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34 Abstract

35 An array of 76 high-resolution temperature sensors at 0.5 m intervals between 5 

36 and 42.5 m off the bottom was moored near the Barcelona harbor buoy in 81 m 

37 water depth, between October 2013 and April 2014. The mooring was located 

38 just seaward of an extensive sediment wave area developed in the Llobregat 

39 River prodelta, with 1 m high crests parallel to the coast and 50-100 m 

40 wavelengths. In the NW-Mediterranean, the thermal stratification reaches its 

41 maximum penetration through the water column in autumn until it is broken by 

42 winter convection. Such a deep stratification affects large-scale sub-inertial slope 

43 currents, which are mostly confined to the upper half of the water column, by the 

44 hampered vertical exchange of frictional turbulence, and supports near-bottom 

45 internal waves between the inertial and buoyancy frequencies. Observed onshelf 

46 propagating frontal bores most likely interact with the sediment waves and 

47 contribute to their generation, as they are trailed by considerable shear-induced 

48 turbulence and high-frequency internal waves close to the buoyancy frequency 

49 that have wavelengths matching those of the sediment waves. The bores are 

50 either driven by near-inertial or 3-7 day periodic sub-inertial motions just 

51 following a brief period of large convective instability at the end of the offshelf 

52 flow phase.    

53  

54 1. Introduction

55 Fine-grained sediment wave fields are ubiquitous seafloor morphological features 

56 on continental margins that are commonly observed in prodeltaic environments (e.g., 

57 Trincardi and Normark, 1988; Correggiari et al., 2001; Berndt et al., 2006; Fernández-

58 Salas et al., 2007; Urgeles et al., 2007), continental slopes (Faugères et al., 2002; 
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59 Verdicchio and Trincardi, 2006; Ribó et al., 2016a,b) and continental rises (see review 

60 in Wynn and Stow, 2002). Initially, most of these sediment waves, particularly the 

61 ones found on sloping regions, were interpreted as sliding structures. At present, some 

62 consensus is forming (see Lee et al., 2002; Urgeles et al., 2011) to consider them as 

63 bedforms (rhythmic features generated by the interaction of the fluid and sediment) 

64 via bottom (contour) or turbidity currents (Wynn and Stow, 2002), hyperpycnal 

65 currents (e.g., Lee et al., 2002; Lobo et al., 2014) or internal waves (e.g., Flood, 1988; 

66 Puig et al., 2007; Ribó et al., 2016a,b). 

67 As suggested previously (Hosegood et al., 2004; Bourgault et al., 2014), shoaling 

68 and breaking of internal waves and their induced on- and offshelf currents can be an 

69 effective transport mechanism of sediment dispersal and may contribute to the 

70 shaping of the sedimentary structures. Internal wave breaking follows from nonlinear 

71 deformation of the initially sinusoidal (linear) wave-shape in the interior into an S- or 

72 Z-shape, thereby creating an onshelf moving turbulent bore (Vlasenko and Hutter, 

73 2002; Klymak and Moum, 2003; Venayagamoorthy and Fringer, 2012). Such bores 

74 can generate 60% of the turbulence during a tidal cycle, as has been observed using 

75 high-resolution temperature sensors above Great Meteor Seamount (van Haren and 

76 Gostiaux, 2012). They are trailed by a sequence of high-frequency internal waves near 

77 the buoyancy frequency that have typical wavelengths O(10-100) m.

78 In the water phase in the NW Mediterranean Sea, (internal) tides are weak and the 

79 main internal wave source is at near-inertial frequencies from geostrophic adjustment 

80 following the passage of (atmospheric) disturbances. In the NW-Mediterranean, near-

81 inertial motions associated with wind events are the dominant fluctuations over the 

82 shelf and slope (Millot and Crépon, 1981; Font et al., 1990; Puig et al., 2001). An 

83 observational study by Puig et al. (2007) in the Adriatic Sea suggested that internal 
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84 waves can play a role in resuspending and transporting sediment in prodeltaic 

85 undulated areas. In that study, near-inertial internal waves induced by local wind 

86 pulses tend to propagate across the water column through isopycnals and concentrate 

87 their energy at the shelf regions where the seasonal thermocline intersects with the 

88 seabed, which turns out to be the depth range characterized by having an undulated 

89 seafloor (Puig et al., 2007).

90 Over the Catalan continental margin, a southwestward flow associated to the 

91 Northern Current (Millot, 1999) has been described (Salat et al., 1992). A seasonal 

92 along-shelf circulation pattern is described for the Barcelona shelf (Grifoll et al., 

93 2013). The summer period is characterized by strong stratification of the water 

94 column and significant vertical shear. Fall is dominated by typical easterly storms 

95 resulting in a predominant along-shelf force balance between wind stress and pressure 

96 gradient. In winter there is weak stratification and vertical velocity profiles are near-

97 homogeneous, due to cooling and low river discharge, which allow the increased wind 

98 energy to mix the entire water column. Spring is characterized by highly variable 

99 winds and vertical shear and stratification develops due to river discharge and the 

100 gradually increasing heat flux. 

101 In this area, the foreset region of the Llobregat River prodelta clinoform exhibits a 

102 series of undulations that were initially attributed to sediment creep (Checa et al., 

103 1988). A detailed morphologic and seismo-stratigraphic analysis of these sediment 

104 undulations by Urgelés et al. (2007) revealed that they are developed between 35 and 

105 90 m water depth and appear as a series of slightly sinuous crests and swales with an 

106 intricate pattern of bifurcating and truncated ridges (Fig. 1). These undulations have 

107 up to 1.3 m high crests and 50-100 m wavelengths, decreasing both in amplitude and 

108 wavelength with water depth, and are distributed along isobaths parallel to the coast, 
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109 showing a large lateral continuity up to 2 km (Urgelés et al., 2007). Based on their 

110 internal structure and characteristics, these authors identified such undulations as up-

111 slope migrating sediment waves likely generated from hyperpycnal plumes derived 

112 from the Llobregat River, although it was pointed out that the overall shape of the 

113 sediment wave field suggested a certain control by bottom currents. A subsequent 

114 analysis of the Llobregat prodelta sediment waves, together with similar wave field 

115 examples found in other Mediterranean prodeltaic deposits (see review by Urgeles et 

116 al., 2011) highlighted the potential role of internal waves as the mechanisms 

117 responsible for their formation and maintenance. However, the specific interactions of 

118 internal waves with sediment waves, for this particular case and elsewhere, are still 

119 not well understood (van Haren, 2017).

120 In order to improve our knowledge on this topic, we designed an instrumented 

121 mooring to determine whether mechanisms induced by ‘internal waves’ supported by 

122 the stable vertical density stratification in the water column can generate 

123 hydrodynamic structures responsible for and, perhaps, comparable with the 

124 morphology of the sediment waves that exist in the Llobregat prodelta. These 

125 structures may be able to influence under particular conditions the resuspension - 

126 sedimentation of particles near the bottom with a wave length compatible with that of 

127 the sediment waves (e.g., Alexander et al., 2001). 

128 In the present study, we focus on the characteristics of internal wave-induced 

129 turbulence in the lower half of the water column, between 5 and about 40 m above the 

130 bottom, during the autumn-spring variation of stratification. This choice almost 

131 covered the depth range of the sediment waves, but was otherwise logistically 

132 motivated to minimize wintertime storm impact and shipping hazards. We analyze an 

133 array of 1-Hz sampled high-resolution low-noise-level temperature sensors moored 
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134 just next to the Barcelona harbor pilot buoy (Fig. 1). Although the focus is on wave 

135 motions, flows and turbulence in the water phase, we are motivated by the possible 

136 effects of the full range of internal waves, from near-inertial frequencies to near-

137 buoyancy frequencies, on the development of the Llobregat prodelta sediment waves. 

138     

139 2. Materials and methods

140 A total of 76 ‘NIOZ4’ self-contained temperature (T) sensors sampling at a rate of 

141 1 Hz, with precision better than 5×10-4C and a noise level of about 6×10-5C (see van 

142 Haren et al., 2009, for the predecessor ‘NIOZ3’ with similar characteristics), were 

143 mounted at 0.5 m vertical intervals on a nylon-coated steel cable. Every 4 hours all 

144 sensors were synchronized to a standard clock, so that their times were <0.02 s off. 

145 The lowest sensor was 5 m from the bottom due to the anchor chain and acoustic 

146 releases below the T-sensor array. Three sensors showed calibration problems and 

147 two stopped approximately halfway the recording period. These sensors were 

148 randomly distributed over the range of sensors. Missing sensor data are linearly 

149 interpolated, which has slight, <5%, low-bias impact on turbulence estimates (see 

150 below), as was established from previous data by van Haren and Gostiaux (2012). 

151 About 3 m above the upper sensor a downward facing 300 kHz acoustic Doppler 

152 current profiler (ADCP) was mounted sampling currents and acoustic echo intensity 

153 at a rate of once per 300 s, in 1 m vertical intervals (bins). In contrast with optical 

154 backscatter observations, 300 kHz echo intensity is sensitive to particles of the size of 

155 one mm and larger. Such particles may be large colloids or flocs, but mainly 

156 zooplankton and fish and not fine sediment. In fact, the periodic strong upward and 

157 downward motions caused by plankton dynamics is a common observation in acoustic 

158 reflection signals (e.g., Flagg and Smith, 1989; Plueddemann and Pinkel, 1989), also 
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159 in the Mediterranean (van Haren, 2014). Because of the 20° slant angle to the vertical 

160 of the four acoustic beams and the first sidelobe reflecting off the bottom, the lowest 

161 bin with good data was at 3 m from the bottom. The beam spread caused current 

162 estimates to be averages over horizontal distances of 2-30 m, depending on the range 

163 from the instrument. Thus, currents of horizontal scales O(10 m) or larger are 

164 resolved, whereas the much faster sampling T-sensors resolve 0.5 m vertical scales 

165 and <0.01 m horizontally. The horizontal current vector components are rotated to 

166 along-shelf (v) and cross-shelf (u) directions according to isobaths (Fig. 1).

167 The instrumented line was moored at 41 17N, 2 11E, 81 m water depth just 

168 seaward of an extensive field of sediment waves (Fig. 1; characteristics in Urgeles et 

169 al., 2007) on 18 October 2013 (yearday 290) and recovered on 06 April 2014 (yearday 

170 460). The average local bottom slope is much steeper (10-15º) than the near-inertial 

171 internal wave slope α(1.02f) ≈ 1º: it is thus supercritical for near-inertial internal 

172 waves. As pure inertial waves at wave frequency exactly equal to f have zero slope in 

173 well-stratified waters, and exist in theory only, the above slope is computed for the 

174 main peak-frequency of freely propagating near-inertial waves. The relatively heavy 

175 buoyancy element above the instruments assured mooring deflections of <0.2 m in the 

176 vertical under current speeds of up to 0.6 m s-1, as was verified from pressure and tilt 

177 sensor information. 

178 After correction for slight compressibility and drift effects by subtracting constant 

179 values to adjust to a smooth statically stable mean profile for a period of typically 4 

180 days but at least exceeding the inertial period, the T-data are converted into 

181 ‘Conservative’ (~potential) Temperature data  (IOC, SCOR, IAPSO, 2010). They 

182 are used as tracer for density anomaly () variations following the relation  = 

183 ,  = -0.26±0.02 kg m-3 C-1, where  denotes the apparent thermal expansion 
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184 coefficient under local conditions. This relation includes the effects of salinity on 

185 density variations and has been established from nearby shipborne Conductivity-

186 Temperature-Depth ‘CTD’ profile data in autumn (Fig. 2). Salinity (‘S’) intrusions 

187 disturbing this relationship sometimes occur in the second half of the record when the 

188 stratification is rather weak following the convection in winter. They are recognizable 

189 as ‘apparent overturns’ lasting longer than the mean buoyancy period TN in detailed 

190 computations over short data sections of a few days. Turbulent overturns cannot last 

191 longer than TN and apparent overturns are thus to be excluded from turbulence 

192 estimates. On the other hand, in these weakly stratified periods  tends to be larger-

193 negative (Fig. 2c), so that the above more precise estimate can be considered as a 

194 conservative one, as turbulent estimates tend to be biased low for the winter period.

195 The number of T-sensors and their spacing of 0.5 m, in combination with their 

196 low noise level, allows for the quantification of turbulence by estimating parameters 

197 like dissipation rate  and vertical eddy diffusivity Kz via the reordering of unstable  

198 overturns making every 1-Hz sampled ‘density-’(temperature-)profile a static stable 

199 one (Thorpe, 1977). This method was originally developed for shipborne CTD-

200 observations in a freshwater lake. In the ocean, however, CTD-observations suffer 

201 from mechanical errors imposed by the ship’s motions due to surface waves that are 

202 communicated through the cable (e.g., Gargett and Gardner, 2008). Such errors, and 

203 sensor mismatch errors, do not occur in moored T-sensor data. For details of the 

204 method for moored thermistor sensor data, see van Haren and Gostiaux (2012). In the 

205 following, averaging over time is denoted by […], averaging over depth-range by 

206 <…>. The specific averaging periods and ranges are indicated with the mean values.

207 In the next section, time-depth plots will be presented of the Conservative 

208 Temperature and of its derived quantity the buoyancy frequency N = (-g/ρd/dz)1/2, 
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209 where g = 9.81 m s-2 denotes the acceleration of gravity and ρ = 1026 kg m-3 a 

210 reference density, as a measure for stable stratification. Time series will be presented 

211 of turbulence dissipation rate averaged over the entire range of temperature sensors. 

212 From the ADCP-data, time-depth plots will be presented of both horizontal current 

213 components, describing the entire 2D horizontal flow, and the vertical one (w), the 

214 echo amplitude I relative to the time mean to remove water attenuation effects and its 

215 derived quantity |S| = ((du/dz)2 + (dv/dz)2)1/2, the magnitude of destabilizing shear. 

216 The latter derived quantity is used to compute the bulk gradient Richardson number 

217 Ri = N2/|S|2 (Turner, 1979), a measure for the relative importance of stable 

218 stratification and destabilizing shear. When Ri becomes smaller than unity, marginal 

219 stability may evidence nonlinear perturbations of a parallel shear flow in a three-

220 dimensional stratified fluid (Abarbanel et al., 1984). Here, we assume this is mainly 

221 imposed by internal wave breaking causing (shear-induced) turbulent overturning.

222

223 3. Observations

224 a. Overview

225 Hydrography: In the fall, the deeper waters off the coast of Barcelona are well 

226 stratified, predominantly by temperature variations (Fig. 2a) with salinity marginal 

227 positively contributing to density variations (Fig. 2b). In winter until early spring, the 

228 stratification is strongly reduced by vertical convection, due to cooling near the 

229 surface. Then, salinity and temperature contribute about equally to density variations. 

230 This implies that small variations in T- and S-properties, advected by the horizontal 

231 currents, may cause fluctuations in the relative contributions to density variations with 

232 time. Thus during (late) winter, the high-resolution moored T-observations may 

233 occasionally show inversions that are partially compensated by salinity to unknown 
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234 extent. Such inversions potentially create artificial turbulence parameter values. This 

235 is indeed observed in the overall depth-time series of the moored observations with a 

236 single temperature sensor drift correction for the entire mooring period that is not 

237 specifically tuned for detailed (smaller) periods (Fig. 3). For example, the high <ε>-

238 values (Fig. 3g) occurring between days 395 and 410 are unrealistic also because they 

239 are maintained for several days. This is despite the naturally larger turbulence 

240 dissipation rate estimated in winter and resulting in near-homogeneous waters, 

241 compared with stratified autumn conditions in the first month of observations. 

242 The mooring-data overview shows that in the first week after deployment in mid-

243 autumn, the relatively warm near-surface waters are pushed downward (Fig. 3a), 

244 while mixing with deeper waters until near-homogeneous winter conditions are 

245 reached around day 335 (early December). With the major transition between days 

246 300 and 335 from ‘summer-strong’ to ‘winter-weak’ stratified conditions, transitions 

247 are observed in other variables as well. In particular, during days 320-323 a major 

248 storm event with winds blowing from the East affected the study area (Fig. 4a), with 

249 sustained significant wave heights >3 m (not shown) that presumably helped to 

250 homogenize the water column down to 80 m water depth.

251 Currents: Along-shelf currents (Fig. 3b) have an overall mean value of -0.1 m s-1 

252 (directed southwestward) with occasionally strong flows reaching -0.6 m s-1. They are 

253 observed to be regularly only above the layer of strong stratification, e.g. around day 

254 300 and three times between days 315 and 325, with weaker amplitude flows below 

255 and after day 335. A variable dominant sub-inertial periodicity is observed of 3-7 

256 days, see also the kinetic energy spectrum in Fig. 4b. This flow is partially wind-

257 driven, but mainly indirectly via density fronts, as a direct correspondence with local 

258 winds is lacking (Fig. 4b). The cross-shelf currents (Fig. 3c) are relatively weaker 
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259 than the along-shelf currents and have a near-zero mean (<0.01 m s-1), but their 

260 amplitudes increase with decreasing stratification, especially near the bottom. Inertial 

261 periodicities are observed in the time series of the horizontal current components, but 

262 irregularly only and spectra show a rather broad inertial band rather than a peak in 

263 kinetic energy (Fig. 4b). With the horizontal current components, the vertical currents 

264 (Fig. 3d) transit around day 325 from predominantly downward above the main 

265 stratification, to near-bottom upward when the stratification becomes weaker. This 

266 transition is not related to a particular local wind event (Fig. 4a). The periodic strong 

267 upward (and downward, not visible) motions after day 425 are dominated by diurnal, 

268 probably plankton, motions.

269 Derived variables: As previously mentioned, the stratification of the water column 

270 gradually weakened from the autumn to the winter (Fig. 3a). At the beginning of the 

271 mooring period, there were three episodes about 15 days apart in autumn, during 

272 which the seasonal stratification reaches deep towards the bottom, lifts up again and 

273 deepens. This variation is related to a meandering of the near-coastal flow, 

274 presumably also affected by the meandering of the Northern Current. Between days 

275 335 (early December) and about 430 (early March), stratification is rather weak and 

276 alternates between near-homogeneous stable and, for periods shorter than the 

277 buoyancy period, convectively unstable. After day 430, the near-surface spring stable 

278 stratification episodically spreads its influence towards the lower half of the water 

279 column. With the stable stratification, the destabilizing shear varies from relatively 

280 strong in autumn to weak (below noise level) in winter (not shown). 

281 In winter, short periods with enhanced shear are observed in the lower 5 m of the 

282 ADCP-range, mainly between days 340 and 420. This shear may be associated with 

283 bottom friction of mainly along-shelf currents. The non-zero shear observed in 
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284 autumn and in winter regularly lead to marginal stability in the water column here. 

285 We note the relatively high noise level in shear-data and a lack of information on the 

286 potential influence of salinity stratification and of convective overturning possibly 

287 creating unrealistically low gradient Richardson number Ri  0 (Fig. 3e). On the 

288 other hand, from day 320 onwards internal wave motions are not absent, and marginal 

289 stability plus internal wave turbulence do occur as will become clear in details below. 

290 With the transition to weaker stratification, the amplitude of acoustic echo intensity 

291 decreases (Fig. 3f). Large energetic turbulence in a stratified fluid may also affect the 

292 acoustic amplitude. Strong echo intensities are largely associated with strong 

293 southwestward along-shelf flow and sometimes with offshelf flow, but they are also 

294 affected to a lesser extent by periodic onshelf flows and diurnal zooplankton motions 

295 (like around day 425). 

296 Although in winter true vertical overturning is found over the entire range of 

297 observations, generally due to free convection presumably driven by surface cooling 

298 and occasional internal wave breaking, this period is more complicated to analyze 

299 than the autumn period. This is because in winter turbulence quantification is not 

300 always possible when temperature becomes an unreliable tracer for density variations 

301 because of the salinity-compensated intrusions. Therefore, the detailed description 

302 periods are mainly from the first third of the record, when stratification dominates and 

303 internal wave effects are expected to be strongest.

304

305 b. Detailed observations of cross-shelf motions

306 Since we hypothesized that sediment waves in the Llobregat prodelta are 

307 transverse bedforms, we consider in some detail internal wave motions that propagate 

308 cross-shelf. Despite the relatively weak cross-shelf currents of amplitudes of 0.1-0.2 
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309 m s-1, these flows are always turbulent. This follows from the high estimated bulk 

310 Reynolds number Re = UL/ν ≈ O(105-106), using L = 1-10 m for length-scale and ν = 

311 1.5×10-6 m2s-1, the kinematic viscosity. Distinct periodicities in occurrence of onshelf 

312 bores are hard to find, cf. Figure 3c, and spectra (not shown) demonstrate a broad 

313 band of elevated kinetic energy between about 0.05 cycles per day (cpd) and the 

314 inertial frequency (0.76 cpd). 

315 In the autumn example given in Figure 5 (day 303; 31 October), the stratification 

316 is pushed close to the bottom by offshelf turbulent currents, before being lift up by an 

317 onshelf propagating turbulent bore with high-frequency internal waves from about 

318 300 s initially to 800 s later propagating along the strongest density interface between 

319 10 and 15 m from the bottom (Fig. 5a). As is common for onshelf propagating bores, 

320 e.g. van Haren and Gostiaux (2012), largest turbulence is found just before the bore’s 

321 front arrival (Fig. 5e) and attributable to convective instabilities associated with 

322 highly nonlinear wave deformation (van Haren and Gostiaux, 2016) mainly, with 

323 effective interfacial internal wave shear and shear-driven mixing across the interface 

324 after the bore’s front passage on day 303.46. Largest interfacial internal waves with 

325 opposite currents above and below occur between days 303.60 and 303.68. They have 

326 a frequency close to the buoyancy frequency of the interior. Shortest internal waves, 

327 e.g. between days 303.50 and 303.55 have a frequency close to the local interfacial 

328 buoyancy frequency. This shear-driven mixing is due to Kelvin-Helmholtz (‘KH’) 

329 billows (the largest here at days 303.69 and 303.73, indicated by the arrows, 5-6 hours 

330 after the front). With typical advection (particle) speeds of 0.12 m s-1 and assuming a 

331 critical bore so that the phase (propagation) speed equals the particle speed, the high-

332 frequency internal waves have lengths of 25-120 m. This matches the sediment wave 

333 lengths observed in the Llobregat prodeltaic deposits at similar water depths and 
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334 onshelf from the mooring site (Fig. 1). The cooler water advected onshelf has less 

335 acoustic reflective material than the warmer waters above (Fig. 5d). An exception is 

336 the progressively increase in near-bottom echo intensity, which seems related to the 

337 action of small-scale internal waves trailing the front, especially those after day 

338 303.54. Averaged over time-depth intervals of 10 h and 37.5 m, mean turbulence 

339 parameter values are [<>] = 8±4×10-7 m2s-3, [<Kz>] = 1.8±0.7×10-3 m2s-1 

340 (determined after averaging the fluxes), [<N>] = 9.6±1×10-3 s-1 (determined after 

341 averaging N2), while the shortest internal wave period (from the maximum buoyancy 

342 frequency) is 125 s. The latter value is a separation value between freely propagating 

343 interface internal waves, which must have periods shorter than this value, and 

344 turbulent overturns, which can have shorter time-scales. Such mean turbulence values 

345 are typical for internal waves breaking over deep-ocean topography (van Haren et al., 

346 2013; 2015) and 100 times larger than the weak turbulent mixing in the ocean interior 

347 (e.g., Gregg, 1989). 

348 The example from about a month later (day 332, 29 November) shows a larger 

349 onshelf propagating bore with more abundant KH-billow activity (Fig. 6). Overall 

350 mean turbulence characteristics are about the same, roughly to within a factor of two 

351 as those for Figure 5, as 4 h; 37.5 m mean values are [<>] = 1.1±0.5×10-6 m2s-3, 

352 [<Kz>] = 1.0±0.4×10-3 m2s-1, [<N>] = 1.5±0.2×10-2 s-1, with the shortest high-

353 frequency internal wave period developed at the strongest density interface being 94 

354 s. Temperature stratification, and especially also current shear of onshelf moving 

355 waters below offshelf moving waters, are thus larger with respect to Figure 5 that the 

356 interface between relatively warm and cool waters demonstrates a 10-20 m high zone 

357 of continual KH-billows overturning: small-scale internal waves breaking and 

358 generating turbulent exchange. The smallest billows are observed near the frontal 
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359 nose, but these, together with ‘secondary’ billows at the edge of large billows around 

360 day 332.68, cause largest effective mixing. This confirms previous findings of the 

361 importance of secondary instabilities, as found in observations in estuaries (Geyer et 

362 al., 2010). Although the shear-induced KH-billows mainly overturn the interior 

363 stratification, their wavy patterned associated motions do reach the bottom (as far as 

364 can be judged from instrumentation down to 5 m above the bottom).

365  

366 c. Detailed observations of winter convection

367 In the winter when stratification is strongly reduced, turbulence is dominated by 

368 convection that does reach the bottom (Fig. 7). The inertial period (‘Tf’; indicated by 

369 the horizontal red bar in Fig. 7a) is visible in the clearer stratified waters moving in 

370 with onshelf motions. Internal wave motions are reduced, but inertial motions may 

371 couple with the weak stratification and also generate convection associated with KH-

372 billows (Fig. 8). Even in the (weakly) stratified waters, convective tubes are observed 

373 across the entire range of observations (Fig. 8a,b). These seem to have some 

374 periodicity, but the spectrum appears a (sloping) continuum, rather than peaking 

375 around particular frequencies (not shown). When shear is relatively weak, as around 

376 day 384.9, turbulence is relatively weak although short-term overturns do cause 

377 dissipation rate variations over a range of three orders of magnitude. When 

378 convection coincides with stronger shear at the transition between offshelf flow being 

379 replaced by onshelf flow higher-up, as on day 385.5 ff., large KH-billows associate 

380 with convection penetrating towards the bottom (Fig. 8c). Using the autumnal 

381 temperature-density relationship as a conservative estimate of the coarsely resolved 

382 winter CTD-data (Fig. 2), the 1.5 d; 37.5 m (Fig. 7) mean turbulence parameter values 

383 are [<>] = 5±2×10-7 m2s-3, [<Kz>] = 5±2×10-3 m2s-1, [<N>] = 4.3±0.5×10-3 s-1, with 
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384 the shortest internal wave period being 163 s. The turbulence values are thus half an 

385 order of magnitude larger than those for Figures 5 and 6. 

386

387 4. Discussion 

388 4.1. Critical slope and internal waves (general considerations).

389 Previous optics observations on continental margins suggested a correlation 

390 between the bottom-source of ‘nepheloid layers’, attributed to enhanced suspended 

391 sediment dispersed along isopycnals into the interior, and ‘critical internal wave 

392 reflection’ zones (e.g., Cacchione and Drake, 1986; McPhee-Shaw, 2006). In such a 

393 zone a match is expected between the bottom-slope angle and the angle of the 

394 dominant internal wave propagation. Theoretically, a freely propagating internal 

395 gravity wave impinging upon a bottom slope equaling its propagation angle will cause 

396 energy condensation near the bottom that may result in wave breaking. The internal 

397 wave angle  depends on the wave frequency , the inertial frequency f = 2Ωsinφ, Ω 

398 the Earth rotational vector and φ the latitude, and the buoyancy frequency N: sin2 = 

399 (2 – f2)/(N2 – f2), (LeBlond and Mysak, 1978). Under normal stratification conditions 

400 outside near-homogeneous (‘well-mixed’) waters, freely propagating internal waves 

401 exist in the band f ≤  ≤ N.

402 In the ocean however, first, N varies in space and in time, so that a particular wave 

403 angle, the internal wave beam and the loci of ‘critical reflection’ vary accordingly. 

404 Second, three-dimensional ‘3D’-internal wave propagation also requires a 3D 

405 knowledge of the slopes of the bottom-topography on all relevant scales, which is 

406 only obtainable via high-resolution multi-beam mapping. Third, turbulent bores have 

407 been observed to occur once every four days related with storm-induced sub-inertial 

408 motions in the Faeroe-Shetland Channel (Hosegood et al., 2004) and once a day 
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409 related with trapped diurnal tides in the Rockall Channel (van Haren et al., 2014). 

410 Both periodicities are ‘sub-inertial’  < f and cannot support freely propagating 

411 internal waves. 

412 More in general, strongest internal wave breaking and most vigorous bores seem 

413 to occur above super-critical, that is steep, slopes where the bottom slope exceeds the 

414 dominant (inertial, tidal) internal wave slope (van Haren et al., 2015; confirmed via 

415 DNS-modelling, Sarkar, pers. comm.). Thus, the slope steepness seems to matter 

416 more for internal wave breaking than its critical matching of particular internal wave 

417 source (near-inertial) frequency. Above such steep slopes, internal waves at higher 

418 frequencies well inside the internal wave band may become critical. Near-bottom 

419 onshelf propagating turbulent bores are observed to affect fine sediment transport 

420 (Hosegood et al., 2004; Bourgault et al., 2014). The associated trailing high-frequency 

421 internal waves that were also observed, are here considered to be important for 

422 bedforms development. 

423 Internal waves and larger scale currents exhibit vertical current shear, which 

424 destabilizes the stratification. The relation between shear and stratification is subtle: 

425 the larger the stable stratification the more destabilizing shear it can support, up to the 

426 point of marginal stability, see Polzin (1996) and Pinkel and Anderson (1997) for 

427 ocean data. In shallow seas, then main drivers of marginal stability are inertial 

428 motions due to the rotation of the earth in combination with small-scale internal 

429 waves (van Haren et al., 1999). The question is, how such large- and small-scale 

430 internal waves, and, possibly, their breaking, affect the development of the sediment 

431 waves observed here. 

432 A major conjecture for internal wave development in continental shelf 

433 environments is the vertical density stratification in the water column, which exists 
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434 for most of the time except for brief periods in winter and although with varying 

435 strength at varying depths. The stable density stratification affects the characteristics 

436 of turbulence by hampering the larger overturning scales in the vertical so that the 

437 essentially 3D-nature of the turbulence becomes 2- or 2.5D. This results in different 

438 ‘stratified’ Ekman dynamics, in which frictional effects are balanced by the rotation 

439 of the earth (Ekman, 1905), the layers of varying density mutually behaving much 

440 more slippery than homogeneous layers so that bottom frictional turbulence is not 

441 well communicated to the upper layer, the layer to which the along-shelf flow is then 

442 mostly confined here.

443

444 4.2. Matching internal waves with sediment waves in the Llobregat prodelta.

445 The Llobregat prodelta sediment waves are a phenomenon at only 1-3 km from the 

446 coast. They exist in an area where the overlying water flows, the currents, are 

447 observed to attain amplitudes exceeding 0.6 m s-1. However, as the currents are 

448 mainly directed parallel to the coast, parallel to the bottom slope and parallel to the 

449 sediment wave crests, other mechanisms for the interaction between water motion and 

450 sediment wave formation are to be sought.

451 In other Mediterranean prodeltas sediment waves were interpreted caused by high 

452 density hyperpycnal flows (e.g., Lobo et al. 2014). However, the location of the 

453 sediment waves with respect to the river mouth, and their morphology and internal 

454 structure suggest a different origin for the Llobregat sediment waves (Urgeles et al., 

455 2011). These authors compared sediment waves developed in several prodeltaic areas 

456 of the Mediterranean Sea and concluded that the most likely mechanisms for the 

457 genesis of the Llobregat sediment waves are internal waves. Similar fine-grained, 

458 sandy and carbonate sediment wave fields developed in continental slopes worldwide 
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459 have been attributed to internal waves (e.g., Karl et al, 1986; Ediger et al., 2002; 

460 Reeder et al., 2011; Bøe et al., 2015; Belde et al., 2015).

461 The sediment waves and seafloor structure of the Llobregat prodelta has also 

462 similarities with that of the Gulf of Valencia continental slope (Ribó et al. 2016a,b), 

463 although in this case the bedforms are much smaller (about 1 versus 10 m height, 

464 respectively). These muddy sediment waves are located between 35 and 90 m depth in 

465 the Llobregat and between 250 and 850 m depth in the Gulf of Valencia. However, 

466 both are found just at the seaward side of the steepest part of the local (continental) 

467 slope, at the foreset region of both types of prograding clinoforms (i.e., a prodeltaic 

468 mud wedge vs. a continental margin). In the Gulf of Valencia, internal waves have 

469 been observed at a dominant local inertial period which is modulated by an about 11 

470 day periodic, baroclinic unstable boundary current. When this current is strong and 

471 eastward, the upslope phase of inertial wave generates convective turbulence which 

472 reaches closest to the bottom and therefore can affect sediment dispersal. In late 

473 winter, equally strong shear-induced turbulence in 50 m high KH-billows is forced by 

474 off-slope moving cooler bottom water, which is suddenly flushed over the promontory 

475 into the basin (van Haren et al., 2013). The region in the Gulf of Valencia slope with 

476 the highest sediment waves (~50 m in height) coincided with the water depths where 

477 the KH-billows were observed, both displaying equivalent amplitudes, an aspect 

478 considered by Ribó et al. (2016a) to attribute their formation to internal waves.

479 The density stratification also supports internal waves having wavelengths between 

480 about 1 km at near-inertial frequencies and about 10 m at near-buoyancy frequencies. 

481 Here, high-frequency internal waves are observed to have lengths of 50-100 m that 

482 match those of the local sediment waves. (Anti-)dune formation is expected when 

483 overlying water waves match the sediment waves in wavelength. At this stage one 
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484 cannot rule out the effects of surface waves because they only can weakly reach the 

485 35-90 m deep bottom during the strongest storms. In fact, the absence of undulations 

486 <35 m water depth and the evidence of erosion in the shallowest sediment waves have 

487 been interpreted by Urgeles et al. (2011) as an effect of storms reshaping of the 

488 sediment wave field.

489 The present observational experiment has been performed in the autumn-spring 

490 half year to study near-bottom internal waves and turbulence (and flows). It is thought 

491 that the spring-summer period provides very strong (temperature dominated) 

492 stratification. Internal waves supported by such large stratification are expected to 

493 affect the bottom less when they are in the upper half of the water column, except 

494 perhaps in shallower waters closer to the shore than the mooring location. 

495 The autumn/winter period is observed to be characterized by mixing by the 

496 strongest storms in the area and by onshelf propagating internal bores when 

497 stratification is still non-negligible but pushed down to within 5-10 m from the 

498 bottom. The bores are turbulent, but mainly shear-driven and the associated KH-

499 billows trailing the front are accompanied by high-frequency internal waves with 

500 wavelengths that match those of the sediment waves. The bores are the highly 

501 nonlinear relaxation following an instability that is either created by near-inertial 

502 internal waves or Ekman layer dynamics (over a sloping bottom with stratified waters 

503 above) of sub-inertial 3-7 d periodic southwest currents, as in the Faroer-Shetland 

504 Channel (Hosegood and van Haren, 2003). 

505 The variable but relatively short periodicity of 3-7 days is typical for atmospheric 

506 effects near the coast in the northwestern Mediterranean (e.g., Font, 1990; Jimenez et 

507 al, 1999; Rubio et al, 2009; Ribó et al., 2015), while it is shorter than generally 

508 considered typical (10-20 days; e.g., Crépon et al., 1982; Albérola et al., 1995), for the  
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509 Northern Current which flows along the continental slope but further seaward. The 

510 bores are termed ‘gravity currents’ by Venayagamoorthy and Fringer (2012) because 

511 of their intruding nature. However, they contrast with the more general turbidity 

512 ‘gravity’ currents, which have been modelled to generate sediment waves (Hoffmann 

513 et al., 2015), but which essentially flow offshelf. These are not observed here.

514 The winter/spring period is characterized by strong convective turbulence mixing 

515 waters to near-homogeneity and either (just) preceding the above onshelf propagating 

516 bores during the offshelf flow phase or driven by atmospheric surface cooling. 

517 Convective turbulence is found to be a quasi-regular process, but considerably less 

518 regularly varying than high-frequency internal waves. Additionally, the scales of 

519 convection cells are not found to match the scales of sediment waves.   

520

521 5. Conclusions

522 Analyses of time series collected by a near-bottom array of high-resolution 

523 temperature sensors moored at 81 m water depth, seaward of an extensive sediment 

524 wave field in the Llobregat River prodelta, provided a comprehensive view of the 

525 internal wave and turbulence activity in this region during the autumn-spring 

526 transition and insights of its potential role for the development of sediment wavesn. 

527 The results presented in this study support the following conclusions:

528 - Strong stratification can become depressed to very close to the bottom in autumn 

529 and supports high-frequency internal waves some of which break under shear. The 

530 associated turbulence matches that of deep-ocean large internal waves breaking at 

531 sloping topography and is 100 times larger than internal wave induced turbulence in 

532 the ocean interior. 
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533 - During weak stratification in winter, large convective turbulence is observed 

534 which is estimated to be half an order of magnitude larger than the shear-induced 

535 turbulence in autumn. Conservative estimate: it can be larger

536 - The high-frequency internal waves close to the buoyancy frequency trail 

537 observed onshelf propagating frontal bores with relatively weak (0.1-0.2 m s-1) 

538 current amplitudes. The fronts pass irregularly, roughly with inertial periodicity or a 

539 periodicity of 3-7 days, depending on the main driver. The associated trailing 

540 interfacial waves have wavelengths matching those of the sediment waves. Their 

541 shear-induced mixing is observed as a series of Kelvin-Helmholtz billows that under 

542 critical bore conditions. These instabilities and the high-frequency waves most likely 

543 interact with the sediment waves, presumably causing local resuspension and or 

544 inhibiting particle deposition in the steep flank of the up-slope migrating sediment 

545 wave, contributing to their generation and maintenance through time.

546
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717 Figure 1. Shaded relief bathymetric map of the Llobregat prodelta outside Barcelona harbour 

718 (NW-Mediterranean Sea), showing the positions of the mooring (black pin) and 

719 CTD site (white triangle) near the harbour’s Sierra buoy (80 m depth). The undular 

720 bedforms with crests parallel to the coast are clearly visible shoreward between the 

721 buoy and about 35 m depth. The bathymetric survey was conducted in 2004 (R. Urgeles, 

722 personal communication).

723

724 Figure 2. Lower half of CTD observations around the times of mooring deployment 

725 in autumn (blue, green), in winter (purple) and around mooring recovery in spring 

726 (black). (a) Conservative Temperature with the range of moored temperature 

727 sensors (red bar). (b) Absolute Salinity; the x-axis range matches that of a. in terms 

728 of density variation. (c) Conservative Temperature – potential density anomaly 

729 referenced to the surface, with linear relationships given by straight (magenta and 

730 yellow) lines, resulting in a mean δσθ = αδΘ, α = -0.26±0.02 kg m-3 C-1 the 

731 apparent local expansion coefficient. (d) Comparison of the slope of relationships 

732 in c. with density from profile data.

733

734 Figure 3. Data overview of 170 day time-depth series. Currents are measured using 

735 ADCP, temperature using moored high-resolution T-sensors. The vertical purple 

736 lines indicate short periods of which details are shown in Figures (F) 5-8. (a) 

737 Conservative Temperature. (b) Along-shelf current component (positive towards 

738 northeast), hourly smoothed to reduce noise. (c) Cross-shelf current component 

739 (positive offshelf), hourly smoothed. Note the different colour-scale compared with 

740 b. (d) Vertical current component (positive up), hourly smoothed. Note the 

741 different colour-scale compared with b. (e) Gradient Richardson number Ri = 
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742 N2/|S|2. (f) Acoustic echo intensity relative to the time mean at each depth-bin. (g) 

743 Vertically averaged (between 5.5 and 42.5 m above the bottom) turbulence 

744 dissipation rate inferred from temperature data. Some high values occurring after 

745 day 340, e.g. around days 360, 400 and 405, are unrealistic and partially caused by 

746 salinity-compensated intrusions (see text).

747 Figure 4. (a) Local wind speed data (blue) and the gradient of near-bottom 

748 temperature data (arbitrary scale) of which peaks demonstrate the occurrence of 

749 fronts. (b) Spectra of mid-range kinetic energy, local wind and near-bottom 

750 temperature variance. 

751

752 Figure 5. Autumn 10-h detail-example of transition from offshelf near-bottom flow to 

753 onshelf (-u) propagating near-bottom front. (a) Conservative Temperature. Note the 

754 smaller range of 1°C, compared with Figure 3a. (b) Cross-shelf current, original 

755 (300 s) data. (c) Logarithm of buoyancy frequency from reordered -profiles. (d) 

756 Relative acoustic echo intensity. (e) Vertically averaged turbulence dissipation rate. 

757

758 Figure 6. As Figure 5, but for 4-h observations of onshelf propagating bore four 

759 weeks later and including numerous interior (40-60 m) Kelvin-Helmholtz billow 

760 overturning across the largest stratification. Note the different 1.9°C range in panel 

761 a., compared with Figures 3a,5a.

762

763 Figure 7. As Figure 5, but for 1.5-d observations in mid-January of inertial and 

764 diurnal convective overturning and offshelf near-bottom currents. Note the 

765 different 0.5°C range in panel a., compared with Figures 3a, 5a, 6a. The vertical 
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766 purple lines indicate half-hour periods of Figures 8a-c. The horizontal red line 

767 indicates one inertial period.

768

769 Figure 8. Half-hour zooms of Figure 7a, showing convection reaching the lowest 

770 sensors. Note the different colour ranges.

771
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