum ent w ith sim ultaneous m easurem ents 
from  a d rifte r. I t is, th e re fo re , crucial fo r the  co rrec t 
in te rp re ta tion  of oceanographic d a ta  to  understand  
precisely u nder w hat circum stances a D opp ler shift may, 
o r m ay not, occur. H ow ever, the distinct m eanings of 
quasi-D oppler shifts and D opp ler shifts are som etim es 
conflated. It is, for exam ple, no t uncom m on to see the 
no tion  of a quasi-D oppler shift being m orphed  into the 
(incorrect) idea th a t a m ean flow w ould give rise to  a 
D oppler-shifted  frequency at a m ooring. Some instances 
are discussed in section 4.

The purpose of this paper is twofold: to  bring into 
clear focus the distinction betw een quasi-D oppler shifts 
and D opp ler shifts, and to  provide a concise overview  of 
the role of m ean flows in D opp ler shifts. R egarding the 
la tte r point, this paper has partly  the character o f a re 
view; m uch of it was already know n by the late n in e 
te e n th  cen tu ry , although  these  insights seem  to  have 
som ew hat slipped into oblivion. A n  additional elem ent 
is the inclusion of dispersion. The classical theory typi
cally considers dispersionless waves (sound, light waves), 
but in the oceanographic context, dispersion is usually 
im portant.

W e sta rt by rehashing the basic theory  of D opp ler 
shifts (section 2) following its historical origins. This 
section also serves to  stress the im portance of specifying 
and distinguishing the m ovem ents o f the source, m e
dium , and observer. W e then  exam ine an analytical ex
am ple in w hich no t only the classical D opp ler rela tion  
for the shift in frequency is derived, bu t also expressions 
for am plitude and w avelength (section 3). U ntil here, 
waves are assum ed to  be dispersionless. In  section 4, it is 
shown th a t the effects o f dispersion can be s tra ig h tfo r
w ard ly  ac co m m o d ated  in  th e  classical re la tio n  fo r 
D opp ler shifts. In  section 5 we discuss som e observa
tions on in ternal waves from  the litera tu re  and revisit 
the ir in te rp re ta tion  w ith regard  to  D opp ler shifts. C on
clusions follow in section 6 ; here w e also discuss, briefly, 
the effect of nonsteady m ean flows but, in preceding 
sections, steadiness is assumed.

2. Recapitulation of the Doppler theory

O f the several papers in which D opp ler laid ou t the 
effect nam ed afte r him, th ree  are of particu lar in terest 
here. They w ere published in  1842, 1846, and 1847 and 
la te r rep rin ted  in D opp ler (1907). This book is m ore 
useful than  the original papers thanks to  extensive notes

by H. A. Lorentz, which contain  num erous corrections 
and clarifications.

In  his theory  of 1842, D opp ler distinguished the two 
cases of a m oving source and a m oving observer. The 
m edium  is assum ed to  be at rest. W aves are em itted  
from  the source at period Ts; they propagate away at 
phase speed c. A n  im portan t restriction, here and in  the 
following section, is tha t waves are assum ed to  be dis
persionless. In  o th e r words, the p ro p er phase speed c is 
a constant and is independen t of the wave period; it 
depends solely on the p roperties o f the m edium  (e.g., on 
tem peratu re  in the case of sound waves).

The first case is one in which the observer is at rest, 
while the source moves. L et its speed be vs, d irected  
tow ard the observer. E ach  wave crest has to  bridge the 
distance betw een the position of em ittance and the po 
sition of the observer, bu t this distance decreases by an 
am ount o f vsTs for every next wave crest because of the 
m ovem ent of the source. The period betw een the arrival 
o f successive crests is therefore not Ts, bu t the D oppler 
shifted Ti = Ts — vsTJc = Ts( l  — v jc ) .  The w avelength 
being shifted as Ai =  (c — vs)Ts, the rela tion  c = Ai/T) is 
satisfied from  the view point of the observer.

The second case is one in w hich the source is at rest 
while the observer moves. Suppose the observer m oves 
away from  the source at speed v0. A t a m om ent w hen 
a wave crest passes the observer, the following crest is 
still at a distance A =  cTs, the w avelength. A pproaching 
the observer at a relative speed of c — v0, th a t following 
crest will arrive afte r a tim e interval T2 =  Al(c — v0) = 
77(1 — v j c ) .  This is now  the D oppler shifted period. 
T here is no change in w avelength in this case.

The first case was soon put to  the test by the physicist 
(and la ter m eteorologist) Buys Ballot. In  1845, on a newly 
built steam  train  near U trecht, he had musicians play 
tones on  a trum pet, w ith o ther musicians standing along 
the railway to  register the pitch of the tones before and 
afte r the passage of the train. The change in p itch was 
found to  be in good agreem ent w ith D opp ler 's  form ula. 
This was in  itself a trium phant confirm ation of his prin
ciple, but D oppler's chief in terest lay in the application to 
the color of the stars, which proved to  be less straight
forw ard (for m ore on this history, see Tom an 1984).

In  his 1846 paper, D opp ler considered the situation  in 
which the source and observer are bo th  in  m ovem ent. 
Thus, com bining the previous two cases, the observed 
period  T  becom es

C — V
T = T s U (2)

C ~ Vo

F o r a p ro p er application of this form ula, positive values 
should be assigned to  vs and v0 for m ovem ent to  the
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Fig. 1. Illustration from Doppler's 1847 paper (Doppler 1907), 
showing the effect of a medium M  flowing to the left (as indicated 
by the arrows). The source is at rest at Q , as are the observers at A 
and B. The mean flow produces a leftward translation of the cir
cular wave pattern; at this instant, previously generated wave crests 
have their centers at O, O1, O11, etc. Here the mean flow is assumed 
to be lower than the proper phase speed of the waves (otherwise no 
waves would move to the right at all).

right; negative values, for m ovem ent to  the left. H ow 
ever, we will take c always positive. If the observer is to  
the left o f the source, we are concerned w ith waves 
m oving to  the left and, accordingly, should replace c 
by — c in the form ula.

E xpression (2) has an obvious bu t im portan t corol
lary: if the source and observer m ove at the sam e speed 
and in the sam e d irection  (i.e., vs = v0), no D opp ler shift 
in frequency occurs. B ut then, in a fram e of reference 
tha t m oves toge ther w ith the source and observer, the 
medium  will be perceived to  be moving. O ne thus arrives 
im m ediately at the conclusion tha t a m oving m edium  
creates no D opp ler shift in  frequency.

This brings us to  the case considered by D oppler in 
his 1847 paper, in which he studied the effect of a m ov
ing m edium  on waves in e th er (i.e., light waves), air, or 
water. The source and observer are here assum ed to  be 
at rest. F o r an observer located  upstream  (A  in Fig. 1), 
the waves travel a t a low er speed and the w avelength is 
shortened, while for an observer located  dow nstream  
(B ) the speed and w avelength are enlarged. But, w hat 
happens to  the frequency? F o r an observer at any fixed 
position, successive wave crests p ropagate under iden
tical circum stances from  source to  observer and hence 
need equal times to  bridge that distance; as a consequence,

the observed frequency m ust be the sam e as the fre 
quency of em ittance. This rem arkably  sim ple argum ent, 
given by L oren tz , hangs on  the  s ta tionarity  o f the  se t
ting and rem ains valid  if the  m ean  flow is spatially  
nonuniform .

By the late n ine teen th  century, this result had  already 
found its way into the textbooks, for exam ple, Lord 
Rayleigh (1896, p .154):

"If the source and the observer move with the same ve
locity there is no alteration of frequency, whether the 
medium be in motion, or not.”

The only way the observed frequency can be higher 
(or low er) is w hen the rela tion  betw een  source and o b 
server is nonstationary: if they m ove tow ard (or away 
from ) each other. In  th a t case, successive waves do not 
propagate under identical circum stances, for the dis
tance betw een source and observer, which they have to 
bridge, changes.

The different situations, discussed here, are elegantly 
cap tu red  in a single form ula derived by B atem an  (1917):

Again, we adopt the convention w ith regard  to  the sign 
of c as in (2 ).

B atem an 's Eq. (3) is a natu ra l generalization  of (2) in 
th a t the p roper phase speed c in the la tte r  is being re 
p laced by the effective phase speed c + U. E quation  (3) 
confirms tha t a m ean  flow U  does no t create  a D oppler 
shift; a m ean flow m erely modifies an already existing 
D opp ler shift if the source and observer are in relative 
m ovem ent (i.e., vs v0). This form ula will be rederived 
in  th e  nex t section , w here  we ex p lo re  an  analy tica l 
exam ple.

3. An analytical example

W e will exam ine the propagation of linear long in ter
facial waves in the presence of a steady and uniform  
background flow U. This sim ple exam ple allows us to 
pinpoint, by m eans of an explicit solution, the distinct 
ro les  o f th e  m ovem en t o f th e  source , m ed ium  and  
observer.

a. Basic  equations

W e assume wave propagation  in the horizontal x  d i
rection  in a tw o-layer system; for the o ther horizontal 
direction: S/Sy =  0. W ithin  each layer the horizontal 
curren t velocity associated w ith the (long) waves is in 
d ep en d en t of the  vertical; these velocities are  called  iq 
and  »2 , fo r u p p er and  low er layer, respectively. T hen
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u = u2 — ui,  th e  change in horizon tal velocity across 
the  in terface , satisfies the  m om entum  equation

111 + Uux =  ~S*VX,

r)t + U r)x + hjpUx =  F(t, x ) .

F { t ,x )  =  sin(w j ) G ' ( x  — V t).

x  = x  — Ut; u( t ,x )  = u ( t ,x  + Ut)

v ( ^ ) = Tc dr
*x+c(t—r)

i
x — c ( t — t )

d € F T(r,€). (9)

(4)

w ith g* denoting reduced  gravity; 17 is the interfacial 
displacem ent. W e ignore the Coriolis force here, but will 
discuss its dispersive effect in section 4.

F rom  the continuity  equation  and the boundary  con
ditions (rigid lid at surface, flat bo ttom ), one obtains

(5)

F rom  (6 ) we obtain , after transform ation  to  the m oving 
fram e of reference and taking the derivative to  t ,

F t{t , Û  = (os eos(wsr ) G '( f  +  (U  -  vs)t )

+ { U ~  vs) sin(Wsr )G " ( f  + (U  -  vs) r ) .

The inner integral o f (9) now yields, after som e rewriting,

Tiere h * is the reduced w ater dep th  (h * =  h ih 2l(hi + h 2), 
w ith h¡ the unpertu rbed  thickness of layer i).

In  (5), an ad hoc source is in troduced th rough the 
forcing te rm  F. F o r la te r use, we specify the source as 
a w avem aker oscillating at frequency cos and moving at 
speed vs:

X+CU TW T =  f  (sin (WsT ) [ G ( l j -  G ( X +)]}
x - a t - t ) 0T

(6)

+ csin(w sT ){G '(JW ) +  G ' ( ! + )}, (10)

w ith X ±  = x  — ( ± c ) t  + (± c  + U — vs)t . Taking the in
tegral Jgdr---, the first te rm  on the rhs of (1 0 ) vanishes 
entirely, so (9) becom es

F o r positive (negative) vs, the source m oves to  the right 
(left). H ere, G ' is the derivative, w ith respect to  its a r
gum ent, of an arb itrary  function G. This way of w riting 
turns out to  be convenient in w hat follows.

b. Solution

To facilitate solving (4) and (5) we m ake a transform a
tion to  a coordinate system moving along with the flow:

W , x )  = 2 dTsm(ü)sT ){ G '(X _ )  +  G ' ( ! + )}.

Transform ing back to  the original fram e of reference 
(x =  x  — Ut), we get the final result:

V ( t , x ) = - dTsm(o)sT ) { G \ X _ )  +  G '(X +)}, (11)

(7)

and sim ilarly for 17 and F. H ence, by applying the chain 
rule

u = ü — Uü-\ u = ü -t t x ’ X X

and sim ilarly for 17. T ransform ed to  this system, (4) and 
(5) becom e

iit = - g * f 7- 

r]t +  h*ii~ = F (t ,x ) .

They can be com bined into one equation  for 17:

w ith X ±  = x  — (± c  +  U)t + (± c  + U — vs)t .
The rem aining integral in (11) can be solved analyti

cally if we choose a (moving) po in t source, described by 
a delta  distribution: G ' =  8. F rom  the general p roperties 
o f delta  distributions (see, e.g., M essiah 1961), one has

5(JT± ) =  S ((± c  +  U - v ){t -  t %)) = -
8{t — T *)

± c  + U — u j  ’

w ith = [ (± c  +  U)t — x ] /(± c  +  Í7 — vs). T he delta- 
d istribu tion  8 { X ±) yields a con tribu tion  if 0 < t J < 7, 
and is zero  otherw ise. Thus, from  (11) we can w rite the 
so lu tion  as

V = V-  +  i?4 (12)

(8 ) w ith

w ith c = (g*/i*)1/2, the phase speed of wave propagation  
in the absence of a background flow. L ike in the previous 
section, we define c to  be positive (unlike U  and vs). F or 
initial conditions f), tj, =  0 , starting  from  a system  at rest, 
the solution of (8 ) reads (see, e.g., Z au d e re r 1989, §4.5):

V± { t , x )  =
sin(wsT *) 

21 ± c  +  Í7 — u
if 0 < T * < 7 ,

and j]± =  0 for all o ther t %. In  the absence of m ean flows, 
the term s and 17+ in (1 2 ) describe waves propagating
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Fig . 2. Sketch of a situation used to illustrate the implications of 
(13). A source, initially located halfway between two fixed ob
servers, may move to the right. The presence of a rightward mean 
flow is also considered.

to  the left and right, respectively. U sing the definition of 
t %, we can write r¡+  m ore simply as

V+(t,x)  = 21 ± c  +  U  —
smw

(± c  +  U)t — x  
± c  + U — v„

(13)

for all x  satisfying e ith er (± c  +  U)t < x  < vst o r vst < x <  
(± c  +  U)t; for all o ther x, r)± = 0 .

c. Results

W e first consider the case of two fixed observers, as 
illustrated  in Fig. 2. O ne is located  to  the left of the initial 
location of the source at a distance of two wavelengths; 
the o ther to  the right of the source, also at two w ave
lengths. (W avelength is here defined in the absence of 
a m ean flow and w ith a source at rest.) The signal re 
ceived by the observers, 17, is calculated from  (12), (13). 
In  Fig. 3 they are p lo tted  in gray and black, respectively. 
W ave forcing starts at t = 0. F igure 3a shows the re fer
ence case, which has no m ean  flow and no m ovem ent of 
the source; as expected, bo th  observers sta rt to  receive 
the sam e signal after two forcing periods.

In  Figs. 3b,c,d, we add a background m ean flow U, but 
the source still does not move. Clearly, the observed 
wave period  is unchanged in each of these cases; this 
confirms the classical result, discussed in the previous 
section, tha t a background flow does not create a D oppler 
shift in frequency. In  Fig. 3b, the effective phase speed 
becom es 3c/2 for rightw ard propagating waves, leading 
to  an earlier arrival at the observer's position and a re 
duction in am plitude (black line). F o r leftward p ropa
gating waves, the background flow reduces the effective 
phase speed to  c/2 , leading to  a la ter arrival and an en 
hanced am plitude (gray line). In  Figs. 3c,d the flow be
com es too  strong  fo r th e  w aves to  p ropaga te  leftw ard, 
and the  observer on  the  left detec ts no w aves at all. In  
Fig. 3d, they are even drifted to  the right so tha t the ob 
server on the right starts to  receive them  after four wave 
periods.

In  Figs. 3e,f we have no background flow; instead, the 
source m oves to  the right. Now  we see, as expected, 
a D opp ler shift in frequency. In  Fig. 3e, we see the 
source passing the observer on  the right at t = 4; at that

1
0
-1

b) U=0.5C, V =0

1
0

■1

C) U=C, V =0

1
0
■1

d) U=1 5c, V =0

1

0
■1

e) U=0, V =0.5c

1
0
-1

f) U=0, V =0.9c

1
0
■1

g) U=0.5c, V =0.5c

1
0
■1

0 1 2 3 4 5 6 7 8 9 10
time {forcing periods)

Fig. 3. Solutions of interfacial displacement 17, defined by (12) 
and (13) for various U and vs, showing the received signal for an 
observer two wavelengths to the left of the (initial) position of the 
source (in gray), and another observer two wavelengths to the right 
(in black).

instant, the wave frequency drops sharply. F rom  then  
on, bo th  observers detect the sam e signal in term s of 
am plitude and (Doppler-shifted) wave period. The near- 
critical case is shown in Fig. 3f, w here we see a “boom " 
w hen the source passes the observer on  the right (the 
peak  is cut off in the figure, its am plitude is, in  fact, 
nearly  four tim es larger than  shown).

The com bined effect of a m oving source and back
ground flow in shown in Fig. 3g; the D oppler shift due to 
the m oving source is now  m odified by the background 
flow (cf. Fig. 3e).

d. D iscussion

W e can readily adjust (13) to  the case in  which the 
observer m oves as well, by the substitu tion  x  = x 0 +  v0t. 
T he argum ent o f the sine in (13) then  becom es

± c  +  U — vo 
± c  + U — u

- c o t - -
± c  + U — v„

(14)

This expression neatly  sums up all the possibilities. The 
first te rm  in (14) gives the D opp ler shift in frequency:
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': Ë

Fig. 4. Solution (13) after 10 forcing periods with the source at 
rest atx  = 0 and in the presence of a background flow U = c/2. This 
case corresponds to the case of Fig. 3b. On the horizontal axis, x has 
been scaled by the wavelength A = cT, being the unperturbed 
wavelength in the absence of a background flow.

± c  +  U — vo 
± c  +  U — tu

k  = ■
± c  + U — v„

± c  + U — v„

± c  + U — vs s '

N otice tha t both  are affected by the m ovem ent o f the 
source and, w henever source and observer are in re la
tive m ovem ent, by the m ean flow as well. W avenum ber 
k, given by (16), is also affected by the m ean  flow and the 
m ovem ent of the source. B ut together, they form  the 
sim ple and fam iliar rela tion

(15)
co' = co — Uk  (quasi-D oppler sh ift) , (17)

The m ovem ent o f the observer (v0) im plies a D oppler 
shift in frequency, unless it m oves at the sam e velocity 
as the source (v0 = vs). A  m ean flow U  modifies the 
D opp ler shift if the source and observer have a relative 
m ovem ent, bu t cannot by itself create a D opp ler shift. 
The expression (15) confirms exactly the classical result 
(3) by B atem an (1917).

F rom  the second te rm  in (14) we see tha t the w ave
num ber is m odified by a m ovem ent of the source and by 
a m ean flow:

(16)

This, too, is fully in agreem ent w ith the classical results 
(see section 2). A n  exam ple is shown in Fig. 4, illus
trating  the effect o f a m ean flow on dow nstream  and 
upstream  propagating  waves.

The analysis o f Section 3b yields, as an ex tra  result, the 
am plitude factor l / |± c  +  U — vs\ in (13), dem onstrating  
how the am plitude is influenced by the m ean flow (see 
also Fig. 4) and by the m ovem ent of the source.

e. Q uasi-D opp ler  shifts

R eturn ing  now to  the ¿/z/asz-Doppler shift (as we call 
it), which is the concept often  used in the oceanographic 
literature , as discussed in  the introduction. In  the quasi- 
D opp ler shift, Uk  is the difference betw een  two ob
served frequencies, one by a fixed observer and one by 
an observer moving along w ith the m ean flow. W e can 
now easily verify this relation. A ccording to  (15), a fixed 
observer (v0 = 0 ) m easures frequency

± c +  U

which is valid w hatever the value of vs. Precisely because 
of this invariance for vs, how ever, the rela tion  hides the 
fact th a t co1, co, and k  are, each individually, affected by 
the m ovem ent of the source. To unveil this dependence, 
one has to  exam ine the D opp ler shift (sensu stricto), as 
above.

4. Dispersive waves

So far, we have considered dispersionless waves; the 
phase speed was given by a constant c, which is inde
penden t of the wave period. It depends only on  p ro p 
erties o f the m edium ; for exam ple, in the previous 
section, it was given by c = ( g j i  f ) 1'2.

If  we consider a moving source (speed vs tow ard an 
observer at rest) em itting dispersive  waves at forcing 
period  Ts, we can again use the reasoning of the th ird  
paragraph  of section 2 , bu t w ith one im portan t m odifi
cation: the em itted  waves now  travel at som e (as yet 
unknow n) speed C. M oreover, a distinction has to  be 
m ade betw een the waves traveling ahead and behind 
the source, for the ir phase speeds will be different.

In  all o ther respects, the earlier reasoning is valid re 
gardless o f w hether the waves are dispersive o r not: each 
wave crest has to  bridge the distance betw een the posi
tion  of em ittance and the position of the observer, but 
this distance decreases by an am ount of vsTs for every 
next wave crest because of the m ovem ent o f the source. 
The period betw een the arrival of successive crests is 
therefo re  no t Ts, but the D opp ler shifted

T  =  T  -
C  — V ,

C
(18)

A n  observer m oving along w ith the m ean flow (v0 = U), 
m eanw hile, m easures frequency

This equation , how ever, is no t im m ediately useful b e 
cause it involves an unknow n T  as well as an unknow n C, 
which itself depends on  the D oppler-shifted  T. A  dis
persion rela tion  is needed  to  close the problem .

A s an exam ple, we will in troduce dispersion due to 
the Coriolis force (param eter ƒ  ), know n from  Poincare 
waves. W e also include a steady uniform  background 
flow U:
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.2 7,2 \  1/2* = U k + ( f  + c k ) (19)

W ith co = I ttIT  and the definition of phase speed C = colk, 
we can solve C  from  (18) and (19):

C\ =
_  - ( V /  -  Ucoj) ±  <oa[<?tâ - f 2) + { U ~  v f f 2]1'2

.,2 _ z 2

(20)

T =  T -c ± ~ vs 
SCZ - v „

(21)

+ / 2» =  - g * F A t , x ) , (22)

term s of a double integral involving the Bessel func
tion  J0 (Z auderer 1989). Choosing again a moving point 
source , on e  o f these  in teg ra ls  can  be solved. A fte r  a 
transform ation  to  the original coordinates, the final ex 
pression reads

=  — dr  sinwT
o

Thus, the two roots o f the phase speed C  are expressed 
in term s of know n param eters. W ith this, the D oppler- 
shifted period T  can now be calculated  from  (18). 
E quation  (20) dem onstrates th a t the phase speed of 
dispersive waves is no t only affected by a m ean flow but 
also by the m ovem ent o f the source.

Finally, a m ovem ent o f the observer does not in any 
way change the characteristics of the wave itself (in 
particular, it leaves C  unaffected). So, the reasoning of 
section 2  dealing w ith a m oving observer can be applied 
regardless o f dispersion. The upshot is a generalization  
of B atem an 's form ula:

L , I A c t  -  A r  -  Tv -

H ere  C± is again given by (20), following from  (18) [not 
from  (21)!] and the dispersion rela tion  (19). The m ean 
flow enters (21) via C  but, as before, does not by itself 
lead to  any D oppler shift.

N otice th a t fo r ƒ  =  0, (20) w ould lead  back  to  C± = 
± c  + U, th e  effective phase speed  in the dispersionless 
case, reducing (21) to  (3).

A n  alternative approach to  exam ining the effects of 
dispersion w ould be to  redo the analysis o f section 3 w ith 
dispersion included. To som e extent, this is feasible, but 
the problem  can no longer be fully solved analytically, 
although a closed-form  solution can be obtained.

F o r exam ple, if we add Coriolis term s to  (4) and (5), 
we get as a starting point, w ith an additional equation  for 
the transverse velocity com ponent v:

111 +  Uux ~ f v =  ~g*Vx 
v( + Uvx + fit = 0 

r)t + U r)x + hipUx =  F(t, x ) .

A fter a transform ation  to  a system  m oving w ith the 
m ean flow, this set can be reduced  to  one equation , for 
exam ple, for u:

a forced K le in -G ordon  equation. As before, c is the 
constant c = (g*/¡*)1/2. E quation  (22) can be solved in

x  A n "  \ c2(r ~  TZ  -  -  U t+  (U  -  v  )t]

X ©{c2(f — t ) 2 — [x — Ut + (U  — us)r]2} . (23)

H ere  © is the H eaviside stepfunction  (equal to  one for 
positive argum ent, zero elsew here). The in tegral in (23) 
is no t am enable to  fu rther analytical trea tm en t, but it 
can be easily solved num erically. F o r various values of 
vs, U, and ƒ  we have checked w hether the wave period 
found num erically is the sam e as the one ob ta ined  from  
the procedure (18) and (20). In  all cases, they w ere found 
to  be in agreem ent to  w ithin num erical accuracy, con
firming the correctness of the above procedure.

5. Observations and their interpretation

The conflation of quasi-D oppler shifts and D opp ler 
shifts has sometim es featured in interpretations of m oored 
observations on  in ternal waves (e.g., F rankignoul 1970; 
W hite 1972; O rvik and M ork 1995). The conflation 
com es about by using the rela tion  for quasi-D oppler 
shifts (Uk)  while exam ining the connection betw een a 
forcing frequency and an observed frequency, on  which 
the quasi-D oppler rela tion  has, in fact, no bearing. In 
stead, the pertinen t theory  is th a t o f D opp ler shifts.

In  a revisit of these in terpre tations, the first question 
th a t arises is w hether there really was a “ shift" in the 
first place. In  this respect it is of g reat significance tha t 
these studies focused on  near-inertial waves ra th e r than  
on in ternal tides. In ternal tides are forced at precise and 
w ell-know n frequencies (sem idiurnal lunar M 2 etc.). In 
contrast, the forcing of near-inertial waves is m ore 
blurred. First, because the mechanism  primarily respon
sible for the ir generation , geostrophic adjustm ent, g e n 
e ra te s  a ran g e  o f n ea r-in e rtia l frequenc ies. Second, 
because the no tion  of “ inertia l" changes, by definition, 
w ith latitude. So, if one finds a spectral peak  at ƒ  +  S 
(local Coriolis p a ra m e te r /) ,  does this signify a D oppler 
shift o r does it simply result from  generation  at a higher 
la titude w here the local ƒ  was larger? These u n 
certain ties give room  for seeing “ D oppler shifts" when, 
in fact, none is there.

F o r in ternal tides, on  the o ther hand, the contradiction  
betw een  the expected  “ D oppler shifts" (on the basis of
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the quasi-D oppler relation!) and the absence the reo f in 
the m oored  observations was m ore patent. To find a way 
out o f this contradiction, one had  to  resort to  ra the r 
im plausible explanations: F rankignoul (1970) puts fo r
w ard the idea th a t the waves com e from  all directions so 
th a t the D opp ler effects cancel in the m ean; W hite 
(1972) assumes tha t the spectral tidal peak is entirely 
barotropic, in  w hich case th e  p resu m ed  D o p p le r  shift 
w ou ld  be negligible.

These problem s disappear at once w hen one realizes 
th a t m ean  flows ca n n o t c re a te  a D o p p le r  sh ift. Y et, 
they  affect th e  o b se rv a tio n s in  o th e r  ways, as w e will 
now  discuss.

a. Near-inertial waves

F o r near-inertial waves we can use the dispersion re 
lation  (19). (This expression is based on the “ Traditional 
A pproxim ation ,“ which m ay not always be valid, bu t for 
sim plicitly it is assum ed to  hold here.) The dispersion 
rela tion  w ith and w ithout a m ean  flow is shown in Fig. 5. 
The m ean flow brings about two changes. First, for a 
given frequency the w avenum ber is modified. Second, 
the low er bound  of the range of allow able frequencies 
decreases. The frequency can now  attain  values low er 
than  ƒ. C ontrary  to  w hat was suggested by Z hai e t al. 
(2005), how ever, this does not imply a D opp ler shift. 
T here is no difference betw een the em itted  and received 
frequencies for sources and observers tha t do no t m ove 
relative to  each other, see (21). F igure 5 simply m eans 
th a t waves forced at frequencies slightly below  ƒ  can now 
freely propagate away, w hereas they could no t if no 
m ean flow w ere present.

A ll this is no t to  say th a t D opp ler shifts cannot occur 
for near-inertial waves. A fter all, we m ay be dealing w ith 
a m oving source if the waves are due to  the passage of 
an atm ospheric depression. In  a m oored  instrum ent, the 
observed frequency will then  be different from  the forc
ing frequency but, since the forcing involves a range of 
near-inertial frequencies, the actual D opp ler shift m ay 
be difficult to  estab lish . A n o th e r  com plication  arises 
from  the fact th a t one needs to  take into account the 
angle betw een the trajectory  of the source and the line 
connecting  the  source and  observer. This aspect goes 
beyond the scope of this p ap e r b u t has been  dea lt w ith 
in the lite ra tu re  (e.g., Y oung 1934).

b. In ternal tides

F o r in ternal tides, generated  over topography, the 
source is n o t moving. If the waves are detec ted  at a fixed 
m ooring, there will be no D opp ler shift in frequency, 
irrespective of the presence of background flows.

A lthough  generation  over topography is the typical 
and m ost im portan t m echanism  for in ternal tides, an

Fig. 5. The dispersion relation (19) plotted for two different 
cases: without mean flow (dashed), and with mean flow (solid). 
Notice that in the latter case, u> attains values lower than/.

alternative m echanism  can be at w ork in som e configu
rations, nam ely w hen they are produced  dynam ically by 
a horizontal displacem ent of fronts (O u and M aas 1988). 
A s fronts have sloping isopycnals, horizontal tidal m o
tion  pushes isopycnals periodically away from  their 
original position. The situation  is com plicated since the 
density gradient associated w ith the fron t is norm ally in 
geostrophic equilibrium  w ith the Coriolis force acting on 
a sheared  m ean flow parallel to  the front. But, the tide 
displaces this geostrophic flow laterally  as well, such that 
over a flat b o ttom  the geostrophic equilibrium  is actually 
re ta in ed . To g en e ra te  in te rn a l tides th is balance of 
forces needs to  be broken, e ither by bo ttom  slopes (O u 
and M aas 1988) or by instability o f the geostrophic front. 
The com plexity of the tidal conversion w ithin a sheared 
fron ta l system  m akes it hard  to  quantify  the particular 
speed vs a t which the source moves. B ut one can th ink  of, 
for exam ple, m esoscale variations th a t lead  to  a m ove
m ent of the in tersection  betw een the fron t (which itself 
oscillates w ith the barotropic tidal flow) and a to p o 
graphic feature. The location of tha t in tersection  forms 
the source, which is thus in m ovem ent. The crucial point 
in the presen t context is th a t such a m ovem ent of the 
source w ould create a D opp ler shift for fixed observers 
(a m ooring).

This in tricate m echanism  deserves fu rther study, but 
the litera tu re  already provides an exam ple, from  the 
Straits of F lorida, w here such a m echanism  m ay be at 
work. Soloviev e t al. (2003) show tha t in sum m er, w hen 
fronts are strongest, a large and amplified baroclinie 
spectral peak  occurs near periods of about 1 0  h, while the 
com m on sem idiurnal peak (still p resent in the barotropic
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surface tide) is absent. It is not im m ediately clear that 
this peak  actually represen ts an in ternal tide since evi
dence th a t one is dealing w ith one is norm ally based on 
its dom inant frequency. P erhaps for this reason, while 
acknowledging the possibility th a t they m ay have m ea
sured a D oppler-shifted internal tide, Soloviev et al. prefer 
to  in te rp re t this peak  as showing the near-resonant re 
sponse of a local seiche, transverse to  the channel b e
tw een F lorida and the B aham as. A lternatively, they 
suggest a shift o f the “ effective" inertial frequency away 
from  the p lanetary  inertial frequency by local subinertial 
vorticity of about 4/.

In  the w inter season the baroclinie spectral peak, 
while w eaker, does  appear a t the sem idiurnal frequency. 
Thus, it is plausible tha t also in  sum m er the sem idiurnal 
in ternal tide m ust be there , but, apparently , “ blue shif
ted ."  This suggestion is reinforced by a seasonal blue 
shift in the diurnal tide (Soloviev e t al. 2003). In  view of 
the previous discussion, apparently  the natu re  of the 
tidal conversion changes from  w inter to  sum m er, and we 
no te tha t instabilities o f the F lorida C urren t and non- 
uniform  bathym etry, requ ired  to  b reak  the geostrophic 
balance, are indeed  presen t (Davis e t al. 2008).

L et us now m ake a crude estim ate of the requ ired  
source speed, vs, based on  the observed D oppler-shifted  
in ternal tidal frequency. F o r this, it is im portan t to  re 
ite ra te  that, although m ean flows cannot create  D oppler 
shifts, they will m odify an existing one; see (3) and (15). 
F o r an average F lorida C urren t speed U ^  2 m  s~ x, a 
typical first m ode (or interfacial) long wave phase speed 
c = 0 (0 .2)  m  s_1, and a fixed observer (v0  =  0 ), the 
observed 2 -h period  shift of the sem idiurnal and diurnal 
tides suggest vs «  Ul5 =  0.4 m  s~ x. Interestingly, (13) 
also predicts that, sim ultaneously w ith the blue shift, the 
am plitude of the in ternal tide generated  by a m oving 
source (as com pared to  tha t for a source at rest, vs = 0 ), 
is boosted  by a factor o f 5A, no t unlike the sum m er am 
plification of the shifted in ternal tide found on the 
southeast F lorida Shelf (Soloviev et al. 2003).

Thus, the observations offer som e support for the 
speculation  th a t we are here  dealing  w ith a D opp ler 
shifted in ternal tide, due to  a m oving source. H ow ever, 
we em phasize tha t this case should nevertheless be con
sidered exceptional for, as m entioned above, internal tide 
g en e ra tio n  occurs p red o m in an tly  over topog raphy , in 
which case the source does no t m ove and there will be no 
D opp ler shifts for m oored  observers.

6. Conclusions

The m ain purpose of this paper is to  point out the 
im portance of distinguishing quasi-D oppler shifts (i.e., 
the difference in frequency betw een two observers: one

fixed and one m oving w ith the m ean  flow) from  D oppler 
shifts in the norm al physical sense, w here one com pares 
the frequency of an observer w ith th a t o f a source.

Regarding the latter, the principal points can be sum 
m arized as follows.

(i) A  D opp ler shift in frequency can occur only if there 
is a re la tiv e  m o v em en t o f source  and  o b se rv e r 
(sections 2 and 3).

(ii) The presence of a m ean flow does not change this 
fact (sections 2 and 3).

(iii) The w avelength and am plitude are affected by 
a m ean flow as well as by a m ovem ent o f the source 
(section 3).

(iv) N o m eaningful in te rp re ta tion  of observational data  
in term s of D oppler shifts can be m ade unless the 
m ovem ent of the observer (e.g., fixed as in  m oored 
instrum entation o r moving as in  a drifting platform ) 
as well as the m ovem ent of the source has been as
certained (Section 5).

(v) F o r dispersive waves, a straightforw ard generaliza
tion  of the classical form ula for D opp ler shifts can 
be derived (section 4). The aforem entioned  points 
all rem ain  valid in th a t case.

Regarding quasi-D oppler shifts and its central re 
lation  (17), which plays a key ro le in B re therton  and 
G arre tt (1968) and following studies, it should be no ted  
th a t the m ovem ent of a source does no t fea tu re  in this 
relation; it is invariant for th a t m ovem ent (section 3e). 
But, this should no t be m isin terpreted  as im plying tha t 
the m ovem ent o f a source does no t influence the in 
dividual term s co, co', and k. The invariance just m eans 
th a t (17) cannot tell us anything about th a t influence; for 
this, it is necessary to  consider D opp ler shifts in the strict 
sense of the word.

In  this paper we have restric ted  ourselves to  the re l
atively straightforw ard cases in which all velocities are 
parallel and in w hich the m ean  flow is spatially uniform . 
T he m ore general cases of arb itrary  angles betw een  the 
various velocities and of spatial variations in the m ean 
flow w ere analyzed by B atem an (1931) and Young (1934). 
In  particular, the m ean flow at the location o f the source 
m ay be different from  tha t at the location of the observer. 
T he upshot is tha t m ean flows still create no D oppler 
shifts. This is actually already clear from  the “ stationarity 
argum ent" discussed in section 2 .

In  reality, m ean flows vary not only spatially bu t also 
in tim e. This aspect, how ever, brings in a new  elem ent 
qu ite distinct from  D opp ler shifts, nam ely nonlinear in 
teraction , the generation  of h igher harm onics, etc. Such 
in teractions do not bring abou t a shift in the spectral 
peak, but ra th e r they create new  additional peaks at the 
sum  and difference frequencies o f m ean flow and wave
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(see, e.g., Bell 1976). If the flow oscillates slowly com 
pared  to  the wave o r if the stratification varies slowly, 
these peaks will be very close to  the m ain peak, effec
tively m aking it b roader (depending on the spectral 
resolution; in the tim e dom ain, this is m anifested as in- 
term ittency). To add to  the already existing confusion, 
this effect is o ften  ca lled  “ D o p p le r sm earing ,“ even 
though it has nothing to  do w ith D opp ler shifts or, in 
deed, w ith anything Christian D opp ler ever did.
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